
LiquidPi: Inferrable Dependent Session Types

Dennis Griffith and Elsa L. Gunter

University of Illinois at Urbana-Champaign

Abstract. The Pi Calculus is a popular formalism for modeling dis-
tributed computation. Session Types extend the Pi Calculus with a
static, inferable type system. Dependent Types allow for a more precise
characterization of the behavior of programs, but in their full generality
are not inferable. In this paper, we present LiquidPi an approach that
combines the dependent type inferencing of Liquid Types with Honda’s
Session Types to give a more precise automatically derived description
of the behavior of distributed programs. These types can be used to
describe/enforce safety properties of distributed systems. We present a
type system parametric over an underlying functional language with Pi
Calculus connectives and give an inference algorithm for it by means of
efficient external solvers and a set of dependent qualifier templates.

1 Introduction

In a world of multiproccessors, embedded systems, and cloud computing, paral-
lel, concurrent, and distributed programs have become ubiquitous. With their
growth comes an increased need for tools and theory to design, implement and
verify these programs. One of the most successful verification efforts have been
type systems [12]. By providing a static characterization of program behavior
type systems allow for programmers to prove that certain dangerous behaviors
are impossible. Particularly useful have been automatically inferable types since
they can allow access to the guarantees of type systems at a low overhead for
users. Dependent types [9] focus on increasing the expressivity of type systems
by allowing for types to depend on, i.e., be constructed from, the value of terms
instead of only on other types. In general, this gives up on inferability, but Ron-
don et al. [13] describe an approach, liquid typing, that can allow for inferencing
of certain dependent type systems.

One standard tool for the design of parallel systems is the Pi Calculus [10].
When discussing types for the Pi Calculus the notion of input and output of a
process is mostly closely associated with the input and output of its channels.
Thus instead of finding the type of variables and expressions like we might in a
functional language, we instead look at providing types for channels. As a first
pass we might say that each channel has a type like int to denote that it can
only transmit integers. This notion of channel typing (and similar homogeneous
typings [6]) gives almost no ability to characterize the temporal behavior of
channels. An improvement on this approach are session types [7] which allow for
a rich characterization of the temporal behavior of the channels involved in a

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 185–197, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

186 D. Griffith and E.L. Gunter

system. LiquidPi is an application of the liquid typing approach to session types.
The contributions of this paper are the following:

– A dependent session type system for LiquidPi (Section 3)
– An inference algorithm for the LiquidPi type system (Section 4)

2 Basic Syntax and Session Types

The Pi Calculus [10] is a process algebra for modeling distributed computation.
It uses synchronous channels to pass data (including channel names) between
processes that execute in parallel. The Pi Calculus can be viewed as a wrapper
providing these distributed communication constructs around some underlying
language of data and computation. For the purposes of this paper we will assume
that the underlying language is a simple functional language. We will impose
a few other requirements on this underlying language in later sections. The
syntax of the Pi Calculus, along with some informal meaning, is presented in
the following grammar, where x ranges over a set of data variables, e ranges
over expressions in the underlying functional language, k ranges over a distinct
set of channel names, τ is a type from the underlying functional language, Pi is
a τ -indexed family of processes, and X ranges over a distinct set of definition
variables.

P ::= 0 | P‖P | accept X(k).P | request X(k).P | k!(e).P | k!(k).P | k?(x).P
| k?(k).P | if e then P else P | (νk)P | k � e.Pi | caseτ k ⇒ Pi

| def X(x;k) = P in P | X(e,k)

Informally, 0 is the terminated process. The process P1‖P2 is the processes P1

and P2 executing in parallel. The process accept X(k).P initiates the session
X along k and proceeds as P . The process request X(k).P is the counterpart
to accept that requests the initiation of session X along k and proceeds as P .
The process k!(e).P sends the result of e along k and then continues as P . The
process k1!(k2).P sends the channel k2 over k1 and then continues as P . The
process k?(x).P binds the next data value sent on k to x and then continues
as P . The process k1?(k2).P receives the next channel sent on k1 and then
continues as P . The process if e then P1 else P2 evaluates e and proceeds as P1

or P2 as appropriate. The process (νk)P generates a fresh channel and binds
it to k. The process k � e.P evaluates e and sends it along k then proceeds
as P . This will be distinguished from k!(e).P in the type system by allowing
the receiving process to offer differently typed behaviors based on the value of
e. The process caseτ k ⇒ Pi receives a value of type τ along k then proceeds
as the corresponding Pi. The declaration def X(x;k) = P1 in P2 defines X as
process P1 that can use the variables in scope along with those supplied by x
and k, binds the definition to X , and proceeds as P2. The process X(e,k) calls
the process defined by X and supplies it as arguments the evaluated e and k.

