Liquidity Trap and Excessive Leverage

Anton Korinek (University of Maryland) Alp Simsek (MIT)

June 2013, Istanbul

Deleveraging and the recession might be related

- Micro evidence: Deleveraging explains much of job losses (Mian-Sufi).
- Theory: Eggertsson-Krugman, Hall, Guerrieri-Lorenzoni...
- Emphasis on liquidity trap exacerbated by deleveraging.
- Stimulated policy analysis: Ex-post focus. Ignored debt market.

This paper: Ex-ante/preventive policies in debt markets.

Model with anticipated deleveraging and liquidity trap.

• Contributing factors: Impatience, previous leverage, optimism...

Competitive equilibrium is **constrained inefficient**:

• Main results: Excessive leverage and underinsurance.

Key channel: Aggregate demand (AD) externalities:

- Greater leverage \implies Greater deleveraging \implies Smaller AD/output.
- Smaller insurance \implies Greater deleveraging \implies Smaller AD/output.

Pareto improvement by **debt limits** and **mandatory insurance**.

• More broadly, preventive financial regulation (macroprudential).

Policy at the liquidity trap: Monetary, fiscal, tax policies...

• We focus on ex-ante policies.

Deleveraging and the liquidity trap: Eggertsson-Krugman...

• We focus on debt market policies and ex-ante policies.

Aggregate demand externalities: Farhi-Werning, Schmitt-Grohe/Uribe

• We focus on the liquidity trap application.

Excessive leverage: Optimism, moral hazard, fire-sale externalities.

• New mechanism. Complementary, with some differences.

- Baseline model without uncertainty: Excessive leverage and debt limits.
- Extension with uncertainty: Underinsurance and mandatory insurance.
- O Role of preventive monetary policies.

- Single good and periods $t \in \{0, 1, ..\}$
- Households $h \in \{b, l\}$ subject to exogenous BC, $d_{t+1}^h \leq \phi_{t+1}$.

Key ingredient: Anticipated tightening of BC:

$$\phi_1 = \infty$$
 and $\phi_{t+1} \equiv \phi$ for each $t \ge 1$.

No uncertainty in baseline for simplicity. Generalized later. Captures:

- Decrease in value of durable goods.
- Decrease in loan to value ratios (increase in uncertainty).
- Increase in precautionary motive (increase in uncertainty).

Key friction: Lower bound on the real rate

- Let r_{t+1} denote the real rate between t and t+1.
- Nominal variables, i_{t+1} , P_t . Cashless limit.

Key ingredient is ZLB on the real rate:

$$r_{t+1} \geq 0.$$

From Fisher equation, $1 + r_{t+1} = (1 + i_{t+1}) \frac{P_t}{P_{t+1}}$, and two assumptions:

A1. **ZLB** on the nominal rate:

$$i_{t+1} \geq 0.$$

A2. Sticky inflation expectations:

$$P_{t+1}/P_t = 1.$$

A2-1. Taylor rule (ex-post efficient):

$$\begin{split} \log \left(1 + i_{t+1} \right) &= \max \left(0, \log \left(1 + r_{t+1}^n \right) + \psi_{\pi} \log \tilde{\Pi}_t \right) \\ \text{where } 1 + r_{t+1}^n &= \min_{h \in \{b,l\}} \frac{u' \left(c_t^h \right)}{\beta^h u' \left(c_{t+1}^h \right)} \text{ and } \psi_{\pi} > 1. \end{split}$$

- A2-2. NK model with sticky prices or wages.
- A2-3. Bounded rationality with sticky inflation expectations.

We adopt A2-1. But A2-2 and A2-3 work very similarly.

Demand side: Household optimization

- Baseline preferences $u(\tilde{c}_t^h v(n_t^h))$. Generalized in appendix.
- Define $c^h_t = \tilde{c}^h_t v\left(n^h_t
 ight)$ as net consumption. Households solve:

Supply side: Rationing when the ZLB binds

• Final good sector:

$$\max_{n_t} y_t \left(1 - \tau_t \right) - w_t n_t, \text{ where } y_t = n_t.$$

Planner sets the wedge, τ_t , to maximize net income, e_t^h .

