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Abstract

Advanced and automated medical systems have been in the research focus for a long time.

Together with the rapid development of sensing devices, the modern information analysis meth-

ods allow the new wave of computer-assisted systems to improve health care, quality of life,

and patient survival rate. Together with the traditional computer vision and medical imaging,

core competencies of the multimedia community such as integration and analysis of data from

several sources, real-time processing and the assessment of usefulness for end-users play an

essential role for the successful improvement of health care systems addressing challenges and

open problems in the field of medicine.

Our work explores different fields in multimedia research, starting from collection and an-

notation of multimedia data through automatic analysis of content and efficient processing of

workloads to visualization and results representation. We have researched and developed a

holistic medical multimedia system addressing a use case with an important medical and so-

cietal impact. We target lesions and findings detection and localization in the gastrointestinal

(GI) tract of the human body in order to be able to support medical experts in their daily rou-

tine work. The early and precise detection of abnormalities in the GI tract greatly increases the

chance of successful treatment if the initial observation of disease indicators occurs before the

patient notices any symptoms, it is a non-trivial task that can be, however, efficiently automated.

We investigated the GI tract visual analysis from a multimedia research point of view via

several steps of research and development. First, we looked into the problem of medical data

acquisition. We collected, annotated, and published several datasets and data annotation tools

as open source. Then, we designed and developed a set of lesion and findings detection and

localization approaches based on hand-crafted methods as well as on global-, local- and deep-

feature-based methods, which serves as the algorithmic basis of our system. Next, we created

a holistic medical multimedia system called DeepEIR. We researched and developed different

subsystems for our DeepEIR system, namely (i) the data exploration and annotation subsystem,

which makes it possible to collect and annotate data and transfer knowledge from medical

experts into our system; (ii) the detection and localization subsystem, which perform medical

data analysis in order to detect and localize lesions and findings; and (iii) the visualization and

results representation subsystem that provides the information to medical personnel.

Furthermore, the focus of the DeepEIR system lies on the accurate and time-efficient pro-

cessing of multimedia data. We investigated, therefore, parallel and distributed processing,

GPU-based acceleration and different classification and segmentation approaches that are eval-

uated and compared with state-of-the-art methods, algorithms, and systems.

We demonstrated that the DeepEIR system could outperform state-of-the-art approaches in

both processing speed and detection accuracy reaching processing speeds above 300 frames

per second, a frame-wise detection accuracy above 95% and pixel-wise localization accuracy

above 90%. With our results good enough for the clinical trials and successful demonstration

of full-scale prototypes of DeepEIR system, we were able to attract several hospitals for tight

collaborations, and the DeepEIR system is being prepared for a broad testing and using under

clinical conditions within our collaborating hospitals.
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Chapter 1

Introduction

In current modern life, we all are surrounded by a huge amount of data. The dominating one

is the multimedia data and, especially, visual data in forms of images and videos. The constant

progress in the fields of computer vision, information retrieval and understanding already re-

sulted in a variety of efficient methods that can utilize such the data and produce a broad range

of valuable output ranging from face recognition for social networks and security systems to

remote sensing application that are able to detect disasters in remote areas using satellite im-

agery. The estimated size of data in the health care system for the whole world is around 162

exabyte, with an estimated increase of 2.5 exabytes per year [27]. A significant part of this data

is producing by the health care system with the increasing speed. The future gigantic scale of

medical data [117] comes with several challenges to analyze, store, transmit and utilize it for

useful purposes. However, the challenges should be addressed as soon as possible to bring the

advantages related to the multimedia data processing to the current healthcare system.

Some of multimedia data challenges in medicine are collecting, understanding and analyz-

ing data, and reusing the medical knowledge. Next, the practical challenges of performance

and real-time processing speed come to the front during the implementation of the real systems

for live patient examination, communication, or other medical tasks. Even the very modern

visual data processing and understanding methods cannot be efficient enough yet because of

both under-development and lack of available training data. Another need that comes with a

large amount of data is efficient, robust and scalable data processing methods. Because of a

large amount of multimedia data in the health care system, parallel processing and elastic het-

erogeneous resources are important [117] to achieve fast processing of multimedia workloads

by being able to process a large amount of data in parallel at the same time.

In this work, we investigate how the new computer vision and machine learning methods

can be utilized and improved in order to build a completely automatic diagnostic assisting sys-

tem that is able to support medical experts in disease detection, live patient examinations and

national-wide screening programs. Since the medical field by itself is enormous, we decided

to address one area in this field specifically. We decided on the human gastrointestinal (GI)

system because it can potentially be affected by many types of diseases that are visually dis-

tinguishable. This choice is also supported by the fact that the most common cancer types are

located in the GI tract [148]. An accurate automatic medical analysis system will have a high

impact on the medical sector, influencing patient survival rates, clinical workflows and costs. In

the GI field, medical imaging has created visual representations of the interior of a body with
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images, videos and corresponding text descriptors made by doctors during routine procedures.

This work focuses on investigating efficient analysis and processing of multimedia workloads

in the field of GI endoscopy with the goal of creating new methods and a complete prototype of

an end-to-end medical multimedia system that will assist doctors during GI tract investigations.

1.1 Background and Motivation

The modern healthcare system has been intensively improved during the last decades, introduc-

ing a lot of different modern diagnostic methods. However, there are a lot of unsolved medical

and societal challenges still affecting the effectiveness of the health care systems worldwide. In

some areas of the human body, such as the gastrointestinal (GI) tract (figure 1.1), the detection

of abnormalities and diseases directly improves the chance of successful treatment.

The GI tract diagnosis is important since it is the site of many common diseases (see fig-

ure 1.2 for the examples) with high mortality rates. About 2.8 million new luminal GI cancers

(esophagus, stomach, colorectal) are detected yearly in the world, and the mortality is about

65% [50]. In addition to these cancers, numerous other chronic diseases affect the human GI

tract. The most common ones include gastroesophageal reflux disease, peptic ulcer disease,

inflammatory bowel disease, celiac disease and chronic infections. All these diseases have a

significant impact on the patients’ health-related quality of life [34] and, therefore, gastroen-

terology is one of the critical and largest medical branches.

For the most severe, colorectal cancer (CRC), which has one of the highest incidences and

mortality of the diseases in the GI tract, early detection is essential for a good prognosis and

treatment. Minimally invasive endoscopic and surgical treatment is most often curative in early

stages (I-II) with a 5-year survival probability of more than 90%. But in advanced stages

(III-IV), radiation and/or chemotherapy is often required, and it has a 5-year survival of only

10-30% [30]. Moreover, several studies have shown that large population-based endoscopic

screening programs reduce the mortality and incidence of CRC. The current European Union

guidelines, therefore, recommend screening for CRC [144]. Several screening methods exist,

e.g., fecal immunochemical tests (FITs), sigmoidoscopy screening, computer tomography (CT)

Figure 1.1: An overview of the human GI tract (hdfootagestock.com).
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(a) Angiectasia (b) Bleeding (c) Esophagitis

(d) Inflamation (e) Polyp (f) Flat polyp

(g) Ulcerative colitis (h) Erosion (i) Melanosis

Figure 1.2: An inconclusive list of diseases that can be observed and diagnosed in GI tract [95].

These are the real images recorded from endoscopic equipment during routine examinations.

Green box shows the status a colonoscope device.

scans and colonoscopy. However, in randomized trials, only endoscopic methods have shown

precision enough to reduce CRC incidence.

There are several ways of detecting pathology in the GI tract, but currently available methods

have limitations regarding sensitivity, specificity, access to qualified medical staff and overall

cost. Here, the manual endoscopy, where the doctor inserts an endoscope in the patient, either

via the mouth or the anus, is the recommended standard for detection and examination. An

alternative to the manual colonoscopy (figure 1.3) is to perform the examination using a wireless

camera pill, which is a video capsular endoscope (VCE) that can be swallowed by the patient

and is able to record a video of the whole GI system.

However, scheduled testing (screening) of a population for a whole country is challenging

due to high costs, a limited willingness by the patients to undertake the unpleasant procedure,

high time consumption for the medical experts and a shortage of qualified medical person-

nel. Moreover, colonoscopy (the endoscopic examination of the colon) is unpleasant [143] for
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(a) Colonoscopy (hopkinsmedicine.org) (b) Coloscope (olympus.com)

Figure 1.3: Colonoscopy is the endoscopic examination (a) of the large bowel and the distal

part of the small bowel with a special type endoscope called coloscope (b) [116].

the patients, each requires about two staff-hours of medical personnel and often lesions are

missed because of tiredness of the medical doctor or because a specific part in the colon was

not reachable due to narrow passages in the colon. Furthermore, there are high costs related to

these procedures. In the US, for example, colonoscopy is the most expensive cancer screening

process with an annual cost of $10 billion dollars [137], i.e., an average of $1,100 per exami-

nation [138] (up to $6,000 in New York). In the United Kingdom, the costs are around $2,700

per examination [123]. Moreover, on average, 20% of polyps, precursors of CRC, are missed or

incompletely removed, i.e., the risk of getting CRC depends mainly on the endoscopist’s ability

to detect polyps [69], thus requiring expensive specialized training for them.

To scale such examinations up to a large population either nationally or internationally,

there are huge challenges that must be addressed to reduce cost per examination and to improve

procedures for the detection of pathology (diseases). It is our vision that computer-based auto-

matic execution of these tasks might be an important part of the solution, increasing the overall

quality of the examinations and ultimately improving the patient outcome. The proposed tech-

nical solution targets ground-breaking research and innovation for global major health issues

like colorectal, gastric and stomach cancer worldwide. By developing and studying an auto-

matic system for the traditional push endoscopy and the modern VCEs, the aim is to make

these examinations more easily accessible for patients and participants in screening programs,

i.e., making the public healthcare system more scalable and cost-effective. Even more, we tar-

get utilization of the large amounts of disease records already store in the hospital information

systems. Unfortunately, is not used [116] efficiently enough and holds a lot of potential, for ex-

ample, by using it for efficient and accurate automatic analysis or by researching and developing

live computer-assisted diagnosis based on it.

To summarize, the existing shortage of qualified medical personnel in conjunction with the

high endoscopic procedures cost request for the computerization and automation of the complex
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(a) Capsule endoscopy (igniteoutsourcing.com) (b) VCE (wikipedia.org)

Figure 1.4: Capsule endoscopy is a non-invasive procedure used to record internal images of

the GI tract using a small swallowed VCE device equipped with a camera, a battery and a

transmitting or recording module [116].

and labor-demanding GI tract diagnostic procedures allowing for assisted detection, highlight-

ing and interpretation of lesions, diseases and findings in the GI tract in order to improve current

medical practices and to save more lives.

1.2 Problem Statement

To satisfy the existing demands in assisted detection, highlighting and interpretation of lesions,

diseases and findings in the GI tract via the computer-aided diagnostic procedures required to

improve existing diagnostic practices and scale necessary GI tract examinations, we have started

inter-disciplinary research of a next generation of the medical multimedia system, which will

support endoscopists in the finding and interpretation of diseases in the entire GI tract.

The research question for this thesis is: Can modern computer vision and machine learn-

ing methods be used to build a holistic automated computer-aided diagnostic system sup-

porting medical experts by analyzing images and videos in both live colonoscopy and VCE

examinations?

The goal of this thesis is to be a solid basement for building a complete, holistic and ap-

plicable medical multimedia system that can answer our research question and have a societal

impact by helping people to survive lethal diseases. From our question, we define the objectives

targeted by this thesis as follows:

Main Objective: Conduct research and develop a medical multimedia system that integrates

and combines state-of-the-art tools with new and enhanced algorithms for detection and

localization (highlighting) of pathological endoscopic findings and anatomical landmarks

in the GI tract. The system should include the entire pipeline from content creation and

annotation, learning and analysis to finally visualization of the output. The mechanisms
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should be combined in an extensible distributed architecture with real-time processing

and efficient resource consumption for massive scale and high accuracy.

Sub-objective 1: Conduct research and develop a subsystem that can be used by the medical

doctors (experts) to analyze, sort and annotate new and already collected images effi-

ciently to minimize the amount of time required for such the annotations tasks. Addi-

tionally, search for the possibility to extract and make publicly available GI-tract-related

medical imaging data already available in hospital medical information systems, with the

following publishing datasets based on the annotated data.

Sub-objective 2: Conduct research and develop a subsystem for computer-based detection and

decision support for live endoscopic procedures and VCE data analysis. The subsystem

should receive video from endoscopic devices, perform analysis and show the clinicians

both detected lesions and localization information overlaid over the main endoscopic

video output. For the VCE case, the subsystem should be able to automatically analyze

a large amount of VCE data in a reasonable time to enable future large-scale automatic

population screening.

Sub-objective 3: Conduct research and develop a subsystem for visualization of the automatic

detection results generated during live and VCE endoscopic examinations intended to

decrease workload held by medical personnel during and after examination procedures.

To achieve these objectives, we teamed up with experienced specialists in the area of GI

disease diagnosis to investigate how multimedia research can improve medical systems. In this

thesis, we discuss and investigate why multimedia research is important and needed for the

medical field and how a proper combination of medical experience, data collection, computer

vision, deep- and machine-learning, automatic image and video analysis can become the key

to solving medical challenges. Continuing from an initial version of the system called EIR

developed earlier, this thesis presents the new, improved and extended version of the system

called DeepEIR. The overall goal is to develop both, a live system assisting the visual detection

and highlighting of different diseases during colonoscopies that are verified with different use

cases, and a fully automated assisting system for the GI tract screening using VCEs, i.e., a

small detached swallowable capsule-type device with one or more image sensors traveling along

the GI tract. These aims come with strict requirements on the accuracy of the detection in

order to avoid false negative findings (overlooking a disease). The live system should also

avoid false positive findings (being too alarming can distract doctors and worry patients). Both

systems should have low resource consumption and reasonable hardware requirements. The

live-assisted system also must support real-time processing capabilities (defined [116] as being

able to process at least 25 video frames per second (FPS)) captured with Full HD image quality,

which is common for the modern endoscopic equipment. The screening-assisted system should

be able to process a large amount of data and be able to adapt to a variety of used sensors

characteristics from low-resolution to Full HD.

As the final outcome of this research, a holistic medical multimedia system is built for the

GI endoscopy use case. Another outcome is an international cooperation of computer science

researchers, medical experts and manufacturers of medical equipment already resulted in the

problem-oriented work-groups, new datasets, medical protocols and disease atlases can also be
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used for the doctors’ and IT researchers’ training process. This cooperation is also going to

continue the work after this PhD.

1.3 Scope and Limitations

Based on the research question and its objectives described in section 1.2, the scope of this

thesis is on researching a complete medical multimedia system from annotation to visualization

for the use case of different diseases and landmarks detection in the GI tract using mainly image

and video data from different sources (traditional endoscopes and VCEs), and also prepare the

algorithmic base of the system for other use-cases, including non-medical, and for the usage of

various data types.

This research is the part of our larger project with the main goal of building a sale-ready

medical information system that will support doctors in their daily duties. For this particular

research, we limit the scope to the most common GI tract diseases, landmarks and findings, and

two different medical data sources types. These scope limitations caused by the high complexity

of the problem area and lacking of available data. High complexity is caused by the high

variance of human diseases, their varying appearance, symptoms, localization and development

stages, as well as limitations of diagnostic methods. The lack of available medical data is a well-

known problem caused mostly by data privacy issues and the inability to use the data without

explicit patient consent. This makes it hard to develop, evaluate and compare methods and

algorithms. For testing, validation and evaluation, we used several publicly available datasets

including our own newly collected datasets, which were made publicly available.

During this research, we faced with another limiting factor from the real world, which is

the huge variety of the equipment used in different hospitals and even within single hospitals’

departments. Different types of diagnostic equipment produce visual data with different resolu-

tion, color balance, sharpness, lighting conditions, frame rate, the field of view, quality, etc. The

output of the equipment can be videos, still images, 360-degree images and videos, location in-

formation, etc. Even within a well-known group of our partner hospitals including ASU Mayo

Clinic, Vestre Viken Hospital Trust, Rikshospitalet and the Karolinska University Hospital, the

range of equipment includes multiple producers and different equipment models.

An additional limiting factor is the medical personnel’s subjectivity and individual prac-

tice used in the data collection. There are no common standardized ways of collecting visual

samples of diseases, and no well-documented strategies for the documentation of the diagnos-

tic procedure, especially for GI tract medical interventions. This resulted in a wide variety of

data collection practices and local standards used by different doctors. For example, in the

Karolinska institute, doctors do not record videos at all and rely on extensive documentation

using images. In Vestre Viken, medical experts store short video clips of the most important

findings in combination with images. Even further, the availability of the already collected

and annotated data in form of shared and publicly accessible datasets is very limited. This is

addressed by introducing two newly collected, annotated and freely accessible public datasets

created during this research in collaboration with the experienced doctors.

All these factors lead to strong requirements to the system adaptability and flexibility. The

system developed with real-world cases in mind should be easily modifiable and able to adapt
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to different equipment used in different hospitals, different data formats and their properties,

allow for handling of the individual data from each hospital if necessary.

Taking into account the limitations, the scope of this research should be reasonably lim-

ited. Our focus is on the detection of colon polyps, angioectasia flat lesion and bleedings. For

these lesions, we provide frame-wise detection and point-wise localization (highlighting) via

segmentation masks. We also provide detection for several normal findings and landmarks in

the human GI tract. In order to be applied in real use-case scenarios, the system should be

accurate, able to handle a large amount of data and be efficient in terms of processing speed.

1.4 Research Methods

In 1989, the ACM Education Board approved a report [45] created by a Task Force on the

Core of Computer Science that determines and characterizes the structure of how research in

computing should be approached. It defines computer science in its essence as an intersec-

tion between several central processes of applied mathematics, science and engineering. These

central processes are basically reflected in the paradigms of theory, abstraction and design.

Theory is concerned with defining and characterizing the objects under study by formulat-

ing, hypothesize and determining possible relationships among objects, verifying relationship

correctness and interpreting the results. Abstraction is used for modeling process and directly

connected to experimental scientific methods. During the abstraction process, a researcher is

investigating a problem, forming a hypothesis, creating a model, designing and running the

experiments and, finally, collecting and analyzing the data. Design is tied with engineering

and involves formulating of the requirements and creating appropriate solutions, followed by

designing and implementing a system. This is concluded by the evaluation of the designed

system.

For the theoretical part, the thesis touches elements of linear algebra, information theory,

image and video representation, image processing with quality enchantment and color space

operations, 2D vector-based geometric operations, building, training and testing of neural net-

works, human interpretation of multimedia content, etc. In the design of the algorithmic basis

for the system, we developed a set of the complete end-to-end multi-purpose image classifica-

tion and objects localization and segmentation algorithms.

To verify our hypothesizes, we created several experimental setups using different existing

and newly collected datasets and did various experiments within our research group and public

competitions in the relevant research communities. We explore image retrieval, analysis and

features extraction techniques for single- and multi-class classification problems. We employ

various image and multimedia data processing operations in different use cases. We study the

performance of our system in terms of accuracy and processing speed aiming for real-world use

cases and real-time applications. We also study the users’ response to our solution and designed

several user studies to collect annotation for the data and validate our system.

All the theories and abstractions presented in the thesis are implemented in several demo

systems and prototypes. The developed software is thoroughly tested with the real data obtained

from different equipment. The developed system was assessed by the experienced endoscopists

from usability and efficiency points of view.
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The developed system design is verified for technical correctness by creating various system

prototypes for disease detection and localization that can be used in hospitals. To gain insights

into domain-specific requirements, knowledge and to get access to actual medical data, we entry

into a tight collaboration with experienced medical doctors from Vestre Viken Hospital Trust

and Karolinska University Hospital.

The multi-purpose nature of the developed algorithms and complete parts of the system

is verified by creating prototypes for objects detection on satellite images and out-of-patient

medical images.

1.5 Contributions

The work presented in this thesis is a continued and extended research on the broad and com-

plex topic of automated lesion detection in the human GI tract. The basic version of the EIR

system was jointly developed by Michael Riegler and Konstantin Pogorelov, the author of this

thesis. The basic EIR system was described in Riegler’s thesis [112]. The second extended and

improved version of the EIR system called DeepEIR is presented in this thesis. Both theses

include the description of the background, motivation, problem, related work, algorithms and

results obtained by Riegler and Pogorelov. The individual author’s contributions are explained

in chapter 5 and section 1.6.

The main contributions of this thesis are:

• technical development of a medical multimedia system called DeepEIR including anno-

tation, detection, in-frame localization, visualization and proof-of-concept demonstration

tools that confirm the potential of multimedia research in the health care system;

• broad comparison of various image classification approaches including classical machine

learning and modern deep-learning-based approaches;

• research and development an efficient generalized distributed use-case-aware multimedia

data processing method is able to achieve real-time performance for medical multimedia

workload processing;

• demonstration and proof of the great potential of multimedia methods and experience of

the multimedia community for applied research in medicine, and illustration how multi-

media technology and methods can be used in the medical field to improve workflows,

patient care and most importantly saving lives;

• contribution to the open-research community with the freely accessible novel open-source

software libraries, datasets, prototypes and demos of the system;

• multiple published research papers about our findings and experiences.

Publications in top-tier conferences or journals support all the main contributions of the

thesis. The diagram in figure 1.5 gives an overview of which of the attached papers contribute

to which objectives. In more detail, the main contributions to the objectives defined in section

1.2 of the thesis are:
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Figure 1.5: This diagram depicts the contributions for each of the in part II attached papers to

the, for this thesis defined, objectives.

• Contributions to the main objective: We developed DeepEIR (the second version of

the EIR system) for automatic detection and in-screen localization of lesions in the GI

tract is capable for both real-time visual feedback during live colonoscopies using tra-

ditional endoscopic equipment and processing huge amount of data for population mass

screening using VCEs [101, 102, 117, 118, 121].

Using the ASU Mayo dataset [134], we showed that the detection subsystem of DeepEIR

reaches high performance in terms of accuracy and processing. We can report a per-frame

sensitivity and precision of almost 98% and 94%, respectively. This means that DeepEIR

is able to find polyps in almost all cases with high precision. This can help the medical

experts to save time and lives [101, 102, 117, 118, 121].

Using the recent public Hospital Clinic of Barcelona dataset [23, 24] and our public

datasets [94, 95], we showed that the detection subsystem of DeepEIR could reach high
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frame-wise classification performance in terms of accuracy, with a detection specificity

of 94% and an accuracy of 90.9%. With the same datasets, the localization subsystem

reaches the specificity and accuracy of 98.4% and 94.6%, respectively. The resulting

performance of our detection and localization approaches is significantly higher than

competing global-feature- and deep-learning-based approaches including the most recent

real-time YOLOv2 [107] convolutional neural network (CNN).

Using the angiecstasia segmentation public dataset [23], we showed that the detection

and the localization subsystems of DeepEIR can reach outstanding performance that ex-

ceeds clinical requirements (sensitivity and specificity higher than 85%). In summary,

we achieved a sensitivity of 88% and a specificity of 99.9% for pixel-wise angiectasia lo-

calization, and a sensitivity of 98% and a specificity of 100% for frame-wise angiectasia

detection [93].

Moreover, we compared DeepEIR with other existing systems and participated in a clas-

sification challenge where we showed that we outperform or reach at least same perfor-

mance in accuracy as other state-of-the-art methods and that we are leading in terms of

processing performance [25, 102, 117, 121]. Nevertheless, it is important to point out that

the used datasets are still relatively limited in size and that evaluations on a large amount

of data is recommended as soon as the data is available.

For the real-time processing challenge, we showed that DeepEIR can process at least 300

FPS for polyp detection, which is a good indicator that we created a scalable medical

multimedia system able to process data in real-time [117]. We conducted research and

implemented several ways of distributed and parallel processing by using heterogeneous

computational architectures to improve the performance of the DeepEIR system. One of

the methods that we investigated is the implementation of the detection and localization

part on graphics processing units (GPUs) [101, 121]. Another method that we researched

was to distribute the DeepEIR workloads via device lending [72, 102]. Both methods

improved the processing performance significantly [72, 102].

We contributed to two open source projects: Lire, in the field of content-based image

retrieval [80], and OpenVQ, on video quality [126]. We also released the base algorithm

of DeepEIR as an open source project called Opensea [90].

For each part of the DeepEIR system, we developed working prototypes and demo appli-

cations. These prototypes and demo applications have been presented at conferences [17,

102, 117, 121]. All-in-all, we contributed with a holistic medical multimedia system for

GI examinations [116] that will in the future help medical doctors to save lives.

• Contributions to sub-objective 1: For the annotation subsystem of DeepEIR, we con-

ducted extensive research, together with our partner doctors, to make the process of med-

ical knowledge transfer into our system easy and efficient for the medical experts. We

explored and developed semi-supervised and cluster-based annotation tools [90, 98, 120].

For medical data collection and publishing, we investigated the ethical and legal aspects of

medical data use within our research process. We contacted several Norwegian hospitals

and established relations with the data storage managing personnel. With the help of our

medical-side collaborators, we made the agreements allowing us to extract and use the
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fully anonymized data from the hospital medical information systems. Using these data,

we created two datasets (called Kvasir [95] and Nerthus [94]) and published them online

freely accessible for educational and research purposes. We did our own evaluation of the

datasets to give the baseline for other researchers [87, 99].

We used the published datasets for organizing Medico: The 2018 Multimedia for Medicine

Task challenge within MediaEval Benchmarking Initiative for Multimedia Evaluation [61,

100, 119]. Our Medico challenge was accepted by the public and the research commu-

nity. The datasets were evaluated by independent researchers and they are already used

widely around the world.

• Contributions to sub-objective 2: As a basis for the detection subsystem, we developed

a search-based classification algorithm that uses global image features, reaches good clas-

sification performance and is very fast at the same time [90]. As a basis for the localization

subsystem, we developed a polyp localization algorithm based on the hand-crafted local

features and global heat map post-processing, which reaches good polyp localization pre-

cision with reasonable high false-alert rate [25].

We researched the problem of bleeding detection for VCE-captured videos and developed

the basic bleeding detection and localization algorithm for the DeepEIR system [129].

We implemented the multi-class global-features- and deep-learning-based classifiers are

able to handle multiple lesions, landmarks and normal findings of the GI tract for the

detection subsystem, investigated its efficiency both in terms of accuracy and processing

speed and compared it to existing competitors [91, 96]. This formed a basis for developing

the DeepEIR system into the holistic system that is usable and helpful in the real-world

conditions.

In order to extend the lesion detection capabilities of the DeepEIR system, we investigated

and developed a GAN-based detection and localization approach for the angiectasia GI

tract lesion [93]. Also, inspired by the success of our angiectasia detection approach, we

researched and developed a GAN-based polyp detection and localization approach [92].

We investigated the topic of deep neural network internal processes visualization for bet-

ter medical image classification and classification understanding [62]. We investigated

the tradeoffs using binary versus multi-class neural network classification for medical

multi-disease detection [26].

Based on the use cases addressed in the thesis and the DeepEIR system itself, we showed

that the global- and local-feature-based algorithms together with the deep-learning-based

approaches can form a strong basis for the multi-lesion detection system. We showed that

the local hand-crafted features together with GAN-based approaches, can provide a good

localization performance for the challenging lesions that are hard to see even for humans.

In total, we proved that the developed algorithms are well suited to be applied in several

use cases that involve image classification and analysis problems [91, 92, 93, 99, 101,

102, 116, 117, 118, 121].

• Contributions to sub-objective 3: We investigated different types of visualization for

the output of the DeepEIR system. We developed the Web-based visualization application
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for research and medical experts [90] and its easier-to-use web-based version [121]. We

developed an initial visualization approach that is able to visualize all outputs of the

DeepEIR system [117], that was later developed in a live visualization application [96].

We investigated the problems of automatic reporting and developed a decision support

system for deep-learning-based analysis in the medical domain [63, 64]

Additional contributions: Here, we list contributions that have been made during the PhD

and are not related to the main topic of the thesis but were conducted because of it. These

contributions are:

• We investigated and developed an approach to the flooding detection on the satellite im-

ages using our GAN-based approach that showed promising results [14, 15, 122] and

built a unique system for collecting information and monitoring natural disasters by link-

ing social media with satellite imagery can potentially save lives [13, 16].

• We investigated how context (a certain watching situation) influences the quality of expe-

rience for users when they are watching videos during a flight as a use-case. We hosted a

MediaEval benchmark task [97] about this topic and published a dataset [115].

• We developed a system for efficient live and on-demand tiled HEVC 360 VR video

streaming and investigated its performance in real use-case scenarios [55].

• We investigated and developed the new top-down saliency detection approach driven by

visual classification, which showed promising performance on common saliency detec-

tion evaluation datasets [84].

1.6 This thesis author’s independent contributions

This thesis describes the DeepEIR medical multimedia system, which was built as the next step

towards clinical-ready GI tract disease detection and localization computer-aided solution. This

thesis author’s main independent contributions are the following:

• Speed optimization of the LIRE library used in the basic version of the detection subsys-

tem (see Paper I).

• Development of the initial version of the global-feature-based clustering and visualization

application (see Paper I).

• Development of the enhanced version of OpenSea classification tool used in the initial

version of the detection system (see Paper II).

• Research and design of the efficient hyper-tree-based representation of the images clus-

tering output (see Paper III).

• Development of hyper-tree-based visualization and annotation application has been used

in data collection and annotation process (see Paper III).
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• Research and design of the efficient feature extraction pipeline for the feature-based im-

age classification approach used in visualization and detection subsystems (see Paper IV).

• Research and design of the real-time image-oriented database used in ClusterTag appli-

cation (see Paper IV).

• Research and design of the real-time image clusters drawing module used in ClusterTag

application (see Paper IV).

• Development of ClusterTag, the interactive visualization, clusterization and annotation

application has been used in data collection and annotation process (see Paper IV).

• Research and design of the local hand-crafted-feature-based polyp localization approach.

Development of the initial version of the localization subsystem using this approach (see

Paper V).

• Research and design of the multi-CPU global features extraction. Development of the

speed-improved feature-based version of the detection subsystem (see Paper V).

• Research and design of the GPU-accelerated features extraction. Development of the

second version of the speed-improved feature-based detection subsystem (see Paper VI).

• Research and design of the GPU-accelerated speed-improved version of hand-crafted-

feature-based polyp localization. Development of the second version of the localization

subsystem (see Paper VI).

• Development of the detection and localization evaluation application for the MICCAI

polyp finding challenge (see Paper VI).

• Research and design of the real-time detection and localization approach based on global

and hand-crafted features. Development of the corresponding system evaluation applica-

tion (see Paper VII).

• Research and design of the multi-class classifier for the detection subsystem. Develop-

ment of the global-features- and deep-feature-based classification module for the Deep-

EIR system (see Paper VIII).

• Processing and annotation of the Kvasir dataset (see Paper VIII).

• Research and design of the second improved version of CUDA-based GPU-accelerated

feature extraction and classification approach. Development of the corresponding module

for the DeepEIR detection subsystem (see Paper IX).

• Research and design of the distributed multi-GPU feature extraction approach with the

use of device landing for data processing speed improvement. Development of the cor-

responding parallel processing module and related DeepEIR detection subsystem modifi-

cations (see Paper X).
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• Research of the pros and cons of the developed global- and deep-feature-based detection

approaches. Detection and localization subsystems optimization for processing speed.

Development of the live polyp detection and localization software (see Paper XI).

• Kvasir, Nerthus and Medico datasets preparation, annotation and publication. Develop-

ment of the base-line classification algorithms for these datasets (see Papers XII and XIII).

• Research and design of the GI tract lesion segmentation approach (see Papers XIV and XV)

based on a generative adversarial network (GAN) architecture.

• Research and design of the GAN-based pixel-wise localization and frame-wise detection

approach for angiectasia and polyp lesions. Development of the new angiectasia and

polyp modules for the detection and localization subsystems (see Papers XIV and XV).

• Research and design of the block-wise localization-via-detection approach for polyp le-

sions. Development of the additional polyp module for the detection and localization

subsystems (see Paper XV).

• Research and design of the bladder cancer cells detection and localization approach (see

subsection 3.6.4.1).

• Research and design of the spermatozoon detection and localization approach (see sub-

section 3.6.4.2).

• Performance evaluation of the EIR and DeepEIR systems in whole and their subsystems

(see Papers I- XV).

In addition to the above contributions, the author also supervised several master students,

organized workshops and was part of program committees for conferences. One of the latest

papers describing author’s GAN-based detection and localization approach (that was developed

for the DeepEIR system) called "Deep Learning and Hand-crafted Feature Based Approaches

for Polyp Detection in Medical Videos" won a Best Paper Award at the 2018 IEEE 31st Inter-

national Symposium on Computer-Based Medical Systems [92] (Paper XV).

1.7 Outline

The research presented in this PhD thesis has been started from a simple medical image knowl-

edge extraction task, which was rapidly developed into the whole and a complete end-to-end

system is able to perform efficiently and to assist doctors during their routine work. From the

very beginning, we decided to develop our system as a set of semi-independent subsystems,

namely: annotation and data acquiring, analysis and visualization. We developed the corre-

sponding methods and algorithms for these subsystems, finely tuned them for our use case and

joined them into the complete DeepEIR system. Using our own and other publicly available

data, we trained and evaluated our system, achieving promising results in terms of detection

and localization accuracy. Finally, we investigated the system performance and successfully

improved it reaching the goals of real-time (and even fasted) data processing performance and

handling huge amount of data using distributed, parallel and GPU-enabled processing.
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The rest of this thesis is organized as follows, giving an introduction to the main ideas that

are described in more depth in the attached papers in chapter 5:

Chapter 2: Medical Multimedia Systems: We provide the background information about the

human GI tract use case. We briefly describe the medical data challenges and our prac-

tical experience. We present related work focused on other medical multimedia systems,

methods and datasets available.

Chapter 3: The DeepEIR System: We describe the complete DeepEIR system, its general

overview, internal structure and connections to the outer world. Next, we describe the an-

notation, detection, localization and visualization subsystems and their algorithmic base,

including some experimental results and discussion of real-world scenarios for the sys-

tem. Then, we describe our experience with the system’s data processing speed improve-

ment, our approach to the real-time processing and handling of huge amounts of data.

Finally, we describe our demos and prototypes that were used for testing and proving that

the DeepEIR system can be used for the real-world medical use-case scenarios.

Chapter 4: Conclusion: We summarize and conclude this thesis and present ideas and con-

cepts for further studies in the intersection between GI endoscopy and medical multimedia

systems.

Chapter 5: Papers and Author’s Contributions: Finally, we present all the core research

papers that are included and discussed in this thesis. For each paper, we include a de-

scription of the author’s contributions to it and indicate to which objectives it contributed.
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Chapter 2

Medical Multimedia Systems

Medical multimedia systems introduce various challenges both for from research and devel-

opment point of view. In this chapter we first look into the medical side of the problem area

including the modern endoscopic devices. Then, we tackle the problem of medical data avail-

ability and search for available data sources. Next, we describe the state-of-the-art in medical

data analysis and summarize currently unsolved challenges. Finally, we briefly describe our

initial EIR system implementation and summarize our goals.

2.1 Gastrointestinal Tract Case Study

At a first glance, the modern health-care system is equipped with a huge amount of high-tech

equipment to make the diagnosis, cure and follow-up processes fast, easy and convenient for

the patients. In some areas, for example, blood sampling and computer tomography of internal

organs, this is true. However, many of the medical investigations do still not only require a vast

amount of preparation and manual work done by an experienced and specially trained doctor

but also bring discomfort and pain into the patient’s life.

Despite the progress in non-invasive human body scanning methods like, e.g., CT, MRT

and ultrasound imaging, there are only few methods readily available for gastroenterologists for

robust and reliable imaging of the GI tract and, especially, the upper part of digestive system

and its colorectal area.

Upper Endoscopy An upper endoscopy is a procedure used to visually examine the upper

digestive system with a tiny camera on the end of a long, flexible tube. A specialist in diseases

of the digestive system (gastroenterologist) uses endoscopy to diagnose and, sometimes, treat

conditions that affect the esophagus, stomach and beginning of the small intestine (duodenum).

The medical term for an upper endoscopy is esophagogastroduodenoscopy. It can be done at a

general practitioner’s office, an outpatient surgery center or a hospital.

Colonoscopy A colonoscopy is an examination method used to detect changes or abnormalities

in the large intestine (colon) and rectum. During a colonoscopy, a long, flexible tube (colono-

scope) is inserted into the rectum. A tiny video camera at the tip of the tube allows the doctor

to view the inside of the entire colon. If necessary, polyps or other types of abnormal tissue

can be removed through the endoscope during a colonoscopy. Tissue samples (biopsies) can
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be taken during a colonoscopy as well. The most common reasons for colonoscopies include

investigation of the GI-tract for signs and symptoms and possible causes of abdominal pain,

rectal bleeding, chronic constipation, chronic diarrhea and other intestinal problems. Another

reason is screening for colon cancer in people aged over 50, to be performed every ten years to

screen for colon cancer. The previous history of colon polyps and CRC can also be a cause for

necessary follow-up colonoscopies to look for and remove any additional polyps. This is done

to reduce the risk of developing CRC.

Colonoscopy include conventional white-light endoscopy and virtual endoscopy [52]. Con-

ventional white-light colonoscopy is regarded as the gold standard screening test for CRC [104].

Various randomized clinical examination and prospective cohort investigations have testified

that conventional colonoscopy with polypectomy lowers the incidence of CRC significantly by

40-90% and decreases mortality [108]. Therefore, the demand for colonoscopy continues to

increase.

