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Abstract—During the last years, some operators have expressed
concerns about the continued growth of the BGP routing tables
in the default-free zone. Several proposed solutions for this
issue are centered around the idea of separating the network
node’s identifier from its topological location. Among the existing
proposals, the Locator/ID Separation Protocol (LISP) has seen
important development and implementation effort. LISP relies
on a mapping system to provide bindings between locators and
identifiers. The mapping system is a critical protocol component,
and its design is still an open issue. In this paper we present
a new mapping system: LISP-TREE. It is based on DNS and
has a similar hierarchical topology: blocks of identifiers are
assigned to the levels of the hierarchy by following the current
IP address allocation policies. We also present measurement-
driven simulations of mapping systems’ performance, assuming
a deployment of LISP in the current Internet.

Index Terms—Routing scalability, locator/identifier split, map-
ping system.

I. INTRODUCTION

An important problem of today’s Internet is the continued

growth of the BGP routing tables in the default-free zone

(DFZ) [1]. Besides the increasing number of Autonomous

Systems, other factors contribute to this growth, including

multihoming and traffic engineering [2]. This issue was ranked

in 2006 at the Internet Architecture Board Workshop on

Routing and Addressing [2] as “the most important problem

facing the Internet today”.

Many of the proposed solutions to address this issue are

centered around the idea of separating the network node’s

identity from its topological location. Among the existing

proposals [3], [4], [5], [6] the Locator/Identifier Separation

Protocol (LISP) [7] has seen important development and

implementation effort. LISP considers two different types of

addresses: Endpoint Identifiers (EIDs) and Routing Locators

(RLOCs). EIDs are allocated to sites in a provider-independent

manner, but they are not advertised in the global Internet. The

global BGP routing tables will eventually only contain the
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Science and Engineering, Université catholique de Louvain, Louvain-la-
Neuve, Belgium (e-mail: firstname.lastname@uclouvain.be).

This work has been partially supported by the Ministry of Innovation,
Universities and Enterprise of the Generalitat of Catalonia under scholarship
2006FI-00935 and contract 2009SGR-1140, the Spanish Ministry of Science
and Technology under contract TEC2009-13252, a COST TMA STSM and
a Cisco URP grant. We would like to thank Noel Chiappa for his valuable
suggestions that greatly improved this paper. Many thanks also to Harsha V.
Madhyastha for the help with the iPlane latency lookup service and to Pere
Barlet-Ros for providing the UPC traffic trace.

RLOCs; it would then be possible for these to be assigned

in such a way that transit network providers can highly

aggregate them, and help scale the BGP routing tables. Finally,

a mapping system must be used to map the EIDs on the

RLOCs that allow reaching them.

To date, several mapping systems have been proposed [8],

[9], [10], [11]. LISP+ALT [8] is a hierarchical architecture

that uses BGP to pass information, including requests for

mappings among the nodes of the mapping system; it relies on

aggregation to scale. LISP+ALT uses an overlay BGP network

where each AS announces its EIDs through the overlay. On

the other hand, LISP-DHT [9] is a P2P-based solution that

stores bindings between EIDs and RLOCs on a Chord-like

overlay [12], where each border router acts as a node of the

overlay.

In this paper we propose a new mapping system: LISP-

TREE. It is based on the widely used Domain Name System

(DNS), with a similar hierarchical organization. Blocks of

EIDs are assigned to the layers of the naming hierarchy by

following the current allocation rules for IP addresses. The root

of the naming hierarchy is maintained by the Regional EID

Registries, which allocate EID blocks to local registries. These

in turn maintain delegation information for the owners of the

provider independent EID prefixes. Levels can be dynamically

added to the hierarchy. LISP-TREE nodes can use existing

DNS implementations, and benefit from the long operational

experience, but to avoid interference with the current domain

name system, LISP-TREE should be deployed on a physically

separate infrastructure. One of the main advantages of LISP-

TREE is DNS’ proven scalability track record: for instance,

at the time of this writing, the .com top-level domain stores

roughly 77 million entries [13], while there are only around

320,000 entries in the default-free zone today [1].

In addition to its architectural qualities, the performance

of mapping systems plays a key role in LISP. However,

apart from a first trace-driven analysis of the mapping cache

[14], no research efforts have been devoted to this goal.

This paper aims to fill this gap as well, presenting a trace-

driven simulation of the performance of LISP’s main mapping

systems. In particular we consider LISP+ALT, LISP-DHT and

LISP-TREE. Our performance analysis assumes a complete

deployment of LISP in today’s Internet. We use topology and

latency data from the iPlane [15] infrastructure and build the

open source CoreSim simulator [16] on top of that. This setup

provides estimations of LISP performance metrics.

The rest of the paper is structured as follows: Section II

gives an overview of LISP and of the mapping systems

under study. It is followed, in Section III, by a description
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Fig. 1. Simple LISP scenario

of LISP-TREE, our proposed mapping system. Next, Sec-

tion IV presents CoreSim, the simulator used to evaluate

the performance of the main LISP mapping systems. The

simulation results are presented and discussed in Section V.

Finally Section VI includes the related work while Section VII

concludes the paper.

II. LISP BACKGROUND

This section describes briefly the main architectural blocks

of LISP and gives an overview of the existing mapping

systems.

A. The Locator/ID Separation Protocol

To forward packets between endhosts, LISP relies on map-

ping and encapsulation. All LISP sites communicate with

the rest of the Internet through at least one pair of Ingress

and Egress Tunnel Routers (resp., ITR, ETR), each globally

identifiable by one or more routing locators (RLOCs). Though

functionally different entities, the two types of tunnel routers

could be implemented on the same device. For example, in

Fig. 1, the bottom site has two xTRs: R1 and R2. In this

example, we use IPv6 addresses as end host identifiers (EIDs)

and IPv4 addresses as RLOCs. One important feature of LISP

is that it scales by not advertising the EIDs – belonging to

the 0100::/8 prefix for the example – in the legacy Internet

BGP routing tables, after the initial transition period.