LiquidPi: Inferrable Dependent Session Types 187

Pi Calculus semantics are traditionally given in terms of a transition seman-
tics that assumes a structural congruence that brings together compatible send/
receive instructions so that communication can occur. For more details on se-
mantics see Yoshida’s survey [16].

Session Types [7,16] were introduced to provide a static characterization of
the temporal behavior of the Pi Calculus. They rule out some dangers present
in the Pi Calculus like the nondeterminism possible with channels held by more
than two processes and sending and receiving processes disagreeing over the type
of data being communicated. The type system disallows these while still allowing
for a high degree of expressiveness such as communicating channel names and
heterogeneous channel usage. The syntax of session types, S, is given by the
following grammar where t ranges over a set of type variable names, τ is a type
from the underlying functional language, and Si is a τ -indexed family of session
types.

S ::= 0 | t | μt.S | !τ.S | ?τ.S | ![S].S | ?[S].S | &τSi | ⊕τ Si

The informal meaning of these are as follows. 0 is the type of channels that
will have no further communication. The types μt.S and t allow us to construct
(possibly infinite) recursive types. We treat types equirecursively (i.e., we identify
a recursive type with its unfolding μt.S = S{μt.S/t}). The type !τ.S is that a
channel that sends a data value of type τ and then proceeds as S. The type ?τ.S
is that of a channel that receives a data value of type τ and then proceeds as S.
The type ![S1].S2 is that of a channel that sends a channel with type S1 and then
proceeds as S2. The type ?[S1].S2 is that of a channel that receives a channel
with type S1 and then proceeds as S2. The type &τSi is that of a channel that
sends a piece of data of type τ and then proceeds as the appropriate τ -index Si.
The type ⊕τSi is that of a channel that receives a piece of data of type τ and
then proceeds as the appropriate τ -index Si. As with processes, our types have a
notion of send/receive pairs. We define the notion of a dual type to encode this
correspondence. The dual of a session type S is denoted S and defined below.

0 = 0 !τ.S =?τ.S ?τ.S =!τ.S

![S1].S2 =?[S1].S2 ?[S1].S2 =![S1].S2 &τSi = ⊕τSi ⊕τSi = &τSi

The session type system will use duality to match up compatible channel users.
A channel typing is a mapping from channel variables to session types. The last
notation needed is for marking polarity. Polarity markings are superscripts on
channel names that will allow us to distinguish the two conceptual “ends” of
a channel so that we can rule out send/receive confusion and more than two
processes using a channel at once. We use k+ to denote the positive end of
channel k, k− to denote the negative “end”, and kp to denote swapping the
polarity of kp.

Using the notions above we can give the rules for session types. We use Θ
to denote a mapping from process variables to tuples of their argument types,
Γ to denote typings for our functional variables, and Δ to denote channel typ-
ings. We use Δ1 ·Δ2 to denote the merger of two channel typings that share no

188 D. Griffith and E.L. Gunter

Θ;Γ �S P : Δ · (k : S) Γ � e : τ

Θ;Γ �S k!(e).P : Δ · (k :!τ.S)
T.Send

Θ;Γ · x : τ �S P : Δ · (k : S)

Θ;Γ �S k?(x).P : Δ · (k :?τ.S)
T.Rec

for (k, S) ∈ Δ: S=0

Θ;Γ �S 0 : Δ
T.End

Θ;Γ �S P : Δ · k1 : S1

Θ;Γ �S k1!(k2).P : Δ · (k1 :![S2].S1) · (k2 : S2)
T.Thr

Θ;Γ �S P : Δ · (kp : S) · (kp : S)

Θ;Γ �S (ν k)P : Δ
T.Nu

Θ;Γ �S P : Δ · (k1 : S1) · (k2 : S2)

Θ;Γ �S k1?(k2).P : Δ · (k1 :?[S2].S1)
T.Cat

Θ;Γ �S P : Δ · (k+ : G(X))

Θ;Γ �S accept X(k).P : Δ
T.Acc

Θ;Γ �S P : Δ · (k− : G(X))

Θ;Γ �S request X(k).P : Δ
T.Req

Θ;Γ �S P : Δ1 Θ;Γ �S P : Δ2

Θ;Γ �S P‖Q : Δ1 ·Δ2

T.Par

Γ � e : Bool Θ;Γ �S P : Δ Θ;Γ �S Q : Δ

Θ;Γ �S if e then P else Q : Δ
T.If

Γ � e : τ : Enum for i ∈ τ : Θ;Γ �S Pi : Δ · (k : Si)

Θ;Γ �S k � e.Pi : Δ · k : &τSi

T.Int

τ : Enum for i ∈ τ : Θ;Γ �S Pi : Δ · (k : Si)

