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This study investigates whether marketwide liquidity is a state variable
important for asset pricing. We find that expected stock returns are
related cross-sectionally to the sensitivities of returns to fluctuations
in aggregate liquidity. Our monthly liquidity measure, an average of
individual-stock measures estimated with daily data, relies on the prin-
ciple that order flow induces greater return reversals when liquidity
is lower. From 1966 through 1999, the average return on stocks with
high sensitivities to liquidity exceeds that for stocks with low sensitiv-
ities by 7.5 percent annually, adjusted for exposures to the market
return as well as size, value, and momentum factors. Furthermore, a
liquidity risk factor accounts for half of the profits to a momentum
strategy over the same 34-year period.
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I. Introduction

In standard asset pricing theory, expected stock returns are related cross-
sectionally to returns’ sensitivities to state variables with pervasive effects
on investors’ overall welfare. A security whose lowest returns tend to
accompany unfavorable shifts in that welfare must offer additional com-
pensation to investors for holding the security. Liquidity appears to be
a good candidate for a priced state variable. It is often viewed as an
important feature of the investment environment and macroeconomy,
and recent studies find that fluctuations in various measures of liquidity
are correlated across assets.1 This empirical study investigates whether
marketwide liquidity is indeed priced. That is, we ask whether cross-
sectional differences in expected stock returns are related to the sen-
sitivities of returns to fluctuations in aggregate liquidity.

It seems reasonable that many investors might require higher ex-
pected returns on assets whose returns have higher sensitivities to ag-
gregate liquidity. Consider, for example, any investor who employs some
form of leverage and faces a margin or solvency constraint, in that if
his overall wealth drops sufficiently, he must liquidate some assets to
raise cash. If he holds assets with higher sensitivities to liquidity, then
such liquidations are more likely to occur when liquidity is low, since
drops in his overall wealth are then more likely to accompany drops in
liquidity. Liquidation is costlier when liquidity is lower, and those greater
costs are especially unwelcome to an investor whose wealth has already
dropped and who thus has higher marginal utility of wealth. Unless the
investor expects higher returns from holding these assets, he would
prefer assets less likely to require liquidation when liquidity is low, even
if these assets are just as likely to require liquidation on average.2

The well-known 1998 episode involving Long-Term Capital Manage-
ment (LTCM) seems an acute example of the liquidation scenario above.

1 Chordia, Roll, and Subrahmanyam (2000), Lo and Wang (2000), Hasbrouck and Seppi
(2001), and Huberman and Halka (2002) empirically analyze the systematic nature of
stock market liquidity. Chordia, Sarkar, and Subrahmanyam (2002) find that improvements
in stock market liquidity are associated with monetary expansions and that fluctuations
in liquidity are correlated across stocks and bond markets. Eisfeldt (2002) develops a
model in which endogenous fluctuations in liquidity are correlated with real fundamentals
such as productivity and investment.

2 This economic story has yet to be formally modeled, but recent literature presents
related models that lead to the same basic result. Lustig (2001) develops a model in which
solvency constraints give rise to a liquidity risk factor, in addition to aggregate consumption
risk, and equity’s sensitivity to the liquidity factor raises its equilibrium expected return.
Holmström and Tirole (2001) also develop a model in which a security’s expected return
is related to its covariance with aggregate liquidity. Unlike more standard models, their
model assumes risk-neutral consumers and is driven by liquidity demands at the corporate
level. Acharya and Pedersen (2002) develop a model in which each asset’s return is net
of a stochastic liquidity cost, and expected returns are related to return covariances with
the aggregate liquidity cost (as well as to three other covariances).
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The hedge fund was highly levered and by design had positive sensitivity
to marketwide liquidity, in that many of the fund’s spread positions,
established across a variety of countries and markets, went long less
liquid instruments and short more liquid instruments. When the Russian
debt crisis precipitated a widespread deterioration in liquidity, LTCM’s
liquidity-sensitive portfolio dropped sharply in value, triggering a need
to liquidate in order to meet margin calls. The anticipation of costly
liquidation in a low-liquidity environment then further eroded LTCM’s
position. (The liquidation was eventually overseen by a consortium of
14 institutions organized by the New York Federal Reserve.) Even though
exposure to liquidity risk ultimately spelled LTCM’s doom, the fund
performed quite well in the previous four years, and presumably its
managers perceived high expected returns on its liquidity-sensitive
positions.3

Liquidity is a broad and elusive concept that generally denotes the
ability to trade large quantities quickly, at low cost, and without moving
the price. We focus on an aspect of liquidity associated with temporary
price fluctuations induced by order flow. Our monthly aggregate li-
quidity measure is a cross-sectional average of individual-stock liquidity
measures. Each stock’s liquidity in a given month, estimated using that
stock’s within-month daily returns and volume, represents the average
effect that a given volume on day d has on the return for day d � 1,
when the volume is given the same sign as the return on day d. The
basic idea is that, if signed volume is viewed roughly as “order flow,”
then lower liquidity is reflected in a greater tendency for order flow in
a given direction on day d to be followed by a price change in the
opposite direction on day Essentially, lower liquidity correspondsd � 1.
to stronger volume-related return reversals, and in this respect our li-
quidity measure follows the same line of reasoning as the model and
empirical evidence presented by Campbell, Grossman, and Wang
(1993). They find that returns accompanied by high volume tend to be
reversed more strongly, and they explain how this result is consistent
with a model in which some investors are compensated for accommo-
dating the liquidity demands of others.

We find that stocks’ “liquidity betas,” their sensitivities to innovations
in aggregate liquidity, play a significant role in asset pricing. Stocks with
higher liquidity betas exhibit higher expected returns. In particular,
between January 1966 and December 1999, a spread between the top
and bottom deciles of predicted liquidity betas produces an abnormal
return (“alpha”) of 7.5 percent per year with respect to a model that
accounts for sensitivities to four other factors: the market, size, and value
factors of Fama and French (1993) and a momentum factor. The alpha

3 See, e.g., Jorion (2000) and Lowenstein (2000) for accounts of the LTCM experience.



liquidity risk 645

with respect to just the three Fama-French factors is over 9 percent per
year. The results are both statistically and economically significant, and
similar results occur in both halves of the overall 34-year period.

This study investigates whether expected returns are related to sys-
tematic liquidity risk in returns, as opposed to the level of liquidity per
se. The latter’s relation to expected stock returns has been investigated
by numerous empirical studies, including Amihud and Mendelson
(1986), Brennan and Subrahmanyam (1996), Brennan, Chordia, and
Subrahmanyam (1998), Datar, Naik, and Radcliffe (1998), and Fiori
(2000).4 Using a variety of liquidity measures, these studies generally
find that less liquid stocks have higher average returns. Amihud (2002)
and Jones (2002) document the presence of a time-series relation be-
tween their measures of market liquidity and expected market returns.
Instead of investigating the level of liquidity as a characteristic that is
relevant for pricing, this study entertains marketwide liquidity as a state
variable that affects expected stock returns because its innovations have
effects that are pervasive across common stocks. The potential usefulness
of such a perspective is recognized by Chordia, Roll, and Subrahmanyam
(2000, 2001).

Chordia, Subrahmanyam, and Anshuman (2001) find a significant
cross-sectional relation between stock returns and the variability of li-
quidity, where liquidity is proxied by measures of trading activity such
as volume and turnover. The authors report that stocks with more vol-
atile liquidity have lower expected returns, an unexpected result. Li-
quidity risk in that study is measured as firm-specific variability in li-
quidity. Our paper focuses on systematic liquidity risk in returns and
finds that stocks whose returns are more exposed to marketwide liquidity
fluctuations command higher expected returns.

Section II explains the construction of the liquidity measure and
briefly describes some of its empirical features. The sharpest troughs in
marketwide liquidity occur in months easily identified with significant
financial and economic events, such as the 1987 crash, the beginning
of the 1973 oil embargo, the 1997 Asian financial crisis, and the 1998
collapse of LTCM. Moreover, in months of large liquidity drops, stock
returns are negatively correlated with fixed-income returns, in contrast
to other months. This observation seems consistent with “flight-to-
quality” effects. We also find significant commonality across stocks in
our monthly liquidity measure. That result, in accord with the high-
frequency evidence of previous studies, enhances the prospect that mar-
ketwide liquidity could be a priced state variable.

4 Theoretical studies that investigate the relation between liquidity and asset prices in-
clude Amihud and Mendelson (1986), Constantinides (1986), Heaton and Lucas (1996),
Vayanos (1998), Lo, Mamaysky, and Wang (2001), and Huang (in press), among others.
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Section III presents the asset pricing investigation. We find that stocks’
liquidity betas can be predicted not only by their simple historical es-
timates but by other variables as well. Each year, we sort stocks by their
predicted liquidity betas and form 10 portfolios. This procedure yields
a substantial spread in the estimated postformation liquidity betas as
well as the large spread in abnormal returns reported above. Sorting
stocks on their historical liquidity betas alone produces results that are
slightly less strong but still significant. A sort on firm size reveals that
stocks of the smallest firms tend to have high liquidity betas as well as
significantly positive alphas with respect to the four-factor model.

Section IV provides an investment perspective on liquidity risk by
examining the degree to which spreads between stocks with high and
low liquidity risk expand the mean-variance opportunity set. In an in-
vestment universe that also includes the market portfolio and spreads
based on size, value, and momentum, we find that liquidity risk spreads
receive substantial weight in the portfolio with the highest ex post
Sharpe ratio. The importance of the momentum spread in that portfolio
is especially reduced as compared to a universe without a liquidity risk
spread. Moreover, an equally weighted liquidity risk spread reduces mo-
mentum’s alpha by half in the overall 34-year period and eliminates it
completely (driving it to a small negative value) in the more recent 17-
year subperiod 1983–99. Section V briefly reviews our conclusions and
suggests directions for future research.

II. Marketwide Liquidity

A. Constructing a Measure

Liquidity has many dimensions. This study focuses on a dimension as-
sociated with temporary price changes accompanying order flow. We
construct a measure of market liquidity in a given month as the equally
weighted average of the liquidity measures of individual stocks on the
New York Stock Exchange (NYSE) and American Stock Exchange
(AMEX), using daily data within the month.5 Specifically, the liquidity

5 All the individual-stock return and volume data used in the study are obtained from
the Center for Research in Security Prices (CRSP) at the University of Chicago. Daily
returns and volume are taken from the CRSP daily stock file; all month-end (or year-end)
codes and values are taken from the CRSP monthly stock file. We exclude NASDAQ in
constructing the aggregate liquidity measure because NASDAQ returns and volume data
are available from CRSP for only part of this period (beginning in 1982). Also, reported
volumes on NASDAQ include interdealer trades, unlike the volumes reported on the
NYSE and the AMEX. To exclude NASDAQ, we omit stocks with exchange codes of 3 or
33 as of the end of the previous year. We use only stocks classified as ordinary common
shares (CRSP share codes 10 and 11), excluding American depository receipts, shares of
beneficial interest, certificates, units, real estate investment trusts, closed-end funds, com-
panies incorporated outside the United States, and Americus trust components.
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measure for stock i in month t is the ordinary least squares estimate of
in the regressiongi,t

e er p v � f r � g sign(r ) 7 v � e , d p 1, … , D, (1)i,d�1,t i,t i,t i,d,t i,t i,d,t i,d,t i,d�1,t

where quantities are defined as follows: is the return on stock i onri,d,t

day d in month t; where is the return on the CRSPer p r � r , ri,d,t i,d,t m,d,t m,d,t

value-weighted market return on day d in month t; and is the dollarvi,d,t

volume for stock i on day d in month t. A stock’s liquidity is computed
in a given month only if there are more than 15 observations with which
to estimate the regression (1) ( ), and we exclude a stock for theD 1 15
first and last partial month that it appears on the CRSP tape. The daily
observations are not required to be consecutive (except that each ob-
servation requires data for two successive days). Stocks with share prices
less than $5 and greater than $1,000 at the end of the previous month
are excluded, and volume is measured in millions of dollars.

The basic idea is that “order flow,” constructed here simply as volume
signed by the contemporaneous return on the stock in excess of the
market, should be accompanied by a return that one expects to be
partially reversed in the future if the stock is not perfectly liquid. We
assume that the greater the expected reversal for a given dollar volume,
the lower the stock’s liquidity. That is, one would expect to be negativegi,t

in general and larger in absolute magnitude when liquidity is lower.6

Viewing volume-related return reversals as arising from liquidity effects
is motivated by Campbell et al. (1993). Those authors present a model
in which risk-averse “market makers,” defined in the general sense of
Grossman and Miller (1988), accommodate order flow from liquidity-
motivated traders and are compensated with a higher expected return
(by buying at a low price or selling at a high one). The greater the
order flow, the greater the compensation, so this liquidity-induced effect
on expected future return is larger when current volume is high. Camp-
bell et al. present empirical evidence consistent with this argument.

