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Abstract

This paper explores liquidity risk in a system of interconnected
financial institutions when these institutions are subject to regula-
tory solvency constraints and mark their assets to market. When
the market’s demand for illiquid assets is less than perfectly elastic,
sales by distressed institutions depress the market prices of such as-
sets. Marking to market of the asset book can induce a further round
of endogenously generated sales of assets, depressing prices further
and inducing further sales. Contagious failures can result from small
shocks. We investigate the theoretical basis for contagious failures
and quantify them through simulation exercises. Liquidity require-
ments on institutions can be as effective as capital requirements in
forestalling contagious failures.
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1 Introduction

Prudential regulations in the form of liquidity or capital requirements are

designed to enhance the resilience to shocks of financial systems by requiring

institutions to maintain prudent levels of liquidity and capital under a broad

range of market conditions. However, at times of market turbulence the

remedial actions prescribed by these regulations may have perverse effects on

systemic stability. Forced sales of assets may feed back on market volatility

and produce a downward spiral in asset prices, which in turn may affect

adversely other financial institutions. This paper investigates these issues.

In particular, it looks at the consequences of combining liquidity risk with

externally imposed regulatory solvency requirements, when mark-to-market

accounting of firms’ assets are also in place.

We construct a model that incorporates two channels of contagion - di-

rect balance sheet interlinkages among financial institutions and contagion

via changes in asset prices. The former has been studied extensively, but

the latter has received only scant attention. Our aim is to redress the bal-

ance. Changes in asset prices may interact with externally imposed solvency

requirements or the internal risk controls of financial institutions to generate

amplified endogenous responses that are disproportionately large relative to

any initial shock. An initial shock that reduces the market value of a firm’s

balance sheet will elicit the disposal of assets or of trading positions. If the

market’s demand is less than perfectly elastic, such disposals will result in a

short run change in market prices. When assets are marked to market at

the new prices, the externally imposed solvency constraints, or the internally

imposed risk controls may dictate further disposals. In turn, such disposals

will have a further impact on market prices. In this way, the combination

of mark-to-market accounting and solvency constraints have the potential to

induce an endogenous response that far outweighs the initial shock.

Importantly, asset price contagion by itself cannot be used to argue
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against prudential regulations and transparency, for two reasons. First,

we model only the ex post stability effects of capital requirements and mark-

ing to market for given portfolio choices and not the positive ex ante effects

on incentives. For example, capital requirements and mark-to-market rules

may deter financial institutions from taking excessive risks ex ante. Second,

even if we modelled these effects explicitly, the level of optimised liquid assets

and capital held by financial institutions may still be suboptimal from the

point of view of minimising systemic risk as individual institutions do not

internalise the externalities of network membership.

Regulators are familiar with the potentially destabilizing effect of sol-

vency constraints in distressed markets. To take a recent instance, in the

days following the September 11th attacks on New York and Washington

financial markets around the world were buffeted by unprecedented turbu-

lence. In response to the short term disruption, the authorities suspended

various solvency tests applied to large financial institutions such as life insur-

ance firms. In the U.K., for instance, the usual ‘resilience test’ applied to life

insurance companies in which the firm has to demonstrate solvency in the

face of a further 25% market decline was suspended for several weeks. Also,

following the decline in European stock markets in the summer of 2002, the

Financial Services Authority – the U.K. regulator – diluted the resilience

test so as to preempt the destabilizing forced sales of stocks by the major

market players.1

The LTCM crisis of 1998 can also be seen as an instance where credit

interconnections and asset prices acted in concert as the main channel prop-

agating widespread market distress (see BIS (1999), IMF (1998), Furfine

(1999), Morris and Shin (1999)). Furfine, for instance, cites the arguments

used by the Federal Reserve to justify intervention during the LTCM crisis
1FSA Guidance Note 4 (2002), “Resilience test for insurers”. See also FSA Press

Release, June 28th 2002, no FSA/PN/071/2002, “FSA introduces new element to life
insurers’ resilience tests”.
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in 1998. On one side, the Fed wanted to contain the disruption that the

liquidation of LTCM would impose on the markets, where LTCM was a sig-

nificant player, in order to avoid the spillover to other market participants

without direct credit relationships with LTCM. On the other, the Fed was

concerned of knock-on effects that the liquidation of LTCM would imply on

banks with high direct exposures to LTCM.

There has been a substantial body of work that has examined balance

sheet interlinkages as a possible source of contagious failures of financial in-

stitutions. Most papers calibrate the models using actual cross-exposures in

real banking systems (or an approximation of them) and simulate the effects

of a shock to the system resulting from the failure of one or more institu-

tions. Sheldon and Maurer (1998) study the Swiss banking system. Upper

and Worms (2002) consider the German system. Furfine (1999) analyses

interlinkages in the US Federal Funds market. Wells (2002) focuses on the

UK banks. Elsinger et al (2002) consider an application to the Austrian

banking system, and provide a stochastic extension of the framework (using

the concept of value at risk). Cifuentes (2002) uses the same framework to

analyse the link between banking concentration and systemic risk.

The main focus of these papers is on finding estimates of interbank credit

exposures. Once this is determined, systemic robustness is assessed by

simulating the effects on the system of the failure of one bank at a time.