When an endhost in the bottom LISP site in Fig. 1, e.g.

0100:FE::1234, needs to contact a remote endhost, e.g.

0100:DD::1234 it sends a normal (IPv6 in this case) packet

with the destination EID as destination address. This packet

is intercepted by one of the site’s ITRs (i.e., R1 or R2). To

forward the packet, the ITR needs to obtain at least one of the

RLOCs of the destination ETR. For this, the ITR queries the

mapping system by sending a Map-Request packet. Several

mapping systems [8], [9], [10], [11] are being developed for

LISP (see Sec. II-B). The mapping system will respond with

a Map-Reply which contains a set of RLOCs of the ETRs

which the ITR can use to forward packets to the destination.

A priority and a weight are associated with each RLOC to

allow a LISP site to control its ingress traffic. RLOCs with

the lowest priority value are preferred. Load balancing between

the same priority RLOCs is achieved with the weight. A time-

to-live (TTL) is also associated to these mappings, indicating

their maximum lifetime in a cache. A mapping can be evicted

from a cache before its TTL expires, if so required by the

particular cache’s eviction policy, but must be either refreshed

or deleted when its maximum lifetime is reached. Furthermore,

the mapping system will usually return a mapping that is

valid for the entire prefix containing the destination EID. For

example, in Fig. 1, the mapping system could return a mapping

that associates 0100:DD/48 to 3.1.1.2 and 2.2.1.2.

Once the mapping has been received, it is installed in the

mapping cache of the ITR and the packet is encapsulated and

sent to the RLOC of the destination ETR. The destination

ETR decapsulates the packet and forwards it to the destination

endhost. Subsequent packets sent to this EID will be forwarded

based on the cached mapping.

B. Mapping systems

The mapping system is a major component of the Loca-

tor/Identifier Separation Protocol as it provides the association

between an identifier and its locators.

From an architectural standpoint there are two possible ways

in which a mapping system could supply mapping information.

It can either provide individual answers to specific requests

(pull), or distribute (push) all the mappings onto listeners.

In pull-based mapping systems, the ITR sends queries to the

mapping system every time it needs to contact a remote EID

and has no mapping for it. The mapping system then returns

a mapping for a prefix that contains this EID. Pull-based

mapping systems have thus similarities with today’s DNS.

Proposed pull-based mapping systems include LISP+ALT [8],

LISP-CONS [10] and LISP-DHT [9]. In push-based mapping

systems, the ITR receives and stores all the mappings for all

EID prefixes even if it does not contact them. Push-based

mapping systems have thus similarities with today’s BGP. To

the best of our knowledge, NERD [11] is the only proposed

push-based mapping system.

1) LISP+ALT: The LISP Alternative Topology

(LISP+ALT) [8] is a mapping system distributed over

an overlay. All the participating nodes connect to their peers

through static tunnels. BGP is the routing protocol chosen

to maintain the routes on the overlay. Every ETR involved

in the ALT topology advertises its EID prefixes making the

EID routable on the overlay. Note though, that the mappings

are not advertised by BGP. When an ITR needs a mapping,

it sends a Map-Request to a nearby ALT router. It starts by

constructing a packet with the EID, for which the mapping

has to be retrieved, as the destination address, and the RLOC

of the ITR as the source address. The ALT routers then

forward the Map-Request on the overlay by inspecting their

ALT routing tables. When the Map-Request reaches the ETR

responsible for the mapping, a Map-Reply is generated and
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directly sent to the ITR’s RLOC, without using the ALT

overlay.

2) LISP-DHT: LISP-DHT [9] is a mapping system based

on a Distributed Hash Table (DHT). The LISP-DHT mapping

system uses an overlay network derived from Chord [12].

Choosing this particular structured DHT over others (e.g.,

CAN, Pastry, Tapestry or Kademlia) was motivated by the

algorithm used to map search keys to nodes containing the

stored values. In a traditional Chord DHT, nodes choose their

identifier randomly. In LISP-DHT, a node is associated to an

EID prefix and its Chord identifier is chosen at bootstrap as

the highest EID in that associated EID prefix. This enforces

mapping locality that ensures that a mapping is always stored

on a node chosen by the owner of the EID prefix, see [9]

for details. When an ITR needs a mapping, it sends a Map-

Request through the LISP-DHT overlay with its RLOC as

source address. Each node routes the request according to its

finger table (a table that associates a next hop to a portion of

the space covered by the Chord ring). The Map-Reply is sent

directly to the ITR via its RLOC.

3) LISP-CONS: The Content distribution Overlay Network

Service for LISP, LISP-CONS [10], is a hierarchical content

distribution system for EID-to-RLOC mappings. It is a gener-

alization of LISP+ALT, which does not use the BGP routing

protocol. On the other hand, it adds support for caching in

intermediary nodes. In this paper we do not consider LISP-

CONS as it does not seem to evolve anymore.

4) NERD: NERD is a flat centralized mapping database,

using the push-model. Because any change requires a new

version of the database to be downloaded by all ITRs, this ap-

proach is unlikely to scale to the needs of a future global LISP

mapping system. The main advantage of NERD is the absence

of cache misses that could degrade traffic performance.

III. LISP-TREE

This section presents the LISP-TREE mapping system.

First, we provide arguments for using the protocols supporting

today’s Domain Name System (DNS), followed by a short

overview of our proposal. Then, after the detailed description

we also propose a deployment scheme for today’s Internet.

A. Why a DNS-based mapping system?

On today’s Internet, DNS is the system which is closest

to a mapping system. More than twenty years of operational

experience in implementing, testing, deploying, and operating

such a system forms a solid foundation for an identifier-to-

locator mapping service.