Θ;Γ �S caseτ k ⇒ Pi : Δ · k : ⊕τSi

T.Ext

for i ∈ dom(Δ): Δ(i) = 0 for i: Γ � ei : τi for (k, S) ∈ Δ: S=0

Θ ·X : (τ ,S);Γ �S X(e,k) : Δ · k : S
T.Call

Θ ·X : (τ ,S);Γ · x : τ �S P : (k : S) Θ ·X : (τ ,S);Γ �S Q : Δ

Θ;Γ �S def X(x;k) = P in Q : Δ
T.Def

Fig. 1. Typing Rules for Simple Session Types

common bindings. We use the hypothesis τ : Enum to denote that the type τ is
a finite enumeration. Depending on the details underlying functional language
this may have different interpretations. These enumerations could be smoothly
generalized to algebraic datatypes, but we present only the simplified view to
avoid unneeded clutter. The judgment Θ;Γ �S P : Δ denotes that, assuming
the definitions of Θ and the functional types in Γ , the free channel variables of
process P have the session types in Δ. We use Γ � e : τ to denote that the type
system for the underlying functional language proves that e has type τ from the
assumptions in Γ . We assume that sessions have some globally visible type and
so assume a mapping, G, from session names to session types. Figure 1 contains
a listing of the typing rules for simple session types. To see how the rules elim-
inate dangerous behavior consider the rule T.Nu. This rule ensures two things:

LiquidPi: Inferrable Dependent Session Types 189

the fresh channel has two and only two “ends”; the users of each end agree both
in the direction of communication at every step and the type of value or channel
being communicated.

3 Refinement Type System

Dependent Types [9] are types that allow the meaning of types to depend on
data values. As an example, when trying to describe the type of division we
might be interested in allowing only non-zero ints instead of all ints as divisors.
What we mostly will be interested in are a restricted class of dependent types
called refinement types. A refinement type is a basic type (i.e., a non-compound
type–int but not int->float) with a predicate attached to it; e.g., the positive
integers are given by {v : int|0 ≤ v}. Simple types can naturally be viewed as
refinement types by using the trivial always-true predicate. From this follows a
natural notion of subtyping (with the normal contravariance for functions). In
addition to allowing predicates to incorporate constants, we will want them to
allow for dependency on previously bound terms, e.g., {v : int|v ≤ x} for some
previously bound x. For compound functional types we assume that refinements
are available on the “leaf” types [13]. Refined session types, Υ , are generated by
the following grammar, where ρ denotes a refined simple type and Υi denotes a
τ -indexed family of refined session types.

Υ ::= 0 | t | μt.Υ | !ρ.Υ | ?x ∈ ρ.Υ | ![Υ].Υ | ?[Υ].Υ | &τΥi | ⊕τ Υi

These types are nearly the same as their simple counterparts but utilizing refined
functional types instead of simple functional types. A construct that does change
is ?x ∈ ρ.Υ . This construct allows refined session types to bind the data value
that was sent across the channel and refer to this in later refined types. In
particular, this allows for session types like ?x ∈ {v : int|True}.!{v : int|v ≥
x}.0, which would be a refined session type for describing a process that receives
an integer and then returns the absolute value of that integer. Why not provide
more binders? For the sending of data there is no new value introduced, e could
always be reconstructed in our refinement as needed, so there is nothing to bind.
An additional practical consideration is that it is not obvious what variable to
use to bind the result of e. For sending and receiving channels, we assume that
the logic that Section 4 uses cannot analyze channels and so have no need to
refer to a received channel in our predicates. For the two choice constructs, there
is no need to provide an explicit binding for the enumeration value chosen, the
τ -indexed family of types can already implicitly use this knowledge.

We will need a few more definitions before introducing the typing rules for re-
fined session types. First, ρ� is a refined type with all the refinement information
striped out (e.g., {v : int|0 ≤ v} �= int). This has a natural generalization to
environments and typings. The notion of the dual of a session type is essentially
unchanged except for the need to handle bindings during the reception of data,
so we say that for any x, !ρ.Υ =?x ∈ ρ.Υ and ?x ∈ ρ.Υ =!ρ.Υ . Additionally,
refinements introduce a notion of subtyping. We use Γ � ρ1 	 ρ2 to denote that

190 D. Griffith and E.L. Gunter

Θ;Γ �SL P : Δ · k : Υ Γ �L e : ρ Γ � ρ � ρ′

Θ;Γ �SL k!(e).P : Δ · (k :!ρ′.Υ)
R.Send

Θ; Γ · x : ρ �SL P : Δ · (k : Υ) Γ � ρ′ � ρ

Θ; Γ �SL k?(x).P : Δ · (k :?x ∈ ρ′.Υ)
R.Rec

Θ;Γ �SL P : Δ · k1 : Υ1

Θ;Γ �SL k1!(k2).P : Δ · (k1 :![Υ2].Υ1) · (k2 : Υ2)
R.Thr

Θ; Γ �SL P : Δ · (k1 : Υ1) · (k2 : Υ2)