• If the ZLB doesn't bind, the planner sets $\tau_t = 0$, which yields:

$$e_t^h = e^* \equiv \max_n n - v(n).$$

- Otherwise, forced to set $\tau_t > 0$, which yields $e_t^h < e^*$.
- Reduced form modeling of rationing. Best case scenario.

Equilibrium: $\left\{\left(c_{t}^{h}, d_{t+1}^{h}, n_{t}^{h}\right), y_{t}\right\}_{t}, \left\{w_{t}, r_{t+1}, P_{t}, i_{t+1}\right\}_{t}, \left\{\tau_{t}\right\}_{t}$ such that...

• Dates $t \ge 2$: Steady state with $1 + r_t = 1/\beta^l > 0$ and:

$$c_t' = e^* + \phi \left(1 - \beta'\right)$$
 for $t \ge 2$.

- Taylor rule ensures: $P_t = P_1$ for each $t \ge 2$.
- Date t = 1: Expected inflation is zero: $P_2 = P_1$.
- This implies the real ZLB constraint: $r_2 = i_2 \ge 0...$

Equilibrium during the deleveraging episode

Borrowers' consumption: $c_1^b = e_1 - \left(d_1 - \frac{\phi}{1+r_2}\right)$. Lenders' consumption: $c_1^l = e_1 + \left(d_1 - \frac{\phi}{1+r_2}\right)$.

• Increase mediated by reduction in real rates (Euler):

$$1 + r_2 = \frac{u'\left(c_1'\right)}{\beta' u'\left(e^* + \phi\left(1 - \beta'\right)\right)}$$

• ZLB implies upper bound on lenders' consumption:

$$c_1' \leq \overline{c}_1'$$
 where $u'\left(\overline{c}_1'\right) = \beta' u'\left(e^* + \phi\left(1 - \beta'
ight)
ight)$.

Equilibrium depends on:

buffer/slack at 0 rate

- If adjustment is sufficiently small, then $r_2 > 0$ and $e_1 = e^*$.
- Otherwise, equivalently, if leverage is sufficiently high:

$$d_1 > \overline{d}_1 = \phi + \overline{c}_1' - e^*$$
 ,

there is a demand driven recession: $r_2 = 0$, $c_1^l = \overline{c}_1^l$, and:

$$e_1 = \overline{c}_1' + \phi - d_1 < e^*.$$

Equilibrium during the deleveraging episode

Greater leverage triggers a greater recession.

Korinek and Simsek ()

• Date 0 equilibrium determined by Euler equations:

$$1 + r_{1} = \frac{u'(c_{0}')}{\beta' u'(c_{1}')} = \frac{u'(c_{0}^{b})}{\beta^{b} u'(c_{1}^{b})}.$$

Proposition: Consider one of the following two scenarios:

In either scenario, $d_1 > \overline{d}_1$. There is a demand driven recession at date 1, i.e., $e_1 < e^*$ and $r_2 = 0$, but not at date 0, i.e., $e_0 = e^*$ and $r_1 > 0$.

Recession is anticipated. Is it efficient? Is there room for policy?

• Main result is about ex-ante policies. But useful to start ex-post.

Proposition: Starting at date 1, writing all borrowers' debt down to \overline{d}_1 generates a Pareto improvement.

Proof: Policy increases c_1^b and leaves $c_1^l = \overline{c}_1^l$ unchanged.

- **AD** externalities: Reduction in *d*₁ increases AD and output.
- Extreme result from u(c v(n)) but externalities more general.

Ex-post writedowns might be difficult to implement. How about ex-ante?

- Suppose planner can impose endogenous debt limit: $d_1^h \le \phi_1^{pl}$.
- Suppose the planner can also transfer T_0^{pl} to borrowers.