1) Scalability: Scalability is a key concern for any mapping

system. The scalability of the current DNS system is due to

several factors. First, caching is heavily used to reduce the

number of queries that are sent by resolvers. Second, the

domain names have a hierarchical structure, so the changes

to the IP addresses and names of name servers responsible

for domains are local to a few DNS servers and do not need

to be propagated throughout the DNS. In contrast, the BGP-

based LISP+ALT would require an intelligent organization of

the topology, coupled with aggregation, to mitigate the risk

of organic growth (i.e., due to non-technical reasons: social,

economical) of the ALT routing table. Last, the combination

of the previous two factors leads to a shortened path for a

significant amount of queries, due to the fact that not only

responses, but also intermediate nodes can be cached. Because

queries can go directly from the resolver to servers lower on

the hierarchy, not all cache misses have to traverse the tree.

2) Fault tolerance and troubleshooting: Network operators

need to rapidly detect and fix the problems when they happen.

DNS resolvers operate in iterative and recursive modes. In

iterative mode, the resolver sends the queries to servers on

different levels of the hierarchy, step by step, starting at the

root. If one server does not reply, the resolver automatically

tries another server [17]. In recursive mode, the query is for-

warded from one server to another, closer to the authoritative,

which sends the reply back on the same path.

In this case, the location of a failing intermediate server

will not be known to the resolver, which will be unable

to circumvent the failing node if no extra failure discovery

protocol is deployed. DNS allows both forms of operation,

but today’s Internet mostly uses iterative DNS [18].

Moreover, fault tolerance is a key concern in a mapping

system. Because a reply from the mapping system is necessary

to allow an ITR to send packets towards a destination EID, any

failure of the mapping system would block communications.

In the current DNS, fault tolerance is provided mainly by

replicating servers. All the important zones of the DNS hier-

archy are served by two or more name servers with distinct IP

addresses. Furthermore, some of these IP addresses are in fact

anycast addresses that correspond to several physical servers.

DNS resolvers take advantage of this redundancy by using

load balancing when contacting name servers [17].

3) Security: None of the proposed LISP mapping systems

have specified security features. While some existing solutions

could be used to secure them (e.g., applying the Secure Inter-

Domain Routing architecture to LISP+ALT [19]), they have

not received enough wide-scale implementation, testing and

operational experience. DNSSEC adds the required security

mechanisms to allow resolvers to authenticate the replies

received from DNS servers. It is readily available in most

DNS implementations, with some top-level domains already

deploying it. It does introduce additional complexity to the

mapping system, but all add-on security mechanisms do so.

For completeness sake, security was included in this section,

but a detailed security analysis is out of scope for this paper

and is left for future work.

4) Impact of configuration errors: DNS configuration er-

rors impact only the domains served by the misconfigured

name server and do not propagate to the whole system. With

LISP+ALT, the main source of misconfiguration would be

the advertisement of incorrect EID prefixes via BGP on the

overlay network. Experience with BGP shows that many mis-

configuration errors could cause network operators to advertise

an invalid BGP prefix with different impacts on the network

[20]. All these misconfiguration errors could affect the ALT

overlay as well.
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Fig. 2. Global overview of LISP-TREE. 1. The requester asks the discovery
part to have the locator of some authoritative ETRs for an EID e. 2. The
discovery part provides this list. 3. The Map-Resolver sends a Map-Request
to one of these ETRs. 4. The ETR sends a Map-Reply back with a mapping
for e.

B. LISP-TREE Overview

LISP-TREE is a hierarchical mapping system that has a

clear separation of the storage of mappings and their discovery.

The mapping storage is under the responsibility of the ETRs

while the discovery mechanism is built on top of the DNS

protocol. The role of the discovery mechanism is to provide

a list of ETRs that respond authoritatively for the mappings

associated to the queried EID.

Fig. 2 presents an overview of LISP-TREE. When a re-

quester needs to obtain a mapping for an EID, it first sends a

request to the discovery part that answers with a list containing

the locators of the authoritative ETRs for the requested EID.

The requester then sends a Map-Request to one of these

ETRs and receives a Map-Reply containing a mapping for

the identifier. The mappings are provided by the ETR to let

them control their traffic by setting the priorities and weights.

C. LISP-TREE Model

The bindings between the EIDs and the locators are kept

on the authoritative egress tunnel routers of customer domains.

These ETRs manage and distribute these mappings with the

aim of sinking all self owned EID-prefix mapping requests.

All the mapping databases are combined to form the Mapping

Storage. It will not be further detailed here as its functionality

has already been defined in the LISP specification [7].

ETRs respond with Map-Replies only for the EID space

they are authoritative for [7]. Because of this, it is the responsi-

bility of the inquiring node, the Map-Request originator, to find

the locators of the ETRs authoritative for the queried identifier.

Such functionality is provided by the discovery part of LISP-

TREE. It is implemented on top of the DNS protocol [21]

and builds its tree by logically linking LISP-TREE Servers

(LTS). Although LISP-TREE is built over DNS, we suggest

to deploy it independently to keep the separation between the

DNS names and the identifier resolutions.

All the LTSes are responsible for an EID prefix and build a

hierarchy determined by their intrinsic relationship. Therefore,

an LTS responsible for EID prefix p1 is ancestor of an LTS

responsible for EID prefix p2 if and only if p1 � p2
1.

Moreover, any LTS of prefix p1 is a parent of an LTS

responsible for prefix p2 if and only if there exists no LTS

of prefix p3 such that p1 ≺ p3 ≺ p2. All these strict ordering

relations are stored by parent LTS as a list of child servers.

Exceptions are the lowest level servers, the leaves, which store

a list of ETRs that are responsible for their associated prefix.

Hence, the search for any EID e ends at a leaf of prefix p that

respects p � e.