Θ;Γ �SL k1?(k2).P : Δ · (k1 :?[Υ2].Υ1)
R.Cat

Θ;Γ �SL P : Δ · (kp : Υ) · (kp : Υ)

Θ; Γ �SL (ν k)P : Δ
R.Nu

Θ;Γ �SL P : Δ1 Θ;Γ �SL P : Δ2

Θ;Γ �SL P‖Q : Δ1 ·Δ2
R.Par

for (k, Υ) ∈ Δ: Υ=0

Θ; Γ �SL 0 : Δ
R.End

Θ; Γ �SL P : Δ · (k+ : GL(X))

Θ;Γ �SL accept X(k).P :
R.Acc

Θ;Γ �SL P : Δ · (k− : GL(X))

Θ;Γ �SL request X(k).P :
R.Req

Γ �L e : ρ ρ�= Bool
Θ;Γ · e �SL P : Δ1 Θ; Γ · ¬e �SL Q : Δ2 Γ · e � Δ1 � Δ Γ · ¬e � Δ2 � Δ

Θ; Γ �SL if e then P else Q : Δ
R.If

Γ �L e : ρ ρ�: Enum for i ∈ ρ�: Θ;Γ �SL Pi : Δ · (k : Si)

Θ;Γ �SL k 	 e.Pi : Δ · k : &τSi

R.Int

τ : Enum for i ∈ τ : Θ;Γ �SL Pi : Δ · (k : Si)

Θ; Γ �SL caseτ k⇒ Pi : Δ · k : ⊕τSi

R.Ext

for i: Γ �L ei : ρ′
i for i: Γ � ρ′

i � ρi for (k, Υ) ∈ Δ: Υ=0

Θ ·X : (ρ,Υ);Γ �SL X(e,k) : Δ · k : Υ
R.Call

Θ ·X : (ρ,Υ);Γ · x : ρ �SL P : (k : Υ) Θ ·X : (ρ,Υ);Γ �SL Q : Δ

Θ; Γ �SL def X(x;k) = P in Q : Δ
R.Def

Fig. 2. Type Rules for Refined Session Types

ρ1 is a subtype of ρ2 under the assumptions in Γ (defined by Rondon [13]) and
Γ � Υ1 	 Υ2 for subtyping of refined session types, defined below.

Γ � 0 	 0

Γ � ρ1 	 ρ2 Γ � Υ1 	 Υ2

Γ �!ρ1.Υ1 	!ρ2.Υ2

Γ � ρ1 	 ρ2 Γ � Υ1 	 Υ2

Γ �?x ∈ ρ1.Υ1 	?x ∈ ρ2.Υ2

Γ � Υ1 	 Υ2

Γ �![Υ].Υ1 	![Υ].Υ2

Γ � Υ1 	 Υ2

Γ �?[Υ].Υ1 	?[Υ].Υ2

Γ � Υ1 	 Υ2

Γ �?[Υ].Υ1 	?[Υ].Υ2

Γ � for i: Υi 	 Υ ′i
Γ � &τΥi 	 &τΥ

′
i

for all i: Γ � Υi 	 Υ ′i
Γ � ⊕τΥi 	 ⊕τΥ

′
i

Figure 2 introduces the typing rules for Refined Session Types. Θ;Γ �SL P : Δ
denotes that, using the definitions of Θ and assumptions of Γ (many of which are
just functional typing assignments), the free process channels of process P have
the refined session types in Δ. Γ �L e : ρ denotes that, under the assumptions of
Γ , e has refined type ρ, the details of which depend on the underlying functional
language. The rules are similar to the rules presented for unrefined session types

LiquidPi: Inferrable Dependent Session Types 191

but with the addition of subtyping information where appropriate. R.Send uses
the idea that a process may transmit a subtype of its declared type and still
maintain correct behavior. Conversely, R.Rec encodes that a process may use
a looser approximation of its received data than required while still maintaining
correctness. R.Nu remains “unchanged” for two reasons. First, the notion of
duality has changed a bit, so an implicit change to handle refinements occurs.
Second, while this would be a reasonable place to include subtyping information
but the rules R.Send and R.Rec already account for this. Similarly R.Call
and not R.Def encapsulates the idea that definitions usage can accepted more
tightly constrained types for a particular instance than they accept in general.
Perhaps the most interesting rule is R.If. This rule makes refined session types
path sensitive [1] by allowing for both branches to have different types and
slightly different assumptions (e vs. ¬e) and then combining to have one unified
typing for the whole process.