As illustrated below, the estimates of the liquidity measure aregi,t

typically negative, although there are months in which the average es-
timate is positive. The preponderance of negative values is consistent
with the basic intuition underlying our liquidity measure, but it must
be recognized that the measure abstracts from other potential roles that
volume can play in the relation between current and lagged return. For
example, Llorente et al. (2001) explain that asymmetric information
(not considered by Campbell et al. [1993]) can weaken the volume-

6 An alternative class of liquidity measures is based on a positive contemporaneous relation
between returns and order flow. Typically, these measures are estimated with intraday
transactions data, and the volume for a transaction is signed by comparing the transaction
price to the bid-ask midpoint (see, e.g., Hasbrouck 1991; Foster and Viswanathan 1993;
Brennan and Subrahmanyam 1996).
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related reversal effect and even produce volume-related continuations
in returns on stocks for which information-motivated trading is suffi-
ciently important. Using daily data, the authors report empirical evi-
dence consistent with that prediction. Other related evidence is reported
by Lee and Swaminathan (2000), who conclude that momentum effects
in monthly returns are stronger for stocks with high recent volume.

The specification of the regression in (1) is somewhat arbitrary, as is
any liquidity measure. We use the return in excess of the market,er ,i,d,t

as the dependent variable as well as to sign volume, in order to remove
marketwide shocks and better isolate the individual-stock effect of vol-
ume-related return reversals. Moreover, daily returns of zero are not
uncommon with lower-priced stocks for which a one-tick move repre-
sents a greater relative price change. Signing volume on the basis of
total return is problematic in those zero-return cases, whereas returns
in excess of the market are unlikely to be zero. On a day in which a
stock’s price does not change but the market goes up, it seems reason-
able to identify the stock’s order flow on that day as more likely initiated
by sellers than by buyers. We also include the lagged stock return as a
second independent variable with the intention of capturing lagged-
return effects that are not volume-related, such as reversals due to a
minimum tick size. Since we use to sign volume, we use the totaleri,d,t

return as this second variable to have it be less correlated with theri,d,t

variable whose coefficient we take as the liquidity measure. (A higher
correlation between the independent variables generally reduces the
precision with which one can measure the individual slope on either
one.) The precise specification of the variables in (1), as compared to
seemingly close alternative specifications, is addressed below in subsec-
tion C.

In order to investigate the ability of the regression slope in (1) togi,t

capture a liquidity effect, we examine a simple model in which the return
on a given day has an order flow component that is partially reversed
on the subsequent day. Specifically, the return on stock i on day d is
given by

r p f � u � f(q � q ) � h � h . (2)i,d d i,d i i,d�1 i,d i,d i,d�1

The first two terms on the right-hand side represent permanent changes
in the price, where is a marketwide factor and is a stock-specificf ud i,d

effect. The term is intended to capture the liquidity-relatedf(q � q )i i,d�1 i,d

effect arising from order flow in the sense that both current andq ,i,d

lagged order flow enter the return, but in the opposite directions. The
coefficient fi is negative and represents the stock’s liquidity. We assume
that where is independent across stocks and qd is a∗ ∗q p q � q , qi,d i,d d i,d

marketwide component whose standard deviation is one-third as large
as that of so the marketwide component then explains 10 percent∗q ,i,d
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of the total variance of order flow. (Hasbrouck and Seppi [2001] report
that the first principal component explains 7.8 percent of total order
flow variance.)

We use (2) to simulate returns on 10,000 stocks. The quantities fd,
and qd are all mean zero draws from normal distributions. The∗u , q ,i,d i,d

values of fd are drawn independently across d with standard deviation
; and are drawn independently across d and i with∗j p 0.20/250 u qi,d i,d

standard deviations equal to j; and qd is drawn independently across d
with standard deviation equal to The liquidity coefficient fi is drawn1

j.3
independently across i from a uniform [�1, 0] distribution. The term

represents an additional reversal effect that is independenth � hi,d i,d�1

of the order flow effect, and this component of the return is best viewed
as bid-ask bounce or a tick size effect. On a given day, takes the valuehi,d

�si, zero, or si with probabilities one-fourth, one-half, and one-fourth,
and the realizations are independent across days and stocks. The value
of si for a given stock is drawn as where is a uniform0.01(U � f), U[0,1] i [0,1]

[0, 1] variate, so the mean value of si across stocks is 0.01, and there is
some association between the typical magnitude of and the stock’shi,d

liquidity (less liquid stocks tend to have larger si’s). In this simulation
setting, the average standard deviation of a daily stock return is 0.023,
the average standard deviation of each of the first three right-hand-side
terms in (2) is 0.013, and the average standard deviation of h �i,d

is 0.010. The regression in (1) requires returns in excess of thehi,d�1

market, so we also construct a market return as

n1
r p r ,�m,d i,dn ip1

for (The average in a regression of on is .33.) We2n p 10,000. R r ri,d m,d

also specify a stock’s “volume” on day d as 7 For each stock,v p Fq F.i,d i,d

we then compute the population value of the coefficient in (1) bygi

estimating that regression across 50,000 simulated daily values. We find
that the cross-sectional correlation between fi and is .98, which sug-gi

gests that the regression in (1) is a reasonable specification for esti-
mating the hypothesized liquidity effect.

The use of signed volume as a predictor of future return can also be
motivated using the equilibrium model of Campbell et al. (1993). In
their model, the stock’s excess return and order flow Dt are jointlyQ t

normal, along with and the regression relating expected futureQ ,t�1

7 Because of the common factor in order flow, the market return is correlated with
lagged order flow. Moreover, if we compute a lagged aggregate “volume” measure as

then the correlation between and is �.03. This feature of ourV p � Fq F, r r Vd i,d m,d m,d�1 di

simulation is consistent with the negative relation between the market return and the
lagged product of return and volume reported by Campbell et al. (1993).



650 journal of political economy

return to current return and volume Vt ( ) is given by a relationp FDFt
of the form

E(Q FQ , V) p f Q � f tanh (f VQ )V, (3)t�1 t t 1 t 2 3 t t t

where and As the correlation between and Dt increases,f ! 0 f ! 0. Q2 3 t

(3) becomes well approximated by

E(Q FQ , V) p f Q � f sign(Q )V, (4)t�1 t t 1 t 2 t t

which is roughly analogous to (1).8 To the extent that order flow plays
an important role in determining high-frequency return variation, a
conjecture that seems plausible, we see that the model of Campbell et
al. gives some justification for the use of signed volume. Of course, their
model of a single-stock economy with continuous price variables (no
minimum tick) is only suggestive when applied to our empirical setting,
but the intuition underlying their model corresponds to our interpre-
tation of as a liquidity measure.gi,t

Although the ordinary least squares slope coefficient is an impre-ĝi,t

cise estimate of a given stock’s the marketwide average liquidity ing ,i,t

month t is estimated more precisely. The disturbances in (1) are less
than perfectly correlated across stocks (recall that the dependent var-
iable is the return in excess of the market). Thus, as the number of
stocks, N, grows large, the true unobserved average N

g p (1/N )� gt i,tip1

becomes more precisely estimated by
N1

ˆ ˆg p g . (5)�t i,tN ip1

We construct the marketwide measure above for each month from Au-
gust 1962 through December 1999. The number of stocks in the index
(N) ranges from 951 to 2,188.

Given the regression specification in (1), the value of can be viewedgi,t

as the liquidity “cost,” in terms of return reversal, of “trading” $1 million
of stock i, so the average in (5) can be viewed as the cost of a $1 million
trade distributed equally across stocks. Obviously, a dollar trade size of

8 Equation (3) relies on a result given in Wang (1994). It is straightforward to show that
Wang’s eq. B.6 allows (3) to be restated as

r Q Vt tE(Q FQ , V ) p f Q � f tanh V ,t�1 t t 1 t 2 t( ) ( ) ( )2[ ]1 � r j jQ D

where r is the correlation between and Dt, and and are the standard deviationsQ j jt Q D

of those variables. Note that as r r 1,

r Q Vt ttanh ( ) ( ) ( )2[ ]1 � r j jQ D

converges in distribution to since and (�1) as (��).sign(Q ) V ≥ 0 tanh (x) r 1 x r �t t
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Fig. 1.—Aggregate liquidity. Each month’s observation is constructed by averaging
individual-stock measures for the month and then multiplying by where mt is them /m ,t 1

total dollar value at the end of month of the stocks included in the average in montht � 1
t, and month 1 corresponds to August 1962. An individual stock’s measure for a given
month is a regression slope coefficient estimated using daily returns and volume data
within that month. Tick marks correspond to July of the given year.

$1 million was more substantial in relative terms in the 1960s than in
the 1990s, so, not surprisingly, the raw values of tend to be smallerĝt

in magnitude later in the period. It seems reasonable to construct a
liquidity measure that reflects the cost of a trade whose size is com-
mensurate with the overall size of the stock market, so we construct the
scaled series where mt is the total dollar value at the end ofˆ(m /m )g ,t 1 t

month of the stocks included in the average in month t, and montht � 1
1 corresponds to August 1962. This scaled series is plotted in figure 1.
It can essentially be viewed as an estimate of the liquidity cost, averaged
across stocks at a given point in time, of trading $1 million in 1962
“stock market” dollars (about $34 million at the end of 1999). The
average value of this liquidity measure over time is �0.03 (the median
is �0.02), indicating about a 2–3 percent cost for such a trade. Chordia,
Roll, and Subrahmanyam (2001) report that the average daily dollar
volume per stock over the 1988–98 period is about $7 million. For the
same period, the average value of $1 million in 1962 stock market dollars
is $14 million. On the basis of this comparison, one can also view our
measure as the cost, for the average stock, of trading twice the daily
volume.

In the next section we explore the importance of liquidity risk, mea-
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sured as comovement between returns and unanticipated innovations
in liquidity. The liquidity series plotted in figure 1 has a first-order serial
correlation of .22. In constructing innovations, we do not work directly
with that series, since to do so could introduce a return component
through fluctuations in the scaling factor Although any such(m /m ).t 1

return effects would be lagged, since mt uses values at the end of month
we nevertheless wish to minimize the possibility that any estimatedt � 1,

relation between returns and liquidity innovations could arise in that
fashion. At the same time, the innovation series should also appropri-
ately reflect the growth in size of the stock market. Therefore, rather
than difference the scaled series, we first difference and then scale.
Specifically, to construct innovations in liquidity, we first scale the
monthly difference in liquidity measures, averaged across the Nt stocks
with available data in both the current and previous month,

Ntm 1tˆ ˆ ˆDg p (g � g ). (6)�t i,t i,t�1( )m N ip11 t

We then regress on its lag as well as the lagged value of the scaledˆDgt

level series:

mt�1ˆ ˆ ˆDg p a � bDg � c g � u . (7)t t�1 t�1 t( )m 1

This regression allows the predicted change to depend on the most
recent change as well as on the deviation of the most recent level from
its long-run mean (impounded in a). Aside from the scaling issues, the
regression is analogous to a second-order autoregression in the level
series, and it produces residuals that appear serially uncorrelated.9 The
innovation in liquidity, is taken as the fitted residual divided by 100:L ,t

1
ˆL p u . (8)t t100

The arbitrary scaling by 100 simply produces more convenient magni-
tudes of the liquidity betas reported in the next section. If expected
changes in liquidity are correlated with time variation in expected stock
returns, then failure to use liquidity innovations can contaminate risk
measures. We find that expected liquidity changes can indeed predict

9 Note that the equation

y � y p a � b(y � y ) � cy � ut t�1 t�1 t�2 t�1 t

is equivalent to
′ ′y p a � b y � c y � u ,t t�1 t�2 t

with and′ ′b p 1 � b � c c p �b.
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future stock returns one month ahead, thereby confirming the desira-
bility of forming innovations.10

B. Empirical Features of the Liquidity Measure

Perhaps the most salient features of the liquidity series plotted in figure
1 are its occasional downward spikes, indicating months with especially
low estimated liquidity. Many of these spikes occur during market down-
turns, consistent with the evidence in the studies by Chordia, Roll, and
Subrahmanyam (2001) and Jones (2002), who use different liquidity
measures. Chordia, Roll, and Subrahmanyam observe that their liquidity
measures plummet in down markets, and Jones finds that his average
spread measure exhibits frequent sharp spikes that often coincide with
market downturns.