The authoritative ETRs are registered to their responsible

leaf LTSes by using the Map-Register procedure defined

in [22]. In LISP terminology, the leaf LTSes are called Map

Servers (MS) [22].

To make LISP-TREE transparent for the ITRs, Map-

Resolvers (MR) [22] are added to the system. When a Map-

Resolver receives a Map-Request from an ITR, it queries the

LISP-TREE discovery part to obtain the list of the authoritative

ETRs for the EID in the request. Once the MR has the

corresponding list of authoritative ETRs, it sends a Map-

Request to one of them and subsequently forwards the received

Map-Reply to the requesting ITR. Thanks to this functionality,

the ITRs do not need to know anything about LISP-TREE,

they just need to send a Map-Request to an MR.

To avoid circular dependencies in the addresses, every node

involved in the mapping system (i.e., MRs, LTSes, MSes and

xTRs) is addressed with a locator.

D. LISP-TREE Modes

Like DNS, LISP-TREE can run in two distinct modes: (i)
recursive and (ii) iterative. Fig. 3 illustrates the difference

between the two and presents a requester who wants to obtain

a mapping for the EID 192.0.2.20. To simplify the figure,

only the last EID octet’s is shown.

1) Recursive Mode: In the recursive mode (Fig.3(a)), the

MR requests a mapping for EID e from a root LTS2. The root

LTS sends a request to one of its children responsible for e

and so on until a MS is reached. The MS then generates a list

of e’s authoritative ETRs locators and this list is back-walked

until the answer arrives the root LTS. At that stage, the root

LTS sends the reply back to the MR.

2) Iterative Mode: In the iterative mode (Fig.3(b)), the MR

requests a mapping for EID e from a root LTS. The LTS then

sends back the locators of its children responsible for e to the

MR. The MR then sends a request for the mapping to one

of those children. The child does the same and answers with

a list of locators of its children responsible for e, and so on

until a MS is reached. The MS then generates a list of e’s

authoritative ETRs locators and sends it to the MR.

In both modes, when the MR receives the ETR locators list,

it sends a Map-Request to one of them to get a mapping for e

and eventually receives a Map-Reply. It is possible to optimize

1p � q if and only if prefix p is shorter (less specific) than q
2A root LTS is an LTS that serves the root of the tree
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for latency in the last step, by allowing the MS to do DNS-to-

LISP protocol translation and have it send the Map-Request to

the ETR. We did not consider this scenario in order to keep the

architectural separation and with that the good troubleshooting

properties of LISP-TREE.

E. LISP-TREE Deployment Scenario

A key factor for the long-term success of a mapping system

is its ability to scale. However, the effective deployment of a

mapping system also largely depends on its ability to fit with

a business model accepted by the community willing to use

it.

We therefore propose a model that relies on the the delega-

tion principle which is very common in the Internet. A globally

approved entity (e.g., IANA, IETF. . . ) defines the minimum

set of rules and delegates the operations to independent service

providers that can, at their turn, delegate to other providers and

fix extended rules. People wishing to gain access to the system

are free to contact any provider and sign agreements with

them. The providers are differentiated by the extra services

they propose.

The EID prefix delegation follows an approach similar to

the current Internet prefix allocation. The IANA divides the

EID space in large blocks and assigns them to five different

Regional EID Registries (RER) that could be the current RIRs.

The RERs are responsible for the allocation of prefixes to the

Local EID Registries (LERs) and large networks. The LERs

can then provide EID prefixes to some customers or LERs

below, which, at their turn, can delegate the prefixes to other

LERs or to customers. In this scenario, we consider that the

EID space is independent from the currently assigned IP space.

For example, it could be a subset of the IPv6 address space.

This separation means that the EID space does not have to

support all the legacy decomposition of prefixes observed on

the Internet.

In this scenario, the tree has at least three levels. The

first level (i.e., the root) is composed of LTSes maintained

by the RERs. These servers replicate the same information:

the list of all LERs responsible for all the large blocks of

EIDs. The number of such blocks is limited (maximum 255

in an /8 decomposition perspective) meaning that the total

state to maintain at the root LTSes is limited even if every

prefix is maintained by tens of different servers. Level 2 of the

tree is composed of the LTSes maintained by the LERs and

the lowest level encompasses the map servers responsible for

customer ETRs. State at level 2 depends on the deaggregation

of the large block of EIDs and implicitly on the number of

subscribed customer map servers. To avoid having to support

a large number of deaggregated prefixes, an LTS can partially

deaggregate its EID block (e.g., divide it by two) and delegate

such sub-blocks. In other words, the state to maintain at an

LTS can be controlled by adapting the depth of the tree.

It is important to note that the EID prefixes are independent

of any given ISP, and that additional levels in the hierarchy

can be defined if needed. It is worth to note that this raises

the problem of registrar lock-in: once an organization gets an

allocation, it cannot move the allocated prefix to a different

registrar. It is also important to remark that any LTS (including

the MSes) can be replicated and maintained by independent

server operators and implementations. Therefore, to limit the

impact of the lock-in, we would recommend the registrars to

ensure enough diversity in LTS operators for their blocks. No

significant lock-in is observed in DNS today thanks to this way

of deploying TLDs. The load can also be controlled among

the different replicas by deploying them in anycast. Finally,

the use of caches, like in the DNS, can reduce the number of

LTSes involved in every query.

IV. SIMULATION MODEL

LISP and LISP+ALT are discussed in the LISP working

group of the IETF and an implementation is being developed

for Cisco platforms. A world-wide testbed of more than 50

tunnel routers (at the time of this writing) relying on the

LISP+ALT mapping system is also deployed3. In addition,

an open source implementation of the LISP tunnel router

functionality is developed by the OpenLISP project [23] for

the FreeBSD operating system. However, while these imple-

mentations help to validate and gain operational experience

with the proposed protocols, they do not allow to estimate

the behavior of LISP at a very large scale. We developed

CoreSim [16] for this purpose, an open source Internet-scale

LISP deployment simulator4. CoreSim combines a packet trace

and Internet latency data to simulate the behavior of an ITR

and the mapping system.