The type system for refined session types has a close connection with the
simple session types as exhibited by the following lemma.

Lemma 1 (Judgement Correspondence). For refined definition environ-
ment Θ, refined functional assumptions Γ , process P and refined channel en-
vironment Δ, Θ;Γ �SL P : Δ implies Θ �;Γ ��S P : Δ �. For simple definition
environment Θ1, simple functional environment Γ1, and simple channel typing
Δ1, Θ1;Γ1 �S P : Δ1 implies there exists Θ2, Γ2, and Δ2 s.t. Θ2;Γ2 �SL P : Δ2

and Θ2 �= Θ1, Γ2 �= Γ , and Δ2 �= Δ1.

Proof (Sketch). Both proofs proceed by induction on the size of proof trees. For
the first result, notice that by dropping all the refinement information (and
subtyping) each of the refined session type rules becomes a simple session typing
rule. For the second result, use the trivial always-true predicate to (not) constrain
the types.

4 Inferencing

Inferring arbitrary refinement predicates is undecidable in general (consider try-
ing to infer the type of a function that generates random primes) so we will
restrict our attention significantly. In particular, we will fix some set of basic
predicates and then infer predicates that are finite conjunctions drawn from this
set. For example, if wishing to infer simple interval properties we might have a set
of predicates like {v ≤ 5, v ≤ x, y ≤ v, . . . }. Following [13], we will assume that
this set is generated by a finite set of templates instantiated by program vari-
ables. We then look for conjunctions of ground substitutions for these templates
that are suitable solutions to our constraints.

Inferring refined session types proceeds in three major steps:

1. Infer simple types and record some information from doing so
2. Add predicate variables to types and gather constraints on them
3. Solve these constraints

192 D. Griffith and E.L. Gunter

4.1 Simple Types

Inferring simple types is done by utilizing prior work [7,1,3]. In particular, we
assume that for our functional language we can infer simple types. During this
inferencing we will need to record a bit of extra information. Specifically, we will
assume that the simple session type inferencing algorithm annotates channel
generation with the channel’s session type. Because of polarity considerations
there is not a single type for a channel but two dual types, one for each end. For
presentational compactness, we will assume that (νk)P is annotated to become
(ν k : S)P were S was the type of k+ found during inferencing. Additionally, we
will assume that parallel compositions are annotated with how to split the com-
bined channel typing environment for the process into one typing for each of the
two subprocesses. We will denote this split by converting P1‖P2 into P1K1‖K2P2

with the names of Ki being those for Pi. Last, we assume that definitions are
annotated with their argument types. That is def X(x;k) = P1 in P2 becomes
def X(x;k) : (τ ;S) = P1 in P2. With these annotations we will be able to calcu-
late at any point the simple channel typing of a subprocess of the process that
we are trying to infer types. A more complicated implementation might be able
to cache information closer to its use location, but we think these annotations
provide a good trade-off between clarity and completeness.

4.2 Constraints

We utilize constraints of the following forms during constraint generation. Γ �wf

Υ indicates that Υ is well-formed w.r.t. Γ , i.e., that the free variables in Υ are
bound in Γ , (fn(Υ) ⊆ dom(Γ)). Additionally, we use subtyping requirements
of the form Γ � Υ1 	 Υ2 and Γ � ρ1 	 ρ2. The constraint Υ1 = Υ2 is used to
enforce duality. We also lift our constraints to work on (equal length) vectors of
types pointwise (e.g., Γ �wf ρ is equivalent to

⋃{Γ �wf ρi}).
We assume that we have some constraint generation algorithm that will pro-

duce correct constraints for our underlying functional language [13]. Armed with
this we can read our typing rules as generating constraints by inserting subtyp-
ing constraints as appropriate (and in the case of T.Nu a duality constraint).
Throughout the process of constraint gathering we will occasionally need to gen-
erate new refined session types with predicate variables, we denote this by τ �
for basic types and S � for session types. Whenever we perform this generation
we will provide some well-formedness constraint in addition to any subtyping
constraints generated by the typing rules.

As an example consider the rule R.Send. Suppose that we know Θ �;Γ ��SL

k!(e).P : Δ · (k :!τ.S) from our simple inference step. When we generate con-
straints for this we will make one call to our functional constraint generation
algorithm (Γ �L e : ρ), one recursive call to our session type constraint genera-
tion algorithm (Θ;Γ �SL P : Δ · k : Υ), generate one refined type τ �, and add
the constraints Γ � ρ 	 τ � and Γ �wf τ �, which corresponds to the constraints
imposed by the typing rule.