The largest downward spike in our measure of aggregate liquidity
occurs in October 1987, the month of the stock market crash. Grossman
and Miller (1988) argue that both spot and futures stock markets were
“highly illiquid” on October 19, the day of the crash, and Amihud,
Mendelson, and Wood (1990) contend that the crash occurred in part
because of a rise in market illiquidity during and before October 19.
The second largest spike is in November 1973, the first full month of
the Mideast oil embargo. Estimated liquidity is generally low in the early
1970s, again consistent with the evidence in Jones (2002). The third
largest negative value is in September 1998, when liquidity is widely
perceived to have dried up because of the LTCM collapse and the recent
Russian debt crisis.11 The next largest spike occurs in May 1970, a month
of significant domestic political unrest.12 The third biggest spike in the
second half of the sample is observed in October 1997 at the height of
the Asian financial crisis. There is obviously a risk in pushing such
anecdotal analysis very far, but a drop in stock market liquidity during
these months seems at least plausible.

10 Regressions of the value-weighted and equally weighted liquidity risk spreads LIQ V

and LIQ E (defined in Sec. III) on the lagged fitted values in (7) produce t-statistics of
�3.33 and �2.30. The correlation between the innovations and the level series in fig. 1
is .88. We repeated the historical beta analysis reported in table 8 below using the level
series in place of the innovations and obtained weaker results that go in the same direction
as those reported.

11 According to the Economist (“When the Sea Dries Up,” 1999), “In August 1998, after
the Russian government had defaulted on its debts, liquidity suddenly evaporated from
many financial markets, causing asset prices to plunge” (p. 93). The article also asserts
that “the possibility that liquidity might disappear from a market … is a big source of risk
to an investor.”

12 On April 30, President Richard Nixon announced the invasion of Cambodia and the
need to draft 150,000 more soldiers. The Kent State and Jackson State shootings occurred
on May 4 and May 14, and nearly 500 colleges and universities closed that month because
of antiwar protests.
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The monthly innovation in liquidity, has a correlation of .36 withL ,t
the returns on both the value-weighted and equally weighted NYSE-
AMEX indexes, constructed by CRSP. This result goes in the same di-
rection as that reported by Chordia, Roll, and Subrahmanyam (2001),
who find a positive association at a daily frequency between stock returns
and changes in other marketwide liquidity measures. As mentioned
earlier, the downward spikes in our liquidity series often coincide with
market downturns, and this observation is confirmed by comparing cor-
relations between and the value-weighted market return for monthsLt

in which that return is negative versus positive. The correlation is .52
in negative-return months but only .03 in positive-return months, and
the difference between the liquidity-return relation in these two sub-
samples is statistically significant.13 The simple correlation between Lt

and stock market returns is larger than those between and otherLt

factors typically included in empirical asset pricing studies. In particular,
’s correlations with SMB and HML, the size and value factors con-Lt

structed by Fama and French (1993), are .23 and �.12.14 Recall that
SMB is the difference in returns between small and large firms, whereas
HML is the return difference between stocks with high and low book-
to-market ratios (i.e., value minus growth). The correlation between

and a momentum factor is only .01. The inclusion of momentum asLt

an asset pricing factor, here and in other studies, is motivated by the
evidence in Jegadeesh and Titman (1993) that ranking stocks by per-
formance over the past year produces abnormal returns.15

Our measure of aggregate liquidity also tends to be low when market
volatility is high. Specifically, the within-month daily standard deviation
of the value-weighted market return has a correlation of �.57 with the
liquidity series in figure 1. This association between volatility and our
liquidity measure seems reasonable, in that the compensation required
by providers of liquidity for a given level of order flow could well be
greater when volatility is higher.

To describe further the nature of months with exceptionally low li-
quidity, we note that a kind of “flight-to-quality” effect appears in such

13 We run the regression

L p a � bR � cD R � e ,t S,t t S,t t

where is the market return, and if and zero otherwise. The estimate ofR D p 1 R 1 0S,t t S,t

b is 1.01 with a t-statistic of 9.7, and the estimate of c is �0.99 with a t-statistic of �6.2.
14 We are grateful to Ken French for supplying the Fama-French factors.
15 To construct the momentum factor in month t, which we denote as MOM, all stocks

in the CRSP file with return histories back to at least month are ranked at the endt � 12
of month by their cumulative returns over months through and MOMt � 1 t � 12 t � 2,
is the payoff on a spread consisting of a $1 long position in an equally weighted portfolio
of the top decile of the stocks in that ranking and a corresponding $1 short position in
the bottom decile. This particular specification is the same as the “12–2” portfolio in Fama
and French (1996).
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TABLE 1
Correlations of Monthly Stock Market Returns with Other Variables in

Months with Large Liquidity Drops

Correlation of withRS,t Number of
Observations�DRf,t RGB,t RCB,t Volt

A. January 1962–December 1999

All months .047 .323 .372 .491 449
Low-liquidity months* �.387 �.197 �.278 �.360 14
Other months .092 .362 .406 .522 435
p-value .087 .045 .018 .002

B. August 1962–March 1981

All months .077 .285 .376 .567 224
Low-liquidity months* �.194 .247 �.370 �.362 7
Other months .079 .285 .378 .572 217
p-value .279 .426 .070 .016

C. April 1981–December 1999

All months .007 .353 .365 .394 225
Low-liquidity months* �.573 �.401 �.307 �.306 8
Other months .105 .433 .434 .459 217
p-value .048 .033 .040 .038

Note.—The table reports the correlation between the monthly return on the CRSP value-weighted NYSE-AMEX
index, and (i) minus the change in the rate on one-month Treasury bills, ; (ii) the return on long-termR , �DRS,t f,t

government bonds, ; (iii) the return on long-term corporate bonds, ; and (iv) the equally weighted averageR RGB,t CB,t

percentage change in monthly dollar volume for NYSE-AMEX stocks, Volt. The p-values for the hypothesis that the
correlations during these months are equal to those in other months are computed by a bootstrap approach.

* “Low-liquidity” months are those in which the innovation in the liquidity series is at least two standard deviations
below zero.

months. That is, months in which liquidity drops severely tend to be
months in which stocks and fixed-income assets move in opposite di-
rections. Table 1 reports correlations between the monthly return on
the CRSP value-weighted NYSE-AMEX index ( ) and three fixed-RS,t

income variables: minus the change in the rate on one-month Treasury
bills ( ), the return on long-term government bonds ( ), and�DR Rf,t GB,t

the return on long-term corporate bonds ( ).16 The first row reportsR CB,t

the correlations across all months, and the next two rows report cor-
relations in subsamples split according to the values of The secondL .t
row of table 1 shows the correlation between and the other variablesRS,t

during the 14 months in which is at least two standard deviationsLt

below its mean. The correlations between stock returns and the three
fixed-income series during those months are negative, in contrast to the
correlations during the remaining months, and the bootstrap p-values
indicate that those differences are significant at levels of either 5 percent
(for the bond returns) or 10 percent (for the Treasury bill rate

16 The fixed-income data are obtained from Ibbotson Associates.
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change).17 The results across both subperiods generally support the
inference drawn for the overall period, in that five of the six correlations
between and the fixed-income series are negative in the months ofRS,t

large liquidity drops.
Also shown in table 1 is the correlation between the stock return

and the change in volume, Volt, defined as the equally weightedRS,t

average percentage change in monthly dollar volume for NYSE-AMEX
stocks. Stock returns are positively correlated with volume changes in
all months, but the correlation is negative in months with large liquidity
drops, and the bootstrap p-value for the overall period is .002. The
subperiod results again support the inference that the correlation is
lower in the months of severe liquidity drops. There is no obvious story
here, other than perhaps that, in such months, higher volume accom-
panying a larger liquidity drop is another manifestation of a flight to
quality. We also find that, in low-liquidity months, the correlation be-
tween volume changes and is equal to �.27, whereas it equals .18 inLt

other months (and in all months). But, again, we do not wish to push
the descriptive analysis of the marketwide liquidity series too far. The
primary goal of the paper is to investigate whether liquidity is a source
of priced systematic risk in stock returns, and we use the series con-
structed here for that purpose.

An important motive for entertaining a marketwide liquidity measure
as a priced state variable is evidence that fluctuations in liquidity exhibit
commonality across stocks. Chordia, Roll, and Subrahmanyam (2000)
and Huberman and Halka (2001) find significant commonality in var-
ious liquidity measures at a daily frequency, whereas Hasbrouck and
Seppi (2001) find only weak commonality in intraday (15-minute) fluc-
tuations in liquidity. Our stock-by-stock measure affords an additionalĝit

perspective on commonality, since it measures liquidity differently, it is
constructed at a monthly frequency, and our sample period is substan-
tially longer. We conduct a simple exploration of commonality in ĝit

across stocks by first sorting all stocks at the end of each year by market
value and then assigning them to decile portfolios on the basis of NYSE
break points (i.e., each decile has an equal number of NYSE stocks).
Each decile portfolio’s change in liquidity for a given month is then
computed as the cross-sectional average change in the individual-stock
measures, and this procedure yields a 1963–99 monthly series of liquidity
changes for each decile. The sample correlation of these series between
any two deciles is positive. If the decile series are averaged separately
across the odd-numbered and even-numbered deciles, the sample cor-
relation between the two resulting series is .56, and the t-statistic for a

17 The p-values are computed by resampling the original series and then randomly
assigning observations to subsamples of the same size as in the reported results.
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test of zero correlation is 14.20. This commonality in our liquidity mea-
sure across stocks enhances the prospect that marketwide liquidity rep-
resents a priced source of risk.

C. Specification Issues

Our liquidity measure relies on a large cross section of stocks and yields
a monthly series spanning more than 37 years. As such, the series seems
well suited for this study’s focus on liquidity risk and asset pricing.
Aggregate stock market liquidity is measured in a variety of alternative
ways by recent studies that explore other interesting issues. Those studies
include Chordia, Roll, and Subrahmanyam (2000, 2001, 2002), Lo and
Wang (2000), Amihud (2002), and Jones (2002). Chordia, Roll, and
Subrahmanyam form daily time series of various measures of liquidity
(such as depth and bid-ask spread) and trading activity (such as dollar
volume), averaged across NYSE stocks over the period 1988–98. Lo and
Wang form a weekly series of average turnover across NYSE and AMEX
stocks from July 1962 to December 1996. Amihud constructs an annual
aggregate liquidity series for the period 1963–97 by averaging across
NYSE stocks the ratios of average absolute price change to trading vol-
ume. Jones collects an annual time series of average quoted bid-ask
spreads on the stocks in the Dow Jones index, covering the period
1898–1998.

While measures of trading activity such as volume and turnover seem
useful in explaining cross-sectional differences in liquidity, they do not
appear to capture time variation in liquidity. Although liquid markets
are typically associated with high levels of trading activity, it is often the
case that volume is high when liquidity is low. One example is October
19, 1987, when the market was highly illiquid in many respects but
trading volume on the NYSE set its historical record. More generally,
the previous subsection shows that the positive time-series correlation
between our liquidity measure and dollar volume turns negative when
calculated only across low-liquidity months. For this reason, we do not
proxy for time variation in liquidity using measures of trading activity.
Bid-ask spreads and depth are not used either because suitable data are
not available for a long enough sample period. The data of Chordia,
Roll, and Subrahmanyam span 11 years, which is too short for an asset
pricing study. Notably, their liquidity measures (quoted share and dollar
depth, quoted absolute and proportional spreads, and effective absolute
and proportional spreads) covary with ours in the expected direction
(depth positively and spreads negatively). These measures are also jointly
significant in explaining the time variation in our measure, as one might
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expect from measures that capture different dimensions of market
liquidity.18

As explained earlier, our liquidity measure reflects reversals in returns
in excess of the market. Another potential source of negative serial
correlation in excess returns is nonsynchronous trading. (When returns
are measured with reported closing prices, an infrequently traded se-
curity is more likely to outperform the market on a day following one
on which it underperforms.) With nonsynchronous trading, however, a
reversal on day is more likely when volume on day d is low, asd � 1
opposed to high as under the liquidity interpretation of in (1). More-gi,t

over, nonsynchronous trading is likely to be more important when trad-
ing activity is low, but we find that average turnover is in fact slightly
higher in the months identified as having the lowest liquidity by our
measure. Nevertheless, it remains possible that nonsynchronous trading
makes some contribution to a negative value of If the negative serialg .i,t

correlation in excess returns, arising from either liquidity-related re-
versals or nonsynchronous trading, is relatively more stable through time
than volatility, then fluctuations in volatility are likely to be reflected in
the value of Recall from the earlier discussion that our aggregateg .i,t

liquidity series exhibits a negative association with market volatility.
The liquidity measure used in this paper has substantial ex ante appeal

and a number of empirical liquidity-like features, as argued earlier. One
class of alternative measures involves merely changing the precise spec-
ification of regression (1). In fact, one can consider 24 different spec-
ifications (including ours). The variable on the left-hand side of (1) can
be either the excess or total stock return. On the right-hand side, the
first regressor can be either total return or excess return, or it can be
absent. Next, one can use not only excess return but also total return
to sign volume for the purpose of obtaining a proxy for order flow.
Finally, the return sign can be replaced by the return itself, for both
excess and total return, motivated by the empirical implementation of
Campbell et al. (1993).