Importantly, solvency is assessed based on fixed prices that do not change

through time. Such an assumption would be appropriate if the assets of the

institutions do not undergo any changes in price, or if solvency is assessed

based on historical prices. Invariably, a consistent finding of these papers is

that systemic contagion is never significant in practice, even in the presence

of large shocks. In the absence of price effects, this is hardly surprising,

as interbank loans and deposits represent only a limited fraction of banks’

balance sheets. Conventional wisdom is also that collateralisation may have

mitigated this risks further.
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Our paper suggests that systemic risk in these networks may be larger

than thought, even in the presence of collateralisation. The reason is that

the risk that materialises is not a credit risk but a market risk. This is a

new dimension to systemic contagion illustrated by recent events. The value

of any collateral backing a credit exposure is clearly subject to this risk, and

hence not immune to systemic risk through this channel.

For commercial banks whose assets consist mainly of corporate or retail

loans, the use of backward-looking prices in assessing solvency may be a rea-

sonable approach, although even such banks would also hold some financial

assets on their trading book that would be marked to market. For finan-

cial firms that hold mainly marketable assets - such as insurance companies,

hedge funds or investment banks - the assumption of fixed prices would be

highly unrealistic. Even for commercial banks, whose assets are currently

accounted for on an accruals basis, our analysis can be seen as a hypothetical

thought-experiment on the consequences of the introduction of the mark-to-

market accounting of assets.

Our paper can be seen in the light of the recent theoretical literature

on banking and financial crises that has emphasises the limited capacity of

the financial markets to absorb sales of assets (see Allen and Gale (2002),

Gorton and Huang (2003) and Schnabel and Shin (2002)), where the price

repercussions of asset sales have important adverse welfare consequences.

Similarly, the ineffecient liquidation of long assets in Diamond and Rajan

(2000) has an analogous effect. The shortage of aggregate liquidity that

such liquidations bring about can generate contagious failures in the banking

system.

One important conclusion of our paper is that prudential regulation (in

the form of minimum capital requirement ratios or other solvency constraints)

when combined with mark-to-market rules can sometimes generate undesir-

able spillover effects. Marking to market enhances transparency but it may

introduce a potential channel of contagion and may become an important
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source of systemic risk.2 Liquidity requirements can mitigate contagion,

and can play a similar role to capital buffers in curtailing systemic failure.

The paper is organised as follow. Section 2 illustrates the framework.

Section 3 presents the algorithm. Section 4 discusses the main results.

Section 5 concludes.

2 Framework

There are n interlinked financial institutions (for simplicity, we can think of

these as being banks). The liability of bank i to bank j is denoted by Lij.

The total liability of bank i is then the sum

x̄i ≡
X
j

Lij

Denote by xi the market value of bank i’s interbank liabilities. This can be

different from the notional value because the debtor may be unable to repay

these liabilities in full. Interbank claims are of equal seniority, so that if the

market value falls short of the notional liability, then the bank’s payments

are proportional to the notional liability. Let πij = Lij/x̄i. Then, the

payment by i to j is given by

xiπij (1)

while the total payment received by bank i from all other banks isX
j

xjπji

Bank i’s endowment of the illiquid asset is given by ei. The price of the

illiquid asset is denoted by p. In addition, bank i has holdings of the liquid
2It seems intuitive to conjecture that when players are faced with illiquid markets,

they would try to insure against liquidity black holes by holding more liquid assets. The
argument in Jackson, Perraudin and Saporta (2002) should apply also to liquidity - i.e.
that market discpline would induce banks to hold more liquid assets. That said, each
individual bank will have no incentive to internalise any network externalities, and the
level of liquidity may not be optimal.
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asset given by ci. Thus, the net worth or equity value of bank i is

pei + ci +
X
j

xjπji − xi

Limited liability of the bank implies that its equity value is non-negative.

Priority of debt over equity implies that equity value is strictly positive only

when xi = x̄i (i.e. bank i’s payment is equal to its notional obligation).

Thus, the vector of payments x = (x1, x2, · · · , xn) is such that for each i,

xi = min

(
x̄i, wi (p) +

X
j

xjπji

)
(2)

where wi (p) = pei+ci is the marked-to-market value of the liquid and illiquid

assets of bank i. More succinctly, we can write (2) in vector form as

x = x̄ ∧ ¡w (p) +ΠTx¢ (3)

where w (p) = (w1 (p) , · · · , wn (p)), ΠT is the transpose of the exposure ma-
trix Π, and ∧ is the pointwise minimum operator. Thus, a clearing vector x
that satisfies (3) is a fixed point of the mapping

H (x) ≡ x̄ ∧ ¡w (p) +ΠTx¢
H (.) is an increasing function on the lattice Rn+ (with infimum defined by the
operator ∧), and where H (0) ≥ 0 and H (x̄) ≤ x̄. Hence, by Tarski’s fixed
point theorem, there is at least one fixed point of H (.), and hence at least

one clearing vector x. Eisenberg and Noe (2001) have proved that under

mild regularity conditions, there is a unique fixed point of such a function. A

sufficient condition for the existence of a unique fixed point is that, first, the

system is connected in the sense that the banks cannot be partitioned into

two or more unconnected sub-systems, and that there is at least one bank

that has positive equity value in the system. By drawing on the results of

Eisenberg and Noe, we can proceed as follows. For any fixed value of p,

the net worth of each bank is determined fully. Hence, by appealing to the

result of Eisenberg and Noe (2001), we have the following lemma.
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Lemma 1 Suppose the banking system is connected, and that at price p,

there is at least one bank that has positive equity value. Then, there is a

unique clearing vector x such that

x = x̄ ∧ ¡w (p) +ΠTx¢
Let us write x (p) to be the unique clearing vector when the price of the

illiquid asset is given by p. Then each payment xij is determined by the pro

rata rule (1). Hence, this lemma allows us to write each xij as a function of

p. We will use this feature in what follows.