Figure 3 provides a listing of the constraint generation algorithm for refined
session types. ConstrSL(Θ,Γ, P,ΔS) returns (Δ,C) a pair of refined channel

LiquidPi: Inferrable Dependent Session Types 193

ConstrSL(Θ, Γ, 0, ΔS) = (ΔS , ∅)
ConstrSL(Θ, Γ, accept X(k).P,ΔS) =

(Δ · (k+ : Υ), C)← ConstrSL(Θ,Γ, P,Δ · (k+ : G(X)))
Return (Δ,C ∪ {Γ � Υ � GL(X)}

ConstrSL(Θ, Γ, request X(k).P, ΔS) =

(Δ · (k− : Υ), C)← ConstrSL(Θ,Γ, P,Δ · (k− : G(X)))

Return (Δ,C ∪ {Γ � Υ � GL(X)}
ConstrSL(Θ, Γ, k!(e).P, ΔS · (k :!τ.S)) =

(Δ · k : Υ,C)← ConstrSL(Θ,Γ, P,ΔS · (k : S))
(ρ, C′)← ConstrL(Γ, e)
ρ′ ← τ �
Return (Δ · k :!ρ′.Υ, C ∪ C′ ∪ {Γ �wf ρ

′;Γ � ρ � ρ′})
ConstrSL(Θ, Γ, k?(x).P,ΔS · (k :?τ.S)) =

ρ← τ �
ρ′ ← τ �
(Δ · k : Υ,C)← ConstrSL(Θ,Γ · x : ρ, P,ΔS · (k : S))
Return (Δ · k :?x ∈ ρ′.Υ, C ∪ {Γ �wf ρ; Γ �wf ρ

′;Γ � ρ � ρ′})
ConstrSL(Θ, Γ, k1!(k2).P,ΔS · (k1 :![S2].S1) · (k2 : S2)) =

(Δ · k1 : Υ1, C)← ConstrSL(Θ, Γ, P,ΔS · (k1 : S1))
Υ2 ← S2 �
Return (Δ · k1 :![Υ2].Υ1, C ∪ {Γ �wf Υ2})

ConstrSL(Θ, Γ, k1?(k2).P,ΔS · (k1 :?[S2].S1)) =
(Δ · (k1 : Υ1) · (k2 : Υ2), C)← ConstrSL(Θ,Γ, P,ΔS · (k1 : S1) · (k2 : S2))
Return (Δ · (k1 :?[Υ2].Υ1), C)

ConstrSL(Θ, Γ, P1K1‖K2P2, ΔS) =
(Δ1, C1)← ConstrSL(Θ,Γ, P1, ΔS �K1)
(Δ2, C2)← ConstrSL(Θ,Γ, P2, ΔS �K2)
Return (Δ1 ·Δ2, C1 ∪ C2)

ConstrSL(Θ, Γ, k 	 e.Pi, ΔS · (k : &τSi)) =
for i: (Δ · (k : Υi), Ci)← ConstrSL(Θ,Γ · (e = i), Pi, ΔS · (k : Si))
Return (Δ · (k : &τΥi),

⋃
Ci)

ConstrSL(Θ, Γ, casek e⇒ Pi, ΔS · (k : ⊕τSi)) =
for i: (Δ · (k : Υi), Ci)← ConstrSL(Θ,Γ · (e = i), Pi, ΔS · (k : Si))
Return (Δ · (k : &τΥi),

⋃
Ci)

ConstrSL(Θ, Γ, if e then P1 else P2, ΔS) =
(Δ1, C1)← ConstrSL(Θ,Γ · e, P1, ΔS)
(Δ2, C2)← ConstrSL(Θ,Γ · (¬e), P2, ΔS)
for k ∈ dom(ΔS): Υk ← ΔS(k)�

Return

⎛

⎝k : Υ , C1 ∪ C2 ∪
⋃

k∈dom(Δ)

⎧
⎨

⎩

Γ �wf Υk;
Γ · e � Δ1(k) � Υk;
Γ · (¬e) � Δ2(k) � Υk

⎫
⎬

⎭

⎞

⎠

ConstrSL(Θ, Γ, (ν k : S)P,ΔS) =

(Δ · (k+ : Υ1) · (k− : Υ2), C)← ConstrSL(Θ,Γ, P,Δ · (k+ : S) · (k− : S))

Return (Δ,C ∪ {Υ1 = Υ2})
ConstrSL(Θ · (X : (ρ,Υ)), Γ,X(e,k), ΔS · (k : S)) =

for i: (ρ′
i, Ci)← ConstrL(Γ, ei)

