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Abstract

Background: Next-generation sequencing (NGS) technologies have enabled affordable sequencing of billions of

short DNA fragments at high throughput, paving the way for population-scale genomics. Genomics data

analytics at this scale requires overcoming performance bottlenecks, such as searching for short DNA

sequences over long reference sequences.

Results: In this paper, we introduce LISA (Learned Indexes for Sequence Analysis), a novel learning-based

approach to DNA sequence search. We focus on accelerating two of the most essential flavors of DNA

sequence search—exact search and super-maximal exact match (SMEM) search. LISA builds on and extends

FM-index, which is the state-of-the-art technique widely deployed in genomics tools. Experiments with human,

animal, and plant genome datasets indicate that LISA achieves up to 2.2× and 13.3× speedups over the

state-of-the-art FM-index based implementations for exact search and super-maximal exact match (SMEM)

search, respectively.

Keywords: DNA sequence search; learned indexes; sequence analysis; SMEM; exact search; architecture-aware

optimizations

Background

The latest high throughput DNA sequencers can read

terabases of DNA sequence data per day. For exam-

ple, the Illumina NovaSeq 6000 sequencer, introduced

in January 2017, can read up to 6 terabases of DNA

sequence data in a 44-hour run [1]. In particular, it can

sequence nearly 20 billion paired-reads, each of length

150 base-pairs, at a cost as low as $600 per genome.

The sequencing throughput is increasing and the cost
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is decreasing at an exponential rate. The recently un-

veiled MGI DNBSEQ-TX sequencer, which came just

3 years after Novaseq 6000, can sequence at a rate

of up to 20 terabases/day, generating reads of length

150, potentially enabling a $100 cost per genome [2].

Already today, a growing number of public and pri-

vate sequencing centers with hundreds of NGS de-

ployments are paving the way for population-level ge-

nomics. However, realizing this vision in practice heav-

ily relies on building scalable systems for downstream

genomics data analysis.
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A significant portion of time during the downstream

processing of DNA sequence data is spent in search-

ing for DNA sequence queries in a database of refer-

ence DNA sequences. This is typically done by build-

ing an index of the database to accelerate the search.

Recently, in the databases domain, machine learning

based index structures (a.k.a., learned indexes) have

been shown to accelerate database queries [3]. In this

work, we explore the use of learned indexes to ac-

celerate DNA sequence analysis, in particular, DNA

sequence search and present our results for a subset

of problems that can potentially benefit from using

learned indexes.

Reference-guided assembly plays a critical role in

downstream analysis. It is performed by piecing to-

gether the short reads (with length of a few hundred

bases) by mapping each individual read to a long ref-

erence genome (e.g., the human genome consisting of

3 billion bases). Thus, a fundamental step of down-

stream analysis is mapping of millions of short reads

(DNA query sequences) to a long reference sequence.

BWA-MEM and Bowtie2 are two of the most widely

used tools for sequence mapping [4, 5]. The key oper-

ation that has been shown to constitute a significant

performance bottleneck during this mapping process is

the search for exact matches of substrings of reads over

the given reference sequence [5–10]. In this work, we

focus on two variants of that: 1) exact search: search

of matches of fixed length substrings of a read in the

reference sequence and 2) super-maximal exact match

(SMEM) search: for every position in the read, search

of exact matches of longest substring of the read that

passes through that position and still has a match

in the reference sequence. Thus, SMEM search pro-

duces exact matches of variable length by definition.

We specifically chose these two variants as these are

the key kernels in BWA-MEM and Bowtie2.

The state-of-the-art techniques to perform DNA se-

quence search are based on building an FM-index over

the reference sequence [11]. The FM-index implicitly

represents the lexicographically sorted order of all suf-

fixes of the indexed sequences. The key idea behind an

FM-index is that, in the lexicographically sorted order

of all suffixes of the reference sequence, all matches

of a short DNA sequence (a.k.a., a “query”) will fall

in a single region matching the prefixes of contigu-

ously located suffixes. Over the years, many improve-

ments have been made to make the FM-index more

efficient, leading to several state-of-the-art implemen-

tations that are highly cache-and processor-optimized

[5, 7–10, 12–19]. Hence, it becomes increasingly more

challenging to further improve this critical step in the

genomics pipeline to scale with increasing data growth.

In this paper, we propose a machine learning based

approach to improving the sequence search perfor-

mance: LISA (Learned Indexes for Sequence Analysis).

The core idea behind LISA, which enables a new ma-

chine learning enhanced algorithm for DNA sequence

search, is to speed up the process of finding the right

region of suffixes in the FM-index by learning the dis-

tribution of suffixes in the reference. Recent work on

learned index structures has introduced the idea that

indexes are essentially models that map input keys to

positions and, therefore, can be replaced by other types

of models, such as machine learning models [3]. For ex-

ample, a B-tree index maps a given key to the position

of that key in a sorted array. Kraska et al. show that

using knowledge of the distribution of keys, we can

produce a learned model, that outperforms B-trees in

query time and memory footprint [3]. Taking a simi-

lar perspective, the FM-index can be seen as a model

that maps a given query sequence to the single region

matching the prefixes of contiguously located suffixes.