The various specifications described above produce aggregate series
that are all substantially different from ours. The correlations between
the innovations in the aggregate series produced by our specification
and those for the remaining 23 choices are low, ranging from �.47 to
.80 and averaging .21. The highest correlation is achieved by the spec-
ification that differs from ours only in replacing by itself.e esign(r ) ri,d,t i,d,t

The plot of the resulting series, shown in figure 2a, departs noticeably

18 Changes in our measure are regressed on changes in theirs in the overlapping period
of January 1988 through December 1998, excluding the change between June and July
1997, when the quoted depth dropped sharply because of a reduction in the tick size on
the NYSE. The regression is .115, and the F-test rejects the hypothesis that all slopes2R
are jointly equal to zero with a p-value of .03.
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from the plot of our series in figure 1. For example, the well-known
low-liquidity episodes of October 1987 and September 1998 are much
less prominent, and there are a number of downward spikes (e.g., in
the late 1990s) in months that are not commonly identified with low-
liquidity events. Moreover, this alternative series does not exhibit the
flight-to-quality effects documented for our measure in table 1: the stock-
bond correlations in low-liquidity months are actually positive. Our li-
quidity measure therefore seems more appealing than its most highly
correlated alternative.

Figure 2 also plots the aggregate series for two other specifications
of regression (1) obtained by making only one change to ours. In figure
2b, the lagged total return is replaced by its excess counterpartri,d,t

In figure 2c, the excess return is replaced by total return throughout,er .i,d,t

on the left-hand side as well as within the sign operator on the right-
hand side. Both alternative series have a correlation of only .41 with
ours, and the flight-to-quality effects are again absent from both mea-
sures. In addition, both series exhibit a negative correlation with the
market in negative-return months, in contrast to the significantly positive
correlation obtained for our measure (.52) as well as for liquidity mea-
sures such as bid-ask spreads and depth considered in other studies.
Finally, the first series does not pick up the best-known low-liquidity
periods at all, and its time-series average is in fact positive, not negative.
All these facts make the alternative specifications less appealing than
ours.

Another test of the usefulness of the various alternative specifications
of (1) is to what extent they capture the liquidity effect modeled in the
simulation exercise described in Section IIA. To explore this issue, we
repeated the simulation described there for each of the other 23 spec-
ifications. The version with the same independent variables as ours but
total returns on the left achieves the same correlation (.98) with the
true liquidity value fi as our measure does. This is not surprising since
the additional noise in the dependent variable under this alternative
matters little in the population (large-sample) value for the slope. More
interesting is that all 22 remaining specifications produce smaller cor-
relations with true liquidity, which lends additional support to our mea-
sure as being a sensible specification relative to seemingly close
alternatives.

Figure 2d plots the aggregate series obtained by value-weighting our
individual stock measures across stocks. This series differs substantially
from our equal-weighted measure, since the correlation between the
innovations in the two series is only .77. One less attractive feature of
the value-weighted series is that certain months in which liquidity was
notoriously low are relatively unimportant, largely because of the high
volatility of the series in the first half of the sample. When all months
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Fig. 2.—Alternative aggregate series. Each panel plots an alternative to our aggregate liquidity measure. The first three panels are based on a simple
modification of the liquidity-defining regression (1). a, is replaced by on the right-hand side of the regression. b, is replaced bye e esign(r ) r r ri,d,t i,d,t i,d,t i,d,t

on the right-hand side. c, is replaced by on the left-hand side and is replaced by on the right-hand side. These threee er r sign(r ) sign(r )i,d�1,t i,d�1,t i,d,t i,d,t

panels plot equal-weighted averages of the slope coefficients on order flow in regression (1), multiplied by where is the total dollar value atm /m , mt 1 t

the end of month of the stocks included in the average in month t, and month 1 corresponds to August 1962. d, The value-weighted average oft � 1
the individual stock measures from the unaltered version of regression (1). Tick marks correspond to July of the given year.
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are sorted by their value-weighted liquidity measures, the October 1987
liquidity crunch appears sixth and September 1998 appears only twenty-
fifth in the order of importance. Moreover, the value-weighted series
fails to exhibit any flight-to-quality effects: the correlations between
stocks and bonds in low-liquidity months are in fact positive. These
unappealing features of the value-weighted measure are likely due to
its domination by large-cap stocks, whose liquidity often remains high
even when smaller-cap stocks experience a liquidity crunch. Our interest
centers on a broad liquidity measure, as opposed to a large-stock li-
quidity measure, so we attempt to measure changes in aggregate liquidity
using an equally weighted average of the liquidity measures for individ-
ual stocks.19

One might prefer to replace dollar volume on the right-hand side of
regression (1) by turnover, defined as dollar volume divided by market
capitalization. Note that, with such a change, the resulting gamma co-
efficients are very close to our coefficients multiplied by the stock’s
market cap at the beginning of the month, since the effects on the
independent variable of within-month variation in market cap are likely
to be small. Equal-weighting such modified gamma coefficients across
stocks hence produces the same series as value-weighting our original
coefficients and scaling them by the average market cap of all stocks
used to compute the average. The resulting series therefore looks very
similar to the series discussed in the previous paragraph, and it inherits
all the unappealing features of that series.

In summary, the various series produced by alternative specifications
and weightings of our regression-based liquidity measure are signifi-
cantly different from our measure and exhibit various features that
render them less appealing as measures of aggregate liquidity.

III. Is Liquidity Risk Priced?

This section investigates whether a stock’s expected return is related to
the sensitivity of its return to the innovation in aggregate liquidity, L .t
That sensitivity, denoted for stock i by its liquidity beta is the slopeLb ,i

coefficient on in a multiple regression in which the other independentLt

variables are additional factors considered important for asset pricing.
To investigate whether the stock’s expected return is related to weLb ,i

follow a straightforward portfolio-based approach to create a universe
of assets whose liquidity betas are sufficiently disperse. At the end of
each year, starting with 1965, we sort stocks on the basis of their pre-
dicted values of and form 10 portfolios. The postformation returnsLbi

19 We did repeat the historical beta analysis reported in table 8 below using the value-
weighted series; the results are weaker but go in the same direction as those reported.
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on these portfolios during the next 12 months are linked across years
to form a single return series for each decile portfolio. The excess
returns on those portfolios are then regressed on return-based factors
that are commonly used in empirical asset pricing studies. To the extent
that the regression intercepts, or alphas, differ from zero, explainsLbi

a component of expected returns not captured by exposures to the
other factors.

For the purpose of portfolio formation, we define as the coefficientLbi

on in a regression that also includes the three factors of Fama andLt

French (1993):

0 L M S Hr p b � b L � b MKT � b SMB � b HML � e , (9)i,t i i t i t i t i t i,t

where denotes asset i’s excess return, MKT denotes the excess returnri,t

on a broad market index, and the other two factors, SMB and HML,
are payoffs on long-short spreads constructed by sorting stocks according
to market capitalization and book-to-market ratio. This definition of

captures the asset’s comovement with aggregate liquidity that is dis-Lbi

tinct from its comovement with other commonly used factors. We allow
for any given stock to vary through time, and the predicted valuesLbi

of used to sort stocks are obtained using two methods. The first allowsLbi

the predicted to depend on the stock’s historical least-squares esti-Lbi

mate as well as a number of additional stock characteristics observable
at the time of the sort. The results using that method, reported in
subsection A, reveal large differences in expected returns on -sortedLbi

portfolios that are unexplained by the other factors. The second method
uses only historical betas and is presented to confirm that the first set
of results is not driven solely by sorting stocks on the other characteristics
that help predict liquidity betas. The results from that method, reported
in subsection B, also reveal large and significant differences in alphas
on the -sorted portfolios. Subsection C reports results obtained forLbi

portfolios formed by sorting stocks on market capitalization.
Our analysis covers all stocks traded on the NYSE, AMEX, and

NASDAQ that are ordinary common shares (CRSP share codes 10 and
11). Stocks with prices below $5 or above $1,000 are also excluded from
the portfolio sorts. The portfolio formation procedure uses data avail-
able only as of the formation date, and this requirement applies to the
liquidity series as well. Thus the formation procedure each year begins
with a reestimation of (7) using only the raw liquidity series ( ) availableĝt

up to that point in time. The historical values of used in that formationLt

year are then recomputed using (8), where is the fitted residual fromût

that reestimated regression.
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TABLE 2
Determinants of Predicted Liquidity Betas

August 1962 through

December 1998 December 1983 December 1968

Intercept �1.79
(�6.75)

�4.39
(�12.94)

�2.75
(�2.95)

Historical beta 2.30
(9.97)

3.75
(10.87)

9.18
(9.99)

Average liquidity �.87
(�4.12)

�.02
(�.08)

�.48
(�.61)

Average volume 1.54
(3.29)

�3.37
(�5.03)

.07
(.05)

Cumulative return �.04
(�.14)

1.00
(2.86)

.93
(.86)

Return volatility �.24
(�1.60)

�1.13
(�3.39)

�2.61
(�2.25)

Price .59
(1.85)

7.51
(15.00)

4.32
(3.38)

Shares outstanding �1.43
(�3.37)

.67
(1.26)

�.69
(�.54)

Note.—Each column reports the results of estimating a linear relation between a stock’s liquidity beta and the seven
characteristics listed (in addition to the intercept, shown first). At each year end shown, the estimation uses all stocks
defined as ordinary common shares traded on the NYSE, AMEX, or NASDAQ with at least three years of monthly
returns continuing through the given year end. The estimation uses a two-stage pooled time-series and cross-sectional
approach. Each value reported is equal to the coefficient estimate multiplied by the time-series average of the annual
cross-sectional standard deviations of the characteristic. The t-statistics are in parentheses.

A. Sorting by Predicted Liquidity Betas

1. Predicting Liquidity Betas

We model each stock’s liquidity beta as a linear function of observable
variables

L ′b p w � w Z . (10)i,t�1 1,i 2,i i,t�1

The vector contains seven characteristics: (i) the historical liquidityZ i,t�1

beta estimated using all data available from months throught � 60
(if at least 36 months are available), (ii) the average value of ˆt � 1 gi,t

from months through (iii) the natural log of the stock’st � 6 t � 1,
average dollar volume from months through (iv) the cu-t � 6 t � 1,
mulative return on the stock from months through (v) thet � 6 t � 1,
standard deviation of the stock’s monthly return from months t � 6
through (vi) the natural log of the price per share from montht � 1,

and (vii) the natural log of the number of shares outstandingt � 1,
from month (These seven characteristics are listed in table 2.)t � 1.
The list of characteristics is necessarily arbitrary, although they do pos-
sess some appeal ex ante. Historical liquidity beta should be useful if
the true beta is fairly stable over time. The average of the stock’s ĝi,t

and volume can matter if liquidity risk is related to liquidity per se.
Stocks with different market capitalization could have different liquidity
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betas, so we include shares outstanding and stock price, whose product
is equal to the stock’s market capitalization. The level and variability of
recent returns simply allow some role for short-run return dynamics.
Each characteristic is “demeaned” by subtracting the time-series average
(through month ) of the characteristic’s cross-sectional average int � 1
each previous month.

Substituting the right-hand side of (10) for in (9), we obtainLbi

0 M S Hr p b � b MKT � b SMB � b HMLi,t i i t i t i t

′� (w � w Z )L � e . (11)1,i 2,i i,t�1 t i,t

This regression for stock i contains 11 independent variables, seven of
which are cross products of the elements of with (This approachZ L .i,t�1 t

to incorporating time variation in betas follows Shanken [1990].) To
increase precision in the face of the substantial variance in individual-
stock returns, we restrict the coefficients and in equation (10)w w1,i 2,i

to be the same across all stocks and estimate them using the whole panel
of stock returns. Specifically, at the end of each year between 1965 and
1998, we first construct for each stock the historical series of

M S Hˆ ˆ ˆe p r � b MKT � b SMB � b HML , (12)i,t i,t i t i t i t

where the ’s are estimated from the regression of the stock’s excessb̂

returns on the Fama-French factors and using all data available upL ,t
to the current year end. Then we run a pooled time-series, cross-sectional
regression of on the characteristics,ei,t

′e p w � w L � w Z L � n , (13)i,t 0 1 t 2 i,t�1 t i,t

again using all data available up to the current year end. The first year
end considered here is that of 1965, since the data on begin in AugustLt

1962, and it seems reasonable to use at least three years of data to
conduct the estimation. A stock is excluded for any month in which it
has any missing characteristics.