2.1 Capital Adequacy Ratio

Assets held by the bank attract a regulatory minimum capital ratio, which

stipulates that the ratio of the bank’s equity value to the mark to market

value of its assets must be above some pre-specified ratio r∗. When a bank

finds itself violating this constraint, it must sell some of its assets so as to

reduce the size of its balance sheet. Denote by ti the units of the liquid asset

sold by bank i, and denote by si the units of the illiquid asset sold by bank

i. The liquid asset has constant price of 1. The illiquid asset has price p,

which is determined in equilibrium.

The capital adequacy constraint puts a lower bound on the capital asset

ratio of the bank. The constraint is given by

pei + ci +
P

j xjπji − xi
p (ei − si) + (ci − ti) +

P
j xjπji

≥ r∗ (4)

The numerator is the equity value of the bank where the interbank claims

and liabilities are calculated in terms of the expected payments. The denom-

inator is the marked-to-market value of its assets after the sale of si units of

the illiquid asset and sale ti of the liquid asset. The underlying assumption

is that the assets are sold for cash, and that cash does not attract a capital

requirement. Thus, if the bank sells si units of the illiquid asset, then it has
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psi in cash (assuming for simplicity that it starts with zero cash), and holds

p (ei − si) worth of the illiquid asset. Hence, we have the sum of these (given
by pei) on the numerator, while we have only the mark to market value of

the illiquid asset (given by p (ei − si)) on the denominator. Similar remarks
apply to the liquid asset. Thus, by selling its assets for cash, the bank

can reduce the size of its balance sheet and hence reduce the denominator,

making the capital asset ratio larger.

We make two assumptions. First, the bank cannot short sell the assets.

Thus,

si ∈ [0, ei] and ti ∈ [0, ci]

Second, we assume that the bank sells all its liquid assets before it starts

selling its illiquid assets. Thus, si > 0 only if ti = ci. Any value maximizing

bank will follow this rule, and hence this assumption is not a strong one.

2.2 Equilibrium

An equilibrium is the triple (x, s, p) consisting of a vector of payments x,

vector of sales of illiquid asset s, and the price p of the illiquid asset such

that:

1. For all banks i, xi = min
n
x̄i, pei + ci +

P
j xjπji

o
2. For all banks i, si is the smallest sale that ensures that the capital

adequacy condition is satisfied. If there is no value of si ∈ [0, ei] for
which the capital adequacy condition is satisfied, then si = ei.

3. There is a downward sloping inverse demand function d−1 (.) such that

p = d−1 (
P

i si).

The first clause is reiterating the limited liability of equity holders, and the

priority and equal seniority of the debt holders. The second clause says that

either the bank is liquidated altogether, or its sales of illiquid assets (possibly
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zero) reduces its assets sufficiently to comply with the capital adequacy ratio.

Finally, the third clause states that the price of the illiquid asset is determined

by the intersection of a downward sloping demand curve and the vertical

supply curve given by aggregate sales.

By re-arranging the capital adequacy condition (4) together with the

condition that si is positive only if ti = ci, we can write the sale si as a

function of p, where si = 0 if the capital adequacy condition can be met by

sales of the liquid asset or from no sales of assets, but otherwise is given by

si = min

ei, xi − (1− r
∗)
³P

j xjπji + pei

´
− ci

r∗p


The interbank payments xij are all functions of p. Thus, si itself is a function

of p, and we write si (p) the sales by bank i are a function of the price p. Let

s (p) =
X
i

si (p)

be the aggregate sale of the illiquid asset given price p. Since each si (.) is

decreasing in p, the aggregate sale function s (p) is decreasing in p.

2.3 Equilibrium Price

The inverse demand curve for the illiquid asset is assumed to be

p = e
−α

³P
i
si

´
(5)

where α > 0 is a positive constant. The maximum price is p = 1, which

occurs when sales are zero. We impose two regularity conditions on the

demand and sales functions. First, we require that the banking system does

not spiral down into zero net worth when all the illiquid assets are sold.

When the entire endowment of illiquid assets in the system are sold, there is

at least one bank that has positive equity value.3 Let p be the price of the
3This condition is only needed to show the existence of an interior solution, and will

be removed when we run our empirical simulations later.
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illiquid asset when the entire endowment of the illiquid asset is sold. That

is p = d−1 (
P

i ei). Our first regularity condition is

s
¡
p
¢
< d

¡
p
¢

(6)

Our second regularity condition is at the opposite end of the price spectrum.