Regardless of the achievement of colonoscopy in lowering cancer deaths, an important av-

erage miss rate for detection of both massive polyps and cancers is present and is approximated

to be around 4 − 12 percent [78, 88, 109]. The traditional endoscopies, such as colonoscopy

and gastroscopy, only allow a physician to examine few regions of the GI tract. The traditional

endoscopies cannot visualize the small intestine, due to cable length limitation. Furthermore,

they can also tear intestinal walls in case of severe medical conditions, and endoscopies such

as enteroscopy and push enteroscopy are uncomfortable for the patients. They are performed in

real-time and are challenging to scale to a larger population [91]. Also, the procedure is expen-

sive. In the United States, for instance, the colonoscopy is the most expensive cancer screening

procedure with yearly expenses of 10 billion dollars, with an average of $1,100 per person. In

the UK, the prices are around $2,700 per person. Norway has an average cost of about $450 per

examination. Scaling this to a population-sized cohort is very resource demanding and incurs

enormous costs. Additionally, approximately one medical-doctor-hour and two nurse-hours,

per evaluation is required that makes the real population-wide screening unrealistic scenario.

Prior to the introduction of wireless VCE, physicians could not examine the small intes-

tine without any surgical operation. VCE was devised by a group of researchers in Baltimore

in 1989, and afterwards introduced by Given Imaging Ltd., Yoqneam, Israel, as a commercial

instrument. The device became publicly available in 2000 and used wireless electronic technol-

ogy [67] that captures images of complete GI tract. This capsule-shaped pill can be swallowed

by the patients in the presence of clinical experts without any discomfort [129]. Unlike conven-

tional endoscopy procedures, this procedure investigates the entire GIT without pain, sedation

and air insufflation. VCE has assisted more than 1.6 million patients worldwide until now. An

additional advantage of this new technology is that the process of the physical examination that

does not require sedation and is non-invasive, so it only applies little pain to the patient [41].

This entire VCE procedure enables clinicians to diagnose and detect ulcers, tumors, bleedings

and other lesions in the small intestine to make offline diagnostic decisions afterward.

Moreover, GI tract inspection and screening is one of the areas under-covered by automation

and computer-based support systems. Thus, the importance of corresponding GI-tract-oriented

automated medical systems that provide support for diagnostics, examination, surgery, report-

ing and teaching cannot be underestimated. Moreover, regardless of the automation level, the

support systems must be interactive, since the medical professionals must be in the loop to pro-
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vide input, interpret and act on the results. Our investigation in the field showed that there is

no complete medical multimedia system for analyzing multimedia data containing information

about the GI tract in real-time. Thus, our primary goal is to develop such a complete system.

Following the general preconditions for medical system and common GI-tract-procedures,

we define the following requirements:

1. Support for decision making during the traditional push enteroscopy (colonoscopy) and mod-

ern VCE.

2. Ability to process video streams from standard endoscopic equipment as well as images and

videos captured by VCE.

3. Real-time detection and in-frame localization of different GI-tract diseases.

4. Ability to implement a complete processing pipeline including data collection, annotation,

medical knowledge transfer, automatic analysis and visualization.

5. Ability to be extend to new diseases.

Up to now, detection of diseases in the GI tract was mostly focused on polyps. The main

reason for this is the importance of polyp detection and the lack of well-annotated training and

validation data for other gastric diseases. Automatic analysis of polyps in colonoscopies has

been in the focus of research for a long time and several studies have been published. However,

there are no complete systems, and none of the developed approaches can perform detection in

real-time and support doctors by computer-aided diagnosis during colonoscopies. Furthermore,

all the existing systems are limited to a very specific use case, trained and validated with very

limited datasets or rely on a specific type of equipment.

2.1.1 Endoscopic Devices

As the first step in our research, we investigated the variety of the existing GI tract examination

methodologies currently used in hospitals world-wide. All-in-all, we split them into two main

categories: the indirect and direct investigation methods. Indirect methods include magnetic

resonance imaging, various tomography, blood and fecal samples analysis. Direct methods

are various endoscopic procedures and surgical interventions. In this research, we focus only

on endoscopic diagnostic methods which give precise and reliable results with the reasonable

cost and patient discomfort comparing to other methods. Also, comparing to, for example,

fecal sample biomarker-based analysis, GI tract endoscopic screening covers all known GI-

tract-related lesions. All types of endoscopic examination are performed using traditional and

wireless video capsular endoscopic devices.

2.1.1.1 Traditional Endoscopes

Traditional endoscopy is a nonsurgical procedure used to examine a person’s GI tract. It is

performed using an endoscope, a flexible tube with a light and camera attached to it. The

video stream is transmitted to an external TV monitor (and optionally a recording device and/or

computer) showing the internal contents of a patient’s GI tract. In general, the endoscopic
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procedures are non-invasive, but they can introduce a significant discomfort to the patient not

only during the procedure itself, but also during a preparation phase. Most types of endoscopy

require to stop eating solid foods for up to 12 hours before the procedure. Typically, the prepa-

ration requires strong laxatives or enemas to use the night before the procedure to clear the

digestive system. There are many types of endoscopic procedures, but the most common are

upper endoscopy and colonoscopy.

2.1.1.2 Wireless Video Capsular Endoscopes

Video Capsule Endoscopy (VCE) provides visualization of the gastrointestinal (GI) tract by cap-

turing images or recording video using a small swallowed pill-like disposable capsule equipped

with one or more cameras, a small processing device, memory or wireless transmitter and a

battery. There are two main types of VCE capsules: Transmitting VCE (T-VCE) and Recording

VCE (R-VCE).

The T-VCE capsule, also sometimes called Wireless Capsular Endoscope and Wireless

Video Capsular Endoscope, performs capturing of images and immediately transmits video

wirelessly from a capsule to a data recorder device worn by the patient. The T-VCE capsule is

fully disposable and follows the swallow-and-forget concept that is convenient for both patient

and doctor. The data captured becomes available for analysis and downloading almost instantly

after activating and swallowing of the T-VCE capsule.

The R-VCE capsule performs capturing of images and stores the data on an onboard flash

memory chip that eliminates the needs for a piece of additional external equipment on the

patient’s body. Instead, the R-VCE capsule requires recovering of the capsule from the patient’s

stool.

Both technologies have different pros and cons that make them suitable for different di-

agnostic and screening scenarios depending on the requirements in each specific case. Here,

we describe them in short to demonstrate the potential of these technologies for the future

discomfort-less examinations and national-wide screening programs.

The T-VCE equipment is often called Wireless Capsule System (WCS). It consists of 3 main

components:

• a swallowed transmitting capsule endoscope device;

• a receiving and sensing system for receiving a data stream from the capsule, sensing pads

or a sensing belt attached to the patient body, a data recording storage, and a battery pack;

• a workstation or personal computer with proprietary software installed and the interfaces

to on-body module hardware.

All T-VCE capsule endoscope devices have similar components: a disposable plastic cap-

sule, a complementary metal oxide semiconductor (CMOS) or high-resolution charge-coupled

device (CCD) image capture system, a compact lens, a signal processing device, a wireless

transmitter, white-light-emitting diode illumination sources, and an internal battery. Some mod-

ern capsules use magnetic and acceleration sensors to provide advanced localization informa-

tion. The latest controllable capsules contain a magnet used to steer the capsule from outside of

the patient’s body.
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Figure 2.1: The internal components of wireless video capsule endoscope

The mode of data transmission is either via ultra-high frequency band radio telemetry or

human body communications. The latter technology [77] uses the capsule itself to generate an

electrical field that uses human tissue as the conductor for data transmission.

The first capsule model for the small intestine was approved by the US’s Food and Drug

Administration (FDA) in 2001. Over subsequent years, this technology has been refined to

provide superior resolution, increased battery life, and capabilities to view different parts of the

GI tract. Different producers provide a number of different T-VCE devices designed to be used

for different parts of the GI tract, namely: small-bowel only, esophageal imaging and colon

imaging.

Figure 2.1 shows the sample of the inner element of the T-VCE. This particular device

is pill shaped (26mm×11mm), consists of light sources, a short focal length CCD camera,

a transmitter of radio frequency and a few other electronic components. Once the capsule is

swallowed by a patient, the WCE begins capturing images with 2-4 frame per second (fps) and

sends them wirelessly to the recorder unit. This process produces between 50,000 and 80,000

images for each patient before the pill’s battery is exhausted.

The R-VCE equipment is often called Storable Capsule Endoscope System (SCES). It con-

sists of 3 main components:

• a swallowed recording capsule endoscope device;

• a data extraction system for obtaining recorded data from the capsule;

• a workstation or personal computer with proprietary software installed and the interfaces

to the data extraction module hardware.

All R-VCE capsule endoscope devices have similar components: a disposable plastic cap-

sule, a CMOS or CCD image capture system, a compact lens, a signal processing device, a large

capacity onboard storage medium (several GB and more), white-light-emitting diode illumina-

tion sources, and an internal battery.
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The recorded and compressed data is stored on the integrated storage medium, which can be

done with a lower power consumption per recorded frame compared to wireless data transmis-

sion. This enables higher frame rates, better image resolution and longer recording time within

capsules of the same size.

The main advantage of R-VCE is that patients do not need to wear an image recorder after

swallowing the capsule, and they only need to be aware of the time of expelling the capsule from

the body and collecting it. Currently [77], all R-VCE capsules require the excavation from the

fecal masses, cleaning and the use of specialized communication module to extract the recorded

data from the capsule. Nevertheless, compared to T-VCEs, screening using R-VCE devices can

be performed virtually at any place (at home, at remote sites and on moving facilities, like

ships and oil platforms), because only the capsule and simple and cheap disposable support

equipment is required for the procedure.

After the data extraction, proprietary software is used to process and display the images in

single or multiple views at any desired rates for R-VCEs and at rates of 5 to 40 frames per

second for T-VCEs. Representative images and video clips can be annotated and saved. Most

versions of available software have the ability to identify red pixels to facilitate detection of

bleeding lesions. Localization of the capsule and monitoring of its movement through GI-tract

are implemented for T-VCEs, but not yet for R-VCEs. Additional features include quick ref-

erence image atlases, and report generation capabilities. Different producers provide a number

of different R-VCE devices designed to be used for different parts of the GI tract, namely:

esophageal imaging, stomach imaging, small-bowel and colon imaging.

2.1.2 Medical Data

All described endoscopic devices generate a lot of multimedia data including still images, video

streams, sensors and positioning data, etc. Some of this data is used only to provide real-time

visual feedback to a doctor, some can be recorded locally or in hospital information systems for

future use and reporting purposes. The access to such recorded data is strictly regulated by ethic

and privacy grounds. From our experience, one of the most important challenges we meet dur-

ing the development of the medical multimedia system is medical data availability and usability.

Hospitals record, store and process a significant amount of data during routine procedures and

patients’ checks. This data contains information that is necessary for both efficient patient care

and case investigation, and for educational and training purposes. However, the collected data

is not used efficiently. This data holds much potential, for example, by using it for efficient and

accurate automatic analysis or by researching and developing live computer-assisted diagnosis

based on these generated data. Medical datasets also have the challenge that they usually con-

tain many true negative examples, but not so many true positives. Furthermore, generalization

is a vital ability for computer-assisted diagnostic systems that must be able to process data from

different type of equipment (endoscope) used. Thus, a very important open question is how

generalizable the proposed methods are.

During our research, we discovered only a few publicly and restrictively available datasets,

which form a small set of reference images and video data can be used for the direct perfor-

mance comparison of different approaches. Table 2.1 depicts the details of these datasets. As

one can see, the available amount of data is relatively small, especially for the proper evaluation
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Dataset Name Data source Frames contains example of Dataset Size Status Description

CVC-ClinicDB [2] Colonoscopy Polyps 612 still images from 29 different
sequences with polyp mask

Available From 29 different sequences with
polyp mask (ground truth)

ASU-Mayo Clinic
Colonoscopy Video
(c) Database [1]

Colonoscopy Polyps Training: 20 different videos Test-
ing: 18 videos

Copyrighted 10 videos with polyps detections,
10 videos without polyps, GT avail-
able

CVC colon DB [3] Colonoscopy Polyps 300 frames with ROI By explicit per-
mission

15 short colonoscopy sequences
(different studies)

ETIS-Larib Polyp
DB [4]

Colonoscopy Polyps 196 images By request 196 images with GT

GI Lesions in Reg-
ular Colonoscopy
Data Set [6]

Colonoscopy GI lesions 76 instances Available 15 serrated adenomas, 21 hyper-
plastic lesions, 40 adenomas

GastroAtlas [5] Endoscopy GI lesions 5,029 video clips Available Low-quality videos

The Atlas of
Gastrointestinal
Endoscopy [9]

Endoscopy GI lesions 1295 images Available Esophagus, Stomach, Duodenum
and Ampulla, Capsule Endoscopy,
Inflammatory Bowel Disease,
Colon and Ileum and some Miscel-
laneous

WEO Clinical En-
doscopy Atlas [10]

Endoscopy GI lesions 152 images By explicit per-
mission

One image per lesion

GASTROLAB [7] Endoscopy GI lesions Several hundreds of images and
several tenths of videos

Discontinued Partially damaged/unavailable
dataset

KID [8] VCE GI lesions 2,448 images and three videos Discontinued, by
request

Dataset access issues

Kvasir [95] Various GI lesions & landmarks 8,000 images, 8 classes, 1,000 im-
ages per class

Available, public,
free for research
and educational
purposes

Our dataset. See section 3.1 for the
description.

Nerthus [94] Colonoscopy GI findings 5,525 frames extracted from the 21
videos, 4 classes, from 500 to 2,700
frames per class

Available, public,
free for research
and educational
purposes

Our dataset. See section 3.1 for the
description.

Medico [100] Various GI lesions, landmarks and
findings

14,033 images, 16 classes, from 4
to 2,331 images per class

Available, public,
free for research
and educational
purposes

Our dataset. See section 3.1 for the
description.

Table 2.1: Existing endoscopic image and video datasets

of the newly developed methods designed for real clinical setups. Also ground truth (GT) data

for the available datasets is often missing or not accurate enough. Thus, in this research, we

address this issue by introducing several new open-sourced and publicly available datasets.

2.2 Medical Image Analysis

The next naturally following question is how to use the endoscopic data efficiently both dur-

ing live examinations to assist doctors, and later for automated diagnosis system development

and medical personnel training. Widely used computer vision-based automatic visual data pro-

cessing methods are designed for different use-cases and data types. Medical multimedia data

analysis introduces a broad range of challenges mostly caused by the nature of the GI tract and

nuances of the lesions that need to be detected, localized and assessed.

2.2.1 Challenges of Automatic Diseases Detection

Traditional colonoscopy and modern VCE offer an internal view of the digestive tract via non-

surgical endoscopy technology. Following the progress in object recognition in the last few

decades, computer-aided lesion detection methods have been in development with the ultimate

goal of assisting doctors during routine procedures and lowering the lesion miss rate. How-

ever, automated lesion detection in live and recorded endoscopic video data is quite challenging

because of the variation of polyps and other lesions inside the GI tract. GI tract findings can

have color, texture and shape properties similar for different diseases and different for similar

diseases in various stages of development. Findings can be covered by biological substances,

such as seeds or stool, and lighted by direct and reflected light. Moreover, image coming from
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the endoscopic equipment can be interleaved, noisy, blurry because of lens defocus and camera

motion, over- or under-exposed, it can contain static artifacts caused by lens contamination,

borders, sub-images and a lot of specular reflections caused by the endoscope’s light source.

The GI tract can potentially have a wide range of lesions visible in endoscopy, as well as find-

ings associated with benign/normal or man-made lesions. This phenomenon leads to a need

for distinguishing between multiple classes of findings, including such with high level of visual

similarity. In this scenario, both high precision and recall are of crucial importance, but also the

frequently ignored system performance to provide live feedback because medical personal is

assisted most efficiently while they perform the examination. Currently, there is no computer-

assisted diagnosis or object recognition functionality implemented in endoscopic equipment for

live examinations.

Modern VCE that has many advantages comparing to traditional push enteroscopy, require

further improvement of the technology. Currently, clinicians must inspect 50,000 and more

VCE images from between 4 and 12 hours of video footage to locate the diseases, which is

a difficult task. They might miss the disease at an early stage due to visual fatigue or con-

centration loss. Moreover, VCEs do not have optimum lightning, making it more challenging

to detect endoscopic findings in captured images than in images from traditional endoscopes.

Also, during VCE procedures, the intestine is not inflated by injecting a small amount of low-

pressurized gas into the GI tract via a endoscope, unlike in conventional endoscopy, where the

expansion allows for precise and non-obfuscated images of the intestine walls. Nevertheless,

ongoing research focuses at enhancing VCEs’ hardware capabilities and at upgrading the tech-

niques and algorithms developed for colonoscopies to work also for VCEs. While software

developed by Given Imaging for VCE exists [74] and can detect active bleeding automatically,

the sensitivity and specificity is very low, and no detection is implemented for other diseases

at the moment. Moreover, the modern trends in multi-sensor VCE system design aims at the

use-case where individuals can buy VCEs at the pharmacy and convey the video stream from

the GI tract to the phone over a wireless connection. The video footage can be preprocessed on

the mobile phone, in order to perform an initial analysis before the video footage is delivered

to a processing back-end. In the best instance, the first screening results are accessible within

eight hours after swallowing the VCE, which is the time taken by the camera to traverse the

GI tract. Thus, the ability to execute and perform mass-screening of the GI tract relies on two

fundamental research areas. First, it requires the improvement of a new generation of VCEs

with better picture quality and the capacity to communicate with widely used mobile phones.

Second, mass-screening demands a new generation of lesion detection algorithms able to pro-

cess the captured GI tract multimedia data and video footage. Here, a preliminary analysis and

task-oriented compressing of captured video footage before uploading into the cloud is of great

significant because of the huge amount of data generated by VCEs.

2.2.2 State of the Art in GI Tract Lesion Detection

Early research on lesions detection in the human GI tract was mostly focused on polyp detec-

tion. The approach by Wang et al. [145, 146] was the most recent and best-working complete

polyp detection system in the field of polyp detection when we started our system design and

development. The system called Polyp-Alert employs edge-cross-section visual features and
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Kang et al.[71] 2019 polyp / CNN 76.25 – 77.92 – – – – 1187

Mori et al.[82] 2019 polyp / CNN 94 40 – – – – 10 135

Byrne et al.[32] 2019 polyp / CNN 98 83 90 94 – – 20 60,089

Urban et al.[140] 2018 polyp / CNN 96.8 95 – 96.4 – – 98 8,641

Mori et al.[83] 2018 polyp / color, texture 92.7 89.8 93.7 – – – 2.5 61,925

Wang et al. [146] 2015 polyp / edge, texture 97.70 – – 95.70 – – 10 1.8m

Wang et al. [145] 2014 polyp / shape, color, texture 81.4 – – – – – 0.14 1,513

Mamonov et al. [81] 2014 polyp / shape 47 90 – – – – – 18,738

Zhou et al. [150] 2014 polyp / intensity 75 95.92 – 90.77 – – – –

Li and Meng [75] 2012 tumor / textural pattern 88.6 96.2 – 92.4 – – – –

Ameling et al. [20] 2009 polyp / texture 95 – – – – – – 1,736

Cheng et al. [39] 2008 polyp / texture, color 86.2 – – – – – 0.076 74

Hwang et al. [66] 2007 polyp / shape 96 – 83 – – – 15 8,621

Alexandre et al. [18] 2007 polyp / color pattern 93.69 76.89 – – – – – 35

Kang et al. [70] 2003 polyp / shape, color – – – – – – 1 –

Riegler et al. [112] 2017 multi-class / global features 98.5 72.49 93.88 87.7 – – 300 18,781

Table 2.2: A performance comparison of GI findings detection approaches. Not all performance

measurements are available for all methods, but including all available information gives an idea

about each method’s performance. Also there are many done and ongoing research in the field,

and this table present a selection of the most representative and recent results

a rule-based classifier to detect an edge along the contour of a polyp. The technique employs

tracking of detected polyp edges to group a sequence of images in order to be able to detect

the same polyp’s appearances as one polyp event. The best achieved sensitivity of 97.70% and

accuracy of 95.70% together with the relatively high processing speed measured as 10 FPS en-

abled initial clinical trials. We joined our research efforts recently resulting in the co-authored

work [116]. However, the Polyp-Alert system is limited to the polyp use-case and it also does

not provide low enough processing latency necessary for the live colonoscopies support.

Mamonov et al. [81] presented a simple polyp presence detection algorithm based on the

geometrical shape of polyps and on the assumption that polyps often are hill-shaped objects

bumped out of the surrounding tissue. With the main goal of reducing the number of frames that

need to be manually inspected, the algorithm reached a sensitivity of 81.25% and a specificity of

90% for a per-polyp measure. For a per-frame measure only a sensitivity of 47% was reached

with the specificity of 90.2%, which makes this detection algorithm not precise enough for

real-time feedback generation.

Hwang et al. [66] developed a similar shape-based approach assuming that polyps are spher-

ical or hemispherical geometric elevations on the surrounding mucosa. The method relies on a

watershed-based image segmentation algorithm. Then ellipses are fitted into the segments by

constructing a binary edge map for each segmented region using a least square fitting method.

After the coarse size-based filtration, ellipses are further evaluated for matching of curve di-

rection, curvature, edge distance and intensity. The interesting part of this approach is that

after the first frame a potential polyp was detected, subsequent frames are also searched for
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the same characteristics using a mutual and information-based image registration technique.

The method’s evaluation showed reasonably high sensitivity and precision of 96% and 83%,

respectively, achieving, at the same time, promising 15 FPS processing speed. Nevertheless,

this and other shape-oriented approaches are strictly limited to polyp detection and cannot be

easily extended to other flat or non-shaped diseases, e.g. bleeding, angioectasia, ulcers, etc.

The most recent works mostly incorporate modern CNN architectures as the detection and

localization subsystems’ basis. Mori et al. [82, 83] presented two complete polyp detection

systems that were tested in real clinical trials. The first [83] system’s detection algorithm is

based on custom color and texture features extracted from every frame being processed with a

following classification using a traditional ML-based SVM classifier. The system is able to pro-

cess input frames at a rate of 2.5 FPS and has a corresponding sensitivity of 92.7%, specificity

of 89.8% and precision of 93.7%. Despite the relatively high system performance, the overall

data processing speed is not enough for convenient system use, due to an often limited polyp

appearance time (a polyp can sometimes be clearly visible on one single frame in a 30 FPS

video stream). The second [82] proposed detection system is based on a custom CNN architec-

ture especially designed to work with a combination of traditional, magnified and narrow-band

imaging (NBI) frames captured by a modern endoscopic system from Olympus. The developed

system achieved a sensitivity of 94% and a specificity of 40% reaching near-real-time pro-

cessing speed. Compared to many others, actual testing of this approach with real endoscopic

equipment confirms the high quality of the designed software and the corresponding algorithmic

base. Nevertheless, a test dataset with limited size was used for the system evaluation, rising

the question of system’s flexibility and ability to act in the different conditions. Moreover, the

processing speed of 10 FPS is not enough for high-quality support during live colonoscopies.

Moreover, both systems [83, 82] do not provide any localization information and are not able

to highlight the polyp on a live view screen.

Byrne et al. [32] described an interesting Inception-based CNN architecture designed for

NBI colonoscope imaging mode. With the ultimate goal of polyp detection, the detection al-

gorithm provides a sub-class classification (hyperplastic polyp or conventional adenoma) of the

found polyps. The performance numbers achieved on the validation set sized 18% of training

set, are reported as a sensitivity of 98%, specificity of 83%, precision of 90%, and accuracy

of 94%. The high measured method accuracy in conjunction with a relatively high processing

speed of 20 FPS forms a solid basement for a complete detection system. However, the pro-

posed detection method is suitable for NBI images only, which are normally used only after

the actual polyp recognition by the performing endoscopist. Thus the method itself cannot be

directly involved in a holistic polyp detection system.

Kang et al. [71] developed a novel approach based on two joint Mask R-CNNs based on

the pre-trained ResNet50 and ResNet101 models. A bit-wise combination of the output masks

used to enhance the segmentation performance of the proposed method is able to provide not

only detection output, but also a precise polyp localization mask within an input image. With the

pixel-wise sensitivity of 76.25% and precision of 77.92% this method demonstrates a promising

potential for future complete lesion detection, but it requires significantly wider evaluation on

the various datasets, as well as the corresponding processing speed testing.

Urban et al. [140] presented a set of custom CNN architectures especially designed for

the dual binary detection and regression localization modes. The primary polyp recognition

28



is implemented by a combined CNN model performing the optimization of the polyp size and

location with mean-squared error loss; optimizing the overlap between the predicted bounding

box and the ground truth; and a variation of the “you only look once” (YOLO) algorithm, in

which the CNN produces and aggregates multiple individual weighted predictions of polyp size

and location in a single forward pass. Authors tested randomly initialized and well-known

ImageNet-pre-trained models. The best performing model incorporates initial weights from

the ResNet50 network, and was able to reach an accuracy of 96.4%, sensitivity of 96.8% and

specificity of 95%. The top processing speed was measured as 98 FPS on a high-end consumer-

grade PC equipped with the recent GPU. However, the stated higher-than-real-time processing

speed was reached for low-resolution 224x224 pixels input images and can potentially lead to

a high miss rate for small polyps.

All-in-all, the state of the art methods and existing complete systems show the great potential

of computer-based lesions detection in the human GI tract. Existing solutions can not only

reach high performance in terms of accuracy, sensitivity, specificity and precision, but also

demonstrate real-time or near-to-real-time data processing capabilities. However, despite the

achievements of the different research teams in the last 5 years, there is still a lack of a complete

holistic automated computer-assisted decision-making-support system that can perform well

both during live endoscopic procedures and a posteriori VCE-captured imaging data analysis.

Moreover, none of the existing complete systems can detect multiple diseases simultaneously

and provide a live feedback to the endoscopists with both multi-class detection and detected

lesion localization. With the work conducted in this thesis, we have beaten the mentioned

problems and provided the medical society with a ready-to-use solution for GI-tract abnormality

detection and localization.

2.2.3 Basic EIR System: The Proof-of-Concept

Our first EIR polyp-only detection system presented in Riegler et al. [112] is based on non-

CNN image processing principles. The detection subsystem analyzes multimedia data, such

as videos and images. All the frames processed by the detection subsystem are separated into

two positive and negative classes. Two sets containing example images for abnormalities and

images without any abnormality are used as the model for the disease detector. Global im-

age features from Lire [79] library are used to compare images in the search-based two-class

classification algorithm. The basic localization subsystem implements a model for polyp lo-

calization using a hand-crafted object localization method, based on the geometrical shape of

polyps. We evaluated our first version of the EIR system using publicly available datasets. The

experimental evaluation showed EIR’s promising detection efficiency with the following per-

formance metrics: a sensitivity of 98.5%, a specificity of 72.49%, a precision of 93.88% and

a accuracy of 87.7%. Polyp localization performance evaluation showed a precision of 28.7%

and a sensitivity of 76.1%.

2.3 Summary

It seems that despite of a rapid development of the new medical devices, complete medical

multimedia systems are not in focus of active research, nor main-stream development. Most
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medicine-oriented research is now focused on algorithms, especially deep-learning-based, for

the detection of diseases, not on complete medical systems design and implementation. Even

further, the widely presented different lesion recognition approaches that are positioned as hav-

ing a high performance properties are, in fact, very narrow and focused on one exact lesion or

have been trained and evaluated using small private datasets preventing any reproducibility and

cross-evaluation attempts. The only few examples that focus on more than one component seem

to ignore data processing speed and real-time performance problems, or do not reach the use-

case-dictated performance requirements. Most of the modern approaches incorporate various

deep learning techniques, which is a hot and promising direction in the field of medical image

processing, but requires a large amount of well-annotated training data that can be problematic

in the highly-privacy-restricted medical scenarios.

To address these problems, in 2015, the development of a complete medical multimedia sys-

tem with real-time and applied use-cases in-mind was started. The very first version of the EIR

system incorporates our search-based classification approach that was presented by Michael

Riegler in his PhD thesis [112], which demonstrated promising results and promised further

potential for our use-case of disease detection in the GI tract. This thesis presents a further de-

velopment of the complete EIR system, introducing new algorithmic and deep-learning-based

detection, localization and segmentation approaches. Together with the newly collected and

published open-source datasets, developed annotation, visualization and high-performance pro-

cessing subsystems, the new DeepEIR system reaches the goal of a holistic medical decision-

support system. To the best of our knowledge, the medical multimedia system developed and

described in this thesis is the first system that reaches total flexibility and extendability in terms

of diseases and objects that can be detected, localized and segmented, and, at the same time,

provides the outstanding data processing performance with a proper and comparable evaluation

of its performance with newly collected, annotated and published datasets.

In the next chapters, we present our holistic and complete medical multimedia system and

all the sub-components. We also present our open-source datasets. Furthermore, we show a

complete evaluation of the system performance in terms of accuracy with different GI tract

findings and data processing speed including our heterogeneous and distributed improvements

of EIR system.
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Chapter 3

The DeepEIR System

Our primary practical objective is to develop a system that will support doctors in GI tract dis-

ease detection during both traditional live endoscopies and modern VCE procedures including

home- and hospital-based wide population screening. Thus, the system must:

• be easy to use and less invasive for the patients than existing methods;

• support multiple classes of detected GI diseases, objects and landmarks;

• be easy to extend to new diseases and findings;

• handle multimedia content in real-time and process at least 30 FPS for Full HD videos;

• be designed and tested for live real-time computer-aided diagnosis;

• achieve high classification performance with minimal false-negative classification results;

• have a low computational resource consumption;

• be able to process huge amounts of pre-captured data;

• support scaling, parallel and distributed processing.

Implementation of these properties provide an efficient system allowing for a reduced num-

ber of specialists required for a larger population coverage with GI tract investigation, and

dramatically increased number of users potentially willing to be screened.

The second extended and improved version of EIR system is called DeepEIR (see figure 3.1)

and was designed with all mentioned properties in mind. It consists of three main parts: the

data acquisition, preparation and annotation subsystem, the automatic analysis subsystem and

the visualization and computer-aided diagnosis subsystem. The main DeepEIR’s "brain" - the

analysis subsystems is designed in a modular way to be easily extended to new diseases or sub-

categories of diseases, as well as for other not-implemented-yet tasks like size determination,

3D shape recognition, etc. Currently, we have implemented two types of analysis subsystems:

the detection subsystem that detects different irregularities in video frames and images, and the

localization subsystem that localizes the exact position of the disease within the frame. The de-

tection subsystem is designed to only determine the presence of an irregularity within the frame.
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Figure 3.1: A complete overview of the DeepEIR system. The system consists of data acquisi-

tion, preparation and annotation, automatic analysis and visualization subsystems.

The exact position of the detected object is determined by the localization subsystem. Each de-

tection subsystem therefore can be accompanied by the corresponding localization subsystem.

The localization subsystem can be also implemented in two different ways. One uses the output

of the detection system as input and processes only frames marked as containing a localizable

disease. Another can act as the primary analysis agent and can perform frame segmentation

with a following localization and detection-via-localization operations.

3.1 Data Collection

Despite automatic detection of diseases by use of computers is a life-saving area of applied

science, it is still an under-explored field of research not only because of the absence of the

well-performing algorithms and analytical models, but also because of a significant lack of

data available for analysis, training and evaluation of the automatic methods being developed.

Datasets containing medical images are hardly available, making reproducibility and compari-

son of approaches almost impossible. Thus, as a vital part of our research, we aimed also at the

collection and annotation of an adequate and big enough dataset that can be used not only in this

particular research, but that can also contribute to the research community and positively im-

pact the current research comparability. We achieve this by collecting medical data, sorting and

annotating it, publishing related papers with suggested common metrics, and the preliminary

evaluation of results of the different classification methods, and, finally, making the datasets

publicly available and free for non-commercial, educational and research purposes. Our public
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datasets contain images from inside the GI tract, and by providing them, we hope to invite and

enable multimedia researchers into the medical domain of detection and retrieval. Moreover, by

our public datasets, we especially address the common problem of research comparison when

the results are hard to reproduce due to a lack of publicly available medical data.

3.1.1 Privacy, Legal and Ethics Issues

It is almost impossible to just obtain medical data from relevant medical institutions and hos-

pitals for research purposes. All medical data is considered personal data and, therefore, is

strongly protected from unauthorized use and distribution. That is most probably the main rea-

son of lack of datasets that are publicly available, compared to traditional computer vision and

information retrieval tasks. During this research, as a first and the most important challenge,

we solved this problem by entering into a wide collaboration with a number of Norwegian hos-

pitals and research teams working there. In order to get permission to download, process and

publish the medical data, particularly image data from GI tract, we performed a detailed inves-

tigation into current Norwegian regulations concerning medical data privacy and possible ways

to obtain a massive amount of data with respect to the data protection laws. As the result of

these activities, we entered into an agreement with Vestre Viken Hospital Trust, allowing our

research team to download anonymized data from hospital information systems and transfer it

using secure media to our research facility. Than, we performed an additional data check and

purification in order to fully remove any data can be used for potential patient tracking and

deanonymization including removal of time stamps and EXIF information from the media files.

As a negative consequence caused by the full data anonymization, we have lost all information

that can help us to automatically classify the obtained raw data into relevant classes. Thus,

next, we performed sorting and classification of the raw data. Due to a significant shortage of

free time among the collaborating medical personnel, we decided to focus first on still images,

leaving the captured video clips for the next project stages. The GI tract images were carefully

annotated by one or more medical experts from Vestre Viken Hospital Trust and the Cancer

Registry of Norway. In addition, a subset of the colorectal videos was annotated by a number

of medical experts from Norway, Sweden, UK, US and Canada through a web based system.

All the annotated images and videos will be released as an addition to the already published

datasets regarding the specific use-cases assessments.

3.1.2 Sources of the Data

The raw data itself is collected using endoscopic equipment at Norwegian Vestre Viken Hospital

Trust, which consists of 4 hospitals and provides health care to 470.000 people. One of these

hospitals (the Bærum Hospital) has a large gastroenterology department from where training

data have been collected and will be provided, making the dataset larger in the future. The

Cancer Registry of Norway provides new knowledge about cancer through research. It is part of

South-Eastern Norway Regional Health Authority and is organized as an independent institution

under Oslo University Hospital Trust. The Cancer Registry of Norway is responsible for the

national cancer screening programmes with the goal of preventing cancer death by discovering

cancers or pre-cancerous lesions as early as possible.
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3.1.3 Created Datasets and Reproducibility

We published three medical datasets called Kvasir, Nerthus and Medico, and a number of sub-

versions. Kvasir and Nerthus are general-purpose datasets that can be directly used for building

and evaluation of medical image recognition, information retrieval, single- and multi-class clas-

sification algorithms. Medico is a special-purpose dataset built based on Kvasir, and it is used

in our Medico: The Multimedia for Medicine Task, which is part of a wider MediaEval Bench-

marking Initiative for Multimedia Evaluation. All the datasets are publicly available online, and

we evolve them constantly by adding new images and image classes.

3.1.3.1 Kvasir

The Kvasir dataset is our main contributing dataset representing a collection of images from

different parts of the human GI tract. It consists of images, annotated and verified by medical

doctors (experienced endoscopists), including several classes showing anatomical landmarks,

pathological findings or endoscopic procedures in the GI tract. It contains hundreds of images

for each class. The number of images is sufficient for different tasks, e.g., image retrieval,

machine learning, deep learning and transfer learning, etc. The dataset is made up of the images

of anatomical landmarks, pathological findings (lesions) and their removal procedures as well as

a variety of normal GI findings. The anatomical landmarks include Z-line, pylorus and cecum,

while the pathological findings include esophagitis, polyps, ulcerative colitis. In addition, we

provide several set of images related to the removal of lesions, e.g., "dyed and lifted polyp", the

"dyed resection margins", etc. The normal findings include various types of normal colon wall

tissue and a variety of stool and food leftovers that can be observed during colonoscopies.

The dataset consists of images with resolution from 720x576 to 1920x1072 pixels and is

organized in a way where images are sorted in separate folders named accord to their content.

Some of the included classes of images have a green picture in picture illustrating the position

and configuration of the endoscope inside the bowel, by use of an electromagnetic imaging

system (ScopeGuide, Olympus Europe) that may support the interpretation of the image. This

type of information may be important for later investigations and it is thus included, but it must

be handled with care for the detection of the endoscopic findings.

Lesions

A pathological finding (lesion) in this context is an abnormal feature within the gastrointesti-

nal tract. From the endoscopic point of view, it is visible as a damage or change in the normal

mucosa. Finding may be a sign for an ongoing disease or a precursor to cancer. Detection and

classification of pathology is important in order to initiate correct treatment and/or follow-up of

the patient. The most common and dangerous findings include colon polyps, colorectal cancer,

gastrointestinal bleedings, angioectasia, esophagitis, and ulcerative colitis.

Colon Polyps

Polyps are lesions within the bowel that are detectable as mucosal outgrows. An example

of a typical polyp is shown in figure 3.2(a). The polyps are either flat, elevated or pedunculated,

and can be distinguished from normal mucosa by color and surface pattern. Most bowel polyps

are harmless, but some have the potential to grow into cancer. Detection and removal of polyps
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are therefore important to prevent the development of colorectal cancer. Since polyps may be

overlooked by doctors, automatic detection would most likely improve examination quality.

The green boxes within the image show an illustration of the endoscope configuration. In live

endoscopy, this helps to determine the current localisation of the endoscope-tip (and thereby

also the polyp site) within the length of the bowel. Automatic computer-aided detection of

polyps would be valuable both for diagnosis, assessment and reporting.

Polyp Removal

Polyps in the large bowel may be precursors of cancer and are therefore removed during

endoscopy if possible. One of the polyp removal techniques is called endoscopic mucosal

resection. This includes injection of a liquid underneath the polyp, lifting the polyp from the

underlying tissue. The polyp is then captured and removed by use of a snare. Lifting minimizes

risk of mechanical or electrocautery damage to the deeper layers of the GI wall. Staining dye

(i.e., diluted indigo carmine) is added to facilitate accurate identification of the polyp margins.