Table 2 reports the estimated coefficients and from the pooledˆ ˆw w1 2

regression, together with their t-statistics.20 Results are reported for sev-
eral periods, each beginning in August 1962 but ending in December
of a different year; the estimated coefficients are those used in the
ranking at that year end. Each coefficient is multiplied by the time-series
average of the cross-sectional standard deviation of the corresponding
demeaned characteristic. This scaling helps clarify the relative contri-
butions of the individual characteristics to the predicted betas. Historical

20 The t-statistics are computed assuming independence of the regression residuals,
which are purged of common variation in returns attributable to the three Fama-French
factors together with L .t
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liquidity beta is the most important determinant of the predicted beta
in the longest sample period, used for the most recent ranking in De-
cember 1998. The coefficient of 2.30 ( ) indicates that if a stock’st p 9.97
historical liquidity beta is one cross-sectional standard deviation above
the cross-sectional mean of the historical betas, then the stock’s pre-
dicted liquidity beta is higher by 2.30, when we hold the other char-
acteristics constant and average the effect over time. Historical beta is
also the most robust determinant of the predicted beta across the dif-
ferent periods. The coefficient on stock price is significantly positive
early in the sample, but its effect weakens in the longer period. Volatility
enters negatively, again more strongly in the earlier periods. The co-
efficients on the stock’s past return, shares outstanding, and average
volume are less stable over time.21 The coefficient on the stock’s recent
average is significantly negative in the longest period (and insignif-ĝit

icantly negative in the subperiods), suggesting that stocks with lower
liquidity (as measured by ) tend to be more exposed to aggregateĝit

liquidity fluctuations.

2. Postranking Portfolio Betas

At the end of each year, stocks are sorted by their predicted liquidity
betas and assigned to 10 portfolios. The predicted beta for each stock
is calculated from equation (10), using the year-end values of the stock’s
characteristics along with the values of and estimated using dataˆ ˆw w1 2

through the current year end. Portfolio returns are computed over the
following 12 months, after which the estimation/formation procedure
is repeated. The postranking returns are linked across years, generating
a single return series for each decile covering the period from January
1966 through December 1999. On average, there are 187 stocks in each
portfolio, and no portfolio ever contains fewer than 103 stocks.

Panel A of table 3 reports the postranking liquidity betas of the decile
portfolios when the stocks within each portfolio are value-weighted.
(The results for equally weighted portfolios, not shown, are nearly iden-
tical.) The liquidity betas are estimated by running the regression in

21 As mentioned earlier, the trading volume of the NASDAQ stocks is overstated relative
to the NYSE/AMEX volume. When the NASDAQ stocks are excluded from the pooled
regression, the coefficient on volume remains negative in the first two subperiods and
turns insignificantly negative in the overall period. In addition, the results presented in
this section lead to similar conclusions about the relation between liquidity risk and ex-
pected stock returns. We retain the NASDAQ stocks in the analysis because their inclusion
increases the dispersion of the postranking liquidity betas of the portfolios sorted on
predicted betas, in line with the purpose of the sorting procedure. Stocks with prices
outside the $5–$1,000 range are also included in the pooled regression for the same
reason: their inclusion increases the spread in the postranking betas, even if these stocks
are subsequently excluded from the portfolio sorts.



TABLE 3
Properties of Portfolios Sorted on Predicted Liquidity Betas

Decile Portfolio

1 2 3 4 5 6 7 8 9 10 10–1

A. Postranking Liquidity Betas

Jan. 1966–Dec. 1999 �5.75
(�2.22)

�6.54
(�2.98)

�4.66
(�2.59)

�3.16
(�2.18)

.90
(.69)

�.63
(�.54)

�.86
(�.68)

.68
(.52)

2.44
(1.77)

2.48
(1.35)

8.23
(2.37)

Jan. 1966–Dec. 1982 �7.28
(�1.84)

�8.29
(�2.54)

�3.47
(�1.19)

�3.15
(�1.36)

2.58
(1.23)

�.34
(�.17)

�.47
(�.22)

.73
(.33)

�2.51
(�1.10)

4.19
(1.38)

11.47
(2.06)

Jan. 1983–Dec. 1999 �3.00
(�.85)

�4.27
(�1.37)

�5.09
(�2.12)

�2.36
(�1.22)

�1.10
(�.63)

�.84
(�.57)

�1.60
(�1.06)

1.94
(1.22)

5.67
(3.23)

.85
(.36)

3.85
(.84)

B. Additional Properties, January 1966–December 1999

Market cap 2.83 5.90 8.30 7.65 10.67 16.61 15.99 16.02 16.05 14.28
Liquidity �.46 �.16 �.10 �.15 �.08 �.07 �.03 �.03 �.04 �.10
MKT beta 1.24

(37.70)
1.21

(44.61)
1.09

(48.31)
1.05

(56.83)
1.04

(62.83)
1.03

(68.89)
1.00

(62.56)
1.01

(60.75)
.98

(55.76)
.94

(40.75)
�.30

(�6.85)
SMB beta .70

(14.47)
.31

(7.64)
.05

(1.61)
.01

(.26)
�.09

(�3.51)
�.12

(�5.63)
�.12

(�5.04)
�.09

(�3.82)
�.12

(�4.76)
.05

(1.36)
�.65

(�10.14)
HML beta .07

(1.31)
.19

(4.36)
.23

(6.45)
.20

(6.69)
.11

(4.02)
.14

(5.68)
.08

(3.07)
�.00

(�.06)
�.01

(�.37)
�.34

(�9.04)
�.40

(�5.74)
MOM beta �.06

(�2.43)
�.10

(�5.35)
�.07

(�4.29)
�.03

(�2.19)
�.03

(�2.51)
�.01

(�.72)
.01

(.53)
�.01

(�.72)
.03

(2.72)
.05

(3.02)
.11

(3.41)

Note.—At each year end between 1965 and 1998, eligible stocks are sorted into 10 portfolios according to predicted liquidity betas. The betas are constructed as linear
functions of seven stock characteristics at the current year end, using coefficients estimated from a pooled time-series, cross-sectional regression approach. The estimation
and sorting procedure at each year end uses only data available at that time. Eligible stocks are defined as ordinary common shares traded on the NYSE, AMEX, or NASDAQ
with at least three years of monthly returns continuing through the current year end and with stock prices between $5 and $1,000. The portfolio returns for the 12
postranking months are linked across years to form one series of postranking returns for each decile. Panel A reports the decile portfolios’ postranking liquidity betas,
estimated by regressing the value-weighted portfolio excess returns on the aggregate liquidity innovation and the Fama-French factors. Panel B reports the time-series averages
of the decile portfolios’ market capitalization and liquidity, obtained as value-weighted averages of the corresponding measures across the stocks within each decile. Market
capitalization is reported in billions of dollars. A stock’s liquidity in any given month is the slope coefficient from eq. (1), multiplied by 100. Also reported are postrankinggi,t

betas with respect to the three Fama-French factors and a momentum factor, estimated by regressing value-weighted portfolio excess returns on the four factors. The t-
statistics are in parentheses.
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(9) over the whole sample period, January 1966 through December
1999, as well as over two subperiods. The postranking liquidity betas
increase across deciles, consistent with the objective of the sorting pro-
cedure. The “10–1” spread, which goes long decile 10 (stocks with high
liquidity betas) and short decile 1 (stocks with low liquidity betas), has
an overall-period liquidity beta of 8.23, with a t-statistic of 2.37.

Panel B of table 3 reports some additional properties of portfolios
sorted by predicted liquidity betas. The low-beta portfolios contain stocks
of somewhat smaller firms: the value-weighted average size in portfolio
1 is $2.83 billion, as compared to $14.28 billion in portfolio 10 (averaged
over time). Stocks in the low-beta portfolios also tend to be less liquid,
as measured by the average value of although this pattern is notĝ ,it

monotonic. Panel B also reports the decile portfolios’ betas with respect
to the Fama-French factors, MKT, SMB, and HML, and the previously
described momentum factor, MOM. The Fama-French and momentum
betas are estimated by regressing the decile excess returns on the returns
of the four-factor portfolios. All three Fama-French betas of the 10–1
spread are significantly negative: �0.30 for MKT, �0.65 for SMB, and
�0.40 for HML. The SMB betas confirm the pattern in average capi-
talizations, and the HML betas indicate that the 10–1 spread has a tilt
toward growth stocks. The 10–1 spread’s momentum beta is significantly
positive (0.11), suggesting some tilt toward past winners.

3. Alphas

If our liquidity risk factor is priced, we should see systematic differences
in the average returns of our beta-sorted portfolios. The evidence in
table 4 indeed favors the pricing of liquidity risk. The table reports the
value-weighted portfolios’ postranking alphas estimated under three dif-
ferent factor specifications. The capital asset pricing model (CAPM)
alpha is computed with respect to MKT, the Fama-French alpha with
respect to the Fama-French factors, and the four-factor alpha with re-
spect to the Fama-French factors and MOM. All three alphas of the 10–1
spread are significantly positive: the CAPM alpha is 6.40 percent per
year ( ), the Fama-French alpha is 9.23 percent per year (t p 2.54 t p

), and the four-factor alpha is 7.48 percent per year ( ).4.29 t p 3.42
(Annual alphas are computed as 12 times the monthly estimates.) The
alphas are also robust across the subperiods. For example, the subperiod
Fama-French alphas of the 10–1 spread are 8.50 percent ( ) andt p 2.77
10.74 percent ( ), and the subperiod four-factor alphas are 6.21t p 3.53
percent ( ) and 9.49 percent ( ). Table 5 reports alphast p 1.95 t p 3.12
when the decile portfolios are equally weighted rather than value-
weighted. These results are even slightly stronger. For example, the full-
period CAPM, Fama-French, and four-factor alphas of the equally



TABLE 4
Alphas of Value-Weighted Portfolios Sorted on Predicted Liquidity Betas

Decile Portfolio

1 2 3 4 5 6 7 8 9 10 10–1

A. January 1966–December 1999

CAPM alpha �5.16
(�2.57)

�1.88
(�1.24)

�.66
(�.56)

�.07
(�.08)

�1.48
(�1.80)

1.48
(1.93)

1.22
(1.52)

1.38
(1.72)

1.68
(1.93)

1.24
(1.01)

6.40
(2.54)

Fama-French alpha �6.05
(�3.77)

�3.36
(�2.47)

�2.15
(�1.93)

�1.23
(�1.37)

�2.10
(�2.61)

.78
(1.08)

.86
(1.11)

1.41
(1.76)

1.90
(2.22)

3.18
(2.82)

9.23
(4.29)

Four-factor alpha �5.11
(�3.12)

�1.66
(�1.23)

�1.02
(�.91)

�.76
(�.83)

�1.61
(�1.96)

.91
(1.22)

.76
(.96)

1.55
(1.88)

1.34
(1.54)

2.36
(2.06)

7.48
(3.42)

B. January 1966–December 1982

CAPM alpha �2.26
(�.81)

1.63
(.76)

.54
(.31)

.67
(.50)

�3.09
(�2.69)

1.44
(1.29)

.61
(.54)

1.78
(1.46)

1.43
(1.14)

�.93
(�.52)

1.34
(.36)

Fama-French alpha �7.32
(�3.36)

�2.22
(�1.23)

�1.80
(�1.13)

�.75
(�.59)

�3.29
(�2.85)

1.03
(.95)

.20
(.17)

1.91
(1.56)

2.32
(1.86)

1.18
(.71)

8.50
(2.77)

Four-factor alpha �6.43
(�2.82)

�.25
(�.13)

�.22
(�.13)

�.03
(�.02)

�2.46
(�2.05)

1.09
(.95)

.31
(.25)

2.89
(2.28)

1.67
(1.28)

�.22
(�.13)

6.21
(1.95)

C. January 1983–December 1999

CAPM alpha �8.01
(�2.76)

�5.33
(�2.49)

�1.76
(�1.08)

�1.01
(�.77)

.20
(.17)

1.55
(1.46)

1.74
(1.54)

.70
(.67)

1.81
(1.47)

3.38
(1.98)

11.39
(3.36)

Fama-French alpha �5.23
(�2.23)

�5.08
(�2.46)

�2.69
(�1.67)

�1.80
(�1.41)

�.82
(�.72)

.37
(.38)

.89
(.89)

.76
(.72)

1.25
(1.05)

5.51
(3.51)

10.74
(3.53)

Four-factor alpha �4.43
(�1.88)

�3.72
(�1.85)

�1.94
(�1.21)

�1.52
(�1.17)

�.63
(�.54)

.53
(.54)

.70
(.69)

.47
(.44)

.84
(.70)

5.06
(3.20)

9.49
(3.12)

Note.—See the note to table 3. The table reports the decile portfolios’ postranking alphas, in percentages per year. The alphas are estimated as intercepts from the
regressions of excess portfolio postranking returns on excess market returns (CAPM alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-French
and momentum factor returns (four-factor alphas). The t-statistics are in parentheses.