CoreSim works on top of a topology built from measure-

ments performed by the iPlane infrastructure5, which pro-

vides Internet topology information and the latency between

arbitrary IP addresses. The simulator reports mapping lookup

latency, the load imposed on each node of the mapping system

and cache performance statistics.

CoreSim is composed of two main building blocks (see

Fig. 4): the first one, ITR, simulates an ITR with its associated

operations (sending Map-Requests, caching Map-Replies and

forwarding packets), while the second, MS, simulates the

mapping system (path taken and mapping latency).

A packet trace file is used as input data for the ITR block.

The position of the simulated ITR in the topology built by

CoreSim (see next section) is determined by the real world

location of link where the trace was captured.

A. Topology Model

The first element to model the behavior of mapping systems

in a large scale network is the network itself. For CoreSim, we

chose to use the current Internet as the reference topology. The

topology used in the simulator is composed of 14,340 points

of presence (PoPs), one per autonomous system (AS), about

which iPlane [24] knows inter-domain peering information.

For the simulations we assume that each AS deploys one and

only one LISP tunnel router (xTR) and that its xTR is located

on its most connected PoP.

3See http://www.lisp4.net/ for more details.
4Available from http://lisp.cba.upc.edu/
5See http://iplane.cs.washington.edu/
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(a) Recursive mode: queries in the discovery parts are progressively transmitted
to a MS. The MS answer then back-walk the tree up to the root that sends the
answer to the MR.

(b) Iterative mode: queries are moving back and forth from the MR and the
LTSes, starting at a root LTS until a MR is reached. The MS then provides the
answer to the MR.

Fig. 3. LISP-TREE works with different mode: (a) recursive and (b) iterative.

Fig. 4. CoreSim architecture

Once the xTRs are selected, they are assigned several EID

prefixes. Those prefixes are the IP prefixes currently advertised

in the default-free zone (DFZ) by this AS. Since the causes

of prefixes deaggregation in BGP is not always clear, we

removed from the iPlane dataset the more specific prefixes.

These prefixes are mostly advertised for traffic engineering

purposes [2] and would not be advertised with LISP as it

natively supports traffic engineering in the mappings. A total

number of 112, 233 prefixes are assigned based on originating

AS to their respective xTR6.

CoreSim relies on the iPlane Internet latency lookup ser-

vice that returns the measured latency between arbitrary IP

addresses to simulate the time required to obtain a mapping

in the simulated mapping system. Unfortunately, iPlane does

not provide all possible delay pairs. Because of this, for 35%

of the lookups, we use a latency estimator that correlates the

geographical distance between IP addresses as reported by

the MaxMind database7 with the latencies based on an iPlane

training dataset (see details in [25]). This approach was found

only slightly less accurate than other more complex algorithms

6Data is from March 2009
7Available from http://www.maxmind.com/.

in [26] using measurement data from over 3.5 million globally

well distributed nodes.

An important assumption made by CoreSim is that there is

no churn in the topology during a simulation run, meaning

that the delay between two nodes is constant, and that nodes

never fail.

B. ITR Model

CoreSim studies the behavior of only one ITR at a time,

therefore, out of all xTRs, one is selected as the ITR under

study (see Fig. 4). The PoP for the selected ITR is determined

by manual configuration, based on the point of capture of

the traffic trace that is fed to the simulator. The ITR caches

mappings (i.e., resolved Map-Requests) and evicts entries after

3 minutes of inactivity.

C. Mapping System Models

In CoreSim, a LISP Mapping System is modeled as an IP

overlay. The overlay is mainly composed of nodes of the

topology module, but also includes some mapping system

specific ones. As expected the organization of the overlay

depends on the considered mapping system.

The simulator routes Map-Requests from the ITR to the

node authoritative for the mapping (ETR). The path of the

query and the latency of each hop are recorded in order to

infer statistics and metrics of interest.

1) LISP+ALT model: The LISP+ALT draft [8] envisages

a hierarchical topology built with GRE tunnels but does not

recommend any organization for the overlay. Therefore, among

all the possible organizations, a hierarchical overlay structure

with strong EID prefix aggregation for advertisements has been

chosen.

Based on discussions on the LISP mailing list, a three-level

hierarchy was decided (see Figure 5). In this hierarchy, the bot-

tom leaf nodes are ALT routers belonging to a certain domain.

The upper two levels are dedicated ALT routers, which may
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Fig. 5. LISP+ALT architecture

be offered as a commercial service by providers or registries.

Each of these nodes is responsible for certain aggregated

prefixes, and connects to all lower level nodes which advertise

sub-prefixes included in those prefixes. The hierarchy consists

of 16 root (first) level ALT routers, responsible for the eight /3

prefixes, and 256 second level ALT routers, each responsible

for a /8 prefix. For each /3 prefix two ALT routers at different

locations are used and each lower level ALT router connects

to the one with the lowest latency. All these 16 routers are

connected to each other with a fully meshed topology. Please

note that LISP+ALT can support other topologies and for

instance include intra-level links.

Map-Requests are routed via the shortest path through the

hierarchy starting from the bottom layer where the ITR is

connected to the ALT topology.

2) LISP-DHT model: The simulator considers the 112, 233
filtered prefixes from iPlane and builds a static Chord ring of

the same size, using a trace-based approach to compute the

finger table on each node. The last EID of each prefix is used

as the ChordID of the LISP-DHT nodes that is responsible for

this EID prefix. EID lookups proceed according to the standard

Chord protocol, which we implemented in CoreSim.