We require that when the price of the illiquid asset is at its highest, given

by p = 1, no bank is forced to sell any of its illiquid assets. In other words,

s (1) = 0. From (5), we have d (1) = 0. Together, we have

s (1) = d (1) (7)

An equilibrium price of the illiquid asset is a price p for which

s (p) = d (p)

From (7), we have at least one equilibrium price, given by p = 1. This is

the status quo price where the banking system has not suffered any adverse

shock. However, an equilibrium price lower than 1 is possible provided that

the s (p) curve lies above the d (p) curve for some ranges of price (see figure

1).

The price adjustment process can be depicted as a step adjustment process

in the arc below the s (p) curve, but above the d (p) curve. The process starts

with a downward shock to the price of the illiquid asset. At the lower price

p0, the forced sales of the banks puts quantity s (p0) on the market. How-

ever, this pushes the price further down to p1 = d−1 (s (p0)). This elicits

further sales, implying total supply of s (p1). Given this increased supply,

the price falls further to p2 = d−1 (s (p1)), and so on. The price falls until

we get to the nearest intersection point where the d (p) curve and s (p) curve

cross.

Equivalently, we may define the function Φ :
£
p, 1
¤→ £

p, 1
¤
as

Φ (p) = d−1 (s (p))
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Figure 1: Amplification of shock through asset sales

and an equilibrium price is a fixed point of the mapping Φ (.). The function

Φ (.) has the following interpretation. For any given price p, the value Φ (p)

is the market-clearing price of the illiquid asset that results when the price

of the illiquid asset on the banks’ balance sheets are evaluated at price p.

Thus, when Φ (p) < p, we have the precondition for a downward spiral in

the illiquid asset’s price. The price that results from the sales is lower than

the price at which the balance sheets are evaluated. We can summarize our

results as follows.

Proposition 2 If Φ (p) ≥ p for all p, there is a unique equilibrium in which
p = 1. In this case, the value of the banking system declines only by the size

of the initial shock.

Proposition 3 If Φ (p) < p for some values of p, then there is an equilibrium

in which p is strictly below 1, and in which there are sales of the illiquid

asset. In this case, the banking system will reach this equilibrium by the step

adjustment process provided that the initial shock is big enough.
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The first proposition is immediate. Thus, when the Φ (p) curve lies above

the 45-degree line, there is no endogenous fall in the asset value of the banking

system. The only effect of the initial shock is to reduce the banking sector’s

value by the amount of the initial shock. The second proposition follows

from the continuity of the Φ (.) mapping, which inherits its continuity from

the continuity of d (p) and s (p). In this case, there is an amplification effect

that arises from the endogenous responses generated by the forced sales.

3 Simulations

We now illustrate the effects of illiquidity as given in Proposition (3) by

means of several examples. The basic structure of the model is the same as

that outlined in the previous section. But to make the example more realistic

we include deposits as an additional liability in banks’ balance sheets. We

use these to explore the implications on systemic robustness of changes in a

wide set of systemic and policy parameters.

3.1 The algorithm

To identify the equilibrium of the model, we devise an iterative procedure

whose structure is designed to obtain the equilibrium to the adjustment pro-

cedure defined in the previous section. The algorithm can be described as

follows.

Given the level of the minimum capital ratio r∗, the algorithm checks

that the equity ratio of each bank (rk) satisfies condition (4). Failure to

comply with this requirement triggers a resizing of the bank’s balance sheet

and possibly the liquidation of the bank.

There are two possible cases.

1. If rk ≥ r∗, then the bank satisfies the capital adequacy ratio and no

action is required.
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2. If rk < r∗, then the bank violates the capital adequacy ratio and needs

to liquidate assets.

In the second case, depending on the size of its equity capital, the bank

can resize its balance sheet, scaling down the size of its assets to a new level

consistent with the actual level of equity capital available. Alternatively,

if this is not possible the bank is liquidated.4 We assume that liquidation

occurs if equity capital is insufficient to support more assets than the out-

standing claims in the interbank market. In other words, the threshold level

of equity capital for technical solvency is given by:

r∗
nX
i=1

Lij

For a bank that violates the capital adequacy ratio, the resizing routine

is activated. This entails a reduction of the size of the bank’s balance sheet

until the bank’s assets can be supported by the given equity size. Assets

are liquidated according to their degree of liquidity. First, banks liquidate

their liquid asset and then they move to the illiquid asset. When the bank

becomes insolvent, the liquidation routine is activated. All the bank’s (liq-

uid and illiquid) assets are liquidated and used to settle liabilities, according

to the principles set out in the previous section (priority of debt claims,

proportionality, limited liability). In particular, when default occurs, the

defaulting bank pays all claimants in proportion of the size of their nominal

claims on the bank’s assets. This implies that the loss is distributed propor-

tionally among all bank’s creditors. Because of this, interbank assets and

liabilities cannot be netted, as netting would effectively give priority to some

claimants over others, implying that the loss is not evenly spread among

holders of interbank assets.
4In principle, the bank could also raise equity capital in the markets. However, we

rule out this option on the grounds that at times of stress raising equity may be expensive,
may take time, and may even be impossible in some cases, if capital markets are shut.
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Different liquidation rules apply to the three categories of bank assets

when they have to be used to settle liabilities. Liquid assets are sold for

cash at the notional value. Illiquid assets have to be liquidated at market

price. The proceeds from the sale can then be used to settle liabilities.