TABLE 5
Alphas of Equally Weighted Portfolios Sorted on Predicted Liquidity Betas

Decile Portfolio

1 2 3 4 5 6 7 8 9 10 10–1

A. January 1966–December 1999

CAPM alpha �5.46
(�2.27)

�1.47
(�.75)

�.73
(�.46)

.34
(.24)

.02
(.02)

.94
(.84)

1.97
(1.91)

2.78
(2.71)

2.43
(2.37)

2.77
(2.06)

8.23
(4.12)

Fama-French alpha �7.53
(�6.35)

�3.47
(�3.39)

�3.04
(�3.63)

�1.58
(�2.13)

�1.67
(�2.47)

�.76
(�1.21)

.46
(.78)

1.49
(2.50)

1.46
(2.18)

2.96
(3.14)

10.49
(6.50)

Four-factor alpha �5.80
(�4.98)

�1.64
(�1.68)

�1.68
(�2.07)

�.68
(�.92)

�1.02
(�1.50)

�.17
(�.26)

.16
(.26)

1.32
(2.16)

.95
(1.40)

1.86
(1.98)

7.66
(4.95)

B. January 1966–December 1982

CAPM alpha 1.74
(.49)

5.52
(1.90)

5.22
(2.22)

4.49
(2.25)

2.99
(1.70)

4.15
(2.49)

4.76
(3.15)

6.00
(4.10)

4.11
(2.77)

4.68
(2.54)

2.95
(.98)

Fama-French alpha �6.50
(�4.02)

�1.12
(�.76)

�.80
(�.69)

�.51
(�.52)

�1.21
(�1.25)

.02
(.02)

1.12
(1.32)

2.70
(3.17)

1.23
(1.22)

2.76
(1.95)

9.25
(4.19)

Four-factor alpha �5.32
(�3.16)

1.00
(.67)

1.28
(1.14)

.80
(.81)

.20
(.20)

.93
(1.00)

.85
(.96)

2.79
(3.12)

.84
(.79)

1.18
(.81)

6.49
(2.91)

C. January 1983–December 1999

CAPM alpha �11.47
(�3.70)

�7.36
(�2.94)

�6.09
(�2.92)

�3.06
(�1.63)

�2.21
(�1.41)

�1.58
(�1.10)

.06
(.04)

.29
(.21)

1.77
(1.34)

1.78
(.92)

13.25
(5.13)

Fama-French alpha �8.90
(�5.02)

�5.83
(�4.07)

�5.58
(�4.62)

�2.58
(�2.26)

�2.08
(�2.16)

�1.56
(�1.70)

.13
(.15)

.54
(.64)

2.37
(2.72)

4.12
(3.33)

13.02
(5.50)

Four-factor alpha �7.10
(�4.40)

�4.34
(�3.35)

�4.73
(�4.05)

�2.00
(�1.77)

�1.92
(�1.97)

�1.19
(�1.30)

�.13
(�.15)

.29
(.34)

1.87
(2.18)

3.42
(2.80)

10.51
(4.94)

Note.—See the note to table 3. The table reports the decile portfolios’ postranking alphas, in percentages per year. The alphas are estimated as intercepts from the regressions
of excess portfolio postranking returns on excess market returns (CAPM alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-French and momentum
factor returns (four-factor alphas). The t-statistics are in parentheses.
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weighted 10–1 spread are 8.23 percent, 10.49 percent, and 7.66 percent,
respectively. The subperiod results are comparably strong, too.

We also test the hypothesis that all 10 alphas are jointly equal to zero,
using the test of Gibbons, Ross, and Shanken (1989). For both equally
weighted and value-weighted portfolios and for all three models, the
hypothesis is rejected at a 1 percent significance level in the overall
period. The hypothesis is also rejected at the 5 percent level in both
subperiods, for both equally weighted and value-weighted portfolios and
for all three models. The only exception occurs with the four-factor
alphas for the value-weighted portfolios in the second subperiod, in
which case the hypothesis is rejected at the 10 percent level.

Overall, the evidence strongly supports the hypothesis that our li-
quidity risk factor is priced. The premium for this risk is positive, in
that stocks with higher sensitivity to aggregate liquidity shocks offer
higher expected returns. The latter result is consistent with the notion
that a pervasive drop in liquidity is seen as undesirable by the repre-
sentative investor, so that the investor requires compensation for holding
stocks with greater exposure to this risk.

4. Estimating the Premium Using All 10 Portfolios

The discussion above relies on the 10–1 spread to infer that the
expected-return premium associated with liquidity risk is positive. We
also estimate the liquidity risk premium using all 10 decile portfolios.
Define the multivariate regression

Lr p b � BF � b L � e , (14)t 0 t t t

where rt is a vector containing the excess returns on the decile10 # 1
portfolios; Ft is a vector containing the realizations of the “traded”4 # 1
factors MKT, SMB, HML, and MOM; B is a matrix; and b0 and10 # 4

are vectors. We also consider a specification with only threeLb 10 # 1
traded factors, excluding MOM. Assume that the decile portfolios are
priced by the returns’ sensitivities to the traded factors and the non-
traded liquidity factor:

LE(r ) p Bl � b l , (15)t F L

where denotes the unconditional expectation. Taking expectationsE(7)
of both sides of equation (14) and substituting from equation (15) gives

Lb p b [l � E(L )], (16)0 L t

since the vector of premia on the traded factors, is equal tol , E(F).F t

The liquidity factor is not the payoff on a traded position, so in generalLt

the liquidity risk premium is not equal to We estimate usingl E(L ). lL t L

the generalized method of moments (GMM) of Hansen (1982). Let v
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TABLE 6
Liquidity Risk Premium and Its Contribution to Expected Return

January 1966–
December 1999

January 1966–
December 1982

January 1983–
December 1999

A. Value-Weighted Portfolios Sorted on Predicted Betas

Three traded factors:
lL .91

(2.92)
.81

(2.05)
1.13

(2.73)
L L(b � b )l10 1 L 9.63

(4.57)
8.37

(2.91)
10.59
(3.22)

Four traded factors:
lL .78

(2.43)
.23

(1.36)
.82

(2.93)
L L(b � b )l10 1 L 7.56

(3.42)
2.61

(1.32)
9.27

(2.78)

B. Equally Weighted Portfolios Sorted on Predicted Betas

Three traded factors:
lL 1.65

(2.74)
1.28

(1.82)
1.10

(3.38)
L L(b � b )l10 1 L 11.06

(7.19)
9.90

(4.26)
10.77
(4.05)

Four traded factors:
lL 1.72

(2.33)
3.01
(.74)

1.02
(3.49)

L L(b � b )l10 1 L 8.56
(5.53)

8.20
(3.03)

10.14
(4.07)

Note.—The table reports the estimates of the risk premium associated with the liquidity factor, as well as the
contribution of liquidity risk to the expected return on the “10–1” spread. Stocks are sorted into 10 portfolios by their
predicted liquidity betas at each year end. The premium is estimated using postranking returns on all 10 portfolios.lL

The decile portfolios are value-weighted in panel A and equally weighted in panel B. The premium is reported as a
monthly value multiplied by 1,200, so that the product of the liquidity beta and the reported premium can be interpreted
as the annual percentage return. The 10–1 spread goes long decile 10, with high liquidity beta and short decile 1,Lb ,10

with low liquidity beta The contribution of liquidity risk to the portfolio’s expected return, is alsoL L Lb . (b � b )l ,1 10 1 L

expressed in percentage per year. The asymptotic t-statistics are in parentheses.

denote the set of unknown parameters: B, and The GMMLl , b , E(L ).L t

estimator of v minimizes where T′g(v) Wg(v), g(v) p (1/T)� f(v),ttp1

h � et tf(v) p , (17)t ( )L � E(L )t t

′ ′h p (1 F L ),t t t

L Le p r � b [l � E(L )] � BF � b L , (18)t t L t t t

and W is a consistent estimator of the optimal weighting matrix.22

Estimates of the liquidity risk premium are reported in table 6,lL

along with asymptotic t-statistics. Results are reported for both value-

22 Following Hansen (1982), we estimate W as the inverse of whereT ′ˆ ˆ(1/T)� f f ,t ttp1

evaluated at a consistent estimator of v, obtained by minimizing ′f̂ p f (v) g(v) g(v).t t
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weighted and equally weighted portfolios. The full-period estimate of
is significantly positive for both sets of portfolios under both speci-lL

fications (three traded factors or four). The subperiod estimates are all
positive, and the majority are statistically significant. Overall, estimating
the liquidity risk premium using all 10 portfolios confirms the previous
inferences based on the extreme deciles.23 Again, liquidity risk appears
to be an economically important determinant of expected stock returns.

The magnitude of the liquidity risk premium depends on the ar-lL

bitrary scaling of described earlier, but that scaling does not affectLt

the t-statistic or the product the contribution of liquidity risk toLb l ,i L

asset i’s expected return. Table 6 also reports the GMM estimates of
the difference between expected returns on the extremeL L(b � b )l ,10 1 L

decile portfolios implied by their liquidity betas. In the overall period,
the annualized estimate of is 9.63 percent with three tradedL L(b � b )l10 1 L

factors and 7.56 percent with four (the corresponding values for equally
weighted portfolios are 11.06 percent and 8.56 percent). These values
are close to the 10–1 spread alphas in table 4 of 9.23 percent and 7.48
percent (the corresponding values in table 5 for equally weighted port-
folios are 10.49 percent and 7.66 percent). Thus, even when the liquidity
premium is estimated using all 10 portfolios, the contribution of liquidity
risk to the 10–1 expected-return difference remains virtually unchanged.
The contributions of the traded factors to the expected return of the
10–1 spread are much smaller, all below 2 percent per year in absolute
value for the overall period.

B. Sorting by Historical Liquidity Betas

As discussed earlier, a stock’s historical liquidity beta is the most im-
portant predictor of its future liquidity beta (table 2). If liquidity betas
are sufficiently stable over time, sorting on the historical liquidity betas
alone could produce dispersion in the postranking betas. This subsec-
tion shows that this is indeed the case, although the dispersion in the
betas is not as large as when liquidity betas are predicted using additional
variables. Although our study focuses primarily on the results produced
by sorts on betas predicted with the larger set of variables, we present
here some results based on historical beta sorts in order to show that
the results do not hinge on the inclusion of the additional variables.

At the end of each year between 1967 and 1998, we identify stocks
with at least five years of monthly returns continuing through the current
year end. For each stock, we estimate its historical liquidity beta by
running the regression in (9) using the most recent five years of monthly

23 In no case does the asymptotic test reject the restriction in (15) at standard sig-2x

nificance levels.
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data. We impose a five-year minimum here in estimating the historical
beta, as compared to the minimum of three years required to compute
historical betas in the previous analysis. With no other information about
liquidity beta brought to bear, it seems reasonable to require a somewhat
more precise historical estimate. The series of innovations ( ’s) is againLt

recomputed at the end of each year. Stocks are then sorted by these
historical betas into 10 value-weighted portfolios. Analogous to our sort
on the predicted betas, we obtain a January 1968 through December
1999 series of monthly returns on each decile portfolio by linking across
years the postranking returns during the next 12 months. On average,
there are 217 stocks in each decile portfolio, and no portfolio ever
contains fewer than 108 stocks.

Table 7 reports, in the same format as table 3, the postranking liquidity
betas as well as the average market capitalization, liquidity, and Fama-
French and momentum betas of the decile portfolios. Note that, al-
though the pattern in the postranking liquidity betas is not monotonic,
sorting on historical betas achieves some success in spreading the post-
ranking betas. The liquidity beta of the 10–1 spread is positive at 5.99
( ), not as large as the corresponding value of 8.23 ( )t p 1.88 t p 2.37
obtained by sorting on the predicted betas. The SMB beta of the 10–1
spread is significantly negative, as in table 3, but the low-beta portfolio
no longer has the lowest market capitalization. Rather, smaller firms
now occupy both extremes of the historical beta sort. The latter result
is consistent with smaller (and more volatile) stocks producing noisier
historical liquidity betas. Also, average liquidity is now lower at both
extremes, contrary to the pattern in table 3. Finally, the tilt toward
growth stocks and past winners observed in table 3 disappears when
sorting on historical liquidity betas.