3) LISP-TREE model: CoreSim considers only one ITR at a

time, and because the MR always selects the closest root LTS,

the one selected by the MR is always the same. Therefore, the

simulator considers only one root LTS for the tree. This server

connects to the 256 level 2 LTSes that are each responsible

for one /8 EID prefix. In turn, these servers know about

all the third level LTSes that are responsible for the prefixes

included in their /8 prefix. These third level servers are the

map servers the ETRs subscribe to. The simulator assumes that

an ETR registers to a single MS, and that MS is located in the

same PoP as the ETR. Since the simulator assigns them to the

same PoP, the resulting latency between them is 0. Further,

because the latency introduced by DNSSEC is two orders of

magnitude lower than typical mapping lookup latencies [27],

it is considered negligible and is not accounted for in the

simulator. This deployment scenario is an instantiation of the

one presented in Sec. III-E which is congruent with the current

Internet.

Additional implementation details on the simulator can be

found in [28].

V. MAPPING SYSTEM COMPARISON

Section III described in detail the advantages of our pro-

posed mapping system from an architectural point of view.

This section complements that with a qualitative analysis,

comparing several performance metrics of three mapping

systems: lookup latency, hop count, node load and the amount

of state stored in mapping system nodes. Low lookup latency

improves user experience for new flows, while node load

and state affect the scalability of the system. We begin by

describing the packet traces that support our evaluation.

A. Experimental Datasets

In order to evaluate the performance of the mapping systems

presented above we used traffic traces collected at the border

routers of two university campuses, because border routers

are the most likely place to deploy a LISP tunnel router. The

first trace was captured at Université catholique de Louvain

(UCL) in NetFlow format, and the second is a packet trace

from Universitat Politècnica de Catalunya (UPC).

1) UCL: The UCL campus is connected to the Internet

with a 1 Gbps link via the Belgian national research network

(Belnet). This trace consists of a one day full NetFlow trace

collected on March 23, 2009. For this paper, only the outgoing

traffic is considered, representing 752 GB of traffic and 1,200

million packets for an average bandwidth of 69 Mbps. A total

number of 4.3 million different IP addresses in 58,204 different

BGP prefixes have been contacted by 8,769 different UCL

hosts during the 24 hours of the trace. The UCL campus is

accessible to more than 26,000 users.

NetFlow generates transport layer flow traces, where each

entry is defined as a five-tuple consisting of the source

and destination addresses and ports, and the transport layer

protocol. The simulator however requires packet traces. This

is why the NetFlow trace collected at UCL has been converted

into a packet trace: for each flow, we generated the number

of packets specified in the NetFlow record, distributed evenly

across the flow duration and the size of the flow. Throughout

the rest of the paper, the term UCL trace corresponds to

the packet trace obtained from the NetFlow trace collected

at UCL.

2) UPC: The second unidirectional trace we used was cap-

tured at the 2 Gbps link connecting several campus networks

of UPC to the Catalan Research Network (CESCA) with the

help of the CoMo infrastructure [29]. It consists of the egress

traffic on May 26, 2009 between 08:00-11:49 local time, and

contains about 1,200 million packets accounting for 463 GB

of traffic with an average bandwidth of 289 Mbps. 4.3 million

distinct destination IP addresses from 56,387 BGP prefixes

were observed in the trace. UPC Campus has more than 36,000

users.

B. Cache Miss Rate

The average packet rates at the UCL and UPC border

routers are 13 Kpkts/s and 87 Kpkts/s, respectively. However,

due to the nature of the traffic, a mapping is already cached

by the ITR for most of the packets, with only 0.31% and
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0.1% of cache misses for the mentioned vantage points. A

cache miss occurs when no mapping is known for an EID to

encapsulate. On cache miss, a Map-Request is sent to obtain a

mapping, resulting in 2,350,000 Map-Requests sent for UCL

and 560,000 for UPC during the 24h and 4h periods of the

traces, which are shorter than the default TTL value (1 day)

for mappings. As a result, all cache evictions were due to

lack of activity to a particular prefix for 3 minutes, rather

than expired TTL. These values for Map-Requests have to be

compared with the total of 1,200 million packets observed for

both traces. The difference between UCL and UPC can be

explained by the higher average packet rate of the UPC trace,

which keeps the cache more active, resulting in less timed out

entries.

During our simulations the maximum number of mapping

cache entries reached was 22,993 and 15,011 for the two

traces. This is an order of magnitude less than routes in the

DFZ. For a detailed mapping cache study, please refer to [14].

It is important to note that the results are obtained for a

cache initially empty. Therefore, the miss rate is very impor-

tant at the beginning of the experiment and thus influences the

number of requests. The number of Map-Requests would have

been dramatically smaller if we had considered the system at

the steady state.

C. Mapping Lookup Latency

The mapping lookup latency is particularly important in

mapping systems as it represents the time required to receive a

Map-Reply after sending a Map-Request. When an ITR waits

for a mapping for an EID, no packet can be sent to this EID.

If this delay is too long, the traffic can be severely affected.

For instance, one of the Internet’s most popular resources,

the World Wide Web is continuously evolving, delivering web

pages that are increasingly interactive. Content on these pages

is often from different servers, or even different providers,

and presents a multi-level dependency graph [30]. This is

already a challenging environment for some applications, and

the introduction of a new level of indirection has the poten-

tial to introduce additional latencies. However the ATLAS

study [31] shows that content is more and more comming

from datacenters and CDNs.

To compare the considered mapping systems, we define

the map-stretch factor of a lookup as the ratio between the

total time required for performing it and the round-trip delay

between the ITR and ETR. A low map-stretch indicates that

the mapping system introduces a low delay overhead.

Fig. 6 presents the cumulative distribution function of the

map-stretch factor obtained for both the UCL and UPC traces.