Interbank assets are not cashed but are redirected, or redistributed, at face

value proportionally among the holders of the bank’s liabilities who essen-

tially take over the credit line given by the defaulting or resizing bank and

become the new creditor of the contract. This liquidation rule of interbank

assets reflects the fact that interbank loans normally cannot be expected to

be recalled early in the event of default of the lender. In other words, default

of the lender cannot trigger early repayment of a loan.

This variety of liquidation rules acknowledges the fact that different asset

types carry different risks. In particular, liquid assets are always exchanged

at face value and bear no risk. Illiquid assets are exposed to market and liq-

uidity risks as their final value is determined endogenously as a market price,

which in turn depends on the equilibrium of demand and supply. Interbank

assets are exposed to credit (or counterpart) risk, as their value ultimately

depends on whether the borrower is able or not to repay the loan in full, and

on the recovery rate in the event of default.

Clearly, because different asset types imply exposure to a range of dif-

ferent risks, the actual asset composition of a bank’s portfolio has a direct

bearing on the bank’s intrinsic creditworthiness, on its capacity to withstand

shocks and on its susceptibility to contagion. Banks with significant hold-

ings of liquid assets as a proportion of total assets are generally more resilient

to shocks and less susceptible to contagion, as they are overall less exposed

to fluctuations of the price of the illiquid asset and face lower credit risk.

Additionally, if these banks default or have to resize, they create less exter-

nalities on the rest of the system, as they can settle their liabilities through

the liquid asset, whose price is fixed. Thus, they would sell smaller amounts

of the illiquid asset in the market, and would create less systemic contagion
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through movements of asset prices.

Importantly, when choosing their portfolio allocation banks do not in-

ternalise the positive externalities that holding more liquidity has on the

stability of the system. Therefore, the privately determined liquidity will

be sub-optimal. We do not model explicitly the banks’ individual choices

of liquidity (and capital). However, because banks do not internalise the

externalities of network membership, the introduction of an ex ante portfo-

lio allocation to the problem would not necessarily guarantee that liquidity

in equilibrium coincides with the level that minimises systemic risk. As a

consequence, liquidity and capital requirements would need to be externally

imposed. Moreover, they should be set in relation to a bank’s contribution

to systemic risk, and not on the basis of the bank’s idiosyncratic risk.

One distinguishing feature of the algorithm is that for defaulting and

oversized banks the algorithm keeps track of the quantity of the illiquid

asset dropped in the market. In other words, payments in liquidations are

kept under separate accounts according to their origin, in order to allow

re-pricing of the illiquid asset when the market price changes. Combining

this information with the given demand function of the illiquid asset allows

calculating the new equilibrium price of the illiquid asset. Mark-to-market

rules imply that all banks have to re-price their stock holding of illiquid assets

in their balance sheet at the new (lower) given market price, which in turn

may mean that banks that were previously safe, may now become illiquid or

insolvent.

Formally, the algorithm determines in each round the set of banks that

are oversized or insolvent and calculates the quantity of the illiquid asset

that these nodes need to drop in the market. Given this quantity, it then

determines the new price of the illiquid asset using the specified demand

function. Then, the illiquid asset is re-priced by all nodes in the system,

according to mark-to-market requirements. Finally the algorithm checks

that all banks are solvent under the new price. If there is at least one

16



insolvent bank, the algorithm is iterated again until an equilibrium is found

where all banks satisfy the solvency condition.

3.2 Parameterisation

For a first set of basic results we model a highly stylised banking system. We

keep a number of background parameters constant and explore the effects on

systemic stability of a number of state and policy parameters.

The main background parameters are:

• Initial banks’ balance sheet: we assume that banks are homoge-

nous, i.e. that they all have the same initial balance sheet, which takes

the form:

Liquid and illiquid assets 70 Equity 7
Interbank assets 30 Deposits 63

Interbank liabilities 30
Total assets 100 Net worth and liabilities 100

• Initial interbank claims: the initial overall size of the inter-bank

market is fixed and constant across all simulations; additionally banks

have zero net interbank exposures (i.e. gross interbank liabilities and

assets match for each bank);

• Regulatory capital requirement: banks’ equity must be at least

7% of total assets; if equity falls below this threshold then banks would

need to scale down their balance sheet and eventually liquidate;

• Initial number of banks: We set this equal to 10;

• Demand function of the illiquid asset: this takes an exponential
form and is given by equation (5), and we set values for the parameter

α, as described below.
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These assumptions identify a ‘neutral’ banking system, where all agents

are alike and where results do not depend on the size of banks’ balance

sheets. Moreover, results can be interpreted regardless of considerations of

market concentration. Clearly, calibrating a realistic financial system with

differentially sized firms would be an obvious extention of this research.

We explore how systemic stability is affected by the following parameters:

• Capital buffer: defined as the margin of a bank’s equity above regu-
latory capital. A high capital buffer allows a bank to withstand larger

shocks before it is pushed below the threshold for regulatory solvency

and forced to resize or liquidate. Thus a bank with high capital buffer

is more resilient to shocks and generates less systemic risk through asset

price movements and links in the interbank market.

• Liquidity ratio: defined as the initial proportion of liquid and illiquid
assets in banks’ balance sheets. Intuitively, systemic risk is lower in

more liquid banking systems as banks can resize their balance sheets

without creating large movements in the price of the illiquid asset, for

any given price elasticity of the demand curve.