Table 8 reports the value-weighted decile portfolios’ postranking al-
phas. The dispersion in the alphas is now smaller than in the previous
results, which is consistent with the smaller dispersion in the postranking
liquidity betas. Nevertheless, all three alphas of the 10–1 spread are still
significantly positive in the overall period: the CAPM alpha is 4.66 per-
cent per year ( ), the Fama-French alpha is 4.15 percent pert p 2.36
year ( ), and the four-factor alpha is 4.87 percent per yeart p 2.08
( ).24 Moreover, the liquidity risk premium estimated from thet p 2.38
universe of all 10 portfolios, obtained by the same GMM procedure used
to produce the values in table 6, is positive and significant at the 10
percent level. With three traded factors the estimated premium is 0.80
with a t-statistic of 1.77, and with four traded factors it is 1.04 with a t-

24 When the decile portfolios are equally weighted, the postranking betas are less disperse
than when the portfolios are value-weighted, and the alphas lose significance but are still
positive. This is consistent with greater estimation error in historical liquidity betas for
smaller stocks, which are typically more volatile.



TABLE 7
Properties of Portfolios Sorted on Historical Liquidity Betas

Decile Portfolio

1 2 3 4 5 6 7 8 9 10 10–1

A. Liquidity Betas

Jan. 1968–Dec. 1999 �6.02
(�2.57)

�.65
(�.37)

�.62
(�.48)

�.54
(�.41)

1.12
(.96)

�1.58
(�1.24)

1.37
(1.00)

2.00
(1.49)

3.04
(1.99)

�.04
(�.02)

5.99
(1.88)

Jan. 1968–Dec. 1983 �7.59
(�1.84)

�1.17
(�.44)

3.87
(1.86)

�1.54
(�.68)

�.48
(�.25)

1.65
(.71)

�1.18
(�.55)

.02
(.01)

1.26
(.54)

.41
(.14)

7.99
(1.60)

Jan. 1984–Dec. 1999 �4.17
(�1.52)

�1.49
(�.63)

�4.10
(�2.46)

�.30
(�.18)

2.55
(1.72)

�2.75
(�2.00)

2.80
(1.56)

3.79
(2.08)

4.38
(2.07)

1.18
(.39)

5.35
(1.26)

B. Additional Properties, January 1968–December 1999

Market cap 7.11 7.69 10.44 17.65 16.76 22.18 16.26 11.64 9.89 6.97
Liquidity �.52 �.19 �.06 �.04 �.02 �.05 �.05 �.05 �.05 �.12
MKT beta 1.12

(37.25)
1.09

(48.37)
1.02

(61.23)
.96

(56.63)
.98

(65.92)
.99

(59.99)
1.02

(58.01)
1.01

(58.52)
1.02

(51.53)
1.09

(40.84)
�.03

(�.74)
SMB beta .37

(8.02)
�.00

(�.02)
�.13

(�5.11)
�.16

(�6.03)
�.09

(�4.21)
�.15

(�6.10)
�.11

(�4.19)
�.00

(�.02)
.04

(1.20)
.16

(4.06)
�.20

(�3.25)
HML beta �.20

(�4.04)
�.05

(�1.31)
.02

(.87)
�.02

(�.80)
.10

(4.22)
.12

(4.40)
.07

(2.60)
.09

(3.27)
�.01

(�.38)
�.15

(�3.39)
.05

(.76)
MOM beta .04

(1.64)
�.00

(�.18)
.02

(1.25)
.01

(1.13)
�.02

(�1.91)
�.00

(�.17)
�.01

(�.76)
.01

(.65)
�.02

(�1.11)
�.01

(�.46)
�.05

(�1.51)

Note.—At each year end between 1967 and 1998, eligible stocks are sorted into 10 portfolios according to historical liquidity betas. The betas are estimated as the
slope coefficients on the aggregate liquidity innovation in regressions of excess stock returns on that innovation and the three Fama-French factors. The regressions are
estimated using the most recent five years of data, and eligible stocks are defined as ordinary common shares traded on the NYSE, AMEX, or NASDAQ with five years
of monthly returns continuing through the current year end and with stock prices between $5 and $1,000. The portfolio returns for the 12 postranking months are
linked across years to form one series of postranking returns for each decile. Panel A reports the decile portfolios’ postranking liquidity betas, estimated by regressing
value-weighted portfolio excess returns on the liquidity innovation and the Fama-French factors. Panel B reports the time-series averages of each decile’s market capitalization
and liquidity, obtained as value-weighted averages of the corresponding measures across the stocks within each decile. Market capitalization is reported in billions of
dollars. A stock’s liquidity in any given month is the slope coefficient from eq. (1), multiplied by 100. Also reported are postranking betas with respect to the Fama-gi,t

French and momentum factors, estimated by regressing value-weighted portfolio excess returns on the four factors. The t-statistics are in parentheses.



TABLE 8
Alphas of Value-Weighted Portfolios Sorted on Historical Liquidity Betas

Decile Portfolio

1 2 3 4 5 6 7 8 9 10 10–1

A. January 1968–December 1999

CAPM alpha �2.06
(�1.30)

�.36
(�.34)

.63
(.76)

.49
(.57)

.07
(.10)

.49
(.58)

1.42
(1.64)

1.36
(1.63)

�.02
(�.02)

2.60
(1.96)

4.66
(2.36)

Fama-French alpha �.62
(�.42)

�.09
(�.08)

.46
(.57)

.57
(.68)

�.62
(�.86)

�.28
(�.35)

.90
(1.06)

.84
(1.00)

.03
(.03)

3.53
(2.71)

4.15
(2.08)

Four-factor alpha �1.20
(�.79)

�.04
(�.04)

.22
(.26)

.34
(.40)

�.29
(�.40)

�.25
(�.31)

1.05
(1.20)

.71
(.82)

.29
(.29)

3.67
(2.74)

4.87
(2.38)

B. January 1968–December 1983

CAPM alpha �1.10
(�.46)

1.04
(.70)

.94
(.79)

.35
(.27)

�.28
(�.26)

.46
(.34)

.09
(.08)

.83
(.72)

.33
(.25)

2.51
(1.51)

3.62
(1.32)

Fama-French alpha �1.24
(�.53)

2.32
(1.56)

1.66
(1.41)

1.53
(1.21)

�1.05
(�.98)

�.49
(�.38)

�.06
(�.05)

�.07
(�.06)

.17
(.13)

1.61
(1.01)

2.85
(1.01)

Four-factor alpha �3.74
(�1.58)

1.50
(.96)

.87
(.71)

.86
(.66)

�.20
(�.18)

.21
(.16)

.59
(.47)

�.18
(�.15)

.59
(.43)

1.64
(.98)

5.38
(1.86)

C. January 1984–December 1999

CAPM alpha �2.79
(�1.31)

�1.63
(�1.04)

.21
(.18)

.40
(.36)

.37
(.36)

.23
(.23)

3.12
(2.51)

1.70
(1.40)

�.11
(�.08)

2.70
(1.28)

5.49
(1.90)

Fama-French alpha .03
(.02)

�2.04
(�1.29)

�.60
(�.53)

�.33
(�.30)

�.40
(�.40)

�.55
(�.59)

2.21
(1.83)

1.50
(1.22)

�.11
(�.07)

4.41
(2.20)

4.38
(1.54)

Four-factor alpha .57
(.30)

�1.50
(�.94)

�.50
(�.44)

�.28
(�.25)

�.39
(�.38)

�.87
(�.93)

2.06
(1.68)

1.35
(1.08)

.02
(.01)

4.55
(2.23)

3.98
(1.38)

Note.—See the note to table 7. The table reports the decile portfolios’ postranking alphas, in percentage per year. The alphas are estimated as intercepts from the
regressions of excess portfolio postranking returns on excess market returns (CAPM alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-
French and momentum factor returns (four-factor alphas). The t-statistics are in parentheses.
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statistic of 1.76. Note that the magnitude of the premium in either case
is fairly close to its counterpart in table 6. In summary, the analysis based
solely on historical betas supports the conclusion that stocks with greater
sensitivity to innovations in aggregate liquidity offer higher expected
returns.

C. Sorting by Size

Total market capitalization, or “size,” is a common criterion for sorting
stocks in empirical investment studies, and size sorts often produce
dispersion in a number of other characteristics. Table 9 reports various
properties of decile portfolios formed by sorting on size at the end of
each year, where the break points are based on all eligible NYSE, AMEX,
and NASDAQ stocks. Not surprisingly, smaller stocks are less liquid, in
that the average value of increases nearly monotonically acrossĝit

deciles. The liquidity betas of the two or three portfolios containing the
smallest stocks are large and significantly positive, whereas the betas for
the other deciles exhibit no discernible pattern and are not significantly
different from zero. When the size sort is instead based on break points
for NYSE stocks only, so that each decile contains the same number of
NYSE stocks but more AMEX and NASDAQ stocks are assigned to the
lower deciles, then the pattern in liquidity betas is fairly flat across all
10 deciles, except for the large liquidity beta for the first decile. In other
words, in a sort on size, the very smallest firms tend to be those with
high liquidity betas.

It seems plausible that small and illiquid stocks might be those whose
values are most affected by drops in marketwide liquidity, particularly
if those drops prompt some investors concerned with the overall li-
quidity of their portfolios to “flee” such stocks and move to assets with
greater liquidity. At the same time, though, size and liquidity are not
the sole determinants of liquidity betas. Recall from table 3 that, when
we sort by predicted liquidity betas, the high-beta portfolios actually
have somewhat higher liquidity and average market capitalizations than
the low-beta portfolios. It is easy to see why stocks with high liquidity
betas need not be illiquid. When market liquidity declines, many in-
vestors sell stocks and buy bonds (see table 1 for indirect evidence),
and those investors might prefer to sell liquid stocks in order to save
on transaction costs. As a result, the price reaction to aggregate liquidity
changes could actually be stronger for stocks that are more liquid. Also,
prices of liquid stocks could have greater sensitivity to aggregate liquidity
shocks if such stocks are held in larger proportion by the more liquidity-
conscious investors. In general, liquidity betas need not bear a simple
relation to size and liquidity.

Table 9 also reports the size-sorted portfolios’ alphas computed with



TABLE 9
Portfolios Sorted on Market Capitalization

Decile Portfolio

1 2 3 4 5 6 7 8 9 10 1–10

A. General Properties

Market cap 13.00 23.85 38.13 57.34 84.98 129.90 206.61 373.89 837.34 17,068.24
Liquidity �3.35 �3.16 �1.47 �1.87 �1.48 �1.14 �.92 �.46 �.19 �.01

B. Return-Based Measures for Value-Weighted Portfolios

Liquidity beta 5.26
(2.57)

3.84
(2.46)

1.95
(1.52)

�.42
(�.43)

.34
(.37)

�1.13
(�1.25)

�.48
(�.54)

�1.02
(�1.04)

�1.60
(�1.66)

.17
(.67)

5.09
(2.51)

Four-factor alpha 3.01
(2.34)

1.09
(1.12)

.57
(.71)

�.67
(�1.07)

�.75
(�1.30)

�.91
(�1.64)

�.33
(�.61)

�1.05
(�1.73)

�.81
(�1.34)

.50
(3.14)

2.51
(1.96)

C. Return-Based Measures for Equal-Weighted Portfolios

Liquidity beta 4.73
(2.18)

4.22
(2.64)

2.61
(1.89)

.43
(.40)

.82
(.79)

.06
(.07)

�.25
(�.28)

�1.29
(�1.23)

�.63
(�.63)

.59
(.80)

4.14
(1.75)

Four-factor alpha 3.15
(2.34)

.47
(.48)

�.45
(�.55)

�1.48
(�2.34)

�1.42
(�2.27)

�1.83
(�3.10)

�.70
(�1.24)

�1.40
(�2.12)

�1.04
(�1.65)

�.68
(�1.48)

3.83
(2.59)

Note.—At each year end between 1962 and 1998, eligible stocks are sorted into 10 portfolios according to market capitalization. Eligible stocks are defined as ordinary
common shares traded on the NYSE, AMEX, or NASDAQ with stock prices between $5 and $1,000. The break points for the sort are based on all eligible stocks, so that all
decile portfolios contain approximately the same number of stocks in each month. The portfolio returns for the 12 postranking months are linked across years to form one
series of postranking returns for each decile. Panel A reports the time-series averages of the deciles portfolios’ market capitalization and liquidity, obtained as value-weighted
averages of the corresponding measures across the stocks within each decile. Market capitalization is reported in millions of dollars. A stock’s liquidity in any given month is
the slope coefficient from eq. (1), multiplied by 100. Panels B and C report the decile portfolios’ postranking liquidity betas, estimated by regressing excess portfolio returnsgi,t

on the aggregate liquidity innovation and the Fama-French factors. Also reported are the portfolios’ alphas, estimated as intercepts from the regressions of excess portfolio
postranking returns on the Fama-French and momentum factor returns. The t-statistics are in parentheses. All statistics are calculated over the period January 1963 through
December 1999.
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respect to the four factors used previously (the excess market return
and size, value, and momentum spreads). Note that, for both the value-
and equal-weighted portfolios, the estimated alpha for the decile of
smallest firms is over 3 percent annually, with a t-statistic of 2.3. This 3
percent positive abnormal return can be compared to the portion of
expected return attributable to liquidity risk, computed as the product
of the portfolio’s liquidity beta and the estimate of the liquidity risk
premium reported earlier. If we take the premium estimated usinglL

the value-weighted beta-sorted portfolios, reported in panel A in table
6 (and the lower of the overall-period estimates), that product is 3.7
percent ( ) for the equally weighted lowest-size decile andp 4.73 # 0.78
4.1 percent ( ) for the value-weighted version. In otherp 5.26 # 0.78
words, the liquidity risk of the small-firm portfolio appears to be more
than sufficient to explain its abnormal return with respect to the other
four factors.