Computer detection of dyed polyps and the site of resection would be important in order to

generate computer aided reporting systems for the future.

Figure 3.2(b) shows an example of a polyp lifted by injection of saline and indigocarmine.

The light blue polyp margins are clearly visible against the darker normal mucosa. Additional

valuable information related to automatic reporting may involve successfulness of the lifting

and eventual presence of nonlifted areas that might indicate malignancy.

The after-removal resection margins are important in order to evaluate whether the polyp

is completely removed or not. Residual polyp tissue may lead to continued growth and in the

worst case malignancy development. Figure 3.2(c) illustrates the resection site after removal of

a polyp. Automatic recognition of the site of polyp removals is of value for automatic reporting

systems and for computer aided assessment on the completeness of the polyp removal.

Esophagitis

Esophagitis is an inflammation of the esophagus that is visible as a break in the esophageal

mucosa in relation to the Z-line. Figure 3.2(d) shows an example with red mucosal tongues pro-

jecting up into the white esophageal lining. The grade of inflammation is defined by the length

of the mucosal breaks and proportion of the circumference involved. This is most commonly

caused by conditions where gastric acid flows back into the esophagus as gastroesophageal re-

flux, vomiting or hernia. Clinically, detection is necessary for initiating treatment to relieve

symptoms and prevent further development of possible complications. Computer detection

would be of special value in assessing the severity and for automatic reporting.

Ulcerative colitis

Ulcerative colitis is a chronic inflammatory disease affecting the large bowel. The disease

may have a large impact on the quality of life, and diagnosis is mainly based on colonoscopic

findings. The degree of inflammation varies from none, mild and moderate to severe, all with

different endoscopic aspects. For example, in a mild disease, the mucosa appears swollen and

red, while in moderate cases, ulcerations are prominent. Figure 3.2(e) shows an example of ul-

cerative colitis with bleeding, swelling and ulceration of the mucosa. The white coating visible

in the illustration is fibrin covering the wounds. As mentioned earlier, an automatic computer

aided assessment system will contribute to more accurate grading of the disease severity.
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(a) Colon Polyp (b) Inked and lifted polyp (c) Polyp removal resection

(d) Esophagitis (e) Ulcerative colitis

Figure 3.2: Sample images of the GI tract lesions included in the Kvasir dataset.

Anatomical Landmarks

An anatomical landmark is a recognizable feature within the GI tract that is easily visible

through the endoscope. Landmarks are essential for navigation and as a reference point for

describing the location of a given finding. The landmarks are also be typical sites for pathology

like ulcers or inflammation. A complete endoscopic rapport should preferably contain both

brief descriptions and image documentation of the most important anatomical landmarks [111].

Z-line

The Z-line marks the transition site between the esophagus and the stomach. Endoscop-

ically, it is visible as a clear border where the white mucosa in the esophagus meets the red

gastric mucosa. An example of the Z-line is shown in figure 3.3(a). Recognition and assess-

ment of the Z-line is important in order to determine whether a disease is present or not. For

example, this is the area where signs of gastro-esophageal reflux may appear. The Z-line is also

useful as a reference point when describing pathology in the esophagus.

Pylorus

The pylorus is defined as the area around the opening from the stomach into the first part of

the small bowel (duodenum). The opening contains circumferential muscles that regulates the

movement of food from the stomach. The identification of pylorus is necessary for endoscopic

instrumentation to the duodenum, one of the challenging maneuvers within gastroscopy. A

complete gastroscopy includes inspection on both sides of the pyloric opening to reveal findings

like ulcerations, erosions or stenosis. Figure 3.3(b) shows an endoscopic image of a normal

pylorus viewed from inside the stomach. Here, the smooth, round opening is visible as a dark

circle surrounded by homogeneous pink stomach mucosa.
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(a) Z-line (b) Pylorus (c) Cecum

Figure 3.3: Sample images of the GI tract landmarks included in the Kvasir dataset.

Cecum

The cecum is the most proximal part of the large bowel. Reaching the cecum is the proof

for a complete colonoscopy [21]. Therefore, recognition and documentation of the cecum is

important. One of the characteristic hallmarks of the cecum is the appendiceal orifice. This,

combined with a typical configuration on the electromagnetic scope tracking system, may be

used as proof for cecum intubation when named or photo-documented in the reports [110, 141].

Figure 3.3(c) shows an example of the appendiceal orifice visible as a crescent-shaped slit, and

the green picture in picture shows the scope configuration for the cecal position.

3.1.3.2 Nerthus

The Nerthus dataset is an auxiliary dataset addressing an important problem of adequate GI tract

preparation which is a required pre-condition for the successful colon investigation and treat-

ment. Traditionally, the bowel preparation quality has been categorized as poor, adequate or

good. Such classification of bowel cleanliness often lacks clear definitions, and the judgement

on quality tends to be subjective. This may result in significant inter-observer variation. To

minimize the inter-endoscopist variation, new score-based methods of assessing bowel clean-

liness have been introduced during the last decade. The state-of-the-art scoring system that is

probably the best validated and most frequently used scoring system in both routine clinic and

screening settings today is called the Boston bowel preparation scale (BBPS). It divides the

bowel into three sections (right, middle and left) and scores the bowel cleansing within each

section according to a defined numeric scale. It uses only a four-point scoring system (ranges

from 0 to 3). Despite a promising standardization potential, there is no publicly available dataset

can be used as a gold standard and a reference set for medical personnel training.

The Nerthus dataset consists of 21 videos with a resolution of 720x576 with a total number

of 5, 525 frames, annotated and verified by medical doctors (experienced endoscopists), cover-

ing 4 classes that show the four-score BBPS-defined bowel-preparation qualities. The number

of videos per class varies from 1 to 10. The number of frames per class varies from 500 to

2, 700. The number of videos and frames is sufficient to be used for different tasks, e.g., image

retrieval, machine learning, deep learning and transfer learning, etc. The videos are sorted into

separate folders named according to their BBPS-bowel preparation quality score (see figure 3.4

for the examples). Most of the included videos and images have a green picture in each frame,

illustrating the position and configuration of the endoscope inside the bowel. This is obtained
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(a) BBPS 0 (from splenic flexure) (b) BBPS 1 (from descending colon)

(c) BBPS 2 (from sigmoid colon) (d) BBPS 3 (from rectum)

Figure 3.4: Sample images for each bowel preparation ("cleanliness") score according to BBPS.

from an electromagnetic imaging system (ScopeGuide, Olympus Europe) and may support the

interpretation of the image. This type of information may be important for later investigations

on segmental position within the bowel.

3.1.3.3 Medico Task

The Medico: Multimedia for Medicine Task is an image recognition and classification challenge

running for the several years as a part of MediaEval Benchmarking Initiative for Multimedia

Evaluation. It focuses on detecting abnormalities, diseases, anatomical landmarks and other

findings in images captured by medical devices in the GI tract. The task provides to the par-

ticipants a detailed use-case description, including its importance and related challenges, the

dataset with the ground truth, the description of the required runs and the evaluation metrics.

The task introduces a lot of challenges related to correct medical image classification as well

as the related lesion localization and differentiation. The task has repeatedly used the latest

version of the task’s dataset, now consisting of more than 10, 000 images, which are annotated

and verified by experienced endoscopists.

The whole dataset is split into two equally sized development and test datasets. Pre-extracted

visual features for all the data are also provided. The ground truth for the data is collected from

the medical experts annotations. Both the development and the test datasets consist of images

sorted into classes with different numbers of images in each class stored in two archives: image

archive and features archive.

The image archive contains raw images sorted into classes with different number of images
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per each class. In the development dataset, the images are stored in separate folders named

according to the name of the class images that belongs to. In the test dataset, all the images are

stored in one folder. The images of the dataset come from equipment installed in Norwegian

hospitals with resolutions from 720x576 to 1920x1072 pixels and encoded using JPEG com-

pression. The encoding settings can vary across the dataset and they reflect the a priori unknown

endoscopic equipment settings. The extension of the image files is ".jpg".

The feature archive contains the extracted visual feature descriptors for all the images from

the images archive. The extracted visual features are stored in the text files placed in separate

folders and files are named according to the name and the path of the corresponding image files.

The extracted visual features are the global image features, namely: Joint Composite Descriptor

(JCD) [149], Tamura [135], MPEG-7 [35] features (ColorLayout and EdgeHistogram), Auto

Color Correlogram [65] and Pyramid Histogram of Oriented Gradients (PHOG) [42]. Each

feature vector consists of a number of floating point values. The size of the vector depends on

the feature. The sizes of the feature vectors are: 168 (JCD), 18 (Tamura), 33 (ColorLayout), 80

(EdgeHistogram), 256 (AutoColorCorrelogram) and 630 (PHOG) floating point numbers. Each

feature file consists of eight lines, one line per feature. Each line consists of a feature name

separated by the feature vector by a colon. Each feature vector consists of a corresponding

number of floating point values separated by commas. The extension of each extracted visual

feature file is ".features".

In total, the Medico dataset includes 16 classes showing anatomical landmarks, phatological

findings or endoscopic procedures in the GI tract. The anatomical landmarks are Z-line, pylorus

and cecum, while the pathological findings include esophagitis, polyps and ulcerative colitis. In

addition, we provide two set of images related to the removal of polyps, the "dyed and lifted

polyp" and the "dyed resection margins". The dataset includes parts of the Kvasir and Nerthus

datasets, but also adds new classes of findings.

Clear Colon

This class represents the samples of normal tissue that can be observed during colonoscopies

(see figure 3.5(a) for an example). Comparing to abnormalities, there is no interest in detecting

this type of image during live colonoscopies. However, we think that this class can be used for

the opposite detection task when the detection algorithm can signal in case of detecting anything

that is not normal. This can with a proper implementation and training potentially increase the

accuracy for the detection of all other classes.

Stool

Stool is the normal content of the GI tract, consisting of fecal masses and food left-overs.

Any fecal mass should be removed before performing colonoscopies and, especially, inter-GI

surgical procedures. Despite being a common finding, it is important to be able to detect it be-

cause this is a direct indicator of the GI tract preparation quality, which matters for endoscopic

procedures’ effectiveness. Detected stool masses, even in small pieces, can be considered as

a compromising factor to the prior GI tract preparation quality. They can hide small appear-

ances of a very dangerous lesions, e.g. polyps potentially developing into cancer and colon

wall penetrations, making stool detection an important task. Moreover, the quality of bowel

preparation is considered a key quality indicator for colonoscopy, while directly affecting ade-

noma detection and decisions on screening and follow-up intervals. Thus, an objective and
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(a) Clear colon, no stool masses (b) Inclusions of stool

(c) Medium amount of stool (d) Significant amount of stool

Figure 3.5: The example images depicting different amount of stool masses in the colon.

accurate interpretation of the bowel cleanliness is important and, therefore, we added a two new

classes, both containing different amounts of stool masses (see figure 3.5 for the examples of

stool inclusions 3.5(b), medium 3.5(c) and significant 3.5(d) amounts of stool).

Instruments

Instruments are artificial objects that can normally be observed in the GI tract during en-

doscopic procedures. They can be separate auxiliary tools, e.g. expansion nets, balloons, etc.,

as well as special surgical devices used for interventions and procedures inside GI tract. The

detection of instruments during live endoscopies is not a vital task, however it is important to

support the reporting process and for the a posteriori analysis of captured data and procedure

quality assessment. Moreover, instrument detection and recognition is important for the anno-

tation of the available anonymized datasets. Therefore, in the Medico dataset we introduced

three new classes: one depicts different samples of instruments and two others show so-called

retroflex vision images. Retroflexing is a special procedure used to get an observation of tissue

that is hidden from the doctor’s eye during straight-forward endoscope movement. Apart of tis-

sue surface analysis, information extracted from this type of frames can be used as an auxiliary

input for precise endoscopy and lesion position localization using the distance marks found on

the endoscope’s tube. Figure 3.6 depicts examples of the instruments in the Medico dataset.

Auxiliary classes

We also added two auxiliary classes represent images that are useless for lesion detection,

but are often appear in non-filtered data captured during routine procedures: blurry frames

without any significant content and out-of-patient images that are captured before or after an
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(a) Endoscopic surgical snare (b) Endoscopic syringe

(c) Retroflex of rectum (d) Retroflex of stomach

Figure 3.6: Images depicting various instruments including manipulating devices (a) and (b),

and endoscope itself captured via retroflex action (c) and (d).

endoscopic procedure (see figure 3.7). Out-of-patient images can also be used for detection the

begin and end of endoscopic procedure, which is important for automated reporting generation.

3.1.3.4 Further Dataset Development

The Kvasir, Nerthus and Medico datasets became quite popular open datasets for the research

community. We plan to further improve the quality and the size of the datasets by adding new

classes of findings, introducing detailed ground truth masks showing the exact location of the

findings in each frame, and extending the datasets with VCE-captured frames and videos. The

upcoming important classes include colorectal cancer, GI tract bleeding and angioectasia lesion.

Colorectal Cancer

CRC is the development of cancer from the colon or rectum, which are parts of the large

intestine. In the same way as other types of cancer, CRC is the abnormal growth of cells

that have the ability to invade or spread to other parts of the body. CRC is a major health

issue world-wide. It has one of the highest incidences and mortality of the diseases in the GI

tract (see figure 3.8(a) for an example), early detection is essential for a good prognosis and

treatment [116]. Several screening methods for CRC exist, e.g., fecal immunochemical tests

(FITs), sigmoidoscopy screening, computed tomography (CT) scans and, the most reliable one,

traditional colonoscopy.
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(a) Blurry frame (b) Out-of-patient

Figure 3.7: Images depicting auxiliary image classes: (a) blurry frames without any recogniz-

able content, and (b) out of the patient images.

(a) Colorectal Cancer (colonoscopy) (b) GI Bleeding (VCE) (c) Angioectasia (VCE)

Figure 3.8: Images depicting various classes will be added to our open datasets in the near

future

Gastrointestinal Bleedings

Gastrointestinal bleeding, also known as gastrointestinal hemorrhage, covers all forms of

bleeding in the GI tract. It can range from small and hard-to-notice spots without any symptoms

to significant blood loss over a short time (see figure 3.8(b) for an example), including symptoms

like vomiting red blood, vomiting black blood, bloody stool, or black stool. The bleeding is

mostly caused by severe gastric diseases like infections, cancers, vascular disorders, adverse

effects of medications, and blood clotting disorders. Common diagnostic procedures include

stool sampling, fecal bio-markers analysis, traditional push and modern VCE endoscopy.

Angiectasia

Angiectasia, formerly called angiodysplasia, is one of the most frequent vascular lesions. It

is a small vascular malformation of the gastrointestinal wall (see figure 3.8(c) for an example).

It is a common cause of otherwise unexplained gastrointestinal bleeding and anemia, and often

a source of gastrointestinal bleedings. Lesions are often occur in groups, and they do frequently

involve the cecum or ascending colon, although they can occur at other places. The diagnosis

of angiectasia is usually performed with push enteroscopy. The lesions can be notoriously hard

to find and can be located in hard-to-reach regions of GI tract, eg. the small bowel.
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3.1.3.5 Application of the Datasets

Our vision is that the available data may eventually help researchers to develop systems that im-

prove the health-care system in the context of disease detection in videos of the GI tract. Such a

system may automate video analysis and endoscopic finding detection in the esophagus, stom-

ach, bowel and rectum. Important results include higher detection accuracies, reduced manual

labor for medical personnel, reduced average cost, less patient discomfort and possibly an in-

creased willingness to undertake the examination. With respect to the direct use in multimedia

research, the main application area of Kvasir is automatic detection, classification and localiza-

tion of endoscopic pathological findings in an image captured in the GI tract. Thus, the provided

dataset can be used in several scenarios where the aim is to develop and evaluate algorithmic

analysis of images. Using the same collection of data, researchers can compare approaches and

experimental results directly, and results can easily be reproduced. In particular in the area of

image retrieval and object detection, Kvasir will play an important initial role, where the image

collection can be divided into training and test sets for the development of various image re-

trieval and object localization methods including search-based systems, neural-networks, video

analysis, information retrieval, machine learning, object detection, deep learning, computer vi-

sion, data fusion and big data processing.

Our vision is that the available data may eventually help researchers to develop systems

that improve health-care in the context of the GI tract endoscopic diagnosis. Adequate bowel

preparation (cleansing) is required to achieve high quality colonoscopy examinations. We invite

multimedia researchers to contribute to the medical field by making systems that automatically

and consistently can evaluate the quality of bowel cleansing. Innovations in this area that con-

tribute computer-aided assessment and automatic reporting may potentially improve the medical

field of GI endoscopy. In the end, the improved quality of GI tract investigations will probably

significantly reduce mortality and the number of luminal GI disease incidents.

3.2 Data Exploration, Annotation and Visualization Subsys-

tem

User-guided interactive exploration of big image collections is an important task in many sci-

entific and applied domains. Examples include medical, satellite and industrial image analysis,

security, social media and news analysis, and personal photos. Despite the many new and pow-

erful automated image analysis and clustering software, the human eye remains the most impor-

tant analytic instrument. Research on the topic of interactive image database visualization [103]

confirms the importance of human-accessible representation in combination with image clus-

tering, annotation and tagging. Existing image processing tools and frameworks demonstrate

interesting and promising approaches, and they give wide opportunities for image browsing,

content analysis and performing various data analytic tasks. However, there is still a lack of

tools that implement both fast and efficient image collection visualization together with image

content analysis and annotation. Moreover, in the medical field, the amount of time experts can

use for data annotation is quite limited. This is primarily because of high every-day workloads

for doctors. Even further, the annotation of images and videos itself is very time-consuming,
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and the quality of annotations depends on the experience and concentration of the doctors [53].

For example, in a VCE procedure, a video containing around 216, 000 - 1, 000, 000 frames per

examination is produced. An experienced endoscopist usually needs from one to two hours to

only view and analyze all the video data without performing detailed annotation [76]. There-

fore, we developed the automated data exploration, visualization and annotation subsystem is

able to reduce annotation workload.

Our approach to efficient data exploration and annotation is based on content-based image

retrieval [43] and utilizes number of different techniques and methods for interactive visualiza-

tion and clustering for unsupervised knowledge discovery in the various image analysis domains

providing the outstanding visualization performance for vast collections of images. The devel-

oped software made as the universal solution and it is usable not only for medical, but for any

use case that involves interactive browsing, visual analysis and annotation of a large amount of

image or video data.

3.2.1 Hyperbolic-Tree-Based Visualization and Clustering

Our software for complex image collection analysis is an explorative hyperbolic-tree-based

clustering tool for unsupervised knowledge discovery. The software implements a complete

prototype of five-stage information visualization including:

• Raw image and video frames data indexing and loading.

• Analytical abstraction generation via image feature descriptors.

• Visualization abstraction generation via clustering, centroids and distance values compu-

tation.

• User-view generation via interactive hyperbolic tree.

• Metadata generation during interactive clusters exploration.

The software is written in Java and uses two open-source libraries, LIRE and WEKA1 [58]

for image features extraction and clusterization. LIRE is a library that supports multiple global

and local image features out of the box. Here we use Color and Edge Directivity Descriptor

(CEDD) [37], Joint Composite Descriptor (JCD) [149], Fuzzy Color and Texture Histogram

(FCTH) [38], Tamura [135], Pyramid Histogram of Oriented Gradients (PHOG) [42], Auto

Color Correlogram [65], Local Binary Patterns [57], and MPEG-7 [35] features including Edge

Histogram, Color Layout and Scalable Color. WEKA is a collection of tools for machine learn-

ing and data mining. It can be directly combined with the LIRE code for easy integration. Here

we use X-means, K-means and hierarchical clustering algorithms.

Initially, the prototype was designed as an interactive demo with a live and responsive view

that allowed users to interact with the created clusters and their hyper-tree representation. Clus-

tering performed using image features and folder structure if desired. We used two datasets: one

with still pictures showing disease symptoms in a medical scenario, another with pictures of the

1http://www.cs.waikato.ac.nz/ml/weka/
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Figure 3.9: Hyper-tree based visualization, clustering and annotation system.

same tagging categories in a social image collection. Despite the initial demo-development

purposes, our prototype showed great potential and not restricted to a specific domain.

Figure 3.9 shows a screen shot of the demo application. Users can interactively perform the

following operations:

• Select the folder containing the image collection.

• Select Clustering algorithm and its parameters.

• Choose one or several different image features. If more than one feature is picked, they

will be combined using early fusion.

• Initiate features extraction and clusterization process.

• Interact with the hyper-tree by zooming and turning it into different angles.

• Inspect cluster and individual image properties and name/tag the images and clusters.

Practical usage experience by domain experts who used this hyperbolic-tree-based visual-

ization approach confirmed the importance of the unsupervised clustering algorithms to explore

image and video data collections that do not contain meta-data. Our clustering methodology

leads to good annotation results, and therefore, provides a good method for the abstraction

stages. However, as a result of a successful collaboration with Norwegian hospitals, we have

collected a large dataset consisting of more than 77.000 images and 600 videos from medical

procedures. The size of this unannotated data collection was too big for efficient processing

with this first application due to memory constrains and drawing performance issues. Thus, we

continued our development focusing on support for handling big data collections.
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Figure 3.10: Structure of the visualization and user interface engine of the presented ClusterTag

application. A number of caching and intermediate data processing routines are used to make it

possible to perform real-time visualization and interaction with huge image collections.

3.2.2 Cluster-Based Visualization and Annotation (ClusterTag)

To solve the visualization performance issues that we met during the use of the hyper-tree-

based visualization and provide more efficient solution for visualization and annotation, we

performed a software structure redesign involving a set of modifications and improvements to

extend the tool to make it universal and usable for any use case involving interactive browsing,

visual analysis and the annotation of a large amounts of image or video data. As a result, the

redesigned software named ClusterTag [98] does now have the following advanced properties:

• It allows users to investigate and analyze vast collections of images by providing a con-

figurable focus and context view based on similarity of frames.

• It provides a focus and context view for annotation and tagging of the dataset, making it

more accessible for complementary information systems.

• The tool structure is flexible and it can be easily adapted to different use cases and ex-

tended with new image processing algorithms.

• It supports real-time, interactive viewing, analysis and modifications of the dataset, giving

new opportunities for on-line-like data analytics.

One of the main features of our ClusterTag application is interactivity with a visual collec-

tion representation. Users interact with the images and the created or already defined clusters.

In this application, we use LIRE and WEKA for image features and clustering support, respec-

tively. Additionally, ClusterTag is build in a modular way allowing for easy replacement of

WEKA and LIRE by other machine-learning or feature-extraction libraries if desired.

To be able to implement a visualization tool for a virtually unlimited number of images

simultaneously in real-time and give the user the ability to interact with them, we developed an
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optimized visualization engine written in Java. The overall structure of the software is depicted

in figure 3.10. It consist of the following sub-modules:

• The initial analyzer of the image collection file and folder structure. The initial folder

structure is used to form the initial image clusters.

• The painter module used to draw the user interface and the visual representations of the

cluster hierarchical structure.

• The image-oriented in-memory database and the image cache, implementing the opti-

mized image preloading, rescaling and drawing.

• Off-line on-disk mirror copy updater and annotation meta-data saver responsible for up-

dating the collection’s file structure on the disk after any modification done to the clusters

by the user or by the clustering procedure.

We have designed and implemented several additional optimization techniques to allow real-

time handling of huge image collections. The most important are a database of ready-to-draw

pre-processed images, caching of raw image visual representation, painting of adaptive image

spatial resolution, interaction with partially processed collections, multi-scale image painting,

multi-threaded image processing and feature extraction (see figure 3.10 for an overview). Even

further, to speed-up and smoothe the annotation process, we provide the ability to start exploring

the image collection immediately regardless of the image pre-processing and feature extraction

progress. In case of a newly opened collection, a visual representation becomes available im-

mediately after the initial directory structure listing and the visual representation is updated in

correspondence with the collection processing progress.

The ClusterTag application, first, allows users to choose the folder containing the image

collection. Immediately after listing the files of a new image collection, it appears in the main

window as it was organized in the folder structure, and the user can immediately start exploring

the collection. Figure 3.11(a) shows a visualization of an unsorted collection of 36, 476 medical

images. The user can navigate through the collection’s view using the mouse to move, zoom

into and zoom out of the field of view (see figure 3.11(b)). To perform clustering, the user

can select a desired clustering algorithm, its parameters and several different image features. If

more than one feature is selected, they will be combined using early fusion. After selecting all

the parameters, the user can apply clustering to the dataset creating the clusters. Figure 3.11(c)

shows a visualization of the collection of medical images clustered using the JCD and Tamura

global image features, which produces a number of dense clusters representing visually sim-

ilar images in the same clusters. The zoomed view of the clustered collection is depicted in

figure 3.11(d). The cluster leaves are represented using the image that is closest to the clus-

ter center, i.e., the cluster medoid. Individual images and image groups can be dragged and

dropped between different clusters reflecting changes to the file structure of the collection. It is

possible to name/tag the clusters and individual images.

The ClusterTag tool was intensively used during the Kvasir and Nerthus dataset creation

and annotation. It already demonstrated a great potential for big image processing and was

evaluated with different end-users and domain experts including experienced medical doctors.
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(a) Unsorted collection of images. (b) Zoomed view of the unsorted collection.

(c) Clustered collection of images. (d) Zoomed view of the clustered collection.

Figure 3.11: Examples of visual representations of an image collection containing 36, 476 un-

sorted medical images generated by the ClusterTag application. The initial view of the loaded

collection shows all the images in one big cluster. After the clustering, using the JCD and

Tamura global image features, the software generates a number of dense clusters representing

visually similar images in the same clusters.

3.3 Detection Subsystem

The detection subsystem performs lesion or object recognition and classification. It is in-

tended for abnormality- or object-presence detection without searching for their precise po-

sition. The detection is performed using various computer vision, visual similarity finding,

deep- and machine-learning-based techniques. For each lesion that has to be detected, we use a

set of reference frames that contains examples of this lesion occurring in different parts of the

GI tract. This set can be seen as the model of the specific disease. We also use sets of frames

containing examples of all kinds of healthy tissue, normal findings like stool, food, liquids, etc.
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The final goals of the detection subsystem is to decide if this a particular analyzed frame con-

tains any lesion (detectable object) or not, and to detect the exact type of the lesion (detectable

object). The detection system is designed in a modular way and can easily be extended with

new diseases. This would, for example, allow not only to detect a polyp, but to distinguish

between a polyp with low or high risk for developing CRC [96].

3.3.1 Single-Class Global-Feature-based Detection

In our previous work [112], we presented our basic EIR system [101, 117, 118] that implements

a single-class global-feature-based detector able to recognize the abnormalities in a given video

frame. Global image features were chosen, because they are easy and fast to calculate [79],

and the exact lesion’s position is not needed for detection, i.e., identifying frames that contain

a disease. We showed [97] that the global features we chose [115] can indeed outperform or at

least reach the same results as local features [112].

The basic algorithm is based on an improved version of a search-based method for image

classification. The overall structure and the data flow in the basic EIR system is depicted in

figure 3.12. First, we create the index containing the visual features extracted from the training

images and videos, which can be seen as a model of the diseases and normal tissue. The index

also contains information about the presence and type of the disease in the particular frame.

The resulting size of the index is determined by the feature vector sizes and the number of

required training samples, which is rather low compared to other methods. Thus, the size of the

index is relatively small compared to the size of the training data, and it can easily fit into the

main memory on a modern computer. Next, during the classification stage, a classifier performs

a search of the index for the frames that are visually most similar to a given input frame (see

section 3.3.2 for a detailed description of the method). The whole basic detector is implemented

as two separate tools, an indexer and a classifier. We have released the indexer and the classifier

as an open-source project called OpenSea2 [90].

The indexer is implemented as a batch-processing tool. Creating the models for the classifier

does not influence the real-time capability of the system and can be done off-line, because it

is only done once when the training data is first inserted into the system. Visual features to

calculate and store in the indexes are chosen based on the type of the disease because different

sets of features or combinations of features are suitable for different types of diseases. For

example, bleeding is easier to detect using color features, whereas polyps require shape and

texture information.

The classifier can be used to classify video frames from an input video into as many classes

as the detection subsystem model consists of. The classifier uses indexes generated by the

indexer. In contrast to other classifiers that are commonly used, this classifier is not trained in

a separate learning step. Instead, the classifier searches previously generated indexes, which

can be seen as the model, for similar visual features. The output is weighted based on the

ranked list of the search results. Based on this, a decision is made. The classifier is parallelized

and can utilize multiple CPU cores for the extraction of features and the searching in indexes.

To increase performance even more, we implemented the most compute intensive parts of the

system with GPU computation support.

2https://bitbucket.org/mpg_projects/opensea
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Figure 3.12: Detailed steps for the multi-class global-feature-based detection implementation

3.3.2 Multi-Class Global-Feature-based Detection

The multi-class global-feature-based detector is based on our search-based classification algo-

rithm that is used to create a classifier for each disease that we want to classify. Figure 3.12

gives a detailed overview of the classifier’s pipeline for the global-feature-based implementa-

tion of the detection. The difference to the basic EIR version is that the ranked lists of each

search-based classifier are then used in an additional classification step to determine the final

class.

For feature extraction in the detection step and for the training procedure, the indexing is

performed using the basic EIR indexer implementation [101, 118]. The same set of two global

features, namely Tamura and JCD, is used. These features were selected using a simple feature

efficiency estimation by testing different combinations of features on smaller reference datasets

to find the best combinations in terms of processing speed and classification accuracy. The

selected features can be combined in two ways. The first is called feature value fusion or early

fusion, and it basically combines the feature value vectors of the different features into a single

representation before they are used in a decision-making step. The second one is called decision

fusion or late fusion and the features are combined after a decision-making step. Our multi-class

global-feature-based approach implements feature combination using the late fusion.

During the detection step, a term-based query from the hashed feature values of the query

image is created for each image, and a comparison with all images in the index is performed, re-

sulting in a ranked list of similar images. The ranked list is sorted by a distance or dissimilarity

function associated with the low-level features. This is done by computing the distance between

the query image and all images in the index. The distance function for our ranking is the Tan-

imoto distance [136]. A smaller distance between an image in the index and the query image

means a better rank [136]. The final ranked list is used in the classification step, which imple-
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ments a simple k-nearest neighbors algorithm [19]. This algorithm can be used for supervised

and unsupervised learning, two or multi-class classification and different types of input data

ranging from features extracted from images to videos to meta-data. Its main advantages are

its simplicity, that it achieves state-of-the-art classification results and that it is computationally

very cheap.

For the final classification, we use the random forest classifier [29], an ensemble learning

method for classification that operates by constructing a multitude of decision trees at training

time and outputs the class that is the mode of the classes of the individual trees. A decision

tree can be seen as a classifier, which basically performs decision-based classification on the

given data. To get the final class, the classifier combines decision trees into a final decision

implementing a late fusion for the multi-class classification. The advantage of the random

forest algorithm is that the training of the classifier is very fast because the classification steps

can be parallelized since each tree is processed separately. Additionally, it is shown [142] that

the random forest is very efficient for large datasets due to the ability to find distinctive classes

in the dataset and also to detect the correlation between these classes. The disadvantage is that

the training time increases linearly with the number of trees. However, this is not a problem for

our use-case since the training is done offline, where time is less critical. Our implementation

of the random forest classifier uses the version provided by WEKA. It is important to point out

that for this step, another classification algorithm can also be used.

3.3.3 Deep-Learning-based Detection

The neural network version of EIR called Deep-EIR is based on a pre-trained convolutional

neural network architecture and transfer learning [33]. We trained a model based on the Incep-

tionV3 architecture [132] using the ImageNet dataset [44] and then re-trained and fine-tuned

the last layers. We did not perform complex data augmentation at this point and only relied on

transfer learning for now. For future work, we will also look into data augmentation and train-

ing a network from scratch using the newly collected data, which might lead to better results

than transfer learning.

Figure 3.13 gives a detailed overview of the complete pipeline for the neural network-based

implementation of the detection based on multi-class image classification.

InceptionV3 achieves good results regarding single-frame classification and has reasonable

computational resource consumption. It is built on top of Google’s Tensorflow [12], which

provide a framework for numerical computations using graphs, especially neural network-based

architectures. We used a pre-trained InceptionV3 model [132] with the following retraining

step. For retraining, we follow the approach presented in [46]. Basically, we froze all the

basic convolutional layers of the network and only retrained the two top fully connected layers.

The fully connected layers were retrained using the RMSprop [139] optimizer that allows an

adaptive learning rate during the training process. After 1,000 epochs, we stopped the retraining

of the FC layers and started fine-tuning the two top convolutional layers. This step finalizes the

transfer-learning scenario and performs an additional tuning of all the NNs layers according to

our dataset. For this training step, we used a stochastic gradient descent method with a low

learning rate of 10−4 to achieve the best effect in terms of speed and accuracy [85]. This comes

with the advantage that little training data is needed to train the network, which is an advantage
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for our medical use case. Additionally, it is fast, requiring just about one day to retrain the

model. Our re-trainer is based on an open-source implementation3. To increase the number of

training samples and reduce overfitting of the model, we also performed distortion operations

on the images. Specifically, we performed random cropping, random rescaling and random

change of brightness. The grade of distortion was set to 25% per image. After the model has

been retrained, we use it for a multi-class classifier that provides the top five classes based on

probability for each class.

Figure 3.13: Multi-class deep-learning-based detection pipeline

3.3.4 Deep-Feature-based Detection

Our deep-feature-based detection (see figure 3.14) approach is designed using different well-

known-working deep learning architectures to extract either the features directly or to clas-

sify the images using the whole range of concepts and their probabilities as input for the var-

ious machine-learning-based classifiers. The architectures that we used are ResNet50 [59],

VGG19 [125], InceptionV3 [133] and Xception [40].

Here, we use only pre-trained models of the mentioned architectures in two main modes:

deep-feature and deep-concept extraction. Deep feature is the vector of floating point numbers

that represents an output of the pre-top-layer of the deep convolutional neural network (DCNN)

architecture. Normally, this vector is used as an input to the top fully connected layers of the

DCNN, thus it represents the highest-possible vector of the image features used for the final

image classification on the top layers. In case of already pre-trained an DCNN, the deep feature

vector contain information about all the image’s high-level features in a compact form. For

the used architectures, the size of the vector with deep features is pre-defined [93] and it does

neither depend on its single- or multi-class nature, nor on the number of classes supported

by the specific DCNN. In contrast, deep concept is an output of the top layer of the multi-

class classification DCNN. That is a vector of floating point numbers with the size equal to

the number of classes for that this particular DCNN. The deep concept vector represents the

detection probabilities of the each and every DCNN-supported concept. Here, the meaning

of concept is equal to the meaning of class for multi-class classification problems. The main

difference is that in our approach the concepts’ probabilities are not the final output of the

detector, but they are used as a feature vector in the further stages of detection.

3https://github.com/eldor4do/Tensorflow-Examples/blob/master/

retraining-example.py
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The DCNN models are used as is without any additional retraining, and we rely on the

transfer learning methodology for the final detection. After extracting the corresponding deep

features or/and concepts, they are used as the input to the classical machine-learning-based

multi-class classifiers. We use Random Tree [28], Random Forest [29] and Logistic Model

Tree [130] classifiers that were proven to perform efficiently and are able to process the feature

vectors at a reasonable speed.

Figure 3.14: DCNN concepts- and deep-features-based detection pipeline

3.4 Localization Subsystem

The localization subsystem is intended for finding the exact positioning of a lesion, which is

used to show markers or areas in the frame containing the disease. This information is then used

by the visualization subsystem. The localization subsystems can be used in combination with

multiple analytic modules designed for various diseases and different localization precision. All

modules are divided into two main classes depending on the input data requirements: position

finders and complete localizers. The position finders require preliminary frames’ processing

by the corresponding detection subsystem and process only frames marked as positive by the

detection subsystem. Complete localizers provide the integral solution to the disease finding

problem. First, they process the whole frame and perform its fine or/and coarse segmentation

with box- or pixel-wise granularity. Then, this segmentation information is used for both ex-

act lesion position marking and disease presence detection. Therefore the complete localizers

do not require preliminary frames’ processing by the corresponding detection subsystem and,

despite they higher complexity, can even perform faster in terms of the overall detection plus

localization performance.

3.4.1 Hand-Crafted Local-Feature-based Position Finder

The local-feature-based position finder is designed as a pipelined frame processor that utilizes

several hand-crafted local image features in order to perform localization of polyps. Processing

is implemented as a sequence of intra-frame pre- and main-filters. Pre-filtering is required

because we use local image features to find the exact position of objects in the frames, and these

features can be affected by pixel noise and local color defects. In general, lesion objects or areas

can have different shapes, textures, colors and orientations. They can be located anywhere in

the frame and can also be partially hidden and covered by biological substances, like seeds or

stool, and lighted by direct light. The image itself can be interlaced, noisy, blurry and over- or

under-exposed, and it can contain borders and sub-images. Images can have various resolutions

depending on the type of endoscopy equipment used. Endoscopic images usually have a lot

of flares and flashes caused by a light source located close to the camera. All these nuances
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Figure 3.15: Detailed steps of the hand-crafted local-feature-based localization algorithm im-

plementation

affect the local feature-based localization methods negatively and have to be specially treated

to reduce localization precision impact. In our case, several sequentially applied filters are used

to prepare raw input images for the following analysis. These filters are border and sub-image

removal, flare masking and low-pass filtering. After pre-filtering, the images are ready to be

used for further analysis.