We introduced LISA in [20] and showed some prelim-

inary results for exact search. In this paper, we have
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extended LISA to SMEM search and developed fully

architecture optimized implementations for both prob-

lems using multi-threading, vectorization and efficient

cache utilization.

More specifically, we make the following contribu-

tions in this paper.

• We demonstrate how exact search and SMEM

search problems can be solved using learned in-

dexes. This is the first ever work to do so.

• Since the state-of-the-art algorithms have imple-

mentations that are well tuned to the underlying

architecture, for a fair comparison, we have devel-

oped a fully architecture-optimized implementa-

tion of our approach as well. We focus our efforts

on the CPU as that is the most widely available

architecture for DNA sequence search.

• We demonstrate the benefits of LISA on an Intel®

Xeon® Platinum 8280 processor[1]. LISA achieves

up to 2.2× and 13.3× speedups over the state-

of-the-art implementations for exact search and

super-maximal exact match (SMEM) search, re-

spectively.

Results

We demonstrate the efficacy of LISA by compar-

ing the throughput (million-reads/sec) with FM-Index

based exact search and SMEM search. For the baseline

comparison, we use Trans-Omics Acceleration Library

(TAL) which provides the architecture optimized im-

plementations for traditional FM-index exact search

and SMEM search [18, 21, 22]. The optimized SMEM

kernel from TAL is also used in BWA-MEM2 [21], an

[1]Performance varies by use, configura-

tion and other factors. Learn more at

www.Intel.com/PerformanceIndex. ©Intel Corpo-

ration. Intel Xeon and Intel Xeon Phi are trademarks

of Intel Corporation or its subsidiaries in the U.S.

and/or other countries. Other names and brands may

be claimed as the property of others.

Table 1 System Configuration

Intel® Xeon®

Platinum

8280 Processor

(CLX)

Sockets × Cores × Threads 1× 28× 2

AVX register width (bits) 512, 256, 128

Vector Processing Units (VPU) 2/Core

Base Clock Frequency (GHz) 2.5

L1D/L2 Cache (KB) 32/1024

L3 Cache (MB) / Socket 38.5

DRAM (GB) / Socket 96

Bandwidth (GB/s) / Socket 128

Compiler Version ICC v. 19.1.3.304

Table 2 Reference Sequences

Reference Sequence
Length

(Million bases)
Version

Human 3101 human g1k v37

Asian Rice 387 IR64 (IRRI)

Zebra Fish 1679 GRCz11

architecture-optimized implementation of BWA-MEM

[4]. In order to establish TAL as the appropriate base-

line, we first show a comparison with Sapling, a learned

index based approach for exact search that was pub-

lished just a few weeks back [19].

Experimental Setup

System Configuration

We evaluate our solution on a single socket of Intel®

Xeon® Platinum 8280 processor as detailed in Table

1 and referred to as CLX from here on. To force all

memory allocations to one socket, we use the numactl

utility . For multi-threaded runs, we use 2 threads per

core to get the benefit of hyper threads. Optimizing

file I/O is beyond the scope of this paper. Therefore,

we do not include file I/O time in any of our results.

Datasets

We use three reference sequences - Human, Asian Rice,

and Zebra Fish as detailed in Table 2. For each of

these reference sequences, we use multiple real read

datasets (H1-H5 for Human, A1-A3 for Asian rice, and
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Table 3 Read Datasets

Read
Organism Length

No. of Source

Datasets Reads (NCBI-SRA)

H1 Human 151 5 million ERR2990063

H2 Human 151 5 million ERR3239330

H3 Human 151 5 million SRR7733443

H4 Human 101 5 million SRR622461

H5 Human 101 5 million SRR622457

A1 Asian Rice 151 5 million SRR10724346

A2 Asian Rice 151 5 million SRR10838753

A3 Asian Rice 151 5 million SRR8241153

Z1 Zebra Fish 151 5 million ERR2624531

Z2 Zebra Fish 151 5 million ERR3333446

Z3 Zebra Fish 151 5 million SRR10958316

Table 4 Seed Datasets

Seed Datasets Length No. of Seeds Original Read Dataset

S1 21 50 million H1

S2 21 50 million H2

S3 21 50 million H3

S4 21 50 million H4

S5 21 50 million H5

S6 21 50 million A1

S7 21 50 million A2

S8 21 50 million A3

S9 21 50 million Z1

S10 21 50 million Z2

S11 21 50 million Z3

Z1-Z3 for Zebra Fish) downloaded from sequence read

archive [23] (Table 3). All of these read datasets con-

sist of 5 million reads. The read datasets for Asian

rice and Zebra fish have reads of length 151. For Hu-

man reference, we use two types of reads datasets:

H1-H3 contain of 151 length reads and H4-H5 are of

101 length. The older sequencing technologies produce

reads of length 101, so we use these 101 length datasets

to show the compatibility of LISA with the older se-

quencing technologies. For exact search, we use 21

length seeds generated from the read datasets. Seeds

are the small fixed-sized substrings generated from a

read sequence. For generating seeds, we followed the

same strategy as Bowtie2 and generated 50 million

seeds for each of the read datasets [5].