D. Individual Stock Liquidity

This paper investigates whether the cross section of returns is related
to stocks’ liquidity betas. A natural separate question is whether stocks
whose liquidity is high according to our measure earn high average
returns, in the spirit of Amihud and Mendelson (1986). This question
cannot be conclusively answered here. While our estimated liquidity
measure seems appealing at the aggregate level, it is too noisy to be
useful at the individual stock level. In particular, when stocks are sorted
into 10 portfolios on the basis of their coefficients averaged over theĝit

past one or three years, the pattern in the postranking portfolio ’s isĝ

rather flat across the deciles. The sorting procedure fails because of the
large sampling error in the individual stock ’s. For this reason, we doĝit

not work with individual stock liquidity. It seems that our most successful
sort on liquidity is the simple size sort described in the previous
subsection.

Our result that stocks with high liquidity betas tend to have high
average returns does not appear to be explained by liquidity effects à
la Amihud and Mendelson. Although the least liquid stocks in table 9
tend to have the highest liquidity betas, recall that when stocks are sorted
on their predicted liquidity betas, as in table 3, stocks with the highest
liquidity betas actually have somewhat higher average postranking li-
quidity measures than stocks with the smallest betas. The pricing results
in tables 4 and 5 therefore seem distinct from any pure liquidity effects.

Given the mounting evidence on commonality in liquidity, it seems
natural to ask whether the sensitivity of stock liquidity to market liquidity
is related to the cross section of returns. This question is different from
the one addressed in this paper, since stocks whose liquidities are the
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most sensitive to market liquidity are not necessarily those whose prices
are the most sensitive to market liquidity; the issue is of independent
interest nonetheless. One might conjecture, for example, that stocks
whose liquidity dries up the most during marketwide liquidity crises
need to compensate investors by higher average returns (e.g., Acharya
and Pedersen 2002). Our lack of reliable time series of liquidity for
individual stocks prevents us from investigating this hypothesis, since
sorts on betas (or correlations) of individual liquidity with respect to
aggregate liquidity are unable to achieve any significant postranking
spread in those quantities. This intriguing topic presents an obvious
direction for future research.

IV. An Investment Perspective

The evidence presented in the previous section reveals that liquidity
risk is related to expected-return differences that are not explained by
stocks’ sensitivities to MKT, SMB, HML, and MOM. An equivalent char-
acterization of this evidence is that no combination of these four factors
(and riskless cash) is mean-variance efficient with respect to the universe
of common stocks.25 In particular, the large and significant alphas for
the 10–1 spreads reported in tables 4 and 5 imply that adding such
positions to an opportunity set consisting of the other four factors in-
creases the maximum Sharpe ratio.

In a linear pricing model in which expected returns are explained
by betas with respect to nontraded factors, expected returns are also
explained by betas with respect to portfolios whose returns are maxi-
mally correlated with those factors.26 Constructing a maximum corre-
lation portfolio for from the universe of common stocks is a chal-Lt

lenging problem that lies beyond the scope of this study. It is the case
that, if the ex post maximum correlation portfolio is constructed from
the six-asset universe consisting of the first and last decile portfolios of
the liquidity beta sort as well as the four factors MKT, SMB, HML, and
MOM, then the weight on the high–liquidity beta portfolio is positive
and the weight on the low–liquidity beta portfolio is negative (for both
the value-weighted and equally weighted versions of those portfolios).
In this sense, adding the 10–1 spread to an investment universe con-

25 The equivalence between multibeta asset pricing and mean-variance efficiency of some
combination of benchmark portfolios is well known. For an early recognition of this point,
see Merton (1973); for later discussions, see Jobson and Korkie (1982, 1985), Grinblatt
and Titman (1987), and Huberman, Kandel, and Stambaugh (1987).

26 Huberman et al. (1987) characterize the “mimicking” portfolios that can be used in
place of nontraded factors when betas with respect to these factors explain expected
returns.

http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2F0304-405X%2886%2990065-6
http://www.journals.uchicago.edu/action/showLinks?crossref=10.3905%2Fjpm.1990.409268
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TABLE 10
Liquidity Risk Spreads and Investment Opportunities: Weights in the Ex Post

Tangency Portfolio, January 1966–December 1999

MKT SMB HML MOM LIQV LIQE Sharpe Ratio

100.00 … … … … … .12
35.08 5.83 59.10 … … … .22
20.05 16.07 43.03 20.85 … … .33
22.34 18.77 36.41 … 22.49 … .31
17.32 22.33 29.10 … … 31.25 .40
17.70 20.62 34.23 11.86 15.59 … .37
15.88 22.51 29.56 6.47 … 25.58 .42

Note.—Each row reports the ex post tangency portfolio weights (percent) as well as the ex post monthly Sharpe
ratio of the tangency portfolio in the given asset universe. The assets available for investment are various subsets of six
traded factors. This set comprises the Fama-French factors MKT, SMB, and HML; a momentum factor MOM; and two
liquidity risk spreads, both of which go long decile 10, containing the stocks with the highest predicted liquidity betas,
and short decile 1, containing the stocks with the lowest betas. Each leg of the spread is value-weighted in LIQV and
equally weighted in LIQE.

sisting of the original four factors is motivated by a model in which
expected returns are related to liquidity risk.

Let LIQV denote the payoff on the 10–1 spread constructed using
value-weighted decile portfolios sorted on predicted liquidity betas, and
let LIQE denote the payoff on the equally weighted version. To provide
an additional perspective on the importance of liquidity risk, we examine
here the degree to which the mean-variance opportunity set is enhanced
by adding LIQV or LIQE to MKT, SMB, HML, and MOM. Of course, a
mean-variance-efficient portfolio is not necessarily the optimal choice
of an investor in a world that gives rise to multibeta pricing, but we
believe that a mean-variance setting is of interest to many investors
nevertheless. Table 10 reports, for the overall 1966–99 period, the max-
imum ex post Sharpe ratio and the weights in the corresponding tan-
gency portfolio for various subsets of the six factors. For ease of dis-
cussion, let denote the maximum Sharpe ratio for a given set of∗S
assets. The original four factors have an of 0.33 (on a monthly basis).∗S
When LIQV is added, increases to 0.37, and LIQV receives a greater∗S
weight in the ex post tangency portfolio than MOM (15.6 percent vs.
11.9 percent). When LIQE is added to the original four, increases to∗S
0.42, and the weight in MOM drops by more than two-thirds, from 20.9
percent to 6.5 percent. In contrast, the weight on LIQE in that case is
25.6 percent, which is higher than the weights on all but HML (29.6
percent). Moreover, we see that when we add a fourth factor to the
three Fama-French factors, which by themselves have an of 0.22, LIQE∗S
is more valuable than MOM by the mean-variance comparison: LIQE

raises to 0.40 whereas MOM raises it to 0.33.∗S
Since LIQV and LIQE figure prominently in the ex post tangency

portfolio, at the expense of MOM especially, we are led to investigate
a bit further the extent to which the momentum factor’s importance is
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TABLE 11
Liquidity Risk Spreads and Investment Opportunities: Alphas from the

Regression of Momentum on Portfolios Listed

January 1966–
December 1999

January 1966–
December 1982

January 1983–
December 1999

MKT, SMB, HML 16.30
(4.85)

21.65
(4.53)

11.10
(2.29)

MKT, SMB, HML, LIQV 13.89
(4.09)

19.46
(4.04)

8.03
(1.63)

MKT, SMB, HML, LIQE 8.41
(2.55)

16.11
(3.35)

�1.29
(�.28)

Note.—The table reports the alphas (percent per year) of the momentum portfolio MOM with respect to the factors
listed in each row. These factors include the Fama-French factors MKT, SMB, and HML and two liquidity risk spreads,
both of which go long decile 10, containing the stocks with the highest predicted liquidity betas, and short decile 1,
containing the stocks with the lowest betas. Each leg of the spread is value-weighted in LIQV and equally weighted in
LIQE. The t-statistics are in parentheses.

reduced by our liquidity-risk spreads. Table 11 reports the alpha for
MOM when regressed on the three Fama-French factors plus either LIQV

or LIQE. In the overall period, momentum’s annualized alpha with re-
spect to just the three Fama-French factors is 16.3 percent with a t-
statistic of 4.85, confirming a well-known result. Adding LIQV reduces
MOM’s alpha somewhat, to 13.9 percent with a t-statistic of 4.09. The
momentum factor MOM is a spread between equally weighted portfo-
lios, and perhaps for that reason the effect on its alpha of adding LIQE

to the Fama-French factors is more dramatic. That equally weighted
liquidity risk spread cuts momentum’s full-period alpha nearly in half,
to 8.4 percent with a t-statistic of 2.55. In the more recent 17-year sub-
period from 1983 through 1999, MOM’s estimated alpha in the presence
of LIQE is actually negative, at �1.29.

Although such evidence is tantalizing, it is difficult to conclude that
liquidity risk provides a partial explanation for momentum. On one
hand, MOM’s alpha is substantially reduced by the addition of liquidity
risk spreads, and MOM’s loadings on those spreads are highly significant
in the overall period as well as in both subperiods (in the full period,
MOM’s beta on LIQV is 0.26 with and MOM’s beta on LIQEt p 3.41,
is 0.75 with in a multiple regression that includes the threet p 7.77,
Fama-French factors). On the other hand, the liquidity beta of MOM,
estimated as the multiple-regression coefficient on the nontraded factor

is positive but not statistically significant at conventional levels in theL ,t
overall period (6.9 with a t-statistic of 1.3). Moreover, in the later sub-
period, when LIQE eliminates MOM’s alpha, the estimated liquidity beta
of MOM is negative (�1.65 with a t-statistic of �0.23). At the same time,
though, we must remember that is at best an imperfect proxy forLt

whatever correct measure of liquidity could be relevant for asset pricing.
It remains possible that the 10–1 spread constructed by ranking on betas
with respect to comes closer to the correct mimicking portfolio thanLt
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does to the correct liquidity measure. At this point, however, we canLt

simply observe that momentum’s importance in an investment context
is affected significantly by the addition of spreads based on liquidity
risk.

V. Conclusions

Marketwide liquidity appears to be a state variable that is important for
pricing common stocks. We find that expected stock returns are related
cross-sectionally to the sensitivities of stock returns to innovations in
aggregate liquidity. Stocks that are more sensitive to aggregate liquidity
have substantially higher expected returns, even after we account for
exposures to the market return as well as size, value, and momentum
factors.

Our liquidity measure captures a dimension of liquidity associated
with the strength of volume-related return reversals. Over the last four
decades, this measure of marketwide liquidity exhibits a number of sharp
declines, many of which coincide with market downturns and apparent
flights to quality. Our liquidity measure is also characterized by signif-
icant commonality across stocks, supporting the notion of aggregate
liquidity as a priced state variable. Smaller stocks are less liquid, ac-
cording to our measure, and the smallest stocks have high sensitivities
to aggregate liquidity.

One direction for future research is to explore whether liquidity risk
plays a role in various pricing anomalies in financial markets. This study
takes a step on this path by showing that the momentum strategy of
buying recent winning stocks and selling recent losing stocks becomes
less attractive from an investment perspective when portfolio spreads
based on liquidity risk are also available for investment. Future research
could investigate whether expected returns are related to stocks’ sen-
sitivities to fluctuations in other aspects of aggregate liquidity. It would
also be useful to explore whether some form of systematic liquidity risk
is priced in other financial markets, such as fixed income markets or
international equity markets.
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