• Banking interlinkages: defines the structure of banks’ interconnec-
tions through the interbank market and is given by the number and

combinations of interbank links, for a given size of the interbank mar-

ket. In particular, given the size of interbank loans and deposits, we

fix the number of possible counterparts and then randomly simulate all

the possible combinations that can be created for that given number of

counterparts.

• Price elasticity: defined by the parameter α in equation (5). A low
value of α implies an elastic demand for the illiquid asset, so that price

changes will be smaller for a given amount of the illiquid asset sold in

the market. In most simulations we assume a value of α such that p
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falls by 50% if all the illiquid assets held by banks are dropped in the

market, or that there is a floor for p equal to 0.5.5

For convenience, we treat the capital buffer and the liquidity ratio as

‘policy’ parameters. The interlinkages structure, the price elasticity, and

the size of the shock are ‘state’ parameters. Results presented here assume

an idiosyncratic shock.

4 Results

Results are presented in terms of the final system equilibrium, when nodes

do not further adjust their balance sheets and equilibrium prices are used to

evaluate assets. However, the transition from the initial state to the final

equilibrium contains additional information. We will use this in one specific

example.

The shock that we simulate is the failure of one institution, which occurs

with a certain initial loss given default (LGD).6 The initial LGD is the

excess of nominal liabilities over the value of the assets of the failed bank.

Expressed as a fraction of total initial assets, it indicates the percentage loss

that creditors suffer if assets are recovered at their liquidation value. Clearly

in our model the initial LGD does not necessarily coincide with the final losses

suffered by banks. If the price elasticity of the illiquid asset is below infinity,

total losses in equilibrium may be higher than the initial simulated shock as

falls in the price of the illiquid asset imply destruction of equity value. This

is an important distinction from Eisenberg and Noe, where the initial loss is
5In coding the algorithm we replace the first regularity condition for equilibrium (that

at least one bank survives with positive equity when the entire endowment of the illiquid
asset is sold in the market - Section 2.3) with a floor on the price of the illiquid asset.
When the regularity condition is removed, it is possible, under certain circumstances, that
all institutions in the financial system may go bankrupt. In this case, we assume by
definition that the equilibrium price of the illiquid asset is given by its floor value.

6Alternatively, the initial shock could have been a shock to the price of the illiquid
asset. This would have affected all banks in the same way. In this case, the shock takes
the form of a shift to the left of the supply function s(.) (Figure 1).
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simply reallocated among the nodes, there is no destruction of system value,

and the final loss is always equal to the size of the simulated shock.

We present the result in terms of the total number of banks failed as a

consequence of the initial shock, using heatmap charts. Thus contagion is

measured by the number of banks that fail after the first bank is shocked.

The figures presented assume that the size of the shock, the price elasticity

and the size of the capital buffer are fixed. The number of credit counterparts

and liquidity vary. For the latter, we vary liquid assets as fraction of total

non-interbank assets.

4.1 System Resilience when LGD = 0

In the first set of simulations we consider a bank that has to be liquidated

because it has exactly zero equity (LGD = 0). Therefore any contagion

will stem from price effects. Figure 2 shows these results.Panel A reports

the limiting case of infinite demand elasticity (α = 0). This is equivalent to

the case in Eisenberg and Noe, and can be thought of as a case of historical

cost accounting. It shows that contagion never occurs, as the price of the

illiquid asset is constantly equal to one. However, when p reacts (α > 0),

contagion may occur if liquidity is low (Panel B). The liquidation of a failed

bank implies the selling of assets in the market, which triggers a fall in the

price of the illiquid asset. In turn, this generates two effects. Banks with

direct exposures to the failed bank will be unable to recover the full amount

of their loans. In addition, all banks will suffer a loss from the fall in the

market price of the illiquid asset, if mark-to-market rules are in place. These

losses imply that eventually banks may have to adjust their balance sheets in

order to comply with capital adequacy requirements. These additional sales

of assets cause further falls in prices, which in turn may feed back on banks’

resilience. A vicious circle may be unleashed. Since all banks are identical,

results tend to concentrate in the corners: either all banks fail or none of

20



P a n e l  A :   L G D  =  0 % ;  p  =  1

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

P a n e l  B :   L G D  =  0 % ;  p  =  0 . 8

9 # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 # # # # # # # # # # 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

P a n e l  C :   L G D  =  0 % ;  p  =  0 . 5

9 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

L e g e n d :

: 0 < D e f < = 1 : 2 < D e f < = 3 : 4 < D e f < = 5 : 6 < D e f < = 7 : 8 < D e f < = 9 : D e f = 1 0

: 1 < D e f < = 2 : 3 < D e f < = 4 : 5 < D e f < = 6 : 7 < D e f < = 8 : 9 < D e f < 1 0

c  /  ( c + p e )

In t e r c o n n e c t i o n s

c  /  ( c + p e )

c  /  ( c + p e )

I n t e r c o n n e c t i o n

Figure 2: LGD = 0

them does. The vicious circle does not necessarily end up in the collapse of

the whole system. Under certain circumstances, the algorithm may converge

to a solution where banks remain solvent after losing some capital.

The cases where banks remain solvent are those where liquidity is high.