The main localization algorithm able to spot colon polyps using our hand-crafted approach

is based on several local image features [116]. The main idea of the localization algorithm is to

use the polyp’s physical shape to find the exact position in the frame. In most cases, the polyps

have the shape of a hill located on a relatively flat underlying surface or the shape of a more

or less round rock connected to an underlying surface with stalks of varying thickness. These

polyps can be approximated with an elliptically shaped region consist of local features that dif-

fer from the surrounding tissue. To detect these types of objects, we process frames marked

by the detection subsystem as containing polyps by a sequence of various image processing

procedures, resulting in a set of possible abnormality coordinates within each frame. Figure

3.15 gives a detailed overview of a localization pipeline. The pipeline consists of the follow-

ing steps: non-local means de-noising [31]; 2D Gaussian blur and 2D image gradient vector

extraction; border extraction by gradient vector threshold binarization; border line isolated bi-

nary noise removal; estimation of ellipse locations; ellipse size estimation by analyzing border

pixel distribution; ellipse fitting to extracted border pixels; selection of a predefined number of

non-overlapping local peaks and outputting their coordinates as possible polyp locations. For

the possible locations of ellipses, we use the coordinates of local maxima in the insensitivity

image, created by additive drawing of straight lines starting at each border pixel in the direction

of its gradient vector. Ellipse fitting is then performed using an ellipse fitting function [49].

3.4.2 Deep-Learning-based Region Localizers

Despite the promising performance shown by the hand-crafted polyp finder, it is limited to

polyps and is hard to extend toward other flat lesions or findings that can vary in shape and
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properties, like, eg., ulcer lesion and Z-line landmark. The next generation of complete local-

izers used in DeepEIR system are deep-learning-based region localizers. The idea of utilizing

deep-learning-based methods for the localization tasks appeared in connection with the need

to simplify support for adding different diseases by implementation of lesion-specific shape,

color and texture detection, which requires a lot of manual work and experimental studies for

each new type of abnormality. In order to reduce the system improvement costs, we performed

an evaluation of two universal deep-learning-based object localization approaches that were

adapted to fit the processing requirements of medical imaging. The first is TensorBox4 [128],

which extends Google’s Tensorflow DCNN reference implementation [12]. The second ap-

proach is based on the Darknet [105] open-source deep learning neural network implementa-

tion called YOLO5 [106]. Both of these frameworks are designed to provide not only object

detection, but also object localization inside frames.

The TensorBox approach introduces an end-to-end algorithm for detecting objects in im-

ages. As input, it accepts images and generates a set of object bounding boxes as output. The

main advantage of the algorithm is its capability of avoiding multiple detections of the same

object by using a recurrent neural network (RNN) with long short-term memory (LSTM) units

together with fine-tuned image features from the implementation of a CNN for visual object

classification and detection called GoogLeNet [131].

The Darknet-YOLO approach introduces a custom CNN, designed to simultaneously pre-

dict multiple bounding boxes and class probabilities for these boxes within each input frame.

The main advantage of the algorithm is that the CNN sees the entire image during the training

process, so it implicitly encodes contextual information about classes as well as their appear-

ance, resulting in a better generalization of objects’ representation. The custom CNN in this

approach is also inspired by the GoogLeNet [131] model.

As initial models for both approaches, we used database models pre-trained on ImageNet [68].

Our custom training and testing data for the algorithms consists of frames and corresponding

text files describing ground truth data with defined rectangular areas around objects: a JSON

file for TensorBox and one text file per frame for Darknet-YOLO. Ground truth data was gen-

erated using a binary-masked frame set (example shown in figure 3.16). Both frameworks were

trained using the same training dataset, where all frames contained one or more visible polyps.

No special filtering or data preprocessing was used, thus the training dataset contained high

quality and clearly visible polyp areas as well as blurry, noisy, over-exposed frames and par-

tially visible polyps. The models were trained from scratch using corresponding default-model

training settings [106, 128]. After the training, the test dataset was processed by both neural

networks in testing mode. As a result, the frameworks output JSON (TensorBox) and plain-text

(Darknet-YOLO) files containing sets of rectangles, one set per frame, marking possible polyp

locations with corresponding location confidence values. These results have been processed

using our localization algorithms.

4https://github.com/Russell91/TensorBox
5https://github.com/pjreddie/darknet
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(a) Frame with polyp (b) Polyp ground truth

Figure 3.16: Example frames showing polyp and its body ground truth area. This is an example

of polyps localization task complexity. Polyp body has the same color, texture properties and

light flares as surrounding normal mucosa

3.4.3 Deep-Feature-based Region Localization

The deep-feature-based complete region localization approach is our attempt to utilize our

frame-wise deep-feature-based detection algorithm for localization purposes. We have applied

the RT-D method to the set of sub-frames generated from the training and test sets. Sub-frames

(blocks) are generated using sliding square window with 66% overlap with the neighboring sub-

frames. We have tested different window sizes from 64x64 to 128x128 pixels. The best results

were obtained using 128x128 windows size. The generated sub-frames are fed into the RT-D

detection algorithm, and then, the processed sub-frames are grouped back into the frame. This

results in a coarse localization map which is then used for frame-wise detection. The detection

is achieved by applying a simple threshold activation function, and we evaluated the activation

thresholds ranging from 1 block to 50% of the frame blocks. The best detection results were

achieved with a threshold value of 2 blocks.

3.4.4 GAN-based Segmentation, Localization and Detection

The most advanced GAN-based complete segmentation localizer provides a fine pixel-wise

marking of the frames with the lesion-occupied areas. It shows not only the location of lesions

on the generated segmentation maps, but also provides a probability for each pixel of input

image to belong to the lesion area, enabling the efficient and flexible detection-via-localization

post-processing of segmentation data. Moreover, this localizer can be easily to various types of

lesions regardless of their properties. At the moment we have implemented this localization and

the corresponding detection-via-localization for polyps, angiectasia lesion, bleeding and even

for non-GI-tract- and non-medical-related objects like spermatozoons, flooded areas, etc.

The proposed segmentation approach (see figure 3.17) is able to mark the object in the

given frame with pixel accuracy. To achieve this, we use GAN to perform the segmentation.

GANs [54] are machine learning algorithms that are usually used in unsupervised learning and

are implemented by using two neural networks competing with each other in a zero-sum game.

Modern architectures of GANs have been shown to achieve promising results in terms of per-
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Figure 3.17: GAN-based segmentation and localization pipeline

formance and data processing speed in various image segmentation tasks. They not only can

efficiently extract and summarize the local texture and shape properties of the target objects

using relatively small training sets, but also can resist the various image property variations,

like change of noise level, slight color and luminosity shifts, etc. We use a GAN model initially

developed for retinal vessel segmentation in fundoscopic images, called V-GAN. We choose

V-GAN as the basis for our polyp segmentation approach development because it demon-

strated [127] the good segmentation performance for the retinal images that have the visual

properties comparable to the GI tract images. The V-GAN architecture [127] is designed for

RGB images and provides a per-pixel image segmentation as output. To be able to use the GAN

architecture in our segmentation approach, we added an additional output layer to the generator

network that implements an activation layer with a step function that must generate the binary

segmentation output. Furthermore, we added support for gray-scale and RGB color space data

shapes for the input layers of the generator and discriminator networks including an additional

color space conversion step. Gray-scale support was added to be able to use a single value per

pixel input in order to reduce the network architecture complexity, to speed up the model train-

ing and data processing parts, and also to implement the processing of modern narrow-band

images generated by some types of endoscopic devices.

In the same way as all the machine- and deep-learning-based approaches, the proposed lo-

calizer requires preliminary training using an appropriate training set consisting of pixel-wise

annotated images. The images used in this research are obtained from standard endoscopic

equipment and can contain some additional information fields related to the endoscopic proce-

dure. Some types of the field (see Figure 3.18), integrated into resulting frames shown to the

doctor and captured by the recording system, can confuse detection and localization approaches,

and lead to frame misclassification (green navigation box) or false positive detection (captured

frame with polyp). We have implemented a simple frame preparation procedure that consists of

three independent steps: black border removal (including patient-related text fields), navigation

localizer map masking and captured still frame masking. All the removed and masked regions

are excluded from further frame analysis.
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Another problem we meet during the development of this advanced localizer is the lack

of well-annotated training samples with detailed ground truth masks. To reduce the impact

of the limited training sets, we implemented a data augmentation scheme used in the training

process of the GAN. The data augmentation scheme implements image rotation in the range

of ±180°, horizontal and vertical flipping of frames and image insensitivity alteration in the

range of ±40%. These augmentation parameter values were selected during the initial approach

development and preliminary evaluation on the reduced training and validation sets.

(a) Navigation (b) Captured frame (c) Patient information

Figure 3.18: Examples of the different auxiliary information fields integrated into recorded

frame: a colonoscope navigation localizer (a), a captured still frame (b) and a patient-related

information (c). Images taken from CVC-968 [23] and Kvasir [95].

The GAN-based detection-via-localization approach (see figure 3.19) utilizes a simple thresh-

old activation function, which takes the number of positively marked pixels in the frame as

input. In the validation experiments performed using different datasets, we evaluated the ac-

tivation thresholds from one pixel to a quarter of the frame. The best detection results were

achieved with a threshold value of 50 pixels [92], which has been used for the detection experi-

ments.

Figure 3.19: GAN-based detection-via-localization pipeline
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3.5 Visualization and Results Representation Subsystem

The visualization concepts of the EIR system include multiple different visual data representa-

tion strategies. The first-stage data visualization modules were implemented during annotation

and visualization subsystem development (see section 3.2). The developed hyperbolic-tree- and

cluster-based visualization and clustering approaches demonstrated [120] their great potential

for data analysis and were widely used for our own dataset preparation [94, 95, 100]. Further de-

velopment of the visualization system was necessary for the efficient support of the EIR system

user-level task and include both still image (frame) visualization and video stream handling.

3.5.1 Online Global-Feature-Based Visual Similarity Search Tool

In order to validate our global-feature-based similarity search methodology used in the detection

system implementation, we designed and developed an image retrieval and result browsing

application, while succeed our previous search-based classifier and visualizer [112]. It utilizes

the core strengths of global features: small footprint, high computing and search speed. The tool

is unique in its combination of image browsing and searching, where users implicitly select the

image features that match their sense of similarity best. At the start, the user provides a query

image. Then, the search engine retrieves results using different pre-selected global features.

After the users picked the features and used the query image to get the first results, they can

explore the available results in four partitions, each representing the results for one feature.

Figure 3.20 shows the application’s user interface. The query image is shown in the center, lines

in the background of the results show the partitions. Users can navigate the search selecting the

desired image as the new query image. Therefore, users can browse the data set based on

different features. The tool’s UI is implemented using the non-commercial open-source version

of the QT development library. Feature extraction is implemented via a C++ wrapper for the

LIRE library Java API. The tool is cross-platform and can be used from desktop and mobile

platforms.

This search and visualization tool allowed us to verify our global-feature-based image match-

ing methodology and demonstrated the validity of the desired approach. The tool was described

in [80], presented for the first time at the 7th International Conference on Multimedia Systems,

and received positive feedback from the multimedia information retrieval community. Using the

experience obtained during this tool development, we designed and developed the visualization

module for our GF-based frames classifier and polyp detector.

3.5.2 Visualization Module for Polyp Detection and Spotting

The visualization module for real-time polyp detection and spotting is designed to be integrated

into the complete live EIR system pipeline. The primary aim of the EIR system is to provide

live feedback to doctors, i.e., a computer-aided diagnosis in real-time. Thus, while the endo-

scopist performs the colonoscopy, the system analyzes the video frames that are captured by

the colonoscope. In this visualization module, we combine the visual information from the

endoscope with our marks to provide helpful information for the operating doctor. For the de-

tection, we alter the frame borders and show the name of the detected finding in the auxiliary
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(a) (b)

Figure 3.20: Online global-feature-based visual similarity search tool usage examples. The

image in the center is the query image. The first six results of four queries based on four three

global and one local features are shown around the query image.

area of the endoscope device monitor. For the implemented lesion localization spotting, we

draw a cross on top of the localized findings (polyps in this system version). Additionally, we

plot in the lower part of module’s UI display additional information about the lesion detection

performance including the polyp localization ground truth, per-frame polyp detection indicator

and, most important for the visual detection performance verification, event recorder that de-

picts detection events, e.g., true positive (TP), false positive (FP), false negative (FN) and true

negative (TN), for each and every processed frame. The visualization module together with the

underlying detection and localization (spotting for polyps) subsystems is able to process a Full

HD video stream with 30 FPS that meets our in real-time goal. An example of the graphical

output of the live system is depicted in figure 3.21. The visualization module is implemented in

C++ using the OpenCV library for video stream handling, and it is cross-platform supporting

the Windows and Linux operating systems.

For the deep-learning-based detector, we implemented an additional visualization module

especially designed to provide efficient integration with the Python-based DL subsystems. The

designed Python wrapper provides seamless video frame import in a separate worker thread,

execution of various TensorFlow-based lesion detectors and drawing of the detection results

together with the input video frames in unified UI (see Figure 3.22). In this module, we put

most of the efforts into making our TensorFlow detection code work in parallel with the visual

data input and output (I/O), to be able to utilize simultaneously CPU and GPU resources for

data I/O and analysis, respectively.

3.5.3 Visualization Module for Lesions Detection and Localization

Our most recent visualization module for real-time polyp detection and localization is designed

in tight collaboration with experienced endoscopists with the primary aim of enabling integra-

tion with real endoscopic equipment installed in the hospitals’ examination rooms. Despite
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Figure 3.21: The visualization module for real-time polyp detection and spotting build upon

our global-feature-based detection and hand-crafted local-feature-based polyp position finder

approaches. It is able to process both recorded and live Full HD video stream from traditional

colonoscope, highlight frames containing polyps and mark the recognized polyp location with a

cross mark. The pink surrounding frame shows a positive detection. Plot in the lower part of UI

shows the per-frame polyp presence ground truth, polyp detection indicator and TP/FP/FN/TN

events recorder.

Figure 3.22: The visualization module for our deep-feature-based real-time polyp detection ap-

proaches. It is able to process Full HD live-captured video stream from traditional colonoscope

and highlight frames containing detected lesions. The plot in the lower part of UI show the

per-video-frame lesion detection probability.

visual feedback simplicity (see figure 3.23), its architecture supports input from Full HD live

video endoscope sources and provides as low latency as possible in order to minimize the overall

pipeline execution time for individual video frames. This is especially important for live exam-
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inations when endoscope and instrument movements are precisely controlled by only visual

feedback on the primary operational display. During the initial clinical trials, we will display

the visual detection and localization output on the auxiliary screen to avoid possibility of the

video footage interruptions, thus the initial latency requirements are not as strict as they will

be for the main trials with only one primary display with the integrated lesion detection and

localization marking. Thus, for this EIR system version, we do not define the target process-

ing latency, rather we set the minimum frame processing rate of the 15 FPS as enough for the

initial live detection and localization system implementation. Nevertheless, this relatively low

target processing speed is enough for live system evaluation in real-world conditions. On the

other hand, it is not reducing system benefits for off-line endoscopy data processing, due to its

independent processing of frames. For post-procedure or VCE data processing, the analysis is

easily parallelized, resulting in a high EIR system scalability [96, 101].

Figure 3.23: Near-to-real-time polyp detection and localization demo build upon our GAN-

based detection and localization approach. The software processes recorded Full HD video

stream from traditional colonoscope and highlights the exact polyp location in the particular

frame. The marking is implemented as as a bounding box rectangle drawing over the source

video frame. The achieved processing speed is in between 5 and 10 FPS depending on the used

GPU acceleration hardware.

3.6 System Evaluation

In this section, we present the experiments that we conducted on the DeepEIR system. We

tested the whole system and its individual subsystems in terms of usability, accuracy and data

processing performance. The requirements of the system that we are evaluating are: (i) abil-

ity to handle big amounts of data during data collection and annotation phases; (ii) reaching

real-time performance (being able to process 25-30 frames per second); (iii) achieving high de-

tection and localization accuracy (at least equal to the best related approaches in table 2.2); and

ability to visualize detection and localization results in a convenient way. All the experiments

except for the shared GPU and extreme multi-core CPU-efficiency testing were conducted us-

ing consumer-grade computation equipment and general-purpose GPUs without utilization of

specialized CNN-oriented accelerators.
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3.6.1 Annotation Subsystem

We evaluated performance and usability of the annotation system during the exploration and

annotation of our two datasets Kvasir and Nerthus. In the initial stages of the project, we mostly

were processing and sorting the raw anonymized data received from hospitals’ information

systems manually. Despite the fact that it is not possible to fully avoid any manual annotation

work during the dataset preparation and verification, the amount of work was tremendous, and

it took several weeks to prepare the very first pre-version of the Kvasir dataset.

As the initial annotation-automation approach, we implemented a visual-feature-based sort-

ing algorithm. First, we used our OpenSea tool to extract global image features from all the

unsorted images. Next, we used the K-Means clustering algorithm from WEKA to build a set

of clusters containing visually similar images in the different clusters. Finally, generated clus-

ters were processed manually in order to select a small set of relevant images for the classes

of diseases. This intermediate solution was, next, evolved into the hyperbolic-tree-based visu-

alization and clustering tool. This tool was used for the further raw dataset exploration. The

hyper-tree-based representation significantly improved our ability to explore the data collection,

however, the graphical view’s drawing performance was not sufficient to process the larger col-

lections containing thousands of images. Thus, we continued to evolve the tool.

The resulting ClusterTag cluster-based visualization and annotation tool was especially de-

signed with the big data collections in mind. The annotation automation was improved by

introducing classification-based clustering capability. The user can easily improve the quality

of clusterization by using a set of pre-selected images for each defined image class. The pre-

selected (seed) images are then used as a training set for our classification methodology intro-

duced in our OpenSea classifier. After model training, the remaining raw images are classified

by OpenSea, and the classification results then used to make new clusters of pre-annotated im-

ages. This resulted in better cluster density, significantly reducing the amount of manual work

required for dataset annotation.

To solve the issue of drawing performance, we used a set of techniques to support low-

latency visual representation and give the best possible user-friendly experience to the annota-

tors. The ClusterTag tool itself, as well as all the used libraries, is written in Java and, thus,

it is a cross-platform solution that can be easily deployed on Windows, Linux and macOS.

The drawing constrains introduced because of Java’s cross-platform nature were resolved using

the platform-targeted Lightweight Java Game Library, which is using OpenGL for hardware-

accelerated painting. The access performance of the storage used for drawing data was im-

proved by developing a high-speed custom image caching technique and background database

update strategy. All together, our efforts to implement real-time drawing of big image collec-

tions resulted in an efficient visual core implementation. The screen update and redraw latency

of 100 millisecond and less was measured for the big collection of 200.000 images of different

resolution varying from QCIF up to Full HD. Further improvement of drawing performance can

be achieved by porting the drawing core to C++ and implementing sub-scale images caching in

GPU memory.
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True False False F1

Participant Positive Positive Negative Precision Recall score

UNS-UCLAN 48 481 148 9.07 24.49 18.28

CuMedVis 31 167 165 15.75 15.81 15.77

CVC 33 163 163 16.84 16.84 16.84

Our EIR System 46 723 150 5.98 23.47 14.81

RUS 65 1558 131 4.00 33.16 13.50

SNU 8 188 188 4.08 4.08 4.08

Table 3.1: Results of the MICCAI 2015 polyp localization challenge [25].

3.6.2 Detection and Localization Subsystems

3.6.2.1 Evaluation Metrics

For the performance evaluation experiments, we used the following metrics precision (PREC),

recall/sensitivity (SENS), specificity (SPEC), accuracy (ACC), F1 score (F1) and Matthew cor-

relation coefficient (MCC). A detailed description and reasoning for the used metrics is given

in paper XII. The detection performance metrics are computed frame-wise. The localization

performance metrics are computed pixel- and block-wise depending on the approach being

evaluated using the provided binary masks of the ground truth.

The data processing speed is measured in number of frames per second (FPS). For all the

approaches we use the margin of 25 FPS as a border-line for the algorithm to be considered

real-time-capable.

3.6.2.2 Polyps

The very first evaluation of our polyp detection and localization approach was performed by

participating in the MICCAI 2015 Grand Challenge [25]. It this challenge, three different

databases were used. Two publicly available databases were proposed for still-frame analysis,

CVC-CLINIC and ETIS-LARIB. CVC-CLINIC [24] contains 612 SD frames and comprises 31

different polyps from 31 sequences. ETIS-LARIB [4] contains 196 HD frames and comprises

44 different polyps from 34 sequences. All the images contain at least one polyp. The ground

truth consists of the polyp masks annotated by qualified endoscopists from the corresponding

clinical institution. The last one is the closed and copyrighted ASU-Mayo Clinic Colonoscopy

Video Database [1], which comprises a set of short and long colonoscopy videos, col- lected

at the Department of Gastroenterology at Mayo Clinic, Arizona. This database consists of 38

different, fully annotated videos including frames with and without polyps.

The challenge consisted of two sub-tasks: polyp localization and polyp low-latency detec-

tion. The polyp localization sub-task is designed to find out if the proposed method can cope

with variability of polyp appearance within a captured video-frame and, therefore, accurately

determine the location of a polyp in the frame. The low-latency detection checks it the proposed

method can detect a polyp in the frame and determine the delay from the first appearance of the

polyp to the moment when it is detected.

Table 3.1 depicts the result for the polyp localization part based on the CVC-ClinicDB

dataset. EIR was on the fourth place out of six. Based on the fact that our system is not

built for only polyp detection, the achieved results were promising. It is also important to

point out that the first three participants were organizers of the challenge and involved in the

dataset collection. Table 3.2 gives an overview of the results for the detection latency part.
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Participant Latency in ms F1

CuMedVis 6.66 26.40

Our EIR System 21 13.27

SNU 43.33 6.13

CVC 44.60 22.78

Rustad 235 11.47

ASU 417.5 20.84

UNS-UCLAN 0 0

Table 3.2: Results of the MICCAI polyp detection challenge. The table shows the detection

latency in milliseconds and F1 score [25].

Figure 3.24: Polyp localization results generated by our first polyp localization and detection

approach on the MICCAI 2015 dataset [25]. Light green ellipses depicts the polyp localization

ground truth masks. Green and red crosses show the true positive and false positive polyp

localization results, respectively. The localization algorithm was tuned to output exact four

possible polyp locations per frame.

For the latency, EIR performed second best out of all participants. This is a very good result,

and a positive confirmation of the real-time performance capability of EIR. It should also be

mentioned that the approach of UNS-UCLAN is not able to distinguish between a frame with

or without polyp.

Overall, the results of the challenge were positive for a system that is designed to be ex-

pandable with different diseases and use cases. We proved that we were able to compete and

outperform other state-of-the-art approaches, which are designed for the specific problems of

the challenge, without applying any adaptations or modifications to EIR or tuning our detection

for the given dataset [25]. It is also important to point out that we participated in the MICCAI

2015 challenge at the early stage of EIR system development in order to validate our approaches

under real-world conditions.

In the following stages of our work, polyp detection and localization were the main focus

of this research, and the performance of polyp detection and localization has been gradually

increased. The recent and most promising results were reached via our latest approach which

uses a combined algorithm to address both polyp detection and localization at the same time.

However, to be properly trained, the method requires the detailed ground truth masks for each
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and every training image used. Thus, to assess the method’s performance, we used another

publicly available dataset apart of our Kvasir and Nerthus datasets. This additional dataset is a

part of MICCAI 2017 Grand Challenge [23] and it is publicly available for research purposes.

All-in-all, for the performance evaluation experiments, we use combinations of six differ-

ent datasets, namely CVC-356 [23], CVC-612 [24], CVC-968, CVC-12k [23], Kvasir [95] and

parts of Nerthus as the source of normal mucosa frames [94] (see Table 3.3 and Paper XV for

the detailed datasets overview). The CVC-356 and CVC-612 datasets consist of 356 and 612

video frames, respectively. CVC-968 is a direct combination of CVC-356 and CVC-612. In

these datasets, each frame that contains a polyp comes along with pixel-wise annotations. All

three small CVC datasets are used for both training and testing the localization performance-

evaluation experiments, and for the training only in the detection experiments. For all frame-

wise polyp detection approaches, except for the GAN-based approach, we also added the 1, 350

frames of normal mucosa from the Nerthus dataset since normal mucosa examples for the neg-

ative class are required for our GF- and DF-based detection algorithms. The big CVC-12k

dataset contains 11, 954 frames extracted from different videos, 10, 025 of them contain a polyp

and 1, 929 show only normal mucosa. The polyps are not precisely annotated pixel-wise, but

with an oval shape covering the approximated polyp body region (approximated annotation).

For the Kvasir dataset, we included all the classes except for the dyed classes (in a real world

scenario something dyed is already easily detected by the doctor) leading to a frame-wise anno-

tated dataset containing 1, 000 frames with polyps, and 5, 000 without. The CVC-12k dataset is

used as the test set for block- and frame-wise detection and the Kvasir dataset - for frame-wise

detection approach evaluation.

All the images and video frames used in polyp localization and detection evaluation experi-

ments are captured from standard endoscopic equipment and can contain some additional infor-

mation fields related to the endoscopic procedure. Some types of the fields (see Paper XV for

the details) integrated into resulting endoscopic frames can confuse detection and localization

approaches, and lead to frame misclassification or false positive detection (captured frame with

a polyp). To avoid these problems, we have implemented a simple frame preparation procedure

that consists of three independent steps: a black border removal (including patient-related text

fields), a green navigation localizer map masking and a captured still frame masking. All the

removed and masked regions were excluded from further frame analysis. Moreover, due to a

limited number of available frames with detailed ground truth masks, we implemented a data

augmentation scheme used in the training procedure for the GAN-based approaches. For the

presented evaluation, we used only rotation and flipping of frames. Rotation was performed in-

dependently with 20° steps. Together with the in-horizontal-direction-flipped frames, we added

35 new frames complementary to each original one.

Table 3.4 depicts the performance evaluation results for the GAN-based pixel-wise polyp

segmentation approach. The best performance is achieved using the CVC-612 dataset for train-

ing, which means, more training data improves the final results. An interesting observation is

that the precision is higher with CVC-356 as training data. This might be an indicator that more

training data makes the model more general, but less accurate. All in all, the validation using

these datasets indicates that the approach works well, and the proposed localization algorithm

can perform efficiently even with a low number of available training samples. This is impor-

tant for our medical use-case scenario with a high diversity of objects and a limited amount of
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Dataset Training Test # Frames # Polyp frames # Normal frames

CVC-356 X X 1,706 356 1,350

CVC-612 X X 1.962 612 1,350

CVC-968 X X 2.318 968 1,350

CVC-12k - X 11,954 10,025 1,929

Kvasir - X 6,000 1,000 5,000

Nerthus X - 1,350 - 1,350

Table 3.3: Overview of the datasets used in the experiments. Kvasir and Nerthus are our own

public datasets. CVC-968 is a combined dataset consist of CVC-356 and CVC-612 sets.

Test set Run Train set PREC SENS SPEC ACC F1 MCC

CVC-612 LOC-356 CVC-356 0.819 0.619 0.984 0.946 0.706 0.684

CVC-356 LOC-612 CVC-612 0.723 0.735 0.981 0.965 0.729 0.710

Table 3.4: Validation results of the in-frame pixel-wise polyp areas segmentation (localization)

approach evaluated using different combinations of the CVC-356 and CVC-612 sets for training

and testing.

Run PREC SENS SPEC ACC F1 MCC

LOC-Xception 0.584 0.257 0.972 0.880 0.357 0.333

LOC-VGG19 0.232 0.406 0.800 0.750 0.295 0.166

LOC-ResNet50 0.536 0.248 0.968 0.875 0.340 0.306

Table 3.5: Performance of the block-wise polyp localization (LOC) via detection approaches

reported per method and used training data. Training and testing are performed using the CVC-

968 and CVC-12k datasets, respectively. See Paper XV for the detailed results.

annotated data available.

The results for the block-wise polyp location approaches are presented in Table 3.5. The

performance results obtained are especially interesting since all the approaches presented are

trained with small amounts of training data without any negative examples (no normal mucosa

frames at all). Furthermore, the CVC-12K dataset is heavily imbalanced, which makes it harder

to achieve good results. For block-wise location via detection, the LOC-Xcept approach per-

forms best for all the different training set sizes. It also indicates that a larger training dataset

can lead to better results. The results for the LOC-ResNe approach confirm this with significant

improvements when the training dataset size is increased. This is something that should be

investigated in the future. Additionally, the algorithm used to combine the results on different

sub-frames into one can be improved by, for example, using another machine learning algorithm

to learn the best combinations.

The frame-wise polyp detection results can be found in Table 3.6. All approaches are trained

on CVC-356, CVC-612 and CVC-968 training datasets and tested on the CVC-12k and Kvasir

datasets. All in all, the GAN approach performs best on both datasets and within all variations of

training datasets. The performance on the Kvasir dataset is better than on the CVC-12k dataset

which is surprising since the Kvasir data is completely different from the CVC training data.

Moreover, frames in the Kvasir dataset are captured using different and various hardware. This

is a strong indicator that the approach is able to create a general model that is not just working
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Test

set
Run PREC SENS SPEC ACC F1 MCC

K
v
a

si
r

GAND-Kvasir 0.736 0.746 0.946 0.913 0.741 0.689

GFD-Kvasir 0.225 0.859 0.409 0.484 0.357 0.208

RTD-Xception-Kvasir 0.459 0.256 0.939 0.825 0.328 0.251

RTD-VGG19-Kvasir 0.231 0.320 0.842 0.774 0.268 0.142

RTD-ResNet50-Kvasir 0.248 0.877 0.469 0.537 0.387 0.262

YOLOD-Kvasir 0.530 0.559 0.901 0.844 0.544 0.450

C
V

C
-1

2
k

GAND-CVC-12k 0.906 0.912 0.510 0.847 0.909 0.428

GFD-CVC-12k 0.835 0.854 0.125 0.737 0.845 -0.020

RTD-Xception-CVC-12k 0.899 0.690 0.600 0.676 0.781 0.224

RTD-VGG19-CVC-12k 0.232 0.406 0.800 0.750 0.295 0.166

RTD-ResNet50-CVC-12k 0.870 0.303 0.766 0.378 0.450 0.057

YOLOD-CVC-12k 0.932 0.641 0.757 0.660 0.759 0.296

Table 3.6: Results for the frame-wise polyp detection approaches, namely multi-class global-

feature-based (GFD), deep-learning-based with random tree (RTD) final classifier, GAN-based

(GAND) and YOLOv2-based (YOLOD). We used the CVC-12k and Kvasir dataset as indepen-

dent test sets. Training of all the approaches is performed using the combined CVC-968 dataset

consist of CVC-356 and CVC-612 sets. See Paper XV for the detailed results.

well on the given data and that the CVC-12k dataset is very challenging. Some of the difficulties

we could observe are for example screens in screens that show different parts of the colon, out of

focus, frame blur, contamination, etc. (see for example Figures 3.18 and 3.26). From the RTD

approaches, Xception-based has the best overall performance, and it performs best on the CVC-

12k dataset. The ResNet50-based method reaches best performance for the Kvasir dataset, but

is still far away from the GAN approach (MCC 0.262 versus 0.689). The GFD approach did not

perform well on the CVC-12k dataset and could not make sense of the data. This is indicated

by only negative MCC values which basically means no agreement. On the Kvasir dataset, it

performed much better and could even outperform RTD VGG19-based approach. Overall, the

RTD approaches with VGG19 performed worse than all other approaches. The reason could be

that the general hyper-parameters that we collected using optimization did not work well for the

VGG19 architecture.

In order to compare our detection approaches to the state-of-the-art, we also evaluated one

of the recent and promising object detection CNNs called YOLOv2 [107]. The YOLOv2 model

is able to detect objects within a frame and to provide an object’s localization box and a prob-

ability value for the object detection. We trained YOLOv2 with the CVC-968 dataset using an

appropriate conversion from ground truth masks to surrounding object boxes, as required by

YOLOv2. The training was performed from scratch with the default model parameters. The

trained YOLOv2 model showed relatively high performance with an MCC value of 0.450 and

0.296 for the Kvasir and CVC-12k sets, respectively, and was able to outperform all tested

approaches except for the GAN-based solution. Nevertheless, the performance of the well-

developed and already fine-tuned YOLOv2 model is significantly lower than our new GAN-

based detection-via-localization approach.
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Table 3.7 depicts the performance evaluation results for the GAN-based pixel-wise localiza-

tion (segmentation) approach using two polyp datasets with detailed ground truth masks avail-

able: CVC-356 and CVC-612. In this experiment, we performed a cross-validation using these

two datasets. The best performance is achieved (as it was expected), using the bigger CVC-612

dataset for training. Here, we achieved a well-balanced localization performance with the high

overall measures F1 of 0.729 and MCC of 0.710. An interesting discovery of this experiment is

that our localization algorithm can still perform very efficiently (F1 of 0.706 and MCC of 0.684)

even when trained using the small amount of training data (CVC-365 contains only 356 images

of polyps). This is a vital property for our medical use-case scenario with a high diversity of

objects and a limited amount of annotated data available. Figure 3.25 shows the representative

example of the polyp localizer output. The pixel-wise probability mask shows the possible lo-

calization of the polyp body’s pixels and it conforms well with the ground truth. Comparing to

our initial polyp localization, the GAN-based approach can easily distinguish between normal

intestinal folds and polyp-affected tissue by learning the tiny local image features and shape

properties.

Another experiment shows our approach to the common case of coarse ground truth avail-

able for the data. Here we use our block-wise location via detection approach. The performance

results presented in table 3.8. The best performance with F1 score of 0.357 and MCC of 0.333

was achieved using the CVC-968 dataset. The interesting insight is that the algorithm was

Test set Run Train set PREC SENS SPEC ACC F1 MCC

CVC-612 LOC-356 CVC-356 0.819 0.619 0.984 0.946 0.706 0.684

CVC-356 LOC-612 CVC-612 0.723 0.735 0.981 0.965 0.729 0.710

Table 3.7: This table depicts performance of the in-frame pixel-wise polyp localization (seg-

mentation) approach evaluated using different combinations of the CVC-356 and CVC-612

datasets for training and testing.

(a) Input image (b) Ground truth mask (c) Polyp localization probability

mask

Figure 3.25: The example ot the polyp localization mask generated by our GAN-based polyp

localization approach. The base polyp localizer generates the pixels-wise probability mask

shows the possible localization of the polyp body’s pixels. The green ellipse highlights the

polyp body for illustration purposes only. The resulting localization mask conforms good with

the ground truth.

69



Training set PREC SENS SPEC ACC F1 MCC

CVC-356 0.475 0.203 0.966 0.868 0.285 0.250

CVC-612 0.528 0.289 0.961 0.874 0.374 0.328

CVC-968 0.584 0.257 0.972 0.880 0.357 0.333

Table 3.8: This table depicts performance of the block-wise localization via detection approach

for the CVC-12K dataset reported for different training data used.

Test

set

Training

set
PREC SENS SPEC ACC F1 MCC

K
v
a

si
r CVC-356 0.715 0.751 0.940 0.909 0.732 0.677

CVC-612 0.595 0.803 0.891 0.876 0.684 0.619

CVC-968 0.736 0.746 0.946 0.913 0.741 0.689

C
V

C

1
2

k

CVC-356 0.967 0.624 0.888 0.667 0.758 0.378

CVC-612 0.934 0.609 0.778 0.636 0.737 0.286

CVC-968 0.906 0.912 0.510 0.847 0.909 0.428

Table 3.9: This table depicts performance of the frame-wise polyp detection approach. We used

different small training sets and the CVC-12k and Kvasir dataset as independent test sets.

trained with a small amount of training data without any negative samples (no normal mucosa

frames is presented). Furthermore, the CVC-12K dataset is heavily imbalanced which also

makes it harder to achieve good results.

The frame-wise detection results can be observed in Table 3.9. All approaches are trained

on CVC-356, CVC-612 and CVC-968 training datasets and tested on the CVC-12k and Kvasir

datasets. We reached an F1 score of 0.741 and an MCC score of 0.689 for the Kvasir test dataset.

For the CVC-12k test set, we reached an F1 score of 0.909 and an MCC score of 0.428.

(a) Overlay image (b) Blurry frame (c) Colors shift (d) Lens contamination

Figure 3.26: Example of difficult images in the test dataset: a significant frame blur caused by

camera motion (a), a color components shift caused by the temporary signal failure (b) and an

out-of-focus frame contains also contamination on the camera lens (c). Images taken from the

CVC-12k [23].

3.6.2.3 Angiectasia

After a successful evaluation of the GAN-based polyp detection and localization approach, we

decided to check whether is it flexible enough and how it can be extended to other GI tract

lesions. To test as meaning as possible, we chose the angiectasia lesion in a combination with

the VCE-based diagnostic method. In contrast to polyps, angiectasia is a flat mucosa lesion.

The main feature differentiating it from the surrounding normal tissue is color. However, the

70



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.27: Examples of the detection and in-frame localization of the different polyps in the

video frames captured by various vendors’ traditional colonoscopy equipment. Green contour

depicts the detected polyp and the localized main polyp body area.

size of angiectasia-affected mucosa areas can be rather small and they still need to be detected

and localized.

The data used for all the angiectasia detection and localization experiments is from the

GIANA 2017 challenge [22], and it is publicly available for research purposes. The data consists

of training (development) and test frame sets. The training set consists of 600 fully annotated

frames from VCEs (300 with angiectasia and 300 without). The frames with angiectasia also

have a pixel-wise ground truth (GT) mask depicting the exact lesion location inside each frame

that allows both pixel-wise localization and frame-wise detection experiments. The test set

consists of 600 unannotated frames. In order to perform validation and performance evaluation

of the developed detection algorithm, we annotated the test set frame-wise with the help of an

experienced researcher with a background in medical pathology diagnosis. The 600 frames

from the development set are used for training and the 600 frames (300 with angiectasia and

300 normal) from the test set for verification. The advantages of the used dataset are (i) the

number of images (compared to related work, this is the largest one for VCEs), (ii) the even

split between positive and negative examples and (iii) that it is publicly available making it easy

to compare different approaches.