Proposition: There exists policies, ϕ_1^{pl} and T_0^{pl} , that generate a Pareto improvement. The resulting allocation satisfies:

$$1 + r_1 = \frac{u'(c_0')}{\beta' u'(c_1')} < \frac{u'(c_0^b)}{\beta^b u'(c_1^b)}.$$
(1)

Proof: Set $\phi_1^{pl} = \overline{d}_1$ and choose T_0^{pl} to induce pre-policy consumption.

Planning problem and constrained efficiency:

- The result applies for general U(c, n).
- Efficient allocations (when the ZLB binds at date 1) satisfy:
- In the second second
- Oistorted Euler equation (1) at date 1.
- Oan be implemented by a debt limit.
 - AD externalities. First order gains vs. second order losses.

Uncertainty: States $s \in \{H, L\}$ from date 1 onwards with:

- $\phi_{t+1,L} \equiv \phi$ for each $t \geq 1$
- $\phi_{t+1,H} = \infty$ for each $t \ge 1$.

Preferences:

- $\beta_{t,H}^{h} \equiv \beta'$ for $t \ge 1$ (simplicity) and $\beta^{b} \le \beta'$ at other dates.
- Probability of L state is $\pi^b, \pi^l > 0$.

Complete one-period markets at date 0:

• AD securities with $q_{1,L}$ and $q_{1,H}$. Let $1 + r_1 = 1/(q_{1,L} + q_{1,H})$.

• Outstanding debt
$$\left\{ d_{1,L}^{h}, d_{1,H}^{h} \right\}_{h}$$
.

- Equilibrium starting state (1, L): Same as before. Liquidity trap.
- Equilibrium starting state (1, H): $1 + r_{t+1} = 1/\beta^{1} > 0$ and $e_t = e^*$.
- Equilibrium at date 0: Determined by Euler and full-insurance:

$$\frac{q_{1,H}}{q_{1,L}} = \frac{1 - \pi^{\prime}}{\pi^{\prime}} \frac{u^{\prime}\left(c_{1,H}^{\prime}\right)}{u^{\prime}\left(c_{1,L}^{\prime}\right)} = \frac{1 - \pi^{b}}{\pi^{b}} \frac{u^{\prime}\left(c_{1,H}^{b}\right)}{u^{\prime}\left(c_{1,L}^{b}\right)}.$$

- **Proposition:** Recession at (1, *L*) under the same scenarios plus:
- 3. Disagreement: $d_0 = 0$, $\beta^I = \beta^b$, but $\pi^b \leq \overline{\pi}^b < \pi^I$.

• Suppose planner can impose mandatory insurance $d_{1,L} \leq \phi_{1,L}^{pl}$.

Proposition: There exists policies, $\phi_{1,L}^{pl}$ and T_0^{pl} , that generate a Pareto improvement. The resulting allocation satisfies:

$$\frac{q_{1,H}}{q_{1,L}} = \frac{1 - \pi^{l}}{\pi^{l}} \frac{u^{\prime}\left(c_{1,H}^{\prime}\right)}{u^{\prime}\left(c_{1,L}^{\prime}\right)} < \frac{1 - \pi^{b}}{\pi^{b}} \frac{u^{\prime}\left(c_{1,H}^{b}\right)}{u^{\prime}\left(c_{1,L}^{b}\right)}.$$

• Result is general. Representative of constrained efficient allocations.

Distinct type of efficiency with empirical relevance:

- Old idea: Indexing mortgages to house prices (Shiller, 1993).
- Households do not seem to be interested.
- Our model: **Make it mandatory**, especially for large and national price declines.

Relationship between disagreement and AD externalities:

- Complementary sources of underinsurance.
- But the latter creates a stronger case for mandatory insurance.

We also extend the model to incorporate fire-sale externalities:

• Version with durable asset (housing). Borrowers are natural buyers.

Result with only fire-sale externalities (no ZLB):

- **()** If borrowers are **net sellers** (at date 1), then there is **overleverage**.
- If borrowers are net buyers (at date 1), then there is underleverage.
 - Intuition as in Lorenzoni (or Geanakoplos-Polemarchakis).
 - Differences with AD externalities: (i) direction (possibly), (ii) scope.
 - For the net seller case, AD and fire-sale externalities complementary.