In most of the cases (over 90%) the iterative LISP-TREE

presents a stretch factor of 2. After the initial cache warm

up, there is no need to contact the root and level 2 servers,

their responses are already cached. Still, the discovery phase

cannot be completely avoided and the level 3 MS have to be

contacted for the RLOCs of the ETRs. These are not cached

in the MR, because it would have a negative impact on the

mapping dynamics, limiting the possibilities for supporting

fast end-host mobility.
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Fig. 6. CDF of map-stretch ratio. Use of caching makes LISP-TREE have
a constant value for the majority of the lookups.

Recursive LISP-TREE is slower than iterative in over 90%

of the cases. The caching limitation mentioned in the previous

paragraph has particularly negative consequences for this

operating mode: since the only response arriving to the MR

is the list of RLOCs for the authoritative ETRs, no caching at

all can be done. The 10% of the cases when recursive is better

than iterative can be attributed to the path via the tree being

faster than from the MR to the MS, resulting in map-stretch

ratio values below 2.

Concerning LISP+ALT, its latency performance is similar

to LISP-TREE iterative. This is because in LISP+ALT, the

queries are routed through to the overlay topology, which is

composed by core routers. According to our assumptions (see

Section IV), these nodes are located in well connected PoPs.

However, in iterative LISP-TREE the query flows in almost

all the cases between the ITR and ETR, which may not be

so well-connected. When comparing LISP+ALT and LISP-

TREE recursive, we can see that LISP+ALT performs slightly

better. In the recursive mode of LISP-TREE queries are also
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forwarded through a topology of well-connected nodes, but as

we will see, they have to follow a much longer path.

As expected, LISP-DHT has the highest latency because of

the longer path taken by the queries routed through the P2P

topology. This is a well known problem in P2P networks, and

research to tackle this issue is ongoing [32]. However, it is

worth to note that LISP-DHT uses a particular Chord ring,

where the peers do not choose their identifiers randomly, but

as the highest EID in the EID prefix. This enforces mapping

locality that ensures that a mapping is always stored on a node

chosen by the owner of the EID prefix. As a consequence,

it may be difficult for LISP-DHT to benefit from existing

optimization techniques proposed in the literature.

Average lookup latencies were close to half a second for all

mapping systems except LISP-DHT, which had values slightly

larger than one second.

Fig. 7 helps to better understand the mapping latency

difference between the mapping systems. It presents a CDF

of the number of hops passed by over which a request and

reply.

The iterative version of LISP-TREE has the lowest hopcount

values, which can be explained, just like for the latency,

by caching in the Map-Resolver. Recursive LISP-TREE not

helped by caching, and queries have to traverse the full path

in each case, for a maximum of 8 hops (Fig. 3(a)).

The topology chosen for LISP+ALT in the simulator (Fig. 5)

limits the maximum number of hops to 6, but in 95% of the

cases, this maximum number of hops is observed. In order to

have a shorter path, the destination EID would have to be in

one of the /8 prefixes that doesn’t have a more specific part

announced separately. As we will see in the next section, this

also increases the load on the nodes composing the LISP+ALT

mapping system. In fact, Fig. 5 shows that all queries are

forwarded through the root layer. This may result in scalability

problems.

LISP-DHT has a much higher hop count with a maximum of

17 hops. This not only increases the lookup latency, it means

that more nodes are involved in the resolution of a mapping

than in the case of the other mapping systems, increasing the

overall load on the system and the probability of failure.

Summarizing, these results reveal significant differences

among the mapping systems under consideration. LISP-TREE

and LISP+ALT both use a hierarchical model, where nodes

on the query path tend to be congruent with the topology. In

contrast, the Chord overlay used to route queries in LISP-DHT

does not follow the underlying physical topology. Further, iter-

ative LISP-TREE allows caching and this reduces its mapping

latency.

The latency introduced by the mapping system in case of

cache misses will likely have a negative impact on the higher

layer protocols, in particular on congestion control in the

transport or application layer. These issues deserve a dedicated

study, and are left for future work.

D. Node Load

We define the node load as the total number of Map-Request

messages processed by nodes of the mapping system during
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Fig. 7. CDF of hop count. For hierarchical mapping systems it is almost
constant, for LISP-DHT we have a wide array of different values.

TABLE I
NODE LOAD IN LEVELS 1 AND 2

Level 1 Level 2

Mapping System Avg. Max. Avg. Max.

LISP-TREE (Itr.) 158 158 372 2,354

LISP-TREE (Rec.) 2,351,815 2,351,815 14,941 70,520

LISP+ALT 655,600 2,348,695 29,776 2,356,404

LISP-DHT 147,860 1,257,642 258 2,365,797

the full run of the trace. For a more thorough analysis, we

differentiate between the load caused by messages forwarded

by the node (transit load) and the load due to the messages for

which the node is the final destination (mapping load). Map-

ping load mainly depends on the observed traffic (distribution

of destination EIDs) and is mostly the same for all studied

mapping systems. On the other hand, transit load is mapping

system specific and depends on how a request is sent to the

holder of the mapping. Table I summarizes the load statistics

of the UCL trace.

The root LTS is only contacted 158 times in the case of
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iterative LISP-TREE, that is, the number of times necessary

to look up the locators of the level 2 nodes responsible for

the contacted /8 prefixes. Since these locators are cached by

the Map-Resolver, they are only requested once. The load on

the level 2 servers is also very low, compared to the other

mapping systems, where there is no caching on intermediate

nodes. In recursive LISP-TREE all Map-Requests have to pass

through the root node, and then get distributed to the lower

level nodes, according to the destination prefix. In LISP+ALT,

level 1 consists of 7 logical nodes for the seven /3 covering

the routable unicast prefixes. The nodes responsible for IP

space with high prefix density sustain a considerably higher

load.

For LISP-DHT, level 1 in the table refers to the transit

load of the ITR’s fingers, while level 2 to the transit load

of all other nodes. Figure 8 shows the transit load in LISP-

DHT. Vertical lines represent fingers of the ITR at UCL, which

was originating the Map-Requests. From the 112, 233 nodes

participating in the DHT, only 74% have routed or received

Map-Request messages and are depicted in the figure. We can

observe a sharp surge after a load value of 1000, that accounts

for about 1.8% of the total number of nodes on the DHT.