Table 3.10 shows the results for the GAN localization algorithm (see figure 3.28(b) and

3.28(c) for a comparison between the GT and the output of the GAN). The localization metrics

are calculated pixel-wise using the provided GT masks. On average, sensitivity and specificity

are above the 85% margin recommended for a real clinical settings. This can be seen as very

good results since we perform pixel-wise evaluation. The processing speed for the GAN ap-

proach is 1.5 FPS.

The frame-wise detection performance of the GAN approach for the development set is
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(a) Input frame (b) Ground truth mask (c) Segmentation mask

Figure 3.28: Example of an angiectasia lesion marked with a green circle (a), a corresponding

ground truth mask (b) and a segmentation mask generated using our GAN-based approach (c).

Image taken from the GIANA dataset [22].

PREC SENS SPEC ACC F1 MCC

0.859

±0.020

0.880

±0.018

0.999

±0.001

0.999

±0.001

0.869

±0.015

0.869

±0.015

Table 3.10: This table depicts ten-fold cross-validation results of the pixel-wise GAN-based

angiectasia localization approach (the 95% confidence intervals are reported). See Paper XIV

for the detailed results.

PREC SENS SPEC ACC F1 MCC

1.000

±0

0.987

±0.011

1.000

±0

0.993

±0.005

0.993

±0.005

0.987

±0.011

Table 3.11: This table depicts ten-fold cross-validation results of the angiectasia frame-wise

detection using the GAN approach (the 95% confidence intervals are reported). See Paper XIV

for the detailed results.

presented in Table 3.11. The detection outperforms significantly the 85% requirements. Both

result sets are strong indicators that our GAN approach performs well for the tasks of angiectasia

localization and detection.

Finally, in Table 3.12, we report the frame-wise detection performance on the test set for

all our runs. All tested approaches outperform the ZeroR baseline, but most of them do not

even come close to the 85% margin for clinical use. The handcrafted features outperform the

VGG19 and InceptionV3 approaches but not the RestNet50. Of the classifiers, LMT performs

best most of the time, followed by RF. The best performing not-GAN approach is AUG DF

ResNet50 FEA + LMT. The GAN approach achieves superior performance compared to all

other detection methods for the frame-wise detection with a sensitivity of 98% and a specificity

of 100%.

The best processing speed is reached by the GF approach using RT. In terms of fastest

speed and best classification performance, AUG DF ResNet50 CON + RF performs best with a

sensitivity of 78.7% , a specificity of 78.7% and a processing speed of 78 FPS. The processing

speed of the GAN method for detection is the lowest with 1.5 FPS.
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Approach PREC SENS SPEC ACC F1 MCC FPS

GF+LMT 0.695 0.680 0.680 0.680 0.674 0.375 80
DF ResNet50 CON+LMT 0.734 0.732 0.732 0.732 0.731 0.465 53
DF ResNet50 FEA+LMT 0.748 0.738 0.738 0.738 0.736 0.486 46
DF VGG19 CON+LMT 0.545 0.545 0.545 0.545 0.544 0.090 32
DF VGG19 FEA+LMT 0.525 0.525 0.525 0.525 0.525 0.050 29
DF InceptionV3 CON+LMT 0.663 0.663 0.663 0.663 0.663 0.327 37
DF InceptionV3 FEA+LMT 0.533 0.533 0.533 0.533 0.533 0.067 30
AUG GF+LMT 0.627 0.625 0.625 0.625 0.624 0.252 80
AUG DF ResNet50 CON+LMT 0.765 0.763 0.763 0.763 0.763 0.529 53
AUG DF ResNet50 FEA+LMT 0.797 0.788 0.788 0.788 0.787 0.585 46

GAN 1.000 0.980 1.000 0.990 0.990 0.980 1.5

Baseline (ZeroR) 0.250 0.500 0.500 0.500 0.333 0.000 -

Table 3.12: Results for the angiectasia frame-wise detection approaches evaluated with the

annotated test set. See Paper XIV for the detailed results.

(a) Input VCE-frame (b) Localization result (c) Input VCE-frame (d) Localization result

Figure 3.29: Examples of the detection and in-frame localization of the clearly visible angiec-

tasia areas.

(a) Input VCE-frame (b) Localization result (c) Input VCE-frame (d) Localization result

(e) Input VCE-frame (f) Localization result (g) Input VCE-frame (h) Localization result

Figure 3.30: Examples of the detection and in-frame localization of the partially obscured, tiny

and hard-to-spot angiectasia areas.
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Detected class

Blurry Cecum Normal Polyps Tumor Z-line

A
ct

u
a

l
cl

a
ss

Blurry 250 0 0 0 0 0

Cecum 0 183 64 3 0 0

Normal 0 34 197 19 0 0

Polyps 1 17 45 183 4 0

Tumor 0 0 1 4 245 0

Z-line 0 0 0 0 0 250

Table 3.13: A confusion matrix for the six-classes detection performance evaluation for the

Deep-EIR detection subsystem

3.6.2.4 Multi-Class Detection

Multi-class evaluation of our detection approach was performed using two different datasets.

The first one is Kvasir, which we consider as a core detection performance evaluator. The

second one is Medico, which introduces more classes of findings comparing to Kvasir and

represents the real-world use-case scenario in terms of data amount and imbalance.

Kvasir dataset

We performed the core multi-class detection performance evaluation based on the first ver-

sion of our public dataset Kvasir. From the whole dataset, we randomly selected 50 different

frames of 6 different classes (see See Paper XI for the details): blurry frames, cecum, normal

colon mucosa, polyps, tumor, and Z-line. The selected frames were used to create 10 sepa-

rate datasets, each containing training and test subsets with equal numbers of images. Training

and test subsets were created by equally splitting random-ordered frame sets for each of the

6 classes. The total number of frames used in this evaluation is 300: 150 in the training sub-

sets and 150 in the test subsets. Each training and test subset contains 25 images per class.

Multi-class classification is then performed on all 10 splits and then combined and averaged.

Following this strategy, an accurate enough estimation about the performance can be made even

with a smaller number of images.

First, we evaluated Deep-EIR that implements the deep learning neural network multi-class

detection approach. Table 3.13 shows the resulting confusion matrix. The detailed performance

metrics presented in table 3.14 and the results can be considered as good, they confirm that

Deep-EIR performs well. All blurry and Z-line frames were classified correctly. Cecum and

normal colon mucosa were often cross-mis-classified, which is a normal behavior, because from

a medical point of view, normal colon mucosa is part of the cecum, and under real-world cir-

cumstances, this would not be a relevant mistake. Interesting polyps and tumors were detected

correctly in most cases, as well as the Z-line landmark, which is important for our medical use

case.

Second, we performed an evaluation of the multi-class global-feature-based EIR, which im-

plements a global-feature multi-class detection approach. The multi-class global-feature-based

EIR classifier allows us to use a number of different global image features for the classification.

The more image features we use, the more precise the classification becomes. We generated

indexes containing all possible image features for all frames of all different classes of findings

from our training and test dataset. These indexes were used for multi-class classification, differ-

ent performance measurements and also for leave-one-out cross-validation. Using our detection
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True

Pos.

True

Neg.

False

Pos.

False

Neg.

Recall

(Sensitivity)
Precision Specificity Accuracy F1 score

Blurry 250 1249 1 0 100.0% 99.6% 99.9% 99.9% 99.8%

Cecum 183 1199 51 67 73.2% 78.2% 95.9% 92.1% 75.6%

Normal 197 1140 110 53 78.8% 64.2% 91.2% 89.1% 70.7%

Polyps 183 1224 26 67 73.2% 87.6% 97.9% 93.8% 79.7%

Tumor 245 1246 4 5 98.0% 98.4% 99.7% 99.4% 98.2%

Z-line 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Overall 1308 7308 192 192 87.2% 87.2% 97.4% 95.7% 87.2%

Table 3.14: Performance evaluation of the six-classes detection for the Deep-EIR detection

subsystem

Detected class

Blurry Cecum Normal Polyps Tumor Z-line

A
ct

u
a

l
cl

a
ss

Blurry 250 0 0 0 0 0

Cecum 0 226 21 3 0 0

Normal 0 85 165 0 0 0

Polyps 0 10 8 226 6 0

Tumor 0 0 0 8 242 0

Z-line 0 0 0 0 0 250

Table 3.15: A confusion matrix for the six-classes detection performance evaluation for the

multi-class global-feature-based EIR detection subsystem

True

Pos.

True

Neg.

False

Pos.

False

Neg.

Recall

(Sensitivity)
Precision Specificity Accuracy F1 score

Blurry 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Cecum 226 1155 95 24 90.4% 70.4% 92.4% 92.1% 79.2%

Normal 165 1221 29 85 66.0% 85.1% 97.7% 92.4% 74.3%

Polyps 226 1239 11 24 90.4% 95.4% 99.1% 97.7% 92.8%

Tumor 242 1244 6 8 96.8% 97.6% 99.5% 99.1% 97.2%

Z-line 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Overall 1359 7359 141 141 90.6% 90.6% 98.1% 96.9% 90.6%

Table 3.16: Performance evaluation of the six classes detection for the multi-class global-

feature-based EIR detection subsystem

system, the built-in metric functionality can provide information on the different performance

metrics for benchmarking. Further, it provides us with the late fusion of all the selected im-

age features and performs the selection of the exact class for each frame in test dataset. Table

3.15 shows the resulting confusion matrix, which shows, like the Deep-EIR results, that the

global feature-based detection approach performs well, too. Again, all blurry and Z-line frames

were classified correctly. Cecum and normal colon mucosa were sometimes cross-misclassified.

Polyps and tumors were detected correctly in most cases. The detailed performance metrics are

presented in table 3.16 and can also be considered as good.

The comparison of these two approaches shows that both approaches have an equal excellent

overall F1 score of 100% in Z-line detection. The global-feature approach with the 100% F1

score outperforms the neural network approach by a small margin in blurry frame detection.
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The neural network F1 score detection for tumors is 98.2%, which is 1% better than the global-

feature approach. Detection of other classes is better for the global-feature approach, giving

the F1 scores of 79.2% and 74.3% for cecum and normal mucosa. Most importantly for our

case study, polyp detection performed much better using the global-feature approach, giving

the 92.8% F1 score (13.1% better than the neural network approach).

The performance evaluation of the cross-validation for both multi-class classification ap-

proaches (see table 3.17) confirms the high stability of the models used for the classification.

Our experimental comparison of the Deep-EIR and the global-feature-based EIR of the de-

tection system shows clearly that the global-feature approach outperforms the deep learning

neural network approach and gives better accuracy for almost all target detection classes (ex-

cept several cases of misclassification of tumors) in conjunction with high 92.8% and 97.2% F1

scores for the most important findings: polyps and tumors. Moreover, when a sufficiently large

training dataset covering all possible detectable lesions of the GI tract is used, the proposed

global-feature approach for multi-class detection requires relatively little time for training [116]

compared to days and weeks for the deep learning neural network approach. However, this con-

clusion is valid only for a well-balanced datasets which contain a fairly high amount of training

data for each class and has clearly visually distinguishable classes, e.g. landmarks, fecal con-

tent, cancer, etc. Thus, our GF-based detection approach can be used as a fast-to-compute

pre-classifier which allows the further selection of more precise, but slower classification algo-

rithms.

Medico dataset

The dataset used for the further evaluation of multi-class detection algorithms consists of

14, 033 GI tract images with different resolutions (from 720x576 up to 1920x1072 pixels) that

are annotated and verified by experienced medical doctors (endoscopists) for the ground truth.

It includes 16 classes, showing anatomical landmarks, pathological and normal findings or en-

doscopic procedures in the GI tract, with different numbers of images for each class, split into

development (training) and testing sets. The anatomical landmarks are normal-z-line, normal-

pylorus, normal-cecum, retroflex-rectum, retroflex-stomach, while the pathological findings in-

clude esophagitis, polyps and ulcerative-colitis. The pre-, under- and post-surgery findings

are the dyed-lifted-polyps, the dyed-resection-margins and the instruments. Additional classes

include normal tissue with or without stool contamination, namely the colon-clear, the stool-

inclusions and the stool-plenty, as well as some image classes that are not usable for diagnosis,

namely the blurry-nothing and the out-of-patient.

For our experiments, we divided all the data onto development and test datasets consisting

of 5, 293 images and 8, 740 images, respectively. We decided for an unequal split to reflect the

Approach
Mean absolute

error

Root mean

squared error

Relative absolute

error, %

Root relative

squared error, %

Deep-EIR 0.07284 0.20574 26.21936 55.21434

Multi-class

global-feature-

based EIR

0.09242 0.19644 33.2672 52.7148

Table 3.17: Performance evaluation of the cross-validation for the Deep-EIR and the multi-class

global-feature-based EIR detection subsystems
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Class Training samples Testing samples

blurry-nothing 176 37

colon-clear 267 1065

dyed-lifted-polyps 457 556

dyed-resection-margins 416 564

esophagitis 444 556

instruments 36 273

normal-cecum 416 584

normal-pylorus 439 561

normal-z-line 437 563

out-of-patient 4 5

polyps 613 374

retroflex-rectum 237 192

retroflex-stomach 398 397

stool-inclusions 130 506

stool-plenty 366 1965

ulcerative-colitis 457 524

Table 3.18: The per-class-contents of the training and test dataset used for the multi-class de-

tection algorithms evaluation. This dataset was used for the Medico task at MediaEval 2018

contest [100].

real-world conditions in the medical use-case area where the amount of training data is typically

less than the data forming the real examinations. Also both datasets are heavily unbalanced in

terms of number of samples per class, which reflects the real practice in hospitals while doctors

tend to collect only selected classes of images, where giving no attention to, for example, normal

findings and routine objects like stool. Thus, the number of images per class in the sets can vary

from a few to thousands of images (see Table 3.18 for the details).

The initial experimental studies showed that the our detection model is able to efficiently

extract high-level features from the given medical images, and it converges quickly during the

retraining process with sufficient classification performance. However, due to a heavily im-

balanced training dataset and despite training data augmentation, the detection performance

of some classes was not good enough. To solve this, we implemented an additional training

dataset balancing procedure that performs equalization of the training set by extensive random

augmentation of the training samples for the under-filled classes, like instruments, blurry, etc.

This nearly doubled the number of training samples allowing for better classification perfor-

mance for the classes with a low number of images provided. An additional classifier output

post-processing step was implemented in order to address the different importance of the dif-

ferent classes as it was stated in the Medico task dataset description [100]. Specifically, we

performed the prioritized selection of the resulting output class for each image based of the

model’s probability output. This was implemented as the selection of the first class with the

detection probability higher than a set threshold from the array of classes sorted in order of

their importance.

For the final evaluation of our detection approach on the Medico dataset, we used two sep-

arate models trained on the different datasets. The first model was trained on the training set

created from the development set using the common rotation-scale-shift data augmentation pro-

cedure. The trained model was used to process the task’s test set, and the classification output

was post-processed using the prioritized classification selector with four different probability

threshold settings from 0.75 to 0.1, resulting in the runs #2 - #5. For run #1, we used the
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Run TP TN FP FN REC SPE PRE ACC F1 MCC RK

A1 474 8122 72 72 0.824 0.991 0.828 0.984 0.815 0.812 0.854

A2 474 8122 72 72 0.823 0.991 0.828 0.984 0.814 0.811 0.854

A3 470 8117 76 76 0.817 0.991 0.819 0.983 0.807 0.803 0.845

A4 440 8087 107 107 0.774 0.987 0.771 0.976 0.756 0.752 0.786

A5 333 7981 213 213 0.664 0.974 0.646 0.951 0.601 0.605 0.582

E1 469 8117 77 77 0.765 0.991 0.729 0.982 0.743 0.737 0.844

E2 469 8117 77 77 0.765 0.991 0.728 0.982 0.743 0.737 0.844

E3 465 8112 82 82 0.758 0.990 0.722 0.981 0.736 0.729 0.835

E4 430 8077 117 117 0.709 0.986 0.677 0.973 0.679 0.674 0.766

E5 313 7960 233 233 0.546 0.971 0.607 0.947 0.504 0.510 0.544

ZR 34 7681 512 512 0.063 0.938 0.004 0.883 0.007 0.0 0.0

RD 35 7682 511 511 0.057 0.938 0.064 0.883 0.055 0.001 0.002

TR 546 8193 0 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 3.19: Classification performance evaluation for the detection models, trained using the

augmented (A) and size-equalized (E) training sets including ZeroR (ZR), Random (RD) and

True (TR) baseline classifiers. Runs #1 corresponds to the non-prioritized classification, while

runs #2 - #5 corresponds to the 0.75 to 0.1 classification probability threshold level.

max-probability selector without class prioritization. The results using the first model were

considered as speed runs. The second model was trained using the equalized training set, and

the same rules for the five run generation were considered as the detection run.

The computed performance numbers are depicted in table 3.19. All the runs significantly

outperform the ZeroR and Random baselines and show good classification performance. All the

runs that utilize the equalized training set have slightly better classification performance. Sur-

prisingly, the introduced prioritized classification method did not result in improved detection

performance, neither for the original nor for the equalized training sets. With the threshold of

0.75, the classification performance is equal to the non-prioritized runs. It means that the trained

classifier is performing as well as it can, and additional re-classification using the class priorities

does not make sense for this particular dataset. However, it still can be potentially interesting

for bigger datasets or a higher number of classes. The best performing run was the detection run

#1 generated using the equalized training set and non-prioritized classifier with the classifica-

tion performance of 0.854 for Rk statistic (MCC for k different classes). The confusion matrix

for this run is depicted in table 3.20, and the class imbalance and corresponding training and

classification challenges can be easily observed. The most challenging class was Instruments.

That is mostly caused by the different shapes, positions and visibilities of the instruments in the

images. There was also a number of misclassification cases for the Dyed classes as well as for

Esophagitis and Normal Z-line classes.

3.6.3 Detection Subsystem Processing Speed Optimization

Despite the demonstrated high lesion detection performance, the overall data processing speed

of the complete EIR system pipeline was not enough for both implementation of simultaneous

detection and localization of multiple diseases, and not for implementation of population-wide

mass-screening of GI tract diseases, either. In our research, we target a general well-scalable

system for automatic analysis of GI tract videos with high detection accuracy, abnormality

localization in the video frames and better than real-time performance, thus it is important to
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Detected class

A B C D E F G H I J K L M N O P

A
ct

u
a

l
cl

a
ss

A 459 2 1 1 5 0 1 0 54 0 13 13 1 7 0 7

B 2 388 77 0 0 0 0 0 0 0 0 0 0 0 0 0

C 0 145 451 0 0 0 4 0 0 0 1 0 0 0 0 0

D 0 0 0 406 81 0 0 0 1 0 4 0 0 0 0 26

E 0 0 0 115 462 0 0 0 0 0 0 1 1 1 0 17

F 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0

G 3 18 27 0 0 0 548 0 0 0 2 0 2 1 4 1

H 10 1 0 5 2 0 0 498 98 0 3 1 24 0 0 6

I 14 0 0 5 1 0 0 0 1771 0 5 2 1 3 0 7

J 2 0 0 0 0 3 0 1 7 37 0 0 2 1 0 0

K 22 1 6 17 2 0 7 1 8 0 316 14 1 9 0 64

L 19 0 0 2 6 0 1 0 16 0 22 551 8 3 0 4

M 3 0 1 1 0 0 0 6 4 0 5 1 1025 1 0 6

N 8 0 0 3 4 0 0 0 3 0 2 1 0 160 4 8

O 0 1 0 0 0 0 0 0 2 0 0 0 0 5 387 1

P 0 0 0 1 0 0 0 0 1 0 1 0 0 1 2 126

Table 3.20: Confusion matrix for the run A1 depicted in table 3.19. The classes are Ulcerative

Colitis (A), Esophagitis (B), Normal Z-line (C), Dyed and Lifted Polyps (D), Dyed Resection

Margins (E), Out of Patient images (F), Normal Pylorus (G), Stool Inclusions (H), Stool Plenty

(I), Blurry Nothing of value (J), Polyps (K), Normal Cecum (L), Colon Clear (M), Retroflex

Rectum (N), Retroflex Stomach (O) and Instruments (P).

have an architecture that allows easy extension and widening of the system. To achieve this, we

put especial focus on achieving outstanding processing speed without sacrificing high detection

accuracy.

From the speed optimization point of view, our system consists of three main parts. The first

is a feature extraction module. It is responsible for handling input data, e.g., videos, images and

sensor data, and extracting and providing corresponding features extracted from such the data.

The most time-consuming aspect here is the extraction of information from the video frames and

images. The second part comprises the analysis and decision making algorithms that implement

disease detection and localization functions. The last part is the visualization subsystem. It

presents the output of the real-time analysis to the endoscopist. The most challenging aspect

here is that the visualization should not introduce any delays, which would make the system

unsuitable for live examinations.

In order to create the proper optimization strategy we did the preliminary analysis of these

three main system parts, resulting in the following optimization steps. The visualization sub-

system is implemented using the modern UI handling frameworks and SDKs, and it already

utilizes the benefits of the available hardware accelerated I/O and graphics drawing. Addi-

tional hardware-oriented optimization of the visualization subsystem is an installation-specific

task and should be performed for each specific hospital environment and medical hardware

used, thus we consider it to be outside of this research scope. Next, the feature-based decision-

making algorithm for the detection subsystem implements already well-optimized classification

algorithms efficiently executed on modern CPUs. In the same way, the localization subsystem

was implemented with heterogeneous resource utilization in mind from the very beginning, and

it did not require deep optimization until we add support for more complex lesion localizers in

our system. Finally, we realized that the most time-consuming computation part in our system

is the feature extraction module. To achieve mass-screening capabilities and multi-disease de-

tection, the feature extraction architecture had to be improved. We chose to do this by applying

heterogeneous processing elements using GPUs.
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Figure 3.31: The main processing application consisting of the indexing and classification parts

uses the GPU-accelerated image processing subsystem. This subsystem provides feature ex-

traction and image filtering algorithms. The most compute-intensive procedures are executed

on a stand-alone CUDA-enabled processing server. The interaction between application and

server is done via a GPU CLib shared library, which is responsible for maintaining connections

and streaming data to and from the CUDA-server.

3.6.3.1 Heterogeneous Architecture

To improve the performance of our feature extraction subsystem, we re-implemented the most

compute-intensive parts in CUDA. CUDA is a commonly used GPU processing framework for

nVidia graphic cards. We designed the new feature extraction architecture with a heterogeneous

processing module as depicted in figure 3.31.

We implemented GPU-accelerated extraction for a number of features (JCD, which in-

cludes FCTH and CEDD, and Tamura) for feature-descriptor extraction, as well as for a number

of feature-extraction-related procedures, e.g., color space conversion, image resizing and pre-

filtering.

In our architecture, as it is shown in figure 3.31, a main processing application interacts with

a modular image-processing subsystem. Both are implemented in Java. The image-processing

subsystem uses a multi-threaded architecture to handle multiple image processing and feature

extraction requests at the same time. All compute-intensive functions are implemented in Java

to be able to compare performance with the heterogeneous implementation, which is transpar-

ently accessible from Java code through a GPU CLib wrapper. The JNA API is used to access

the GPU CLib API directly from the image processing subsystem. The GPU CLib is imple-

mented in C++ as a Linux shared library that connects to a stand-alone processing server and

pipes data streams for handling by CUDA implementations. Shared memory is used to avoid

the performance penalty of data copying. Local UNIX sockets are used to send requests and

receive status responses from the CUDA server because they can be integrated asynchronously

on the JNI side than shared-memory semaphores. The CUDA server is implemented in C++ and
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Figure 3.32: GPU-acceleration is used to extract various features from input frames. The figure

shows an example of our FCTH feature implementation. The input frame is split into a number

of non-overlapping blocks. Each of them is processed separately by two GPU-threads. The

main processing steps include color space conversion, size reduction, shape detection and fuzzy

logic computations.

uses CUDA SDK to perform computations on GPU. The CUDA server and all heterogeneous-

support subsystems are built with distributed processing in mind, and can easily be extended

with multiple CUDA servers running locally or on several remote servers.

The processing server can be extended with new feature extractors and advanced image

processing algorithms. It enables the utilization of multi-core CPU and GPU resources. As an

example, the structure of the FCTH feature extractor implementation is depicted in figure 3.32.

It shows that for image features, all pixel-related calculations are executed on the GPU. In case

of the FCTH feature, this includes also the processing of a multi-threaded shape detector and

fuzzy logic algorithms.

To achieve better performance, a heterogeneous processing subsystem provides the trans-

parent caching of input and intermediate data, which reduces the CPU-GPU bandwidth usage

and eliminates redundant data copy operations during image processing.

3.6.3.2 Processing Speed Evaluation

Non-Optimized Architecture

The performance results of the EIR system with non-optimized multi-core CPU-only archi-

tecture are depicted in figure 3.33. For all the tests, we used 3 videos from 3 different endoscopic

devices and different resolutions. We used three videos of different frame size that are common

to widely used endoscopic equipment. These videos are wp_4 with 1, 920× 1, 080, wp_52 with

856×480 and np_9 with 712×480 frame size, respectively. We chose these videos to show the

performance under the different requirements that the system will have to face when in practical
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Figure 3.33: The detection performs efficiently and the required frame rate is reached with

12 GB of memory and 16 CPU cores used in parallel on cluster-based computation platform

without utilizing heterogeneous architecture.

use. The computer used was a Linux server with 32 AMD CPUs and 128 GB memory. The

figures show, that the non-optimized system was able to reach real-time performance for full

HD videos using a minimum of 16 CPU cores and at least 12 GB of memory. This has the huge

disadvantage that real-time speed is only achieved on expensive highly parallelized multi-CPU

systems. In terms of memory, tests showed that the system has rather small requirements. This

is beneficial, since it means that memory consumption is not a bottleneck to scalability, and that

we can keep this question outside of the optimization process for now.

Heterogeneous Optimized Architecture

The videos used to evaluate the system performance have different resolutions. The resolu-

tions are full HD (1920×1080), WVGA1 (856×480), WVGA2 (712×480) and CIF (384×288).

They are labeled correspondingly in figures 3.34, 3.35, 3.36 and 3.37. A framerate of 30 frames

per second (FPS) was assumed, and consequently, 33.3 milliseconds processing time per frame

was considered real-time speed. Our results for the heterogeneous architecture were obtained

using a conventional desktop computer with an Intel Core i7 3.20GHz CPU, 8 GB RAM and

a GeForce GTX 460 GPU. To be able to compare the basic and improved systems directly,

the same Java source code from the basic system was used to collect the evaluation metrics.

In the figures, the basic system’s results are labelled as Java. The improved system’s results

with disabled GPU-acceleration are labelled as C. Finally, the improved system’s run in the

heterogeneous mode with enabled GPU-acceleration is labelled as GPU.

The performance evaluation shows that the non-optimized architecture can process full HD

frames using all 8 available CPU cores and up to 4 GB of memory at 6.5 FPS for Java and 13.8

FPS for the C implementations (see figure 3.34) with corresponding frame processing times of

154ms and 72ms, respectively (see figure 3.36). For the smaller frame sizes, real-time speed

was reached at 4 CPU cores and 4 GB of memory. The maximum frame rates that were reached

were 49 FPS, 51 FPS and 66 FPS for WVGA1, WVGA2 and CIF frame sizes, respectively (see
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Figure 3.34: The improved GPU-enabled heterogeneous algorithm reaches real-time perfor-

mance (RT line) with 30 frames per second for full HD (1920× 1080) videos on a desktop PC

using only 4 CPU cores and 5 Gb of memory. The maximum frame rate is around 36 FPS using

8 CPU cores. The Java and C implementations cannot reach real-time performance on the used

hardware.

Figure 3.35: The smaller WVGA1 (856 × 480), WVGA2 (712 × 480) and CIF (384 × 288)

videos can be processed by the improved GPU-enabled heterogeneous algorithm in real-time

using only 1 CPU core. The maximum frame processing rate reaches more than 200 FPS. These

results can be improved by putting all feature-related computations on the GPU.

figure 3.35 and figure 3.37).

The evaluation of the improved heterogeneous system shows that the GPU-enabled archi-

tecture can easily process full HD frames using only 4 CPU cores (see figure 3.34) and up to 5

Gb of memory with a frame processing time of 32.6ms (see figure 3.36). The maximum frame

rate for full HD frames was 36 FPS using all 8 CPU cores. For the smaller frame sizes, the

real-time requirements were reached with only 1 CPU core and up to 4.5 GB of memory. The

maximum frame rate that we achieved was around 200 FPS (see figure 3.35 and figure 3.37).
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Figure 3.36: The processing time for the GPU-accelerated algorithm decreases slightly with

increasing number of used CPU cores for a single full HD frame. This happens due to the CPU-

parallel implementation of feature comparison and search algorithms which are not as compute

intensive as feature extraction. The Java and C implementations reach the minimum frame

processing time with 4 used CPU cores. The reason is that the used CPU has 4 real cores with

hyper-threading feature enabled and it cannot handle CPU-intensive calculations efficiently for

all 8 (real plus virtual) cores.

The results show clearly that the given hardware system with the basic architecture cannot

reach real-time performance for full HD videos even using all available CPU cores, and only for

the low-resolution WVGA videos, real-time can be reached. For the improved heterogeneous

system, the real-time performance for full HD videos is easily reached using only 4 CPU cores

and one outdated GPU. The smaller videos can be processed utilizing only one CPU core plus

GPU. Memory size is not a limiting factor and the system can be deployed even on desktop PCs

with a general-purpose GPU as an accelerator.

These quantitative results illustrate that using a heterogeneous architecture is key to real-

time performance and parallel analysis of videos with different approaches. Furthermore, the

improved heterogeneous system has significant over-performance in terms of real-time video

processing. This makes it possible to implement more feature extractors, classifiers and many

other image processing algorithms to increase the number of detectable diseases by our system

while keeping the real-time capability.

3.6.3.3 Distributed Heterogeneous Architecture

The achieved detection performance of 200 frames per seconds is superior with respect to video

stream processing time and the ability to provide real-time automatic feedback during live en-

doscopies. And, even though real-time performance for multiple diseases can be reached by

using multiple GPUs in one sufficiently powerful desktop machine, placing such noisy and

costly machines in the examination rooms of a hospital is impractical. A more realistic scenario

is therefore to have or to use already installed smaller machines in each room, implementing

a widely used distributed data processing to use more computation resources whenever more

resources are needed. There are many different distributed computation support architectures,
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Figure 3.37: For the smaller frame sizes the GPU-accelerated algorithm results in a processing

time far below the real-time margin. The minimum is reached with 5 milliseconds using 8 CPU

cores. This is a prove for the high system performance and ability to be extended by additional

features or to process several video streams at the same time on a conventional desktop PC.

Figure 3.38: Pooling of devices attached in the PCIe network in the experimental setup.

frameworks and SDKs available world-wide, however only few of them are designed with the

lowest possible data latency in mind, which is a crucial factor for our real-time-oriented system.

Here, the recently developed Device Lending is the best candidate for satisfying our needs to

use remote resources locally.

Device Lending is a concept where computers interconnected in a PCI Express [89] network

can share devices. It provides transparent, low-latency cross-machine PCIe device sharing (see

figure 3.38) without any need to implement application-specific distribution mechanisms or

modify native device drivers. The system can allocate and de-allocate additional remote re-

sources, providing dynamic performance management that is able handle workload complexity

increases or decreases. It is, therefore, a high-throughput solution can be used for distributed

computing, utilizing common hardware already present in all modern computers and requiring

little additional interconnection hardware. Device Lending is implemented [73] using Dolphin

Interconnect Solutions NTB hardware [11].

For the EIR system, Device Lending enables the combination of multiple GPUs through

CUDA’s own peer-to-peer communication model, instead of either writing a distributed system,

using rCUDA [48] or MPI [86].

To evaluate the performance of the distributed multi-GPU version of our system and also to

show that Device Lending in our scenario works as intended, we performed 4 different experi-

ment sets. An overview of the hardware used and the experiments performed can be found in
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(a) Frame processing time for several full HD streams in parallel.

(b) Overall system performance for multiple full HD steams in parallel.

Figure 3.39: System performance evaluation in terms of processing time per frame and maxi-

mum performance using 4 different configurations described in table 3.21. Each video stream

is a full HD video.

86



Device Type E1 E2 E3 E4

GPU1 Nvidia Tesla K40c * * * *

GPU2 Nvidia Quadro K2200 * * *

GPU3 Nvidia GeForce GTX 750 * *

GPU4 Nvidia Tesla K40c *

Table 3.21: This table shows the used hardware combinations of the different experiments. GPU

1 to 3 are local GPUs. GPU4 is lend via Device Lending.

table 3.21. For all configurations, we used the same CPU (Intel Core i7-4820K 3.7GHz) and

RAM (16GB Quad Channel DDR3). The test setup consists of 2 computers (Machine A and B,

see figure 3.38), where the host code of the tests runs on one of them. The second one lends a

GPU to it. Experiment E1 uses one local GPU, E2 uses two local GPUs and E3 uses three local

GPUs. In E4, we borrowed one GPU from the second computer in addition to three local GPUs.

Using these hardware configurations, we performed polyp classification and real-time feedback

on the video for up to 16 parallel video streams. All video streams are full HD (1920x1080)

videos from colonoscopies. We measured the delay from capturing a video frame to showing

the output on the screen. The complete evaluation is shown in figure 3.39.

Figure 3.39(a) shows the performance in terms of processing time per frame for all streams

simultaneously. The results reveal that for up to 7 parallel full HD streams, the 3 local GPUs are

fast enough. For more than 7 streams, GPU lending is required. The graph shows that the more

parallel streams are processed, the better is the performance gain from the borrowed GPU. This

is due to the overhead for transferring small amount of data, which hinders Device Lending to

reach its full potential. This becomes less important when we have more parallel streams, when

Device Lending can indeed improve performance.

The plot in figure 3.39(b) shows the overall system performance. The maximum overall

frames per second we reach when using 4 GPUs at the same time is 30 fps for 9 parallel full HD

streams, which is equivalent to 270 fps for a single video stream. Further, this graph shows that

the borrowed GPU does not increase the performance for a smaller number of videos, but for 5

and more videos the increase is higher. Thus, the larger amount of data discovers the benefits of

the distributed GPU performance boost and, therefore, perfectly fits the multi-auditory exami-

nation scenario, while hardware resources are shared within one hospital structure, allowing for

mass-screening programs with reduced implementation costs.

3.6.4 System Extensibility Test

For the final system evaluation, we decided to verify our initial claim of easy system exten-

sibility in terms of detected lesions and findings. To perform this, we tested the flexibility of

our system using the medical challenges from different application areas that are not directly

related to GI tract data analysis, namely bladder cancer cells detection and localization, and

spermatozoon localization and segmentation. Both of this two challenges require precise image

analysis and introduce additional challenges for the analysis algorithms due to their localization

and segmentation nature.
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3.6.4.1 Bladder Cancer Cells Detection and Localization

Bladder cancer is the fourth most common cancer and the eighth most common cause of cancer-

related mortality in men from the United States [124]. In 2016, roughly 79,030 new cases

were diagnosed including 4.6% of all new cancer cases, and 16,870 deaths in the USA were

recorded,equating to 2.8% of all cancer deaths [124]. Therefore, initial-stage discovery of

bladder cancer is important to reduce risk. The current standard for diagnosis is white-light

cystoscopy (WLC) and urine cytology. Complete visualization of the entire bladder and re-

section of all visible tumors is recommended as a gold treatment standard [36]. Despite its

efficiency, the main limitation of WLC is difficulty in identifying all, especially small, areas of

malignancy. Current data shows that insufficient detection quality may lead to recurrence of

the disease [60]. In contrast, modern blue light cystoscopy (BLC), which is implemented using

hexaminolevulinate (named HAL, Cysview or Hexvix) is the most validated technique used to-

day to improve tumor detection. Several prospective trials have shown that HAL-assisted BLC

significantly improves the detection of tumors [60]. HAL was approved in EU and US for the

(a) WLC image of an bladder wall area. (b) BLC image of the same bladder wall area shows a

clearly visible tumor cells cluster.

(c) BLC image depicts less visible tumor cells clusters

partially be hidden by the interference with blood vessels.

(d) BLC image depicts badly visible tumor cells cluster

partially obscured by the resection-remaining tissue.

Figure 3.40: The examples of WLC (a) and BLC (b) frame of our dataset used for the exper-

imental evaluation of the EIR system flexibility and extendability. Images (a) and (b) contain

the instrument tip visible in the image top-right corner. Tumor cells clusters are colored by pink

color and located in the middle (b), in the middle and top-center (c), and around of the middle

(d) of the images.
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detection of non–muscle-invasive papillary cancer in patients with suspected bladder lesions.

Still, the BLC detection method suffers from limitations in terms of patient population cover-

age and high miss-rate for small-tumor-cell groups, resulting in around 32% recurrent cancer

cases for the BLC-guided examinations [147].