Return (ΔS · (k : Υ),
⋃

Ci ∪ {Γ � ρ′ � ρ})
ConstrSL(Θ, Γ, def X(x; k) : (τ ;S) = P1 in P2, ΔS · (k : S)) =

(ρ;Υ)← (τ �;S �)
(Δ1 · (k : Υ ′), C1)← ConstrSL(Θ · (X : (ρ;Υ)), Γ · (x : ρ), P1, (k : S))
(Δ2, C2)← ConstrSL(Θ · (X : (ρ;Υ ′)), Γ, P2, ΔS)
Return (Δ2, C1 ∪ C2 ∪ {Γ �wf ρ;Γ �wf Υ ;Γ � Υ ′ � Υ})

Fig. 3. Constraint Generation Algorithm

typing (with predicate variables) and a set of constraints. We use ConstrL(Γ, e)
to denote the assumed constraint gatherer of our underlying functional language.
The algorithm assumes that, for functional assumptions Γ , ConstrL(Γ, e) re-
turns (ρ, C) a pair of a refined functional type and a set of constraints (both
well-formedness and subtyping). A small abuse of notation occurs in the case for
terminated processes and in process variable definition. Specifically, we use ΔS

as both a simple session typing and as a refined one. From our typing rules we
know in both cases it must be entirely composed of mappings of the form (k : 0)

194 D. Griffith and E.L. Gunter

and so can be reasonably used in both contexts. While most of the cases used
to define ConstrSL are relatively straightforward we highlight a few rules here.

Consider the case for conditional branching, perhaps the most complicated
case. First we make recursive calls with the altered assumptions, allowing for
sensitivity to the value of e. From R.If we know that both of the typings re-
turned by these must be subtypes of our overall typing. Since we do not have
a preexisting typing use for this subtyping we have to generate one (ΔS(k) �).
We then return this typing along with our recursively generated constraints and
three new constraints for each channel in our typing. The first new constraint
ensures that our freshly generated types are well-formed. The other encodes the
subtyping present in the rule. One might worry that if both kp and kp appear
in our typing that this might cause them to become delinked. Since we will only
use our constraint generation on closed processes after simple session type infer-
encing we know that these paired channel ends will eventually be generated by
some ((ν k)P) and thus duality will be ensured there.

The following lemma gives us the correctness of our constraint generation
algorithm.

Lemma 2 (Constraint Correctness). For a closed annotated process P , empty
definition and functional environments and simple typing, ConstrSL(∅, ∅, P, ∅)
returns (Δ,C), s.t. ∅; ∅ �SL P : Δ if and only if C has a solution.

Proof (Sketch). Induction on the proof trees of Θ;Γ �SL P : Δ for a generaliza-
tion of the lemma to non-empty environments.

4.3 Solving

Once all constraints have been generated, we will have many predicate variables
left. A solution to a system of constraints is a ground substitution for predicate
variables such that all constraints are satisfied. Assuming that our constraints
allow all legal solutions (Lemma 2), we know that there is at least one possible
solution, the trivial always-true solution. The important question is then that
of finding a maximally specific solution. We search for a maximal solution using
the normal implication ordering lifted to maps (i.e., σ1 ≥ σ2 ⇐⇒ ∀x.σ1(x) =⇒
σ2(x)).

A first pass removes all duality constraints by performing the substitutions
implied by the equations. Since all Γ in our constraints are finite and every
predicate variable has at least one well-formedness constraint, we know that for
any given predicate variable, there can be at most a finite number of ground
substitutions admissible by its well-formedness constraints. This together with
the observation that only the predicate variables mentioned in our constraints
matter for a substitution’s admissibility, we have only a finite number of “in-
teresting” substitutions that might be solutions. Assuming that we can decide
admissibility and solution ordering (e.g., via an SMT solver) then we can just
try all solutions and select a maximal one. This requirement for being able to
decide ordering is perhaps the biggest constraint on what we can choose as our

LiquidPi: Inferrable Dependent Session Types 195

templates, since we need to stay away from choosing those that are incompatible
with our choice of SMT solver.

This proposed solution process is unsatifyingly slow, so we instead suggest
using Iterative Weakening [13]. Iterative Weakening is a technique that starts
from the strongest admissible ground substitution (for each predicate variable a
conjunction of all predicates admissible by its well-formedness constraints) and
iteratively removes an offending conjunct. Since we deal with conjunctions of
instantiated templates we know that removing a conjunct can at most preserve
a substitution’s strength and the always-true substitution is a solution, we know
that iterative weakening will find a maximally specific solution. From the above
arguments we have the following lemma.

Lemma 3 (Solver Correctness). For a given set of constraints, s.t. every
predicate variable has at least one (finite) well-formedness constraint, iterative
weakening produces a maximally specific solution.

Proof (Sketch). Outlined above, this is proven by a generalization of Rondon [13].