This is because banks can adjust their balance sheets by selling liquid assets,

which can be sold at the notional value. Therefore, in this case the pressure

on banks’ balance sheets arising from the falls in the price of the illiquid asset

is lower. Importantly, banks’ liquidity is lower in the final equilibrium. This

case shows that asset prices may be a powerful channel of systemic contagion.

It also shows that liquidity holding can help to avoid contagion.

Panel C illustrates the relation between number of interlinkages and sys-

temic resilience. Two basic results can be highlighted. First, the panel

includes a case where nodes are not linked via reciprocal loans and deposits

(autarky). Nodes in this system may be thought of as insurance companies
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or mutual funds, which are only exposed to asset price contagion.

Our simulations show that an autarkic system can be more resilient than

an interlinked system. The explanation is straightforward. In autarky, there

is no channel for the transmission of credit losses among financial institutions.

The losses are borne entirely by the customers of these financial institutions.

Other institutions in the system are affected only via price effects. By

contrast, when there are credit linkages among nodes, credit losses are trans-

mitted to other nodes in addition to the aggregate price effect. Therefore,

autarky may become more stable than a system of interconnected banks.7

A second result is that when there are credit relationships, the system

tends to be more resilient to shocks when the number of counterparts is

higher. This is shown in Panel C. Intuitively, a given credit loss is spread

across a higher number of agents and thus each faces a loss that is proportion-

ally smaller. In this case, lower capital buffers may be enough to withstand

the loss. This result is straightforward, and goes in line with Allen and Gale

(2000) in that systems that are more interconnected are also safer. How-

ever, when we move to a case of LGD greater than zero, this result can be

different.

4.2 System Stability and Interlinkages

As explained in the previous section, more diversified interbank credit struc-

tures may lead to safer systems. If a given credit loss is absorbed by more

agents, the amount that each of them has to face is smaller and therefore it

is more likely that agents can bear the loss without further failures. How-

ever, this result may not hold when asset prices are an additional channel of

contagion.

This can be illustrated with a simple example. Consider the case of an

insolvent bank, which has liabilities towards one other bank only. Suppose
7Intuitively, autarky would be safest also in a world à la Allen and Gale (2000), (ie

without price contagion).

22



0 1 2 3 4 5 6 7 8 9

0

2

4
0

1

2

3

4

5

6

7

8

9

Insolvencies

Iterations Interconnections

Figure 3: Failures at each iteration

that losses imply that the creditor bank also fails. The failure of the second

bank implies additional sales of illiquid assets, with the consequential price

impact. Notice that this impact is limited by the amount of the illiquid

asset held by the failed bank. Consider now the case of several creditor

banks. Suppose that, given that the loss is spread among more creditors,

none of them fails in the first round. But in order to adjust their balance

sheets, they have to sell illiquid assets. Notice that the amount sold in the

market now is not limited by the balance sheet of one bank, but by the sum

of the balance sheets of all the banks that are exposed to the first default.

It is possible therefore, that the fall in the price of the illiquid asset may

be higher in the case of more interconnections. If the price fall is larger,

adjustments to comply with capital requirements by other banks will also be

higher. This implies that the endogenous process of price reduction that is

being unleashed can be of wider magnitude in the case of a higher number

of counterparts.

A case where this happens is shown in Figures 3 to 5. These figures

describe the case of a 30% LGD, α = 0.5 and initial asset-to-capital ratio of

8%. In Figure 3 we look at the transition between the initial and final steady
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Figure 4: Assets sold at each iteration

state by showing the number of insolvencies at each round by different total

number of counterparts. In the case with one credit counterpart there is

only one failure in the first round. The cases with two to four counterparts

show the situation just described. In the initial rounds there are no failures,

given that initially no bank receives a big shock. But the process generated

in the market of the illiquid asset ends up in a higher number of defaults in

later rounds.

Figure 4 shows the evolution of illiquid assets sold in the market in suc-

cessive iterations of the simulation. In the case of one credit counterpart,

only the assets of the failed bank are sold in the first round. However, as

the figure shows, in the cases of two and three credit links the amount sold

in the market is larger in the same round, despite the fact that no bank fails.

This implies a larger fall in price, as can be seen in Figure 5.

The asset price channel of systemic contagion disappears when the num-

ber of interlinkages is high enough to allow banks to stand the losses without

selling illiquid assets. Balance-sheet adjustments take place by selling liquid

assets only. In the example, this happens when the number of counterparts
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Figure 5: Total assets sold

is five or more.

This non-linear response to a shock with respect to the number of inter-

connections is one important finding of our simulation exercise. Intuitively,

more interconnected systems can lead to more systemic risk also in a world

without price contagion, as in Allen and Gale (2000), if shocks are large

enough. However, price effects do increase the likelihood of this phenom-

enon significantly.8

4.3 Liquidity Buffer

One way to curtail systemic contagion is by requiring banks to hold more

liquid assets. These assets allow banks to adjust their balance sheets without

receiving adverse feedback effects from market prices. Sales of illiquid assets

may still occur, but at a level that is below the point where the fall in prices
8Our experiments suggest that to get a non-linear response in an Allen and Gale world

shocks would have to be so large as to be implausible (a bank default with LGD of four
times assets).
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Panel A:  LGD  = 30%; p  = 0.5

9 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1

6 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1

5 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1

4 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 4 1 1 1 1

3 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1

2 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1

1 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 2 2 2 2 2 2 2 2 2 2 2 2

0 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50 55 60

Legend:

: 0<Def<=1 : 2<Def<=3 : 4<Def<=5 : 6<Def<=7 : 8<Def<=9 : Def=10

: 1<Def<=2 : 3<Def<=4 : 5<Def<=6 : 7<Def<=8 : 9<Def<10

Interconnections

c  / (c +pe )

Figure 6: Liquidity ratio and number of counterparties

generates systemic contagion.