Despite a number of well-developed BLC diagnostic equipment [51], there is a lack of a

complete computer-aided bladder cancer cell detection systems. Thus, we selected this use-case

as a problem area for verification of our detection and localization subsystems’ flexibility and

extensibility properties. We adapted our EIR system and in order to provide bladder cancer cell

detection and highlighting functionality. To achieve this, we acquired a sample BLC-captured

dataset from a Norwegian hospital. The obtained a dataset containing 6, 841 WLC and 7, 310

BLC unannotated and anonymized frames (see figure 3.40 for the example images). The size

and variety of our sample dataset does not matter because the goal of this trial with the EIR

system is to prove the concept and EIR system flexibility, and not to perform full system training

and evaluation. In the following trial run, we used only BLC frames split on the training and test

sets. For the training set, we randomly selected 10 BLC images and manually annotated them,

(a) (b)

(c) (d)

Figure 3.41: The examples of the localized clusters of the bladder cancer cells. The green

boxes in the images mark the successfully recognized tumors’ locations including ones on the

side of the field of view (c), bedly visible in the dark areas (a), located on the blood vessels

(b) and partially covered by the tissue (d). One tiny group of cells is missed (e, top-center)

probably because of bad input image quality caused by strong video encoding. Constantly

visible similarly colored not detected objects are the standard instrument tips.
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marking the areas showing the tumor cells. Using such a tiny training set allowed us to also test

how our EIR system can deal with a new problem area with few annotated data samples, which

is especially important for rare but still dangerous diseases.

Using the manually annotated training set, we performed the training of our GAN-based

detection and localization approach. The bladder tumor cells have different color and texture

properties compared to GI-tract angiectasia lesions, but from the detection and localization

point of view, they are similar-looking objects, thus we decided not to perform any fine-tuning

on the network or augmentation parameters and used the EIR system as it is. After training, we

processed all the training data with the trained model and performed visual performance estima-

tion. The sample detection and localization results are shown in figure 3.41. Without a properly

annotated test dataset, it was not possible to evaluate the performance, but the manual inspection

of the generated tumor localization boxes confirmed the high quality of the cancer cell cluster

marking. The algorithm was able to correctly localize not only clearly visible malignant cell

clusters, but also successfully identified clusters that are partially hidden, reside in darkness, are

located on the side of the field-of-view or blurred because of camera motions. Moreover, these

promising results were obtained using low-quality video footage. With better image quality,

we can expect a bladder tumor detection and localization performance as outstanding as we

achieved for angiectasia lesion.

3.6.4.2 Spermatozoon Localization and Segmentation

Semen analysis is routinely used in the fertilization field of applied medicine to evaluate the

male partner in infertile couples and to assess the reproductive toxicity of environmental or

therapeutic agents [56]. One of the most important factors of sperm quality that can be di-

rectly measured is spermatozoons’ motility. The estimation of sperm motion parameters using

computer-aided sperm analysis improves the objectivity, precision, and reproducibility of the

values measured and quantitative motion parameters, such as sperm velocity, and characteris-

tics of track direction can be determined. Computer-aided sperm analysis (CASA) variables,

such as progressive motility, linearity, curvilinear velocity, and average path velocity, may serve

as prognostic indicators for the fertilization potential of sperm. The measurement of quantita-

tive motility and sperm concentration using CASA is of significant clinical value in predicting

the ability of a given ejaculate to achieve successful fertilization and pregnancy in vivo without

interventions [47]. Thus, the main goal of a CASA system development is to provide a new

methods for automatically detecting and predicting different aspects of human fertility includ-

ing predicting the motility and morphology of sperms that will lead to a significant reduction

of a doctor’s workload. Motility and morphology are key attributes [47] for determining the

quality of a given sperm sample. Motility is estimated by the individual movement of each

spermatozoon, while morphology investigates the shape and form of the sperm cells. Beside

the overall sperm quality assessment, another potential use-case is tracking individual sperma-

tozoons in real-time. Thus, the main goals of this preliminary evaluation is to test if the EIR

system can be used for this use-case out-of-the-box without any significant modifications.

The crucial factor to the motility and morphology attribute measurement is the spermato-

zoon localization and morphological segmentation. For the morphology analysis, in the context

of semen, doctors often examine the three parts that make up a spermatozoon. These include the
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(a) Input microscopic image. (b) Ground truth mask for heads.

(c) Ground truth mask for acrosomes. (d) Ground truth mask for nucleuses.

Figure 3.42: The example images of the spermatozoon localization and segmentation dataset

used for the experimental evaluation of the EIR system with the different use-case study. First

image (a) depicts the source microscopic image in RGB color space. Three other images (b-d)

represent the ground truth masks for the different morphological parts of the spermatozoons

shown on the image (a).

head (a whole spermatozoon body without a tail), the acrosome (a front-piece of spermatozoon

head) and the nucleus (a middle part of a whole spermatozoon in between a acrosome and a tail,

rear-piece of spermatozoon head). For the motility estimation, frame-by-frame tracking of the

spermatozoons’ heads and acrosome positions gives enough information for the travel direction

and speed estimation. To the best of our knowledge, there is no a complete CASA system that

can solve this semen analysis tasks at once. Collecting a sperm-related dataset and applying

our developed detection and localization approaches is our first step in the direction of CASA

system development.

The dataset we used in the spermatozoon localization and segmentation experiment consists

of 20 RGB frames recorded during a normal sperm microscopy procedure (see figure 3.42 for

an example). Each microscopic frame comes along with three different ground truth masks for

the different morphological parts of spermatozoon: head, acrosome and nucleus. We split the

whole dataset half-and-half into training and testing sets. Than we trained our GAN-based de-

tection, localization and segmentation approach using the corresponding training data. In total,

we trained three different independent models for head, acrosome and nucleus. To test the ex-

tensibility of our approach, we did not alter any of the training and processing parameters of our
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(a) Input microscopic image.

(b) Ground truth mask for heads. (c) Head segmentation results.

(d) Ground truth mask for acrosomes. (e) Acrosome segmentation results.

(f) Ground truth mask for nucleuses. (g) Nucleus segmentation results.

Figure 3.43: The comparison of the ground truth segmentation masks with the output generated

segmentation masks of the different morphological parts of the spermatozoons.
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networks and used those that were successful for polyp detection and localization. Next, using

the trained models, we processed the test dataset in order to generate segmentation masks for

the corresponding spermatozoon parts. The example of the three model runs for head, acrosome

and nucleus are depicted in figure 3.43. We have not computed any of performance numbers

because of a very limited dataset size and because of the incompleteness of the annotation data.

For example, figure 3.42(a) shows a clearly visible spermatozoon in the top-left corner, while

ground truth data does not have any corresponding markings for this particular object. The same

can be observed for two spermatozoons in figure 3.43(a) in the bottom-right corner. Counting

the fact that our approach was able to correctly recognize the spermatozoons in this cases, we

can state that our approach works well for this use-case. And, as one can see, the generated

segmentation masks fit nicely the ground truth, confirming that our polyp-oriented approach

can be efficiently retrained to process not only new classes of human tissue lesions, but also

perform well for data from different use-case.

3.7 Summary

In this section, we presented our approach for a holistic and complete medical multimedia

system called DeepEIR targeted to detect, localize and highlight diseases in the GI tract. The

DeepEIR system consists of the complete pipeline from annotation, over detection, localization,

segmentation and automatic analysis to visualization. We demonstrated that all parts of the

system are important by themselves, and together form a complete system.

We started the DeepEIR system development with the collection of data, training and evalu-

ation of the system performance. We investigated the privacy and legal issues and made agree-

ments with the partner hospitals in Norway to obtain and publish the medial data. We created

and published [94, 95, 100] three multi-disease multi-class datasets as open-access resources.

There have already received a lot of attention in the research community. We started the medical

data analysis competition within the bigger multimedia evaluation benchmark workshop, and

we are running it already for three years in row [61, 100, 119].

The data exploration and annotation subsystem is an essential part of the DeepEIR system,

because without properly annotated data, it is not possible to train, verify and validate the whole

system and its separate components. Moreover, the annotation subsystem allows us literally to

transfer medical knowledge data into the IT domain in order to understand and solve the com-

plex and often unexplored multimedia challenges of the medical field without having a deeply

specialized medical background and education. It is a well-known fact that medical experts are

always very busy. In our annotation subsystem, we tried to address this by introducing an easy-

to-understand and use set of tools for data annotation. We developed several annotation tools

for medical experts and performed research on these tools to find ones that are better usable and

acceptable for the doctors [98, 120].

Next, we developed several modules for the detection subsystem based on different im-

age processing methodologies. First, we extended our single-class global-feature-based de-

tector [97, 115] with new features and classification algorithms [116, 117]. We also made

the search-based classification subsystem open source [90], and contributed to the open-source

library LIRE, which is used for global features extraction [80]. Than we extended our global-
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feature-based detector to multi-class use-cases, which allowed us to perform multi-class evalua-

tion experiments with our newly collected multi-disease and multi-object dataset [95]. As a nat-

ural step forward, we designed and implemented deep-learning-based [117] and deep-feature-

based [87] single- and multi-class classifiers for the detection subsystem, and evaluated and

compared them with global-feature-based classifiers [99]. We demonstrated that our detection

system can reach a detection performance comparable with state-of-the-art polyp detection ap-

proaches, while providing higher processing speeds and reaching our real-time goals [91, 119].

Then, we designed and developed our own hand-crafted local-feature-based polyp local-

ization approach, which is able to spot polyp locations within video frames using polyp color,

texture and shape properties. With this spot localizer and our detection subsystem, we success-

fully participated in the MICCAI challenge [25] for polyp detection and localization. In this

challenge, while competing with the research teams working on the polyp recognition for many

years, we managed to reach the middle of the overall score for the detection and localization

sub-challenges, and we were the second best participant in the detection latency part [25].

The localization subsystem was further extended with new sub-region-based polyp localiza-

tion modules, each implemented on top of our deep-learning- and deep-feature-based detectors.

Here we used splitting of images into smaller, overlapping sub-images with a subsequent de-

tection and detection-result integration to achieve location-based polyp presence estimation and

detection [92]. Finally, we implemented universal GAN-based localization-via-segmentation

and detection-via-localization modules, which allowed us to achieve both frame- and pixel-wise

high-precision polyp detection and localization [92]. We later extended this approach to bleed-

ing [129] and angiectasia [93] lesions, which resulted in outstanding detection and localization

performance, which is to our best knowledge, better than the state-of-the-art in angiectasia de-

tection and localization.

To meet real-time speed for Full HD frames, we investigated performance-related issues and

evaluated performance of the complete DeepEIR pipeline on different hardware resources. We

showed that not all developed subsystems can be executed within real-time constraints using

only CPU resources. Therefore, we implemented, presented and evaluated an improved version

of the DeepEIR system, which uses a heterogeneous architecture utilizing GPU-acceleration [101].

Even further, we implemented and evaluated distributed workload processing using Device

Lending of remote GPUs [102]. The comprehensive results demonstrate that using of het-

erogeneous resources is the key to real-time performance, and parallel and distributed anal-

ysis of multimedia data is a gateway to massive data analysis, which can enable national-

wide screening. The developed resource-sharing approach also enables in-hospital hardware

resources re-utilization, which leads to reduced installation costs of computer lesion detection

systems [118, 121]. We demonstrated that the improved DeepEIR system reaches the outstand-

ing better-than-real-time processing performance of 300 FPS for Full HD video frames, making

it possible to implement massive data processing services or add more preprocessors, global-

and deep-feature extractors, classifiers, localizers and complex image analysis and processing

algorithms to increase the number of detectable diseases by our system while keeping the real-

time capability [117, 118].

For the visualization subsystem, we presented three different solutions that can be used by

medical experts. These are an online web-based visualization and search tool [80, 90], a real-

time polyps detection and spotting tool [91, 96] and a real-time universal lesion detection and
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localization software. We evaluated the developed visualization subsystem for the real-world

use-cases and set the goals for further improved interaction between doctors and computer-aided

support systems [116, 117].

Based on the different datasets, including three of our own, we showed that the DeepEIR

system can achieve very good results for polyp and other lesion detection and localization while

providing real-time feedback to medical doctors while they are performing colonoscopies [91].

We showed that the detection and localization subsystem can reach and for some use-cases

outperform state-of-the-art algorithm performance [96, 117]. The whole system was tested by

our collaborating medical doctors and was found promising and ready for clinical prototype

development [91, 117]. At the moment, DeepEIR is only tested with visual information, but it

is built in a way that it can easily be extended to other multimedia data such as sensor or patient

data.

Finally, we stress-tested the DeepEIR system for its flexibility and extensibility by running

a short successful trial with diseases from different use-case areas, namely bladder cancer cells

detection and spermatozoon localization and segmentation. Additionally, we modified and ap-

plied our GAN-based localization module to satellite imagery analysis [13, 16, 122], which

allowed us to achieve the best flooding areas segmentation performance in the relevant chal-

lenges [14, 15].

Thus, in summary, DeepEIR fulfills the requirements set in section 1.2. It is a significant

step towards a clinical-ready medical multimedia system that can really help the medical sector

in detection, localization, treatment and prevention of some of the most lethal diseases and their

short- and long-term consequences, and directly improve the health care system for the whole

human society.
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Chapter 4

Conclusion

Researching and developing a holistic multimedia medical-purpose-oriented system that can be

used for the GI tract disease detection and localization is a complex and multi-disciplinary task

requiring investigations in many different problem areas. The work described in this thesis em-

ploys both newly developed and state-of-the-art information processing and analysis methods

in order to achieve a superior detection and localization performance for the different lesion and

ordinary objects of the human GI tract with an outstanding data processing speed and real-time

capabilities.

4.1 Summary and Contributions

In this thesis, we presented our experiences with researching and developing a complete holistic

medical multimedia system for GI tract disease detection and localization. To stay in the scope

of the thesis, we focused on the use case of GI disease and object detection and localization us-

ing videos and images. We aimed and were able to build a system that is flexible, generalizable,

adaptable, efficient and accurate. As a result, the most important outcome of this work is the

DeepEIR system, which reaches high accuracy for lesion and object detection and localization.

DeepEIR is easily expandable with new use-cases and data types, runs in real-time, and at the

moment the complete system is being tested by medical experts for real clinical studies and

trials.

This thesis contributes to several areas of multimedia research. We contributed by research-

ing and developing a medical multimedia system called DeepEIR including data collection,

annotation, detection, localization and visualization tools that demonstrates the potential of

multimedia research for the health care system.

We started our research from the deep analysis of human GI tract lesion and abnormalities

detection needs. We investigated the medical field challenges, with a special focus on the data

acquisition and use. We discovered the existing lesion detection and localization approaches,

as well as the existing relevant datasets. We made agreements with the collaborating medical

institutions and managed to download fully anonymized data for our research purposes.

We collected, annotated and published several new medical datasets freely available under

an open-source licenses for research and educational purposes. We researched and developed an

efficient set of generalizable and multi-purpose visual-representation-based methods to process
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and analyze multimedia data. Further, we improved the implementation of methods to achieve

real-time and better processing performance and also contributed by researching how distributed

processing can be utilized to achieve real-time performance for medical multimedia workload

processing. Moreover, we showed some of the privacy and legal issues related to medical

multimedia research, demonstrated why the multimedia community should apply their research

in medicine, and illustrated how advanced multimedia technology and methods can be used in

the medical field to improve workflows, patient care and, most important, potentially save lives.

Next, we implemented a set of tools that can be useful for dataset creation regardless of the

application area and made the most recent one open source. We implemented and presented

several different prototypes and demos of the whole system and various subsystems, and made

the detection part of the system open source. Furthermore, we demonstrated that our system

is not limited by the primary goal of GI tract inspection, but flexible enough for other types

of objects and applications related to visual information analysis. Finally, we contributed by

writing and publishing several research papers about our findings and experiences, which we

shared with the multimedia research community. We shared our experience regarding how

multimedia researchers can apply their knowledge in the medical field and published the article

in the ACM multimedia Brave New Idea track [116]. In addition to the DeepEIR system [25,

26, 61, 62, 63, 64, 80, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 115, 117, 118,

119, 120, 121, 129] and side applications of its subsystems [13, 14, 15, 16, 55, 84, 113, 122],

this can be seen as an important contribution of this thesis to the research society.

The work presented in this thesis is a continued and extended research on the broad and

complex topic of automated lesion detection in the human GI tract. The basic version of the

EIR system was jointly developed by Michael Riegler and Konstantin Pogorelov, the author of

this thesis. The basic EIR system was described in Riegler’s thesis [112]. The second extended

and improved version of the EIR system called DeepEIR is presented in this thesis. Both theses

include the description of the background, motivation, problem, related work, algorithms and

results obtained by Riegler and Pogorelov. The individual author’s contributions are explained

in chapter 5 and section 1.6.

All main contributions of the thesis are supported by publications in top tier conferences

and journals. The contributions to the objectives defined in section 1.2 of the thesis are:

• Contributions to the main objective: We developed DeepEIR (the second version

of the EIR system) for automatic detection and in-screen localization of lesions in the

GI tract, which is capable of giving real-time visual feedback during live colonoscopies

using traditional endoscopic equipment as well as of processing huge amount of data for

population mass screening using VCEs. The second version of the system consists of

an annotation, a detection, a localization and visualization subsystems. The DeepEIR

system has been researched and developed with the help of medical experts in our partner

hospitals in Norway, Sweden, USA and Austria. The medical experts helped by giving

feedback, explaining their field, testing the system and providing data [101, 102, 117,

118, 121].

Using the ASU Mayo dataset [134], we showed that the detection subsystem of DeepEIR

reaches high performance in terms of accuracy and processing. We can report a sensitivity

of almost 98% and a precision of almost 94%. This means that DeepEIR is able to find
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polyps in almost all cases with high precision. This can help the medical experts to save

time and lives [101, 102, 117, 118, 121].

Using the recent public Hospital Clinic of Barcelona dataset [23, 24] and our public

datasets [94, 95], we showed that the detection subsystem of DeepEIR can reach high

frame-wise classification performance in terms of accuracy with the detection speci-

ficity of 94% and accuracy of 90.9%. With the same datasets, the localization subsys-

tem reaches the specificity and accuracy of 98.4% and 94.6%, respectively. The result-

ing performance of our detection and localization approaches is significantly higher than

competing global-feature- and deep-learning-based approaches including the most recent

real-time YOLOv2 CNN network [107].

Using the angiecstasia segmentation public dataset [23], we showed that the detection

and the localization subsystems of DeepEIR can reach outstanding performance that ex-

ceeds clinical requirements (sensitivity and specificity higher than 85%). We achieved a

sensitivity of 88% and a specificity of 99.9% for pixel-wise angiectasia localization, and

a sensitivity of 98% and a specificity of 100% for frame-wise angiectasia detection.

Moreover, we compared DeepEIR with other systems and participated in a classification

challenge where we could show that we outperform or reach at least same performance

in accuracy as state-of-the-art methods and that we are leading in terms of processing

performance [102, 117, 121].

For each part of the DeepEIR system, we developed working prototypes and demo appli-

cations. These prototypes and demo applications have been presented at conferences [17,

102, 117, 121].

For the real-time processing challenge, we showed that DeepEIR can process at least 300

FPS for polyp detection, which is a good indicator that we created a scalable medical

multimedia system able to process data in real-time [117]. We researched and imple-

mented different ways of distributed and parallel processing using different architectures

to improve the performance of the DeepEIR system. One of the methods that we re-

searched is the distribution of the detection and localization part on graphics processing

units (GPUs) [101, 121]. Another method that we researched was to distribute the Deep-

EIR workloads via Device Lending [72, 102]. Both methods improved the processing

performance significantly [72, 102].

We showed the potential of multimedia research in the medical field and showed possi-

ble further directions and research topics using the DeepEIR system as an example use

case [116].

We contributed to two open source projects: LIRE, in the field of content-based image

retrieval [80], and OpenVQ, on video quality [126]. We also released the global-feature-

based detection algorithm of DeepEIR as an open source project called Opensea [90].

Finally and most important for us, we contributed with a medical multimedia system for

GI examinations that will in the future help medical doctors to save lives.

• Contributions to sub-objective 1: For the annotation subsystem of DeepEIR, together

with our partner doctors, we did an extensive research in order to make the process of
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medical knowledge transfer into our system easy and efficient for the medical experts. We

explored and developed semi-supervised and cluster-based annotation tools [90, 98, 120].

For the medical data collection and publishing, we researched the ethical and legal aspects

of the medical data use within our research process. We contacted several Norwegian hos-

pitals and established relations with the data storage managing personnel. With the help of

our medical-side collaborators, we made the agreements allowing us to extract and use the

fully anonymized data from the hospital medical information systems. Using these data,

we created two datasets (called Kvasir and Nerthus) and published them online freely

accessible for educational and research purposes [94, 95]. We used the published datasets

for organizing Medico: The 2018 Multimedia for Medicine Task challenge within Medi-

aEval Benchmarking Initiative for Multimedia Evaluation [61, 100, 119]. The public and

the research community accepted our Medico challenge. The independent researchers

deeply evaluated the datasets and they are already used widely around the world. We also

did our evaluation of the datasets to give the baseline for other researchers [87, 99].

• Contributions to sub-objective 2: As a basis for the detection subsystem, we developed

a search-based classification algorithm that uses global image features, reaches good clas-

sification performance and is very fast at the same time [90]. As a basis for the localization

subsystem, we developed a polyp localization algorithm based on hand-crafted local fea-

tures and global heat map post-processing, that is able to reach a good polyp localization

precision with a low false-alert rate [25].

We researched the problem of bleeding detection for VCE-captured videos and developed

the basic bleeding detection and localization algorithm for the DeepEIR system [129].

We implemented the multi-class global-feature- and deep-learning-based classifiers that

are able to handle multiple lesions, landmarks and normal findings of the GI tract for the

detection subsystem, researched its efficiency both in terms of accuracy and processing

speed and compared it with existing competitors [91, 96]. This formed the basis for the

DeepEIR system development into the holistic system that is usable and helpful in the

real-world conditions.

In order to extend the lesion detection capabilities of the DeepEIR system, we researched

and developed a GAN-based detection and localization approach for the angiectasia GI

tract lesion [93]. Also, inspired by the great success of our angiectasia detection ap-

proach, we researched and developed a GAN-based polyp detection and localization ap-

proach [92].

We researched the topic of deep neural networks understanding for better medical image

classification and classification understanding [62]. We researched the tradeoffs using

binary versus multi-class neural network classification for medical multi-disease detec-

tion [26].

Based on the use cases addressed in the thesis and the DeepEIR system itself, we showed

that the global- and local-feature-based algorithms together with deep-learning-based ap-

proaches can form a strong basis for a multi-lesion detection system. We showed that

local hand-crafted features together with GAN-based approaches can provide a good lo-

calization performance for the challenging lesions that are hard to see even for humans.
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In total, we proved that the developed algorithms are well suited to be applied to several

different use cases that involve image classification and analysis problems [91, 92, 93, 99,

101, 102, 116, 117, 118, 121].

• Contributions to sub-objective 3: We researched different types of visualization for

the output of the DeepEIR system. We developed the specific HTML visualization output

generation application for research and medical experts [90] and its easier-to-use web-

based version [121]. We developed an initial visualization approach that is able to visual-

ize all outputs of the DeepEIR system [117], which was later involved in the live system

output visualization application [96]. We researched the problems of an automatic re-

porting and decision reasoning system for deep-learning-based analysis in the medical

domain [63, 64]

Apart from the main contributions, we also contributed to other multimedia research relevant

topics:

Using our GAN-based approach, we researched and developed an approach to the flooding

detection on the satellite images that showed promising results [14, 15, 122] and built a unique

system for collecting information and monitoring natural disasters by linking social media with

satellite imagery can potentially save lives [13, 16].

We researched how the context (a certain watching situation) influences the quality of ex-

perience for users when they are watching videos using watching videos during a flight as

a use-case. We hosted a MediaEval benchmark task [97] about this topic and published a

dataset [115].

We developed a system for efficient live and on-demand tiled HEVC 360 VR video stream-

ing and researched its performance in real use-case scenarios [55].

We researched and developed the new top-down saliency detection approach driven by vi-

sual classification showed promising performance on common saliency detection evaluation

datasets [84].

In addition to the above contributions, the author also supervised several master students,

organized workshops and was part of program committees or conferences.

In summary, we were able to follow a promising and for the society important path by

researching and developing a complete medical multimedia system. During this process, we

touched and contributed to several areas of multimedia research (annotation, automatic analy-

sis, processing and visualization). We were also able to establish collaborations with several

hospitals, which gave us a lot of insight into the medical field and their problems and needs,

but also domain knowledge that is needed for creating a useful system. Thus, this work builds

a solid basis for future collaboration and work in the field of medical multimedia systems.

4.2 Future Work

For future work, the EIR system can be improved and extended in several ways with new tech-

nologies and methods like long short-term memory (LTSM) deep learning approaches for time-

based video sequences analysis, advanced pre-processing of images and videos in order to im-

prove detection and localization accuracy, and including more sources of data such as medical
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sensor data, patient records and audio input from examination rooms. Another important im-

provement can be a broader comparison of our system with the existing industrial-grade medical

systems for GI tract applications in terms of accuracy and usability.

Further widening of the detection and localization capabilities requires the collection of

more training data in the various medical fields. The extension of the datasets that have been

collected, annotated and published during this work will allow solving even more challenges and

will open new possibilities for future research and experiments. Nevertheless, the annotation

process of this data is depending on the medical experts and takes a lot of time and effort, and

therefore, the collaboration with medical institutions need to be further developed.

The analytical part of the system can be further extended not only with new detectable

and localizable diseases and findings, but also with the 3D spatial position localization of the

instrument in the whole GI tract using combined motion and landmark analysis. Here, further

improvements are also achievable by implementing the 3D reconstruction of the GI tract. A

3D representation of the GI tract could make it easier to detect and localize diseases, position

the instrument precisely, and it would also enable lesion size estimation, which is important

information for doctors.

The output of an automatic system like DeepEIR also opens many possibilities for visual-

ization, automated reporting and computer-aided diagnosis application scenarios. The automat-

ically selected most-representative samples can be used to add decision-supporting information

to patient records such as images of the found diseases or video clips. Moreover, automatic

report creation after the examination could help medical doctors to reduce the amount of time

spend on reporting. The saved time could then be used to perform additional examinations.

4.3 Final Remarks

Our future research in medical multimedia systems is financially supported by several projects,

successfully applied and funded by the Norwegian research council and Oslo Metropolitan

University. Within these projects, four PhD students with computer science background and a

joint IT-medical PhD student are working jointly to continue this research and enable full-scale

clinical trials. The future plan is to make the medical multimedia data and medical expertise

publicly available and introduce a ready-to-use system as a routine medical service. This system

will be based on our current version of the DeepEIR system and there are a lot of system

research and challenges to tackle, i.e., it has to work unattended, preserve privacy, be fault

tolerant and well-logged. We fulfilled all research goals that we specified for this thesis and

created a holistic system that can be used as a strong basis for future research and applied

implementations, and, most important, has the potential to improve the health-care system and

actually save lives.
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Chapter 5

Papers and Author’s Contributions

General overview and discussion of the authors contributions and how the papers contributed

to the objectives defined in section 1.2 for each main paper of the thesis. A diagram that also

depicts each papers contributions can be found in figure 1.5.

5.1 Paper I: LIRE - Open Source Visual Information Re-

trieval

Authors: Mathias Lux, Michael Riegler, Pål Halvorsen, Konstantin Pogorelov, Nektarios Anag-

nostopoulos

Abstract: With an annual growth rate of 16.2% of taken photos a year, researchers predict an

almost unbelievable number of 4.9 trillion stored images in 2017. Nearly 80% of these

photos in 2017 will be taken with mobile phones1. To be able to cope with this immense

amount of visual data in a fast and accurate way, a visual information retrieval systems are

needed for various domains and applications. Lire, short for Luce- ne Image Retrieval,

is a light weight and easy to use Java library for visual information retrieval. It allows

developers and researchers to integrate common content based image retrieval approaches

in their applications and research projects. Lire supports global and local image features

and can cope with millions of images using approximate search and distributing indexes

on the cloud. In this demo we present a novel tool called F-search that emphasize the core

strengths of Lire: lightness, speed and accuracy.

Author’s contributions: Pogorelov developed and evaluated the sample (demo) application

built on top of LIRE. This application is used in his thesis as the basis for further an-

notation and visualization tools development. He contributed to the LIRE library code

development and did additional performance measurements regarding the search based

algorithm. He contributed to all paper sections.

Published in: ACM Multimedia Systems Conference (MMSys), 2016.

Contributed to: Main Objective, Sub-objective 1

See page: 131
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5.2 Paper II: OpenSea - Open Search Based Classification

Tool

Authors: Konstantin Pogorelov, Zeno Albisser, Olga Ostroukhova, Mathias Lux, Dag Johansen,

Pål Halvorsen, Michael Riegler

Abstract: This paper presents an open-source classification tool for image and video frame

classification. The classification takes a search-based approach and relies on global and

local image features. It has been shown to work with images as well as videos, and is able

to perform the classification of video frames in real-time so that the output can be used

while the video is recorded, playing, or streamed. OpenSea has been proven to perform

comparable to state-of-the-art methods such as deep learning, at the same time performing

much faster in terms of processing speed, and can be therefore seen as an easy to get and

hard to beat baseline. We present a detailed description of the software, its installation

and use. As a use case, we demonstrate the classification of polyps in colonoscopy videos

based on a publicly available dataset. We conduct leave-one-out- cross-validation to show

the potential of the software in terms of classification time and accuracy.

Author’s contributions: Pogorelov was coordinating the writing and submission process. He

was responsible for the classification tool testing under different conditions and datasets

within the EIR system development and the other side projects. Pogorelov developed

an updated version of the OpenSea tool using the updated LIRE library. He conducted

a set of experiments with different own and other publicly available datasets in order to

validate the tool and approach in general. He wrote the use-case chapter and contributed

to other chapters. He prepared and published the open-source repository with the tool for

this paper.

Published in: ACM Multimedia Systems Conference (MMSys), 2018.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 3

See page: 137

5.3 Paper III: Explorative Hyperbolic-Tree-Based Cluster-

ing Tool for Unsupervised Knowledge Discovery

Authors: Michael Riegler, Konstantin Pogorelov, Mathias Lux, Pål Halvorsen, Carsten Gri-

wodz

Abstract: Exploring and annotating collections of images without meta-data is a laborious

task. Visual analytics and information visualization can help users by providing inter-

faces for exploration and annotation. In this paper, we show a prototype application that

allows users from the medical domain to use feature-based clustering to perform explo-

rative browsing and annotation in an unsupervised manner. For this, we utilize global im-

age feature extraction, different unsupervised clustering algorithms and hyperbolic tree
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representation. First, the prototype application extracts features from images or video

frames, and then, one or multiple features at the same time can be used to perform clus-

tering. The clusters are presented to the users as a hyperbolic tree for visual analysis and

annotation.

Author’s contributions: Pogorelov developed the demo application and the tree-based repre-

sentation of the clustering output and the annotation part of it. He contributed to the

experiments to evaluate the performance of the clustering approach and evaluated the

demo application on the medical data. He coded the fast image tree drawing algorithm

and optimized the features extraction and clusterization code. He wrote the prototype

and demo description section and also contributed to the text in all other sections and the

results of these experiments discussion.

Published in: International Workshop on Content-based Multimedia Indexing (CBMI), 2016.

Contributed to: Main Objective, Sub-objective 3

See page: 145

5.4 Paper IV: ClusterTag: Interactive Visualization, Cluster-

ing and Tagging Tool for Big Image Collections

Authors: Konstantin Pogorelov, Michael Riegler, Pål Halvorsen, Carsten Griwodz

Abstract: Exploring and annotating collections of images without meta-data is a complex task

which requires convenient ways of presenting datasets to a user. Visual analytics and

information visualization can help users by providing interfaces, and in this paper, we

present an open source application that allows users from any domain to use feature-based

clustering of large image collections to perform explorative browsing and annotation.

For this, we use various image feature extraction mechanisms, different unsupervised

clustering algorithms and hierarchical image collection visualization. The performance

of the presented open source software allows users to process and display thousands of

images at the same time by utilizing GPU resources and different optimization techniques.

Author’s contributions: Pogorelov had the idea for the paper. He had the overall responsibil-

ity for writing and wrote most of the text in clustering, visualization and the project de-

scription sections and contributed to all other sections. He developed the efficient feature

extraction, clusterization, real-time database and high-performance drawing algorithms.

Pogorelov developed the whole interactive visualization, clustering and tagging tool and

performed all the experiments. He did the tool’s extensive performance analysis and de-

veloped several real-time-oriented caching and on-fly data processing subsystems.

Published in: ACM International Conference on Multimedia Retrieval (ICMR), 2017.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 3

See page: 151
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5.5 Paper V: EIR - Efficient Computer Aided Diagnosis Frame-

work for Gastrointestinal Endoscopies

Authors: Michael Riegler, Konstantin Pogorelov, Pål Halvorsen, Thomas de Lange, Carsten

Griwodz, Peter Thelin Schmidt, Sigrun Losada Eskeland, Dag Johansen

Abstract: Analysis of medical videos for detection of abnormalities like lesions and diseases

requires both high precision and recall but also real-time processing for live feedback dur-

ing standard colonoscopies and scalability for massive population based screening, which

can be done using a capsular video endoscope. Existing related work in this field does

not provide the necessary combination of detection accuracy and performance. In this

paper, a multimedia system is presented where the aim is to tackle automatic analysis of

videos from the human gastrointestinal (GI) tract. The system includes the whole pipeline

from data collection, processing and analysis, to visualization. The system combines fil-

ters using machine learning, image recognition and extraction of global and local image

features, and it is built in a modular way, so that it can easily be extended. At the same

time, it is developed for efficient processing in order to provide real-time feedback to the

doctor. Initial experiments show that our system has detection and localisation accuracy

at least as good as existing systems, but it stands out in terms of real-time performance

and low resource consumption for scalability.

Author’s contributions: Pogorelov designed and developed a localization approach and the

corresponding subsystem. He performed implementation and speed improvements of the

detection, analysis and visualization subsystems. He designed and developed experiments

for the localization part of the system and contributed to the experiments for the detection

part of the system. Pogorelov conducted experiments on the multi-core server and sug-

gested the use of GPU-enabled computations to increase the processing speed and bring

real-time capabilities to the EIR system. He contributed to the writing of all the paper’s

sections.

Published in: International Workshop on Content-based Multimedia Indexing (CBMI), 2016.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3

See page: 159

5.6 Paper VI: From Annotation to Computer-Aided Diagno-

sis: Detailed Evaluation of a Medical Multimedia System

Authors: Michael Riegler, Konstantin Pogorelov, Sigrun L. Eskeland, Peter T. Schmidt, Zeno

Albisser, Dag Johansen, Carsten Griwodz, Pål Halvorsen, Thomas de Lange

Abstract: In many hospitals, the potential value of multimedia data collected through routine

examinations is not recognized. Also, the availability of the data is limited, as the health
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care personnel have no direct access to the databases where data is stored. However, med-

ical specialists interact with the multimedia content daily through their everyday work and

have an increasing interest in finding ways to use it to facilitate their work-processes. In

this paper, we present a multimedia system aiming to tackle automatic analysis of video

from gastrointestinal (GI) endoscopy. The proposed system includes the whole pipeline

from data collection, processing and analysis, to visualization, and it combines filters

using machine learning, image recognition and extraction of global and local image fea-

tures. We built it in a modular way so we can easily extend it to analyze various abnor-

malities.We also developed it to be efficient enough to run in real-time. The conducted

experimental evaluation proves that the detection and localization accuracy reaches at

least as good as existing systems’ performance, but it is leading in terms of real-time

performance and efficient resource consumption.

Author’s contributions: Pogorelov contributed to all the development- and evaluation-related

sections of the paper. He designed and developed GPU-accelerated detection subsystem,

performed and discussed all the detailed performance evaluation experiments in terms

of speed and memory consumption for the detection part. He designed and developed

the new localization subsystem and its GPU-accelerated implementation, performed the

experiments and discussed the results. Pogorelov designed and developed the initial ver-

sion of the localization subsystem in order to participate MICCAI challenge on polyp

detection and localization, and performed all the challenge-related experiments. He also

contributed to the real-world use-case and related work sections.

Submitted to: ACM Journal Transactions on Multimedia (ToMM), 2016.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3

See page: 167

5.7 Paper VII: Multimedia and Medicine: Teammates for

Better Disease Detection and Survival

Authors: Michael Riegler, Mathias Lux, Carsten Griwodz, Concetto Spampinato, Thomas

de Lange, Sigrun L. Eskeland, Konstantin Pogorelov, Wallapak Tavanapong, Peter T.

Schmidt, Cathal Gurrin, Dag Johansen, Håvard Johansen, Pål Halvorsen

Abstract: Health care has a long history of adopting technology to save lives and improve

the quality of living. Visual information is frequently applied for disease detection and

assessment, and the established fields of computer vision and medical imaging provide

essential tools. It is, however, a misconception that disease detection and assessment are

provided exclusively by these fields and that they provide the solution for all challenges.

Integration and analysis of data from several sources, real-time processing, and the as-

sessment of usefulness for end-users are core competences of the multimedia community

and are required for the successful improvement of health care systems. For the benefit of

society, the multimedia community should recognize the challenges of the medical world
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that they are uniquely qualified to address. We have conducted initial investigations into

two use cases surrounding diseases of the gastrointestinal (GI) tract, where the detection

of abnormalities provides the largest chance of successful treatment if the initial obser-

vation of disease indicators occurs before the patient notices any symptoms. Although

such detection is typically provided visually by applying an endoscope, we are facing

a multitude of new multimedia challenges that differ between use cases. In real-time

assistance for colonoscopy, we combine sensor information about camera position and

direction to aid in detecting, investigate means for providing support to doctors in unob-

trusive ways, and assist in reporting. In the area of large-scale capsular endoscopy, we

investigate questions of scalability, performance and energy efficiency for the recording

phase, and combine video summarization and retrieval questions for analysis.

Author’s contributions: Pogorelov contributed to the showcase and preliminary results sec-

tions writing. He designed and implemented the improved GPU-accelerated implementa-

tion of the detection and localization subsystems. He contributed to the complete system

design description. Pogorelov was responsible for the real-time requirements fulfillment

and discussion in the paper. He conducted the performance-related experiments and wrote

experiments description and discussion section of the paper. He also contributed to the

use-case discussion, did whole paper proof-reading and addressed reviewers’ comments.