5 Related Work

The most direct related work are the series of papers by Rondon et al. [13,8,14]
applying their liquid typing approach to infer refinement types for various lan-
guages. Our work can be seen as a continuance of this line of work by applying
it to the Pi Calculus.

Gay and Hole [5] present a Pi Calculus with session types and subtyping on
the choice operators, allowing flexibility on the number of branches for the type
of an internal choice and its corresponding external choice. Additionally, read-
write permission using Pi Calculus type systems tend to have subtyping for their
permissions [6]. Here subtyping is utilized to track permissions with having only
read or write permissions being viewed as a subtype of having both. Both of
these notions of subtyping are orthogonal to the subtyping used in this paper.

Perhaps closest to our dependent session types are those found in Caires et
al. [2]. They allow for full dependent types and envision writing proof carrying
code, at the functional level, by transmitting proofs across channels. They do
not (as expected) address inferring types for their programs. Additionally they
use linear logic as a basis for their typing system which gives a fairly different
feeling, since we do not need to worry about differentiating between linear and
replicateable resources.

While we use some of the simplest session types as a basis for LiquidPi a
number of extensions to them have been made [15,4,11]. In particular, these
recent works have studied global types, providing a holistic description of system
communication, instead of per channel types using asynchronous communication.
These too also involve a notion of subtyping, but it is used for dealing with
asynchrony and not at the functional level. We expect that the liquid typing
approach would likely apply in these cases, though with extra complexity arising
from their more complicated type systems.

196 D. Griffith and E.L. Gunter

6 Conclusion and Future Work

We have presented LiquidPi an approach that combines the dependent type
inferencing of Liquid Types with Hondas Session Types to give a more precise
automatically derived description of the behavior of distributed programs. These
types can be used to describe/enforce safety properties of distributed systems.
We presented a type system parametric over an underlying functional language
with Pi Calculus connectives and give an inference algorithm for it by means of
efficient external solvers and a set of dependent qualifier templates. By doing this
we demonstrate that inferring dependent types for communication is achievable,
gaining a fair amount of expressivity compared to previous techniques.

As described in Section 5, there are many variations of type systems for dis-
tributed systems that have been presented, it would be interesting to integrate
inferable dependent types into them as well to yield greater expressivity. An-
other natural thing to do with this work is to create an efficient implementation.
With the ease of use of modern SMT solvers a simple prototype shouldn’t be
infeasible, but heuristics for the weakening step of iterative weakening might
need more investigation.

Acknowledgments. This material is based upon work supported by the Army
Research Office under Award No. W911NF-09-1-0273 and by NASA Contract
No. NNA10DE79C . Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do not necessarily
reflect the views of the Army Research Office or NASA.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.
Addison-Wesley (1988)

2. Caires, L., Pfenning, F., Toninho, B.: Towards concurrent type theory. In: Pierce,
B.C. (ed.) TLDI, pp. 1–12. ACM (2012)

3. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: DeMillo,
R.A. (ed.) POPL, pp. 207–212. ACM Press (1982)

4. Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M., Ulid-
owski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer, Heidelberg
(2012)

5. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2-3),
191–225 (2005)

6. Hennessy, M.: A Distributed Pi-Calculus. Cambridge University Press (2007)
7. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline

for structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998.
LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

8. Kawaguchi, M., Rondon, P.M., Jhala, R.: Type-based data structure verification.
In: Hind, M., Diwan, A. (eds.) PLDI, pp. 304–315. ACM (2009)

9. Martin-Löf, P.: Intuitionistic type theory (1984)
10. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i. Inf. Com-

put. 100(1), 1–40 (1992)

LiquidPi: Inferrable Dependent Session Types 197

11. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commu-
tative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502,
pp. 316–332. Springer, Heidelberg (2009)

12. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge (2002)
13. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Gupta, R., Amarasinghe,

S.P. (eds.) PLDI, pp. 159–169. ACM (2008)
14. Rondon, P.M., Kawaguchi, M., Jhala, R.: Low-level liquid types. In: Hermenegildo,

M.V., Palsberg, J. (eds.) POPL, pp. 131–144. ACM (2010)
15. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes. In:

Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 346–360. Springer, Heidel-
berg (2012)

16. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-
tured communication-based programming revisited: Two systems for higher-order
session communication. Electr. Notes Theor. Comput. Sci. 171(4), 73–93 (2007)

	LiquidPi: Inferrable Dependent Session Types
	1 Introduction
	2 Basic Syntax and Session Types
	3 Refinement Type System
	4 Inferencing
	4.1 Simple Types
	4.2 Constraints
	4.3 Solving

	5 Related Work
	6 Conclusion and Future Work
	References