Figure 6 shows the effects of liquidity. Moving along the horizontal axis

we increase the fraction of liquid assets as a fraction of the total liquid plus

illiquid assets that banks have. The figure shows that there is a threshold

liquidity level beyond which no systemic contagion via asset prices occurs.9

Additionally, for this combination of shock and price elasticity there is a clear

non-linear relationship between the number of interlinkages and the liquidity

threshold. The positively sloped part (from 0 to 5 interconnections) comes

from the effect explained in the previous section. The negatively sloped part

(from 5 to 9 links) shows that for a higher number of credit counterparts,

the liquidity threshold is reduced. This implies that liquidity and intercon-

nections can be substitutes for systemic stability for an important range of

parameter values.

The substitution between liquidity and interconnections follows straight-

forwardly from the fact that a larger number of counterparts diminishes the
9In the case of a single link in the interbank market, there is evidence of contagion to

at least one other bank in the system, for any level of the liquidity ratio. However, this is
due to direct credit exposure, and not to asset price contagion.
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Panel A:  LGD  = 30%; p  = 0.5; r  = 7%

9 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1

6 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1

5 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1

4 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 4 1 1 1 1

3 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1

2 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1

1 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 2 2 2 2 2 2 2 2 2 2 2 2

0 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50 55 60

Panel B:  LGD  = 30%; p  = 0.5; r  = 10%

9 # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50 55 60

Legend:

: 0<Def<=1 : 2<Def<=3 : 4<Def<=5 : 6<Def<=7 : 8<Def<=9 : Def=10

: 1<Def<=2 : 3<Def<=4 : 5<Def<=6 : 7<Def<=8 : 9<Def<10

c  / (c +pe )

Interconnections

c  / (c +pe )
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Figure 7: Capital buffers

size of the shock that each of them faces. The countervailing effect de-

scribed in the previous section vanishes with a sufficiently large number of

counterparts.

4.4 Capital Buffer

Systemic contagion can obviously also be contained by higher capital buffers.

If banks have capital in excess of the amounts required by the regulator, they

may not need to adjust their balance sheets when they are hit by an adverse

shock, both directly through their interbank exposures, and indirectly, via

asset price movements. This implies that when capital is higher than the

minimum required by the regulators, the threshold liquidity levels are re-

duced. Figure 7 shows this result.

It is possible, therefore, to derive a relationship between the threshold

level of liquid assets for a given level of the capital ratio. The higher the
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Panel A:  LGD  = 30%; p  = 0.5; Connections = 0

10 # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9.5 # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8.5 # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7.5 # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Panel B:  LGD  = 30%; p  = 0.5; Connections = 5

10 # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9.5 # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8.5 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7.5 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50 55 60

Panel C:  LGD  = 30%; p  = 0.5; Connections = 9

10 # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9.5 # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8.5 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7.5 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50 55 60

Legend:

: 0<Def<=1 : 2<Def<=3 : 4<Def<=5 : 6<Def<=7 : 8<Def<=9 : Def=10

: 1<Def<=2 : 3<Def<=4 : 5<Def<=6 : 7<Def<=8 : 9<Def<10

c  / (c +pe )

c  / (c +pe )

c  / (c +pe )
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r
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Figure 8: Liquidity vs capital buffers
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capital ratio, the lower the liquidity required to avoid systemic losses. Figure

8 shows this relation for different given levels of connectivity.

5 Conclusions

Under certain circumstances, prudential regulations can have perverse effects

on the stability of a financial system. We look at the ex post stability ef-

fects of capital requirements in a system of interconnected banks for given

portfolio choices, when mark to market rules are in place. Because finan-

cial institutions do not internalise the externalities of network membership,

banks’ liquidity choices will be suboptimal. As a consequence, liquidity and

capital requirements need to be imposed externally, and should be set in re-

lation to a bank’s contribution to systemic risk, rather than on the basis of

the bank’s idiosyncratic risk.

One message that emerges from our simulations is that for a given shock,

systemic resilience and bank interconnections are non linearly related, ie

under particular circumstances more interconnected systems may be riskier

than less connected systems.

Another important message is that liquidity buffers play a role similar

to capital buffers. In some circumstances, liquidity requirements may be

more effective than capital buffers in forestalling systemic effects. When the

residual demand curve is extremely inelastic (such as during periods of major

financial distress when risk appetite is very low), even a large capital buffer

may be insufficient to prevent contagion, since the price impact of sales into

a falling market would be very high. To put it another way, even a large

capital cushion may be insufficient if the stuffing in the cushion turns out to

be useless. Liquidity requirements can internalize some of the externalities

that are generated by the price impact of selling into a falling market.
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