Published in: ACM Multimedia Conference (MM), 2017.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3

See page: 195

5.8 Paper VIII: A Holistic Multimedia System for Gastroin-

testinal Tract Disease Detection

Authors: Konstantin Pogorelov, Sigrun L. Eskeland, Thomas de Lange, Carsten Griwodz,

Kristin R. Randel, Håkon K. Stensland, Duc-Tien Dang-Nguyen, Concetto Spampinato,

Dag Johansen, Michael Riegler, Pål Halvorsen

Abstract: Analysis of medical videos for detection of abnormalities and diseases requires both

high precision and recall, but also real-time processing for live feedback and scalability

for massive screening of entire populations. Existing work on this field does not provide

the necessary combination of retrieval accuracy and performance. In this paper, a multi-

media system is presented where the aim is to tackle automatic analysis of videos from

the human gastrointestinal (GI) tract. The system includes the whole pipeline from data

collection, processing and analysis, to visualization. The system combines filters using

machine learning, image recognition and extraction of global and local image features.

Furthermore, it is built in a modular way so that it can easily be extended. At the same

time, it is developed for efficient processing in order to provide real-time feedback to the

doctors. Our experimental evaluation proves that our system has detection and locali-

sation accuracy at least as good as existing systems for polyp detection, it is capable of
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detecting a wider range of diseases, it can analyze video in real-time, and it has a low

resource consumption for scalability.

Author’s contributions: Pogorelov was the coordinator of the paper and contributed to all

parts of the paper. Pogorelov designed and developed the first version of the multi-class

classifier for the DeepEIR system. He implemented global-features- and deep-feature-

based classification subsystems integrated them into DeepEIR and described in the paper.

Pogorelov was deeply involved in multi-class data collection for the new medical dataset

together with doctors from Vestre Viken Hospital Trust and Cancer Registry of Norway.

He performed most of the experiments for system evaluation section, described and dis-

cussed the results. He also wrote most of the text for the real-world use cases section. As

a result, the paper got an additional ACM Artifact Available label.

Published in: ACM International Conference on Multimedia System (MMSys), 2017.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3

See page: 207

5.9 Paper IX: GPU-accelerated Real-time Gastrointestinal Dis-

eases Detection

Authors: Konstantin Pogorelov, Michael Riegler, Pål Halvorsen, Thomas de Lange, Peter The-

lin Smidt, Sigrun Losada Eskeland, Carsten Griwodz, Dag Johansen

Abstract: The process of finding diseases and abnormalities during live medical examinations

has for a long time depended mostly on the medical personnel with some sort of not opti-

mal computer support. However, computer-based medical systems are currently emerging

in domains like endoscopies of the gastrointestinal (GI) tract. In this context, we aim for

a system that enable automatic analysis of endoscopy videos, where one use case is live

computer assisted endoscopies enabling higher disease and abnormality detection rates.

In this paper, a system that tackles live automatic analysis of endoscopy videos is pre-

sented with a particular focus on the system’s capability to perform realtime feedback.

The presented system utilizes different parts of a heterogeneous architectures and can be

used for automatically analysis of high definition colonoscopy videos (and a fully auto-

mated analysis of video from capsular endoscopy devices like pillsized cameras). We

describe our implementation and system performance of a GPU-based processing frame-

work. In summary, the experimental results show real-time stream processing and low

resource consumption, at a detection precision and recall level at least as good as existing

related work.

Author’s contributions: Pogorelov introduced the idea of GPU-assisted acceleration of the

different parts of the EIR and DeepEIR systems. He designed and implemented GPU-

accelerated image and video processing algorithms for the detection subsystem. He did
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C++ and CUDA-based implementations of the most compute-intensive blocks of the sys-

tem. Pogorelov designed, performed and described the experiments in the heterogeneous

computational environment. He contributed to all sections of the paper.

Published in: IEEE Computer Based Multimedia System Symposium (CBMS), 2016.

Contributed to: Main Objective, Sub-objective 2

See page: 221

5.10 Paper X: Efficient Processing of Videos in a Multi-Auditory

Environment Using Device Lending of GPUs

Authors: Konstantin Pogorelov, Michael Riegler, Jonas Markussen, Håkon Kvale Stensland,

Pål Halvorsen, Carsten Griwodz, Sigrun Losada Eskeland, Thomas de Lange

Abstract: In this paper, we present a demo that utilizes Device Lending via PCI Express

(PCIe) in the context of a multi-auditory environment. Device Lending is a transpar-

ent, low-latency cross-machine PCIe device sharing mechanism without any the need

for implementing application-specific distribution mechanisms. As workload, we use a

computer-aided diagnosis system that is used to automatically find polyps and mark them

for medical doctors during a colonoscopy. We choose this scenario because one of the

main requirements is to perform the analysis in real-time. The demonstration consists of

a setup of two computers that demonstrates how Device Lending can be used to improve

performance, as well as its effect of providing the performance needed for real-time feed-

back. We also present a performance evaluation that shows its real-time capabilities of

it.

Author’s contributions: Pogorelov introduced the idea of using device landing for data pro-

cessing speed improvement of the detection subsystem. He analyzed the possible uti-

lization of device lending for the system speed-up. Pogorelov designed, developed and

described distributed and parallel implementation of the algorithms of the detection sub-

system. He created the experimental setup, conducted the experiments and analyzed the

results. He also contributed to all the sections writing.

Published in: ACM Multimedia Systems Conference (MMSys), 2016.

Contributed to: Main Objective, Sub-objective 2

See page: 229

5.11 Paper XI: Efficient disease detection in gastrointestinal

videos - global features versus neural networks

Authors: Konstantin Pogorelov, Michael Riegler, Sigrun Losada Eskeland, Thomas de Lange,

Dag Johansen, Carsten Griwodz, Peter Thelin Schmidt, Pål Halvorsen
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Abstract: Analysis of medical videos from the human gastrointestinal (GI) tract for detection

and localization of abnormalities like lesions and diseases requires both high precision

and recall. Additionally, it is important to support efficient, real-time processing for live

feedback during (i) standard colonoscopies and (ii) scalability for massive population-

based screening, which we conjecture can be done using a wireless video capsule endo-

scope (camera-pill). Existing related work in this field does neither provide the necessary

combination of accuracy and performance for detecting multiple classes of abnormali-

ties simultaneously nor for particular disease localization tasks. In this paper, a complete

end-to-end multimedia system is presented where the aim is to tackle automatic analysis

of GI tract videos. The system includes an entire pipeline ranging from data collection,

processing and analysis, to visualization. The system combines deep learning neural net-

works, information retrieval, and analysis of global and local image features in order to

implement multi-class classification, detection and localization. Furthermore, it is built

in a modular way, so that it can be easily extended to deal with other types of abnormali-

ties. Simultaneously, the system is developed for efficient processing in order to provide

real-time feedback to the doctors and for scalability reasons when potentially applied for

massive population-based algorithmic screenings in the future. Initial experiments show

that our system has multi-class detection accuracy and polyp localization precision at

least as good as state-of-the-art systems, and provides additional novelty in terms of real-

time performance, low resource consumption and ability to extend with support for new

classes of diseases.

Author’s contributions: Pogorelov was responsible for the whole paper contents and wrote

most of the chapters. He designed, developed and implemented a novel local-feature-

based polyp localization algorithm. Pogorelov contributed to the multi-class features-

and deep-learning-based classification algorithms for DeepEIR detection subsystem and

developed GPU-based features extraction code. He conducted a full set of experiments

for this paper and performed the performance evaluation and analysis of all the presented

approaches. For the first time for DeepEIR system, Pogorelov performed deep analysis

of the localization performance and conducted a localization performance comparison to

the modern deep-learning-based object localization approaches. He designed, developed

and implemented a real-time live polyps detection and localization software.

Published in: Multimedia Tools and Applications (MTAP), 2017.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3

See page: 235

5.12 Paper XII: Kvasir: A Multi-Class Image Dataset for

Computer Aided Gastrointestinal Disease Detection

Authors: Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada Es-

keland, Thomas de Lange, Dag Johansen, Concetto Spampinato, Duc-Tien Dang-Nguyen,

Mathias Lux, Peter Thelin Schmidt, Michael Riegler, Pål Halvorsen
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Abstract: Automatic detection of diseases by use of computers is an important, but still unex-

plored field of research. Such innovations may improve medical practice and refine health

care systems all over the world. However, datasets containing medical images are hardly

available, making reproducibility and comparison of approaches almost impossible. In

this paper, we present Kvasir, a dataset containing images from inside the gastrointesti-

nal (GI) tract. The collection of images are classified into three important anatomical

landmarks and three clinically significant findings. In addition, it contains two categories

of images related to endoscopic polyp removal. Sorting and annotation of the dataset

is performed by medical doctors (experienced endoscopists). In this respect, Kvasir is

important for research on both single- and multi-disease computer aided detection. By

providing it, we invite and enable multimedia researcher into the medical domain of de-

tection and retrieval.

Author’s contributions: Pogorelov contributed to all the chapters. He did related work re-

search and analyzed all the relevant publicly available datasets. He was closely involved

in the dataset analysis and annotation. He designed and conducted the set of experiments

for the reference multi-class classification evaluation using the algorithms from DeepEIR

system. He summarized the experimental results. Pogorelov created a website for the

dataset and published the dataset with the detailed description online. As a result, the

paper got an additional ACM Artifact Available label.

Published in: ACM Multimedia Systems Conference (MMSys), 2017.

Contributed to: Main Objective, Sub-objective 1

See page: 271

5.13 Paper XIII: Nerthus: A Bowel Preparation Quality Video

Dataset

Authors: Konstantin Pogorelov, Kristin Ranheim Randel, Thomas de Lange, Sigrun Losada

Eskeland, Carsten Griwodz, Dag Johansen, Concetto Spampinato, Mario Taschwer, Math-

ias Lux, Peter Thelin Schmidt, Michael Riegler, Pål Halvorsen

Abstract: Bowel preparation (cleansing) is considered to be a key precondition for success-

ful colonoscopy (endoscopic examination of the bowel). The degree of bowel cleansing

directly affects the possibility to detect diseases and may influence decisions on screen-

ing and follow-up examination intervals. An accurate assessment of bowel preparation

quality is therefore important. Despite the use of reliable and validated bowel preparation

scales, the grading may vary from one doctor to another. An objective and automated

assessment of bowel cleansing would contribute to reduce such inequalities and optimize

use of medical resources. This would also be a valuable feature for automatic endoscopy

reporting in the future. In this paper, we present Nerthus, a dataset containing videos

from inside the gastrointestinal (GI) tract, showing different degrees of bowel cleansing.

112



By providing this dataset, we invite multimedia researchers to contribute in the medi-

cal field by making systems automatically evaluate the quality of bowel cleansing for

colonoscopy. Such innovations would probably contribute to improve the medical field

of GI endoscopy.

Author’s contributions: Pogorelov was responsible for the paper writing and submission. He

contributed with the dataset creation and anonymized the data before publication. Pogorelov

planned, performed and described the basic classification experiments with the dataset.

He wrote data collection, dataset details and performance sections. Pogorelov created a

website for the dataset and published the dataset with the detailed description online. To-

gether with Riegler, he also was developing and running the web-based two-phase bowel

preparation quality assessment survey. The paper got an additional ACM Artifact Avail-

able label.

Published in: ACM Multimedia Systems Conference (MMSys), 2017.

Contributed to: Main Objective, Sub-objective 1
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5.14 Paper XIV: Deep Learning and Handcrafted Feature

Based Approaches for Automatic Detection of Angiec-

tasia

Authors: Konstantin Pogorelov, Olga Ostroukhova, Andreas Petlund, Pål Halvorsen, Thomas

de Lange, Håvard Nygaard Espeland, Tomas Kupka, Carsten Griwodz, Michael Riegler

Abstract: Angiectasia, formerly called angiodysplasia, is one of the most frequent vascular

lesions and often the cause of gastrointestinal bleedings. Medical specialists assessing

videos or images of examinations reach a detection performance of 16% for the detection

of bleeding to 69% for the detection of angiectasia. This shows that automatic detection to

support medical experts can be useful. In this paper, we present several machine learning-

based approaches for angiectasia detection in wireless video capsule endoscopy frames.

In summary, the most promising results for pixel-wise localization and frame-wise de-

tection are obtained by the proposed deep learning method using generative adversarial

networks (GANs). Using this approach, we achieve a sensitivity of 88% and specificity of

99.9% for pixel-wise localization, and a sensitivity of 98% and a specificity of 100% for

frame-wise detection. Thus, the results demonstrate the capability of using deep learning

for automatic angiectasia detection in real clinical settings.

Author’s contributions: Pogorelov had the initial idea of the paper. He introduced the idea

of the paper. He designed and developed a GAN-based segmentation and detection ap-

proach for angiectasia lesion, adding a new lesion segmentation functionality to the Deep-

EIR system. He planned and performed a set of experiments providing a comprehensive

comparison between the GAN-based and deep- and global-feature-based approaches for
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angiectasia detection. He did a set of cross-validation experiments proving the localiza-

tion performance efficiency. Pogorelov also was responsible for the paper writing and

contributed to all sections.

Published in: IEEE Biomedical and Health Informatics Conference (BHI), 2018.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3

See page: 287

5.15 Paper XV: Deep Learning and Hand-crafted Feature

Based Approaches for Polyp Detection in Medical Videos

Authors: Konstantin Pogorelov, Olga Ostroukhova, Mattis Jeppsson, Håvard Espeland, Carsten

Griwodz, Thomas de Lange, Dag Johansen, Michael Riegler, Pål Halvorsen

Abstract: Video analysis including classification, segmentation or tagging is one of the most

challenging but also interesting topics multimedia research currently try to tackle. This

is often related to videos from surveillance cameras or social media. In the last years,

also medical institutions produce more and more video and image content. Some ar-

eas of medical image analysis, like radiology or brain scans, are well covered, but there

is a much broader potential of medical multimedia content analysis. For example, in

colonoscopy, 20% of polyps are missed or incompletely removed on average. Thus, au-

tomatic detection to support medical experts can be useful. In this paper, we present

and evaluate several machine learning-based approaches for real-time polyp detection for

live colonoscopy. We propose pixel-wise localization and frame-wise detection methods

which include both handcrafted and deep learning based approaches. The experimental

results demonstrate the capability of analyzing multimedia content in real clinical set-

tings, the optimization of the work flow and better detection rates for medical experts.

Author’s contributions: Pogorelov introduced the idea of the paper. He designed and devel-

oped a combined GAN-based algorithm suitable for implementation of detection, local-

ization and detection-via-localization approaches for DeepEIR system. He tuned his al-

gorithm for the polyp detection and localization use-case and performed the initial proof-

of-concept set of experiments. Further, Pogorelov planned designed and performed a set

of experiments for through validation of the approach and a comprehensive comparison to

the global-features- and deep-learning-based detection approaches. He created and pre-

pared the datasets were used for the experiments. Pogorelov wrote the methodology and

experiments sections were also responsible for the whole paper writing and contributed

to the paper’s text. As a result, the paper got the Best Paper Award from the 2018 IEEE

Computer-Based Medical Systems Symposium.

Published in: IEEE Computer-Based Medical Systems Symposium (CBMS), 2018.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3

See page: 293
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Abstract Analysis of medical videos from the human gastrointestinal (GI) tract for detec-

tion and localization of abnormalities like lesions and diseases requires both high precision

and recall. Additionally, it is important to support efficient, real-time processing for live

feedback during (i) standard colonoscopies and (ii) scalability for massive population-based

screening, which we conjecture can be done using a wireless video capsule endoscope

(camera-pill). Existing related work in this field does neither provide the necessary
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combination of accuracy and performance for detecting multiple classes of abnormalities

simultaneously nor for particular disease localization tasks. In this paper, a complete end-to-

end multimedia system is presented where the aim is to tackle automatic analysis of GI tract

videos. The system includes an entire pipeline ranging from data collection, processing and

analysis, to visualization. The system combines deep learning neural networks, information

retrieval, and analysis of global and local image features in order to implement multi-class

classification, detection and localization. Furthermore, it is built in a modular way, so that

it can be easily extended to deal with other types of abnormalities. Simultaneously, the

system is developed for efficient processing in order to provide real-time feedback to the

doctors and for scalability reasons when potentially applied for massive population-based

algorithmic screenings in the future. Initial experiments show that our system has multi-

class detection accuracy and polyp localization precision at least as good as state-of-the-art

systems, and provides additional novelty in terms of real-time performance, low resource

consumption and ability to extend with support for new classes of diseases.

Keywords Medical · Automatic disease detection · Algorithmic screening · Global and

local image features · Deep learning neural networks · Information retrieval · Performance

evaluation

1 Introduction

Rapid development of technologies in areas of sensors, imaging devices and diagnostic

methods shifts the paradigm in medical diagnostic from manual analysis by trained doctors

to wide usage of automated computer-assisted diagnostic systems. In our research, we are

working at the intersection between computer science and pathological medicine, where we

target a scalable, real-time, multi-disease detection system for the gastrointestinal (GI) tract.

Our aim is to develop both a computer-aided, live analysis system of endoscopy videos and

a scalable detection system for population-wide screening using a wireless video capsule

endoscope (VCE). This small capsule with one or more image sensors is swallowed and

captures videos while it traverses the entire GI tract.

In the context of object detection, localization and tracking in images and videos, a lot

of research carried out. Particularly, current systems have been developed to detect general

objects from the surrounding world, for example human faces, cars and logos. Our research

targets a totally different domain, which is inside the body of a human being. Both the gen-

eral objects and the GI tract irregularities can have different sizes, shapes, textures, colors

and orientations, they can be located anywhere in the frame and also partially be hidden

and covered by other objects and obstacle. However, GI tract findings can also have a color,

texture and shape properties similar for the different diseases, as well as different for the

similar diseases on the various developing stages. The GI findings can be covered by the

biological substances, like for example seeds or stool, and lighted by direct and reflected

light. Moreover, the images coming from the endoscopic equipment itself can be inter-

leaved, noisy, blurry and over- or under-exposed, and it can contain borders, sub-images and

a lot of specular reflections (flares) caused by endoscope’s light source. Therefore, detect-

ing abnormalities and diseases in the GI tract is very different from detecting the objects

from the surrounding world listed above. The GI tract can potentially be affected by a wide

range of diseases with visible lesions (see Fig. 1d–e), but endoscopic findings may also

include benign (normal) or man-made lesions. The most common diseases are gastric and

colorectal cancer (CRC), which are both lethal when detected in a late stage. The 5-year
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(a) Colon mucosa (normal) (b) Cecum (landmark) (c) Z-line (landmark)

(d) Polyps (disease) (e) Tumor (disease) (f) Blurry frames (notuseful)

Fig. 1 Example frames from human colon showing normal tissue (a)–(c), abnormal findings (d)–(e) and
useless frames (f)

survival rate of CRC ranges from 93% in stage I to 8% in stage IV [29]. Consequently, early

detection is crucial. There are several ways of detecting pathology in the GI tract, but sys-

tematic population-wide screening is important. However, current methods have limitations

regarding sensitivity, specificity, access to qualified medical staff and overall cost.
In this scenario, both high precision and recall are important, but so is the frequently

ignored system performance in order to provide feedback in real-time. The most recent and

most complete related work is the Polyp-Alert polyp detection system [52], which can pro-

vide near real-time feedback during colonoscopies. However, it is limited to polyp detection,

it uses edges, colors and texture in the images, and, at the moment, it is not fast enough for

live examinations.

To further aid and scale such examinations, we have earlier presented EIR1 [32, 37],

an efficient and scalable automatic analysis and feedback system for medical videos and

images. The system is designed to support endoscopists in the detection and interpreta-

tion of diseases in the GI tract. EIR has initially been tested in video analysis of the lower

portions (large bowel) of the GI tract. However, our main objective is to automatically

detect abnormalities in the whole GI tract. Therefore, we are developing a complete sys-

tem for detection and in-frame position localization of different endoscopic findings like

polyps, tumors, diseases and landmark objects (like the Z-line and cecum). The aim is to

use next-generation-EIR for both (i) a computer assisted diagnosis tool for live endoscopic

examinations and (ii) a future fully automated and scalable screening system used together

with VCEs. These goals impose strict requirements on the accuracy of the detection to max-

imize number of true positives and to avoid false negatives (overlooking a disease), as well

as low computational resource consumption to provide massive population screening with

VCEs. The live-assisted system also introduces a real-time processing requirement defined

1In Scandinavian mythology, EIR is a goddess with medical skill.
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as being able to process at least 30 HD frames per second, i.e., a common frame rate and

resolution in modern endoscopic devices.

Our first version [32, 37] was developed for detection of polyps, i.e., possible cancer pre-

cursors, and it was built on content-based information retrieval methodology using global

image features for image content analysis. In this paper, the next generation of our system

is presented, where we extend our system using out-of-the-box and improved deep learning

neural network approaches and multi-class global-feature classification methods for detec-

tion and localization of endoscopic findings. We evaluate our prototype by training new

and improved classifiers that are based on various image-recognition approaches. We com-

pare the performance of feature-based analysis and neural network-based analysis in terms

of accuracy and real-time processing, and thereby evaluate the different approaches for

feasibility of multi-class detection and colonic polyp localization in real use-case scenarios.
The results from our experimental evaluation show that, (i) the detection and localiza-

tion accuracy can reach the same performance or outperform other current state-of-the-art

methods, (ii) the processing performance enables frame rates for real-time analysis at high

definition resolutions, (iii) the localization-system performance can be improved further

using a combination of our basic localization algorithms and neural network approaches,

(iv) in our experiments, the global-feature multi-class detection approach slightly outper-

forms the deep learning neural network approach both in training speed and detection

performance, and (v) the system proves to be easily extended by adding new types of

abnormalities. Thereby, a system based on global features seems to be preferable and gives

better performance in multi-class object detection than given existing deep learning network

approaches. For the localization, additional research is needed to achieve better performance

using a combination of local feature detection and deep learning neural networks.
The rest of the paper is organized as follows: First, in Section 2, we briefly introduce

our medical case study. Next, we present related work in the field and compare it to the
presented system in Section 3. This is followed by a presentation of the complete system in
Section 4. We present an evaluation of the system in Section 5, and in Section 6, we discuss
two cases where our system will be used in two medical examinations by medical experts.
Finally, we conclude our results in Section 7.

2 Gastrointestinal endoscopy

The GI tract can potentially be affected by various abnormalities and diseases. Some exam-
ples of possible findings are shown in Fig. 1b–e. CRC is a major health issue world-wide,
and early detection of CRC or polyps as predecessors of CRC is crucial for survival. Sev-
eral studies demonstrate that a population-wide screening program improves the prognosis
and can even reduce the incidences of CRC [17]. As a consequence, in the current Euro-
pean Union guidelines, screening for colorectal cancer is recommended for all people over
50 years old [50]. Colonoscopy, a common medical examination and the gold standard for
visualizing the mucosa and the lumen of the entire colon, may be used either as a pri-
mary screening tool or in a second step after other positive screening tests [25]. However,
traditional rectal endoscopic procedures are invasive and may lead to great discomfort for
patients, and extensive training of physicians and nurses is required to perform the exami-
nation. They are performed in real-time, and, therefore, it is challenging to scale the number
of examinations to a large population. Additionally, the classical endoscopic procedures
are expensive. In the US, for example, colonoscopy is the most expensive cancer screening

process, with an annual cost of 10 billion dollars (1,100$-6,000$/person) [47], and a time

consumption of about one medical doctor-hour and two nurse-hours per examination.
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In our research, we aim for an algorithmic system that detects multiple mucosal patholo-

gies in videos of the GI tract. The idea is to assist endoscopists (physicians, who are highly

trained in the procedure) during live examinations. Additionally, alternatives to traditional

endoscopic examinations have recently emerged with the development of non-invasive

VCEs. The GI tract is visualized using a pill-sized camera (available from vendors such as

Medtronics/Given and Olympus) that is swallowed and then records a video of the entire

GI tract. The challenge in this context is that medical experts still need to view the full-

length video. Our system should provide a scalable tool that can be used in a first-order

population screening system where the VCE-recorded video is used to determine whether

an additional traditional endoscopic examination is needed or not. As a first step, we tar-

get the detection and the localization of colorectal polyps, which are known precursors of

CRC (see for example Fig. 1d). The reason for starting with this scenario is that most colon

cancers arise from benign, adenomatous polyps (around 20%) containing dysplastic cells,

which may progress to cancer. Detection and removal of polyps prevent the development of

cancer, and the risk of getting CRC in the following 60 months after a colonoscopy depends

largely on the endoscopist’s ability to detect polyps [20]. Next, we extend our system to sup-

port detection of multiple abnormalities and diseases of the GI tract (see Fig. 1) by training

the classifiers using multi-class datasets.

3 Related work

Detection of diseases in the GI tract has so far primarily focused on polyps. This is most

probably due to the lack of alternative data in the medical field, but also that polyps are

precursors of CRC. Several algorithms, methods and partial systems have, at first glance,

achieved promising results [37] in their respective testing environment. However, none of

the related works is able to perform real-time detection or support doctors by computer-

aided diagnosis in real-time during colonoscopies. Furthermore, all of them are limited to

a very specific use case, which in most cases is polyp detection for a specific type of cam-

era [37]. Furthermore, in some cases, it is unclear how well the approach would perform as

a real system used in hospitals. Most of the research conducted in this field uses rather small

amounts of training and testing data, making it difficult to generalize the methods beyond

the specific cleansed and prepared datasets and test scenarios. Therefore, overfitting for the

specific datasets can be a problem and can lead to unreliable results.

The approach from Wang et al. [52] is the most recent and probably best-working system

in the field of polyp detection. This system, called Polyp-Alert [52], is able to give near

real-time feedback during colonoscopies. It uses an advanced edge-finding procedure to

locate visual features and a rule-based classifier to detect an edge along the contour of a

polyp. The system can recognize the same polyp across a sequence of video frames and

can process up to 10 frames per second. The researchers report a performance of 97.7%

correctly detected polyps with around 4.3% of frames incorrectly marked as containing

polyps. Their results are based on a dataset that consists of 53 videos taken from different

colonoscopes. Despite the promising polyp detection rate, the relatively high false positive

rate makes the overall system detection performance not good enough for medical use cases.

Unfortunately, the dataset used in this research is not publicly available, and therefore, a

direct detection-performance comparison with our system is not possible. Moreover, most

of the existing publications about polyp detection systems (see Tables 6 and 7 in Section 5)

report detection accuracy on a per-polyp basis, counting the fact of successfully detected

or missed polyp across the number of frames or even across the full video, which makes it
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difficult to perform a fair comparison. In our evaluation, we use a per-frame polyp detection

and localization performance measurement. This gives a more realistic and better estimation

of the performance of the developed method in the medical domain.
Other promising polyp detection approaches utilize quite old, but recently reborn neural

networks and their advanced implementation called deep learning neural networks. Neural

networks are conceptually easy to understand, and large amounts of research has been done

in this direction in the last years. Results recently reported on, for example, the ImageNet

dataset, look promising [13] in the areas of indexing, retrieving, organizing and annotating

multimedia data. Despite the fact that the neural network model training process is very

complicated and time-consuming [12], their ability to detect and localize various objects

can potentially help us to improve our system. However, such an improvement is possible

only after careful investigation, to ensure that our system will still run in real-time and be

able to deal with the required amount of lesion categories. This is important since we deal

with patient health, and the outcome can make the difference between life and death.

Most modern deep learning frameworks state that they can be used out-of-the-box for

different types of input data. This statement sounds promising, but most state-of-the-art neu-

ral networks in multimedia research are designed to process images from everyday life, like

cats, dogs, bicycles, cars, pedestrians, etc. It needs to be proven that they can be used in med-

ical domains, because it is difficult to evaluate their performance and robustness properly

[28] due to the lack of relevant training and test data. In fact, obtaining such datasets is

one of the biggest challenges related to deep learning approaches in connection with the

medical field, due to a lack of medical experts needed to annotate data, and legal and eth-

ical issues. Some common conditions, like colon polyps, may already have the number of

collected images and videos required to perform training of a neural network, while other

endoscopic findings, like tattoos from previous endoscopic procedures (black-colored parts

of the mucosa), are not that well documented, but still interesting to detect [40]. Recent

research [8] on the topic of transfer learning promises a solution for the problem of insuf-

ficient amounts of available training data. Transferring the knowledge learned by the deep

network on a large dataset, e.g. ImageNet, to train a specialized network on a small med-

ically oriented dataset, together with a saliency prediction used to emphasize key image

points, can result in better performance of the endoscopic finding detection and localiza-

tion. Thus, in this research, we perform some preliminary experiments to see how neural

networks can deal with small training datasets.

In summary, related work primarily targets specialized problems or elements of the more

general, holistic medical problem we are attempting to solve. Existing systems are either

(i) too narrow for a flexible, multi-disease detection system; (ii) have been tested on lim-

ited datasets too small to show whether the method would work in a real scenario, or; (iii)

provide a processing performance too low for a real-time system or ignore the system per-

formance entirely. Last, but not least, we are targeting a holistic end-to-end system where

a VCE that traverses the entire tract with its video signals is algorithmically analyzed. To

solve the fundamental systems problems, we are targeting and developing a close to fully

automated, accurate, low false positive, scalable, privacy-preserving and low-cost screening

system that will, if we may say so, have significant potential impact on the society.

4 The EIR system

Our objective is to develop a system that supports doctors in multi-disease detection in the

GI tract. The system must (i) be easy to use and less invasive for the patients than existing
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methods, (ii) support multiple classes of detected GI objects, (iii) be easy to extend to new

different diseases and findings, (iv) handle multimedia content in-real time (30 frames per

second or more for Full HD videos), (v) be usable for real-time computer-aided diagno-

sis, (vi) achieve high classification performance with minimal false-negative classification

results and (vii) have a low computational resource consumption. These properties poten-

tially provide a scalable system with regard to reduced number of specialists required for

a larger population, and dramatically increased number of users potentially willing to be

screened. Therefore, EIR consists of three parts: the annotation subsystem [2], the detec-

tion and automatic analysis subsystem and the visualization and computer-aided diagnosis

subsystem [35].

The subsystems for algorithmic analysis are designed in a modular way, so that they can

be extended to different diseases or subcategories of diseases, as well as other tasks like

size determination, etc. Currently, we have implemented two types of analysis subsystems:

the detection subsystem that detects different irregularities in video frames and images, and

the localization subsystem that localizes the exact position of the disease (only polyp local-

ization is supported at the moment) in the frame. The detection subsystem is not designed

to determine the location of the detected irregularity. The exact lesion position finding is

done by the localization subsystem, so that we can use the same localization subsystem for

different detection subsystems. The localization subsystem uses the output of the detection

system as input and processes only frames marked as containing a localizable disease.

4.1 Detection subsystem

The detection subsystem performs lesion recognition and classification. It is intended for

abnormality-presence detection without searching for the precise position of the lesion. The

detection is performed using various visual similarity finding techniques. For each lesion

that has to be detected, we use a set of reference frames that contains examples of this lesion

occurring in different parts of the GI tract. This set can be seen as the model of the spe-

cific disease. We also use sets of frames containing examples of all kinds of healthy tissue,

normal findings like stool, food, liquids, etc. The final goals of the detection subsystem is

to decide if this particular frame analyzed contain any lesion or not, and to detect the exact

type of the lesion. The detection system is designed in a modular way and can easily be

extended with new diseases. This would, for example, allow not only to detect a polyp, but

to distinguish between a polyp with low or high risk for developing CRC by using the NICE

classification.2

4.1.1 Basic EIR system

In our previous work, we presented our basic EIR system [32, 36, 37] that implements

a single-class global-feature-based detector able to recognize the abnormalities in a given

video frame. Global image features were chosen, because they are easy and fast to calcu-

late, and the exact lesion’s position is not needed for detection, i.e., identifying frames that

contain a disease. We showed that the global features we chose, Tamura feature [45] and

Joint Composite Descriptor (JCD) [53], which is a combination of Fuzzy Color and Texture

Histogram (FCTH) [10] and Color and Edge Directivity Descriptor (CEDD) [9], can indeed

outperform or at least reach the same results as local features.

2http://www.wipo.int/classifications/nice/en/
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Fig. 2 Detailed steps for the multi-class global-feature-based detection implementation

The basic algorithm is based on an improved version of a search-based method for image

classification. The overall structure and the data flow in the basic EIR system is depicted

in Fig. 2. First, we create the index containing the visual features extracted from the train-

ing images and videos, which can be seen as a model of the diseases and normal tissue.

The index also contains information about the presence and type of the disease in the par-

ticular frame. The resulting size of the index is determined by the feature vector sizes and

the number of required training samples, which is rather low compared to other methods.

Thus, the size of the index is relatively small compared to the size of the training data, and

it can be easily fit into main memory on a modern computer. Next, during the classifica-

tion stage, a classifier performs a search of the index for the frames that are visually most

similar to a given input frame (see Section 4.1.3 for a detailed description of the method).

The whole basic detector is implemented as two separate tools, an indexer and a classifier.

We have released the indexer and the classifier as an open-source project called OpenSea3

[37].

The indexer is implemented as a batch-processing tool. Creating the models for the clas-

sifier does not influence the real-time capability of the system and can be done off-line,

because it is only done once when the training data is first inserted into the system. Visual

features to calculate and store in the indexes are chosen based on the type of the disease

because different sets of features or combinations of features are suitable for different types

3https://bitbucket.org/mpg projects/opensea
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of diseases. For example, bleeding is easier to detect using color features, whereas polyps

require shape and texture information.

The classifier can be used to classify video frames from an input video into as many

classes as the detection subsystem model consists of. The classifier uses indexes gener-

ated by the indexer. In contrast to other classifiers that are commonly used, this classifier is

not trained in a separate learning step. Instead, the classifier searches previously generated

indexes, which can be seen as the model, for similar visual features. The output is weighted

based on the ranked list of the search results. Based on this, a decision is made. The clas-

sifier is parallelized and can utilize multiple CPU cores for the extraction of features and

the searching in indexes. To increase performance even more, we implemented the most

compute intensive parts of the system with GPU computation support.

4.1.2 Deep-EIR

The neural network version of EIR called Deep-EIR is based on a pre-trained convolutional

neural network architecture and transfer learning [8]. We trained a model based on the

Inception v3 architecture [43] using the ImageNet dataset [13] and then re-trained and fine-

tuned the last layers. We did not perform complex data augmentation at this point and only

relied on transfer learning. We are currently in the process of data collection, and for future

work, we will also look into data augmentation and training a network from scratch using the

newly collected data, which might lead to better results than transfer learning. Figure 3 gives

a detailed overview of the complete pipeline for the neural network-based implementation

of the detection.

Inception v3 achieves good results regarding single-frame classification and has reason-

able computational resource consumption. The top one result error is 21.2%, and the top

five error is 5.6% with less than 25 million parameters. The training of the Inception v3

network is performed from scratch using Google Tensorflow v1.2rc [1]. The training takes

several weeks on a single modern computer with GPU support. Tensorflow is an open source

framework that allows all kinds of numerical computations using graphs. Nodes within the

flow graphs represent mathematical operations, and the edges represent data arrays (called

tensors in Tensorflow). It is especially built to support scalable machine learning, which

includes neural network-based architectures [1].

The trained Inception v3 model is then used in a retraining step. For this step, we fol-

low the approach presented in [14]. Basically, we froze all the basic convolutional layers of

Fig. 3 Detailed steps for the neural network approach based detection implementation
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the network and only retrained the two top fully connected (FC) layers. The FC layers were

retrained using the RMSprop [48] optimizer that allows an adaptive learning rate during the

training process. After 1,000 epochs, we stopped the retraining of the FC layers and started

fine-tuning the convolutional layers. For that step, we did the analysis of the Inception v3

model layer structure and decided to apply fine-tuning on the top two convolutional layers.

This step finalizes the transfer-learning scenario and performs an additional tuning of all

the NNs layers according to our dataset. For this training step, we used a stochastic gradi-

ent descent method with a low learning rate of 10−4 to achieve the best effect in terms of

speed and accuracy [27]. This comes with the advantage that little training data is needed

to train the network, which is an advantage for our medical use case. Additionally, it is fast,

requiring just about one day to retrain the model. The re-trainer is based on an open source

implementation of Tensorflow.4 To increase the number of training samples, we also per-

formed distortion operations on the images. Specifically, we performed random cropping,

random rescaling and random change of brightness. The grade of distortion was set to 25%

per image. After the model has been retrained, we use it for a multi-class classifier that

provides the top five classes based on probability for each class.

4.1.3 Multi-class global-feature-based EIR

The new multi-class global-feature-based version of EIR is based on the initial version of

EIR with some extensions. The basic search-based classification part of EIR is used to create

a classifier for each disease that we want to classify. Figure 2 gives a detailed overview of

the classifier’s pipeline for the global-feature-based implementation of the detection. The

difference to the basic EIR version is that the ranked lists of each search-based classifier are

then used in an additional classification step to determine the final class.

For features extraction in the detection step and for the training procedure, the index-

ing is performed using the basic EIR indexer implementation [32, 37]. The same set of two

global features, namely Tamura and JCD, is used. These features were selected by a simple

features efficiency estimation by testing different combinations of features on smaller ref-

erence datasets to find the best combinations in terms of processing speed and classification

accuracy. The selected features can be combined in two different ways. The first is called

feature values fusion or early fusion, and it basically combines the feature value vectors of

the different features into a single representation before they are used in a decision-making

step. The second one is called decision fusion or late fusion where the features are combined

after a decision-making step. Our multi-class global-feature-based approach implements

feature combination using the late fusion.