Correctness

In all cases, we have verified that output of LISA based

approach is identical to that of the traditional FM-

index based approach.

Establishing The Baseline

Here, we compare the execution time of LISA and

TAL with the recently published Sapling [19] for ex-

act search. Sapling demonstrated a speedup of over 2×

over Bowtie, Mummer and an optimized implementa-

tion of binary search. Therefore, we omit any compar-

ison with Bowtie, Mummer and binary search. More-

over, Sapling is single threaded. Therefore, we compare

the performance of the three implementations using

only a single thread. We have used the same evalu-

ation method as used in the Sapling paper. We use

the scripts provided with Sapling source code [24] to

generate 50 million seeds of length 21 for the three ref-

erence sequences. The script ensures that there is at

least one match of the generated seeds.

Figure 1 shows the comparison. Note that the time

reported for Sapling here is 1) more than 2× less that

the time reported in the [19] potentially due to a dif-
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Figure 1 Performance of the exact search for Sapling, TAL, and LISA using a single thread.

ference in architecture and 2) the time spent in getting

one position in the interval in the suffix array in which

the query matches – one needs to perform a search

on both sides of the position to get the interval. We

could not run Sapling for human genome as it ran out

of memory even when run on a different machine with

256 GB DRAM. The time reported for TAL and LISA

is the time spent in getting the full interval.

Figure 1 shows that TAL is 3.5× and 4.2× faster

than Sapling and LISA is 6.4× and 7.4× faster than

Sapling, respectively, for Asian Rice and Zebrafish.

Therefore, for the rest of the paper, we only compare

LISA with TAL.

Performance Evaluation

Exact Search

Figures 2 and 3 show the throughput achieved by

LISA and TAL for exact search on a single thread

and single socket, respectively, across different refer-

ence sequences and the read datasets. The x-axis rep-

resents the reference sequence and the datasets, and

the throughput is shown on the y-axis (the higher the

better). Observe that LISA outperforms TAL across

all datasets.

Exact search finds all end-to-end matches of 21-

length seeds. Recall that the traditional FM-index

based search matches one base at a time against the

reference sequence and therefore takes 21 steps for end-

to-end matching of 21-length seed. LISA processes a

whole 21-length seed in one shot and finds its matches

in a single step. As a result, LISA achieves 1.4− 2.2×

higher throughput than TAL.

SMEM Search

Figures 4 and 5 show the throughput comparison

for SMEM search. LISA achieves 4.4 − 13.3× higher

throughput than TAL. On a single threaded execu-

tion, LISA achieves, on an average, 8.4× speedup over

TAL across all datasets. On a multithreaded execu-

tion, LISA achieves, on an average, 5.43× speedup over

TAL.

Although LISA outperforms TAL across all datasets,

the performance gain varies across datasets. The na-

ture of reads and the reference sequences affect the

overall performance gain. For instance, a read dataset

with longer matching SMEMs is a better candidate for

LISA than the one with the shorter matches. In Fig-

ures 4 and 5 the average length of the matches in H1

is 45 where as in H3, the average length is 26.

Conclusions and Future Work

Creating an index of the database appears as a motif

in many key areas in computational biology includ-

ing genomics, transcriptomics and proteomics. In this
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Figure 2 Performance evaluation for exact search problem on a single thread. Throughput gain for each dataset is shown on the top

of LISA bars.

Figure 3 Performance evaluation for exact search problem on a single socket (28 cores). Throughput gain for each dataset is shown

on the top of LISA bars.

paper, we presented LISA - a machine learning based

approach to index a database of DNA sequence to ac-

celerate DNA sequence search. We demonstrated the

benefits of our approach through two specific variants

of DNA sequence search - exact search and SMEM

search and show up to 2.2× and 13.3× speedup, re-

spectively. As future work, we plan to extend the ideas

presented in this paper to many other problems in

computational biology in which an index is created

to accelerate search through a database. In particu-

lar, hash tables are a prime candidate for acceleration

through the learned approach.

Methods

This section is being written as of now and will be

available soon.
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Figure 4 Performance evaluation for SMEM search problem on a single thread. Throughput gain for each dataset is shown on the

top of LISA bars.

Figure 5 Performance evaluation for SMEM search problem on a single socket (28 cores). Throughput gain for each dataset is

shown on the top of LISA bars.
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