Are preventive monetary policies desirable?

Blanchard et al. proposed higher inflation target $\Pi > 1$:

- Relaxes the ZLB constraint: $r \ge -\pi$ where $\pi = \frac{\Pi 1}{\Pi} > 0$.
- Effective tool to mitigate AD externalities. Weigh against costs.

Others proposed contractionary monetary policy at date 0...

Interest rate policy might not be the ideal tool

- We capture this with $au_0 > 0$, which triggers a recession: $e_0 < e^*$.
- Suppose no debt limits. Date 0 equilibrium determined by:

$$1 + r_1 = \frac{u'\left(e_0 + d_0 - \frac{d_1}{1 + r_1}\right)}{\beta' u'\left(\bar{c}_1'\right)} = \frac{u'\left(e_0 - d_0 + \frac{d_1}{1 + r_1}\right)}{\beta^b u'\left(\bar{c}_1' - 2\left(d_1 - \phi\right)\right)}.$$

- Lower e_0 leads to higher r_1 but not necessarily lower d_0 .
- Even when it does, contractionary policy is not constrained efficient:

Inefficient recession at date 0.

2 Usual Euler equation holds at date 1 as opposed to distorted.

Interest rate policy is a crude solution. Focus on macroprudential policy.

Model with anticipated liquidity trap:

- Excessive leverage and underinsurance.
- Source: Aggregate demand externalities.

New rationale for macroprudential policies that regulate leverage.

• Consider preferences U(c, n) with $U_c > 0$, $U_{cc} < 0$ and $U_n < 0$. Planner's commitment constraints at date 2 (given $d_2 \in [-\phi, \phi]$):

$$y_t \equiv y \text{ where } -U_n(y,y)/U_c(y,y) = 1, \text{ and}$$
(2)

$$c_t^b = y - d_2\left(1 - \beta^l\right) \text{ and } c_t^l = y + d_2\left(1 - \beta^l\right) \text{ for each } t \ge 2.$$

Planner's equilibrium constraints at dates 0 and 1:

• ZLB constraint:

$$\beta^{h} U_{c}\left(c_{t+1}^{h}, n_{t+1}^{h}\right) \leq U_{c}\left(c_{t}^{h}, n_{t}^{h}\right) \text{ for each } t \in \{0, 1\} \text{ and } h.$$
 (3)

• Resource constraint:

$$\sum_{h \in \{b,l\}} c_t^h \le \sum_{h \in \{b,l\}} n_t^h \text{ for each } t \in \{0,1\}.$$
 (4)

Implicit wedge: $\tau_t^h = 1 + \frac{U_n(c_t, n_t)}{U_c(c_t, n_t)}$. Separate wedges allowed.

Consider the planning problem:

$$\begin{split} & \max_{\left(c_{t}^{h}, n_{t}^{h}\right)_{h, t \in \left\{0,1\right\}}, d_{2}} \sum_{t=0}^{\infty} \left(\beta^{b}\right)^{t} U\left(c_{t}^{b}, n_{t}^{b}\right) \\ & \text{subject to } \sum_{t=0}^{\infty} \left(\beta^{l}\right)^{t} U\left(c_{t}^{l}, n_{t}^{l}\right) \geq U^{l} \text{ and Eqs. } (2) - (4) \,. \end{split}$$

< A

э

Proposition: Suppose ZLB constraint binds at date 1 and only for lenders.

In Households' date 0 and 1 consumption allocations satisfy:

$$\frac{U_c\left(c_0^l,n_0^l\right)}{\beta^l U_c\left(c_1^l,n_1^l\right)} < \frac{U_c\left(c_0^b,n_0^b\right)}{\beta^b U_c\left(c_1^b,n_1^b\right)}.$$

- **2** No recession at date 0, that is: $\tau_0^h = 0$ for each *h*.
- Recession at date 1 (for lenders), that is: $\tau_1^b = 0$, and $\tau_t^l \ge 0$. [with strict inequality if $U_{cn}(c_t^l, n_t^l) < -U_{cc}(c_t^l, n_t^l)$].