During the detection step, a term-based query from the hashed feature values of the query

image is created for each image, and a comparison with all images in the index is performed,

resulting in a ranked list of similar images. The ranked list is sorted by a distance or dis-

similarity function associated with the low-level features. This is done by computing the

distance between the query image and all images in the index. The distance function for our

ranking is the Tanimoto distance [46]. A smaller distance between an image in the index and

the query image means a better rank [46]. The final ranked list is used in the classification

4https://github.com/eldor4do/Tensorflow-Examples/blob/master/retraining-example.py
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step, which implements a simple k-nearest neighbors algorithm [4]. This algorithm can be

used for supervised and unsupervised learning, two or multi-class classification and differ-

ent types of input data ranging from features extracted from images to videos to meta-data.

Its main advantages are its simplicity, that it achieves state-of-the-art classification results

and that it is very fast in terms of processing time.

For the final classification, we use the random forest classifier [6], an ensemble learn-

ing method for classification that operates by constructing a multitude of decision trees at

training time and outputting the class that is the mode of the classes of the individual trees.

A decision tree can be seen as a classifier, which basically performs decision-based classi-

fication on the given data. To get the final class, the classifier combines decision trees into

a final decision implementing a late fusion for the multi-class classification. The advantage

of the random forest algorithm is that the training of the classifier is very fast because the

classification steps can be parallelized since each tree is processed separately. Additionally,

it is shown that the random forest is very efficient for large datasets due to the ability to find

distinctive classes in the dataset and also to detect the correlation between these classes.

The disadvantage is that the training time increases linearly with the number of trees, which

means a longer training time when many trees are used at the same time. However, this is

not a problem for our use-case since the training is done offline, where time is less critical.

Our implementation of the random forest classifier uses the version provided by the Weka

machine learning library5 [16], which is a collection of algorithms for machine learning

and data mining. We chose the random forest approach, because it is fast and achieves good

results [49]. It is important to point out that for this step, another classification algorithm

can also be used.

4.2 Localization subsystem

The localization subsystem is intended for finding the exact positioning of a lesion, which

is used to show markers on the frame containing the disease. This information is then used

by the visualization subsystem. All images that we process during the localization step

come from the positive frames list generated by the detection subsystem. Processing of the

images is implemented as a sequence of intra-frame pre- and main-filters. Pre-filtering is

needed because we use local image features to find the exact position of objects in the

frames. Lesion objects or areas can have different shapes, textures, colors and orientations.

They can be located anywhere in the frame and also partially be hidden and covered by

biological substances, like seeds or stool, and lighted by direct light. Moreover, the image

itself can be interlaced, noisy, blurry and over- or under-exposed, and it can contain borders

and sub-images. Apart from that, images can have various resolutions depending on the

type of endoscopy equipment used. Endoscopic images usually have a lot of flares and

flashes caused by a light source located close to the camera. All these nuances affect the

local feature-based detection methods negatively and have to be specially treated to reduce

localization precision impact. In our case, several sequentially applied filters are used to

prepare raw input images for the following analysis. These filters are border and sub-image

removal, flare masking and low-pass filtering. After pre-filtering, the images are ready to

be used for further analysis.

5http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 4 Detailed steps of the basic EIR localization algorithm implementation

4.2.1 Basic EIR system

Previously, we have implemented the localization of colon polyps using our hand-crafted

approach based on local image features [35]. The main idea of the localization algorithm is

to use the polyp’s physical shape to find the exact position in the frame. In most cases, the

polyps have the shape of a hill located on a relatively flat underlying surface or the shape of

a more or less round rock connected to an underlying surface with stalks of varying thick-

ness. These polyps can be approximated with an elliptically shaped region consisting of

local features that differ from the surrounding tissue with high probability. To detect these

types of objects, we process the frames marked by the detection subsystem as containing

polyps by a sequence of various image processing procedures, resulting in a set of possible

abnormality coordinates within each frame. Figure 4 gives a detailed overview of a local-

ization pipeline for the basic EIR algorithm implementation. The pipeline consists of the

following steps: non-local means de-noising [7]; 2D Gaussian blur and 2D image gradient

vector extraction; border extraction by gradient vector threshold binarization; border line

isolated binary noise removal; estimation of ellipses locations; ellipse size estimation by

analyzing border pixel distribution; ellipse fitting to extracted border pixels; selection of a

predefined number of non-overlapping local peaks and outputting their coordinates as pos-

sible polyp locations. For the possible locations of ellipses, we use the coordinates of local

maxima in the insensitivity image, created by additive drawing of straight lines starting at

each border pixel in the direction of its gradient vector. Ellipse fitting is then performed

using an ellipse fitting function [15]. This version of the subsystem is implemented in C++,

and it uses the OpenCV6 open source library for routine image content manipulation and

the CUDA7 toolkit for GPU computation support.

4.2.2 Deep-EIR

The existing localization scheme can be extended to support different diseases by imple-

mentation of lesion-specific shape, color and texture detection, but such an extension

6http://opencv.org/
7http://developer.nvidia.com/cuda-toolkit
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requires experimental studies for each new type of abnormality. In order to reduce the sys-

tem improvement costs, we performed an evaluation of two universal object localization

frameworks, based on deep learning neural network approaches. First is TensorBox8 [41],

which extends Google’s reference implementation of the machine-learning framework

called Tensorflow [1]. Second approach is based on the Darknet [33] open-source deep

learning neural network implementation called YOLO9 [34]. Both of these frameworks are

designed to provide not only object detection, but also object localization inside frames.

They implement GPU-accelerated deep learning algorithms that can work with near to

real-time performance and provide the capability of locating various objects out-of-the-box.

The TensorBox approach introduces an end-to-end algorithm for detecting objects in

images. As input, it accepts images and directly generates a set of object bounding boxes

as output. The main advantage of the algorithm is the capability of avoiding multiple detec-

tions of the same object by using a recurrent neural network (RNN) with long short-term

memory (LSTM) units together with fine-tuned image features from the implementation of

a convolutional neural network (CNN) for visual objects classification and detection called

GoogLeNet [42].

The Darknet-YOLO approach introduces a custom CNN, designed to simultaneously

predict multiple bounding boxes and class probabilities for these boxes within each input

frame. The main advantage of the algorithm is that the CNN sees the entire image during

the training process, so it implicitly encodes contextual information about classes as well as

their appearance, resulting in a better generalization of objects’ representation. The custom

CNN in this approach is also inspired by the GoogLeNet [42] model.

As initial models for both approaches, we used database models pre-trained on Ima-

geNet [19] . Our custom training and testing data for the algorithms consists of frames and

corresponding text files describing ground truth data with defined rectangular areas around

objects: a JSON file for TensorBox and one text file per frame for Darknet-YOLO. Ground

truth data was generated using a binary-masked frame set (example shown in Fig. 5) by the

localization validation software used in our experimental studies. Both frameworks were

trained using the same training dataset, where all frames contained one or more visible

polyps. No special filtering or data preprocessing was used, thus the training dataset con-

tained high quality and clearly visible polyp areas as well as blurry, noisy, over-exposed

frames and partially visible polyps. The models were trained from scratch using correspond-

ing default-model training settings [34, 41]. After the training, the test dataset was processed

by both neural networks in testing mode. As a result, the frameworks output JSON (Tensor-

Box) and plain-text (Darknet-YOLO) files containing sets of rectangles, one set per frame,

marking possible polyp locations with corresponding location confidence values. These

results have been processed using our localization algorithms.

4.3 Visualization and computer aided diagnosis subsystem

The visualization subsystem is developed as a flexible multi-purpose tool. First, it should

help in evaluating the performance of the system and get insights into why things work well

or not. Second, it can be used as a computer-aided diagnostic system for medical experts.

Third, it should help us in the creation of new datasets, allow us to extend the number of

detected diseases and help doctors to create annotations in a time-saving manner. Previously,

8https://github.com/Russell91/TensorBox
9https://github.com/pjreddie/darknet
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Polyp ground truth(b)Frame with polyp(a)

Fig. 5 Example frames showing polyp and it’s body ground truth area. This is an example of polyps local-
ization task complexity. Polyp body has the same color, texture properties and light flares as surrounding
normal mucosa

we have developed the TagAndTrack subsystem [2] that can be used for visualization and

computer-aided diagnosis. We developed a web-based visualization toolkit that can be used

to support medical experts while being very easy to use and distribute. This tool takes the

output of the detection and localization subsystems and creates a web-based representation

of the detection and localization results. The web-based visualization is then combined with

a video sharing and annotating platform where doctors are able to watch, archive, annotate

and share information. To break through low availability of high quality training and testing

datasets for different GI track diseases, we developed a new ClusterTag application for

the visualization subsystem. The main purpose of ClusterTag is to provide an easy-to-use

and convenient user interface to huge image and video frame collections captured during

endoscopic procedures, including conventional colonoscopies and VCEs.

Figure 6 illustrates our ClusterTag application while processing a dataset containing

36, 476 images with the exact lesion areas marked. The application implements image and

Zooming closer to images set.(b)Main window.(a)

Fig. 6 ClusterTag application usage example. The loaded dataset contains 36, 476 images with ground truth
(marked by pink rectangles on images)
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ground truth loading and analyzing, image tagging, creation and editing of ground truth

data, global feature extraction and semi-automatic dataset clustering using our previously

developed algorithms [38]. With the main focus on the interactive visual representation of

huge image collections, the visualization module helps users create and interact with the

new or already defined clusters. We use the Weka library to help the user in building clus-

ters. For the image attribute extraction required for machine-learning-based classification

we use global image features, which are extracted using the image retrieval framework

called LIRE.10 In our approach, we use global features describing the image in terms of dif-

ferent visual attributes, such as sharpness, color distribution and histogram of brightness. A

detailed description of the used global features, the corresponding clustering algorithm and

the clustering performance metrics can be found in [38]. Both the WEKA and LIRE libraries

can be easily replaced by other machine learning or feature extraction libraries if desired.

Applying unsupervised clustering on huge unsorted and unannotated datasets signifi-

cantly reduces the amount of work required from skilled doctors during image labeling and

grouping. Together with unsupervised clustering, our application provides the users with the

ability of tagging and analyzing multiple single images at once and putting them into appro-

priate groups together. The ClusterTag application is released as open-source software11

and might help other research groups in the creation and analysis of new datasets.

5 Evaluation

For our experimental evaluation, we use two different use-cases. First, we evaluated

the performance of our multi-class classification and detection algorithms in automated

colonoscopy video processing. Here, we tested our system using six different classes of

endoscopic findings that can be found in the colon (shown in Fig. 1). The classes to be

detected are (a) frames with normal colon mucosa (healthy colon wall), (b) frames of the

cecum area which is an intraperitoneal pouch that is considered to be the beginning of the

colon (an anatomic landmark helping doctors and VCE video analysis algorithms to orien-

tate in the colon), (c) frames displaying the Z-line which is the gastroesophageal junction

that joins the esophagus to the stomach (an anatomic landmark), (d) frames containing one

or more polyps, (e) frames with visible tumor areas, and (f) useless blurry frames with-

out any visible and recognizable objects. Thus, the developed multi-class classification and

detection system should split all the video frames into six classes that can be observed in

the human GI tract. The developed method allows us to implement a new generation of

endoscopy video processing systems able to efficiently detect various lesions of the GI tract.

Second, we evaluated the performance of the state-of-the-art object localization

approaches based on deep learning algorithms, and then we compared it with our basic

polyp localization algorithm. In this use-case, we compared the ability of different methods

to find the location of polyps inside a frame. The main goal of this evaluation is to decide

if we can improve the polyp localization performance of our system using a combination of

different algorithms.

During the evaluation, wherever it was possible, we compared the performance of our

method with the best state-of-the-art competitors. Nevertheless, a direct comparison is hard

10http://www.lire-project.net/
11https://bitbucket.org/mpg projects/clustertag
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as different datasets and detection measures are used in state-of-the-art system evaluations.

Thus, we compared the metrics we found in the relevant publications.

For all of the subsequent measurements, we used the same computer. It has an Intel Core

i7-6700K CPU running at 4.00GHz, 16 GB of RAM, a GeForce GTX TITAN X GPU, and

it runs a 64-bit Ubuntu Linux v16.04.

5.1 Multi-class classification

In the multi-class classification experiments, we used cross-validation because of the rela-

tively small number of images in the annotated dataset. For the performance measurement,

we used the standard tool from WEKA for evaluating multi-class classifiers. This tool uses

the ground truth to compute a confusion matrix and the common standard metrics: recall

(sensitivity), precision, specificity, accuracy and F1 score. We created a new dataset from

colonoscopy images that we got from Vestre Viken Hospital, Norway. From the whole unan-

notated dataset, we manually selected 50 different frames of 6 different classes (described

in Section 2): blurry frames, cecum, normal colon mucosa, polyps, tumor, and Z-line. The

selected frames were used to create 10 separate datasets, each containing training and test

subsets with equal numbers of images. Training and test subsets were created by equally

splitting random-ordered frame sets for each of the 6 classes. The total number of frames

used in this evaluation is 300: 150 in the training subsets and 150 in the test subsets. Each

training and test subset contains 25 images per class. Multi-class classification is then per-

formed on all 10 splits and then combined and averaged. Following this strategy, an accurate

enough estimation about the performance can be made even with a smaller number of

images.

5.1.1 Deep-EIR

First, we performed an evaluation of Deep-EIR that implements the deep learning neural

network multi-class detection approach. Table 1 shows the resulting confusion matrix. The

detailed performance metrics presented in Table 2 and the results can be considered as good,

they confirm that Deep-EIR performs well. All blurry and Z-line frames were classified cor-

rectly. Cecum and normal colon mucosa were often cross-mis-classified, which is a normal

behavior, because from a medical point of view, normal colon mucosa is part of the cecum,

and under real-world circumstances, this would not be a relevant mistake. Interesting polyps

Table 1 A confusion matrix for the six-classes detection performance evaluation for the Deep-EIR detection
subsystem

Detected class

Blurry Cecum Normal Polyps Tumor Z-line

Actual class Blurry 250 0 0 0 0 0

Cecum 0 183 64 3 0 0

Normal 0 34 197 19 0 0

Polyps 1 17 45 183 4 0

Tumor 0 0 1 4 245 0

Z-line 0 0 0 0 0 250

Bold numbers shows the correct detection result for each class
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Table 2 Performance evaluation of the six-classes detection for the Deep-EIR detection subsystem

True
Pos.

True
Neg.

False
Pos.

False
Neg.

Recall
(Sensitivity)

Precision Specificity Accuracy F1 score

Blurry 250 1249 1 0 100.0% 99.6% 99.9% 99.9% 99.8%

Cecum 183 1199 51 67 73.2% 78.2% 95.9% 92.1% 75.6%

Normal 197 1140 110 53 78.8% 64.2% 91.2% 89.1% 70.7%

Polyps 183 1224 26 67 73.2% 87.6% 97.9% 93.8% 79.7%

Tumor 245 1246 4 5 98.0% 98.4% 99.7% 99.4% 98.2%

Z-line 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Overall 1308 7308 192 192 87.2% 87.2% 97.4% 95.7% 87.2%

Bold numbers shows the balanced F-score of each proposed method

and tumors were detected correctly in most cases, as well as the Z-line landmark, which is

important for our medical use case.

5.1.2 Multi-class global-feature-based EIR

Second, we performed an evaluation of the multi-class global-feature-based EIR, which

implements a global-feature multi-class detection approach. The multi-class global-feature-

based EIR classifier allows us to use a number of different global image features for the

classification. The more image features we use, the more precise the classification becomes.

We generated indexes containing all possible image features for all frames of all differ-

ent classes of findings from our training and test dataset. These indexes were used for

multi-class classification, different performance measurements and also for leave-one-out

cross-validation. Using our detection system, the built-in metrics functionality can provide

information on the different performance metrics for benchmarking. Further, it provides us

with the late fusion of all the selected image features and performs the selection of the exact

class for each frame in test dataset. All used features are described in detail in [24].

Table 3 shows the resulting confusion matrix, which shows, like the Deep-EIR results,

that the global feature-based detection approach performs well, too. Again, all blurry and

Z-line frames were classified correctly. Cecum and normal colon mucosa were sometimes

Table 3 A confusion matrix for the six-classes detection performance evaluation for the multi-class global-
feature-based EIR detection subsystem

Detected class

Blurry Cecum Normal Polyps Tumor Z-line

Actual class Blurry 250 0 0 0 0 0

Cecum 0 226 21 3 0 0

Normal 0 85 165 0 0 0

Polyps 0 10 8 226 6 0

Tumor 0 0 0 8 242 0

Z-line 0 0 0 0 0 250

Bold numbers shows the correct detection result for each class
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Table 4 Performance evaluation of the six classes detection for the multi-class global-feature-based EIR
detection subsystem

True
Pos.

True
Neg.

False
Pos.

False
Neg.

Recall
(Sensitivity)

Precision Specificity Accuracy F1 score

Blurry 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Cecum 226 1155 95 24 90.4% 70.4% 92.4% 92.1% 79.2%

Normal 165 1221 29 85 66.0% 85.1% 97.7% 92.4% 74.3%

Polyps 226 1239 11 24 90.4% 95.4% 99.1% 97.7% 92.8%

Tumor 242 1244 6 8 96.8% 97.6% 99.5% 99.1% 97.2%

Z-line 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Overall 1359 7359 141 141 90.6% 90.6% 98.1% 96.9% 90.6%

Bold numbers shows the balanced F-score of each proposed method

cross-misclassified. Polyps and tumors were detected correctly in most cases. The detailed

performance metrics are presented in Table 4 and can also be considered as good.

5.1.3 Deep-EIR vs multi-class global-feature-based EIR

The comparison of these two approaches shows that both approaches have equal excellent

overall F1 score of 100% in Z-line detection. The global-feature approach with the 100% F1

score outperforms the neural network approach by a small margin in blurry frame detection.

The neural network F1 score detection for tumors is 98.2%, which is 1% better than the

global-feature approach. Detection of other classes is better for the global-feature approach,

giving the F1 scores of 79.2% and 74.3% for cecum and normal mucosa. Most importantly

for our case study, polyp detection performed much better using the global-feature approach,

giving the 92.8% F1 score (13.1% better than the neural network approach).

The performance evaluation of the cross-validation for both multi-class classification

approaches (see Table 5) confirms the high stability of the models used for the classification.

The processing performance of both Deep-EIR and global-feature-based EIR in terms of

processing speed meets real-time demands with a good margin for the real-time medical use

case. Both can process Full HD images at a frame rate of 30 frames per second.

Our experimental comparison of the Deep-EIR and the global-feature-based EIR of the

detection system shows clearly that the global-feature approach outperforms the deep learn-

ing neural network approach and gives better accuracy for almost all target detection classes

(except several cases of misclassification of tumors) in conjunction with high 92.8% and

97.2% F1 scores for the most important findings: polyps and tumors. Moreover, when a

Table 5 Performance evaluation of the cross-validation for the Deep-EIR and the multi-class global-feature-
based EIR detection subsystems

Approach Mean absolute
error

Root mean
squared error

Relative absolute
error, %

Root relative
squared error, %

Deep-EIR 0.07284 0.20574 26.21936 55.21434

Multi-class
global-feature-
based EIR

0.09242 0.19644 33.2672 52.7148



Multimed Tools Appl (2017) 76:22493–22525 22511

sufficiently large training dataset covering all possible detectable lesions of the GI tract is

used, the proposed global-feature approach for multi-class detection requires relatively lit-

tle time for training [35] compared to days and weeks for the deep learning neural network

approach.

A comparison of Deep-EIR and global-feature-based EIR with existing competitive

approaches is shown in Table 6. The basic-, Deep- and multi-class global feature-based EIR

detector versions are depicted in the last table’s rows. As one can see, the global feature-

based EIR approach gives the best performance in terms of precision (90.6%), specificity

(98.1%) and accuracy (96.9%), and comparable recall/sensitivity (90.6%). In other words,

the results indicate that we can detect different classes of GI tract findings with a precision

of almost 91%. If we compare this to the best performing system in Table 6, we see that

Polyp-Alert reaches slightly higher detection accuracy on a different dataset. However, our

system is faster and can detect colonoscopic findings in real-time, and furthermore, it is not

designed and restricted to detect only polyps, it can detect multiple classes of diseases, and

EIR can further be expanded to any additional diseases if we have the correct training data.

The performance comparison of different multi-class detection and classification

approaches in terms of frame processing speed is depicted in Fig. 7. Deep-EIR, multi-class

global feature-based EIR and basic EIR perform better in terms of speed than competitors.

The single-class basic EIR detector can process up to 300 Full HD frames per second

(for a GPU-accelerated implementation) [35]. Deep- and global feature-based EIR classi-

fiers showed 30 frames per second, which fits our medical use case. For further processing

speed improvements, we plan to implement additional GPU acceleration for a random-trees

Table 6 A performance comparison of GI findings detection approaches

Publ./System Detection
Type

Recall
(Sensitivity)

Precision Specificity Accuracy FPS Dataset
Size,
images

Wang et al. [52] polyp / edge, texture 97.70% – – 95.70% 10 1.8m

Wang et al. [51] polyp / shape,
color, texture

81.4% – – – 0.14 1,513

Mamonov et al. [26] polyp / shape 47% – 90% – – 18,738

Hwang et al. [18] polyp / shape 96% 83% – – 15 8,621

Li and Meng [23] tumor / textural
pattern

88.6% – 96.2% 92.4% – –

Zhou et al. [54] polyp / intensity 75% – 95.92% 90.77% – –

Alexandre et al. [3] polyp / color pattern 93.69% – 76.89% – – 35

Kang et al. [21] polyp / shape, color – – – – 1 –

Cheng et al. [11] polyp / texture, color 86.2% – – – 0.076 74

Ameling et al. [5] polyp / texture 95% – – – – 1,736

Basic EIR [35] polyps / 30 features 98.50% 93.88% 72.49% 87.70% 300 18,781

Deep-EIR abnormalities /
neural network

87.20% 87.20% 97.40% 97.50% 30 300

Multi-class
global-feature-
based EIR

abnormalities /
30 features

90.60% 90.60% 98.10% 96.90% 30 300

Not all performance measurements are available for all methods, but including all available information gives
an idea about each method’s performance



22512 Multimed Tools Appl (2017) 76:22493–22525

Fig. 7 The chart shows a comparison of different GI tract finding detection approaches. The presented
Deep-EIR and multi-class global-feature-based EIR (GFB-EIR) systems show performance of 30 frames per
second, which is higher comparing to other systems

classifier and feature index search, as we have for our initial polyp detection version of

EIR [32].

5.2 Polyp localization

The multi-class dataset from Vestre Viken Hospital does not contain the ground truth for

the localization of the findings. Therefore, in this experiment, we used the available ASU-

Mayo Clinic polyp database.12 It consists of training and test sets of images and videos with

corresponding ground truth showing the exact polyp location areas. This was the biggest

publicly available dataset (until recently, when the owners decided to withdrawn it from the

public), consisting of 20 videos from standard colonoscopies with a total of 18,781 frames

and different resolutions up to full HD [44]. For this particular evaluation, we selected

only frames containing polyps, which gave us 8,169 frames in total: 3,856 in the training

subset and 4,313 in the test subset. The frames with polyps contain various polyp types,

fully visible and particularly hidden, clearly visible and blurry, clean and covered by stool.

Figure 8 depicts variations in polyp sizes (in terms of number of pixels showing polyp bodies

within images) across the datasets. As one can see, there are huge variations in polyp sizes

in terms of video-frame pixels from very small up to one third of the full video frame size.

This reflects real colonoscopy video-capturing scenarios and introduces a big challenge for

object localization algorithms.

For the localization-performance measurement, we used the common metrics: recall

(sensitivity), precision, specificity, accuracy and F1 score. To count the corresponding local-

ization events correctly, we took into account that polyps can have different shapes, they

are often not located in compact pixel space areas (in contrast to, e.g., people faces). The

12http://polyp.grand-challenge.org/
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Fig. 8 The histogram shows huge variations in number of frame pixels, covered by polyp bodies, from very
small up to one-third of full frame size across whole ASU-Mayo Clinic polyp database

shape of the polyps is marked in the ground truth data by binary masks. Before comput-

ing the localization subsystem performance, we need to figure out how to convert output

of different localization algorithms into performance metrics. Our initial assumption (from

practical experience) was to count each of the neural networks’ location rectangles as a true

positive localization event if and only if it covers at least 10% of the corresponding ground

truth area. Otherwise, we count it as a false positive. In our use case, multiple detection of

the same polyp does not improve medical outcome. Therefore, we count multiple true pos-

itives on the same polyp ground truth area as one true positive. Polyp misses are counted

if, after processing all resulting rectangles for a particular frame, we still have one or more

ground truth areas without corresponding true positives. We count such misses as false neg-

atives. Thus, there is a possibility of multiple false negatives per one frame, in case we have

multiple lesions in the same frame. In this experiment, we process only frames that contain

one or more polyps. This means that we do not have true negatives. Therefore, specificity of

the algorithms can be assumed as 100%. To check our assumptions about minimal coverage

areas, we performed an initial performance evaluation and built a graph showing unfiltered

output from neural networks. In our EIR system, the base localization algorithm outputs

points instead of rectangular areas. Thus, we count a true positive if a point is located inside

of a polyp ground truth area, keeping other rules the same. An example of a polyp local-

ization algorithm output is depicted in Fig. 9. The polyp-location ground truth marked by

light green ellipses is computed based on the ground truth binary masks (see Fig. 5) using

the closest elliptical region approximation. Due to the limitations of the current version of

the localization algorithm, it produces four possible polyp locations per frame without any

location ranking. In this evaluation, we consider all four points as equal and always use all

of them for calculating the performance metrics. These points are marked by the green and

red crosses. The green crosses correspond to the true positive events, and the red crosses

show the false positive events.

The deep learning neural network frameworks tested in this experiment require training

before they are able to perform polyp localization. Thus, both networks were trained using

their default model training parameters. For TensorBox, the neural network model training
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Fig. 9 Example of the polyp localization algorithm output. The current version of the algorithm produces
four possible polyp locations per frame. The polyp location ground truth is marked by light green ellipses.
The green crosses correspond to the true positives, the red correspond to the false positives

took 6.5 days, and for Darknet-YOLO, we needed 5.1 days. After the training, we performed

model validation using the corresponding frameworks’ routines, and the training dataset

as input. The validation confirmed the correctness of the trained models for both Tensor-

Box and Darknet-YOLO. The deep learning approaches are capable of correctly localizing

polyps that were previously detected by the detection subsystem within the training dataset

with 98% accuracy for the TensorBox model and 95% accuracy for the Darknet-YOLO

model.

Next, we performed a main localization run of both frameworks on the test dataset and

validation using the corresponding ground truth. Both TensorBox and Darknet-YOLO can

be finely tuned by setting confidence threshold values, which limits the number of returned

location rectangles to only highly confident ones. In order to investigate how the output of

both can be affected by a confidence threshold value, it was set to zero during the first test

run, which should give us the full unfiltered localization output. The reason for studying

this dependency is that it is the only network tuning parameter in the unseen data process

mode, which can help us to maximize their localization accuracy. Figure 10 shows a his-

togram of true polyps’ area coverage by location boxes found by TensorBox. We counted

only location boxes that cover at least one pixel of a true polyp area. As one can see, the his-

togram has clearly visible maximum around 16% coverage rate, followed by an exponential

decrease to almost constant level. A comparable analysis with the same type of histogram

for the Darknet-YOLO output is depicted in Fig. 11. We observe a similar distribution for

coverage rate (higher than 10%). A much higher number of location rectangles with zero

coverage rate indicates that TensorBox implements additional localization result filtering.

Thus, the effect of the confidence threshold level adjustment cannot be as significant as

for Darknet-YOLO, which has the expected output with a high number of location boxes

covering small parts of true polyp areas. Therefore, Darknet-YOLO should show a strong

response to confidence threshold level. For the following validation and performance eval-

uation of both frameworks, we used 10% as the threshold value for the minimal required

polyp ground truth coverage for true positive events, i.e., 10% must be covered for the event
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Fig. 10 The histogram shows polyps area coverage by location boxes found by the TensorBox localization
algorithm with the maximum around 16% coverage rate with following exponential decrease to the almost
constant level. The low number of found location rectangles around zero coverage rate is an evidence of some
output results pre-filtering

to be counted. Figures 12 and 13 confirm our assumption about output result filtering in Ten-

sorBox. Its output contains a relatively small number of found locations with high number

of highly-confident locations compared to Darknet-YOLO, which has a large number of

low-confident locations, exactly as expected with the choice of a zero-confidence threshold.

Fig. 11 The histogram shows polyps area coverage by location boxes found by the Darknet-YOLO localiza-
tion algorithm with near to exponential distribution for coverage rate higher than 10%. The higher number of
found location rectangles around zero coverage rate gives clear indications that algorithm output unfiltered
results
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Fig. 12 The histogram shows confidence values for location boxes found by the TensorBox localization
algorithm. It shows the relatively low number of found locations with high number of highly-confident
locations

The performance results depending on the confidence threshold value are depicted in

Fig. 14 for TensorBox and Fig. 15 for Darknet-YOLO. As one can see, TensorBox local-

ization performance does not depend on the confidence threshold value in any significant

way. The best performance in terms of minimizing the number of false negative events with

an acceptable number of false positive events can be achieved by maximizing the algo-

rithm’s accuracy metrics. For TensorBox, the maximum accuracy reaches a level of 31.6%

for a confidence threshold value of zero with a corresponding polyp miss rate of 66.2%.

For TensorBox, this is the best value, and it cannot be improved by adjusting the confidence

threshold value. For Darknet-YOLO, maximum accuracy is reached at a 42.2% confidence

Fig. 13 The histogram shows confidence values and polyps area coverage by location boxes found by the
Darknet-YOLO localization algorithm. It shows the expected high number of low-confident locations
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Fig. 14 The graphs show TensorBox localization algorithms performance for different confidence threshold
values with no significant visible dependency. The maximum accuracy reaches level of 31.6% for zero-
confidence threshold value with the polyp miss rate of 66.2%

threshold. The accuracy is 8% with a corresponding polyp miss rate of 47.9%. Darknet-

YOLO showed more flexibility and a good response to the confidence threshold value. For

Darknet-YOLO, the polyp miss rate can be significantly reduced by decreasing the confi-

dence threshold value, but this gives a significant increase in the number of false positives,

making the whole system too noisy. Nevertheless, combining Darknet-YOLO and the basic

EIR localizer approaches can potentially give better overall system performance and better

polyp miss rate.

Fig. 15 The graphs show Darknet-YOLO localization algorithms performance for different confidence
threshold values with good response to threshold value adjusting. The maximum accuracy reaches level of
42.2% for confidence threshold value of 8% with the polyp miss rate of 47.9%
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Performing a comparison with well-known existing approaches in polyp localization is

difficult due to lack of publicly available information (see Table 7) about other researchers’

algorithms’ performance and evaluation methods, and due to prevalent non-disclosure

restrictions that prevent sharing of datasets in the research community. The available data

shows, that our EIR basic localization approach has good performance with an F1 score of

41.6%.

The performance of the TensorBox approach (see Table 7) is too low for our real-time

use-case. But, as depicted in Table 7, Darknet-YOLO performs well in terms of processing

speed and can run at 45 frames per second. Our basic approach runs at 120 frames per

second, thus a combination of both approaches can give us better localization performance

while staying within the required real-time frame rate limits.

6 Real-world use cases

In this section, we describe two real-world use cases where the presented system can be

used. The first one is a live system that will assist medical doctors during endoscopies.

Currently, we are deploying a proof-of-applicabilty prototype in one of our partner hospitals.

The second is a system that will automatically analyze videos captured by VCEs. Several

hospitals are involved in this more concrete and applied research, and currently we are

setting up the data-sharing agreements and collect the data for a new multi-disease dataset

that will be released open-source. The first use case requires fast and reliable processing,

and the second requires a system that is able to process a large amount of data in a reliable

and scalable way.

6.1 Live system

The aim of the live system is to provide live feedback to the doctors, i.e., a computer-aided

diagnosis in real-time. While the endoscopist performs the colonoscopy, the system analyzes

the video frames that are captured by the colonoscope. To provide helpful information for

the operating doctor, we combine the visual information from the endoscope with our marks.

For the detection, we alter the frame borders and show the name of the detected finding

in the auxiliary area of the endoscope device monitor. For the implemented localization

classes, we put a cross on top of the localized findings (polyps in this system version). At

the moment, we have implemented a demo version of the live system [39]. The live demo

supports detection and localization of polyps. It is able to process a FullHD video stream with 30

FPS in real-time. An example of the graphical output of the live system is depicted in Fig. 16.

Table 7 Performance comparison of polyp localization approaches

System True Pos. False Pos. False Neg. Sensitivity Precision Accuracy F1 score FPS

Basic EIR 1266 3150 398 76.1% 28.7% 26.3% 41.6% 120

TensorBox-EIR 1459 311 2854 33.8% 82.4% 31.6% 48.0% 15

Darknet-YOLO-EIR 2245 1005 2068 52.1% 69.1% 42.2% 59.4% 43

Wang et al. [52] – – – 95.7% – – 95.7% 10

Hwang et al. [18] – – – 96.0% 83.0% – – 15

Bold numbers shows the balanced F-score of each proposed method
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Fig. 16 A screenshot of the live system showing the combination of the visual information from the endo-
scope with feedback information from the detection and localization system. The pink fame surrounding
background shows a positive detection. The name of the detected finding is shown in the frame auxiliary
screen area, and the cross shows the location of the polyp

In addition to supporting the medical expert during the colonoscopy, we are working on

an extension of the system, where the system is used to document the examination proce-

dure. We will implement the generation of a document with an overview of the colonoscopic

procedure. The doctors will be able to make changes or corrections, and add additional

information to that document. The document will be stored or used as an appendix to the

written endoscopy report.

6.2 Wireless video capsule endoscope

The current existing VCEs have a resolution of around 256×256, frame rates of 3-35 frames

per second (adaptive frame rate with a feedback loop from the receiver to the transmitter).

They do not have optimum lighting, making it more difficult to detect endoscopic findings

in the captured images than in images from traditional endoscopes. Also, during VCE pro-

cedures, the intestine is not expanded, unlike in traditional endoscopy, where the expansion

allows for clear and non-obfuscated pictures of the intestine walls. Nevertheless, ongoing

research aims at improving the VCEs’ hardware capabilities and at improving the methods

and algorithms developed for colonoscopies to work also for VCEs [22]. The multi-sensor

VCE is swallowed in order to visualize the GI tract for subsequent diagnosis and detection

of GI diseases. Thus, people may in the future be able to buy VCEs at the pharmacy, and



22520 Multimed Tools Appl (2017) 76:22493–22525

deliver the video stream from the GI tract to the phone over a wireless connection. In the

best case, the first screening results are available within eight hours after swallowing the

VCE, which is the time the camera typically spends traversing the GI tract. Thus, the abil-

ity to implement and perform mass-screening of the GI tract highly depends on two main

research areas. First, it requires the development of a new generation of VCEs with bet-

ter image quality and the ability to communicate with widely used mobile phones. Second,

mass-screening requires a new generation of lesion detection algorithms able to process the

captured GI tract multimedia data and video footage fully automatically in the mobile phone

with public cloud computing support. Here, a preliminary analysis and task-oriented com-

pression of a captured video footage before uploading into the cloud is important due to

huge amounts of video data generates by VCEs. In our future research for this use case, we

will work on the adaptation of the detection algorithms to the common mobile platforms.

We will create a new mobile application to demonstrate the ability of our system to perform

on hardware with the limited resources available.

7 Conclusion

In this paper, a complex automated diagnosis system built for different GI tract dis-

ease detection scenarios, colonic polyp localization and big dataset visualization has

been presented. We briefly described the whole system from data collection for medical

knowledge transfer and system learning, evaluation of the experimental results to visual-

ization of the findings. A detailed evaluation of detection of multiple endoscopic findings,

polyp-localization accuracy and system performance has been performed. We introduced

two new multi-class classification methods, one based on a deep learning neural network

approach and another new multi-class classification algorithm based on global image fea-

tures. For the localization, we evaluated existing localization approaches based on deep

learning neural networks and compared the results to our initial localization method.
The novelty of the research includes an end-to-end implementation of the whole EIR

system pipeline, from frame capture, annotation and analysis to user (doctor) feedback,

as a combination of many out-of-the-box and modified existing components, as well as

several new ones. The experiments showed that the proposed system (i.e., both the global

feature-based and the neural network-based implementations) can achieve equal results to

state-of-the-art methods in terms of detection performance for state-of-the-art endoscopic

data, and a comparable localization performance. Further, we showed that the new EIR

system outperforms state-of-the-art systems in terms of system performance, that it scales in

terms of data throughput and that it can be used in a real-time scenario. We concluded, based

on our initial experiments, that the global features multi-class detection approach slightly

outperforms the tested neural network approaches, and that the localization algorithm can

benefit from combining local features and neural network approaches. We also presented

automatic analysis of VCE videos and live support of colonoscopies as two real-world use

cases that can potentially benefit from the proposed system where clinical tests are currently

being planned in our partner hospitals. The experimental evaluation of the system as well

as dataset creation are performed in collaboration with the Cancer Registry of Norway, and

in the near future, the system will be tested in a real-world environment, i.e., it will have a

real societal impact.

For future work, we plan to further improve the multi-class detection and localization

accuracy of the system and support detection and localization of more abnormalities. In

this respect, we are currently working with medical experts to collect more training data,
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annotate them and create new, larger training and testing datasets [30, 31]. Finally, to fur-

ther improve the performance of the system, we work on a universal system extension that

will allow the system to utilize the computing power of one or more GPUs on single or mul-

tiple nodes. Implementing such an extension will allow parallelization of the detection and

localization workloads [32], which is important in our multi-disease analysis system of GI

tract [32, 35, 37–39].
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