As expected we find many of the ITR’s fingers among these

hotspots. Of the 2, 365, 797 Map-Requests initiated, more than

half pass via the last finger and one third via the second last

finger. Among the top ten most loaded nodes 7 are not fingers.

Upon further inspection it was discovered that the node with

the highest load was the last finger of the ITR. Due to the way

Chord lookups work, this node is responsible for half of the

key space on the Chord ring, which explains the high load.

Further investigation revealed that there is one node which is

last finger for 5.6% of the LISP-DHT participants: the one

responsible for the prefix 4.0.0.0/8. This is the first prefix

from the IPv4 space present in the iPlane dataset. Since Chord

is organized as a ring (key space wraps around), this node

becomes responsible for the EID space of classes D and E as

well. Because this EID space is not represented in the overlay,

the result is a disproportional load. The UPC trace produced

similar load distribution results.

LISP-DHT’s transit traffic distribution characteristics may

be desirable for peer-to-peer networks, but are a major disad-

vantage for a mapping system. Since the transit route is defined

only by the Chord routing algorithm, two issues arise: lack

of path control may lead to choke points at nodes belonging

to small sites, and exposure of mapping traffic to unknown

third parties (potentially leading eavesdropping and denial-of-

service attacks). This makes LISP-DHT a poor choice as a

mapping system.

Due to these architectural differences, the mapping systems

under study exhibit different transit load characteristics. In-

deed, in the case of LISP-DHT all participating nodes are both

transit and destination nodes, while the hierarchical mapping

systems have dedicated transit nodes on levels 1 and 2. The

iterative version of LISP-TREE has a significantly lower load

in those dedicated transit nodes, because of the caching done

in the Map-Resolver.

LISP+ALT needs to route all packets through the root nodes,

producing a potential hot spot. LISP-TREE on the other hand

avoids using the root nodes most of the time, because it is

able to cache intermediate nodes. Apart from the obvious

scalability advantages, this improves reliability as well, since a

total failure of the root infrastructure would still allow partial

functioning of LISP-TREE, while no resolutions would be

possible in LISP+ALT.

E. Operational considerations

The mapping requests are transmitted through the mapping

system towards the queried ETR. To achieve this, every node

involved in the topology has to store some state about its

neighbors. The amount of state needed on each node is directly

related to the mapping system technology. For example, in an

horizontally organized system such as LISP-DHT, all nodes

have the same amount of state (32 entries). On the contrary,

the amount of state needed on a node in a hierarchical mapping

system depends on its position in the hierarchy.

LISP-TREE and LISP+ALT are both hierarchical topolo-

gies, and in this paper have been deployed according to the

same EID prefix distribution, and thus have the same amount

of state. The root nodes refer to all the disjoint /8 prefixes,

which amounts to a maximum of 256 entries when all are

allocated. The number of nodes that are referred to by level

2 nodes depends on how the prefixes are allocated. Fig. 9

shows the distribution of the state kept at each level 2 node

(both LISP-TREE and LISP+ALT). Finally, the leaves store a

small amount of entries, equal to the number of announced

prefixes.

Fig. 9 shows that 15% of the nodes have more than 1000

children and the most connected node has 6072 children. For

LISP-TREE this is not an issue, as the nodes only need to keep

a database that relates a prefix with the list of locators. It is

well known that currently deployed DNS servers scale to much

more than thousands of records [13]. However, in the case

of LISP+ALT, a BGP session has to be maintained for each

child, as well as a tunnel between the two nodes. The costs

in terms of configuration, memory, and processing are much
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higher than for LISP-TREE. A way to alleviate this would be

to increase the depth of the tree and thus reduce the number of

children of any one node. Unfortunately, this solution stretches

the path length within the tree and is likely to increase the

mapping lookup latency. Another solution could be to follow

an organic deployment, but in that case, the mapping system

would eventually have scalability issues because of the lack

of aggregability.

VI. RELATED WORK

On today’s Internet, the DNS [21] is the system which

is closest to a mapping system. Several researchers have

proposed to extend it to store identity-to-location bindings,

and provide mobility support in the Internet (e.g., [33], [34],

[35]). In this paper we extend the DNS to support the LISP

mapping system. We also propose to follow the same address

allocation policy as in today’s Internet. Further, by means of

measurement-driven simulations, we show its feasibily along

with performance and operational benefits.

Concerning the mapping systems, several architectures have

been proposed for LISP [8], [10], [11], [9], but to our

knowledge none of these systems have been evaluated in

detail. Iannone and Bonaventure have analysed in [14] the

mapping cache used by ITRs. Using trace-driven simulation,

they showed that the number of entries in this cache grows

with the TTL of the cache and that the mapping system should

provide mappings for EID prefixes and not individual EIDs.

CoreSim also models the mapping cache on the ITR, but

furthermore it models the entire mapping system and provides

detailed information about its performance in terms of delay

and load on mapping nodes. Other researchers [36], [37] have

analysed the utilisation of caches or similar techniques to

reduce the size of FIB tables on routers.

Luo et al. proposed in [38] another LISP mapping system

that relies on the CAN DHT. This mapping system provides

mappings for individual EIDs instead of EID prefixes as [8],

[10], [11], [9]. Using such flat EIDs is unlikely to scale. A

trace-driven evaluation of this mapping system is provided

in [38]. The evaluation mainly focuses on the size of the

mapping cache and the number of hops through the CAN

DHT. CoreSim models delays and is not dedicated to a single

mapping system.

VII. CONCLUSION

This paper proposes a new mapping system: LISP-TREE,

and a measurement-driven simulation of the main LISP map-

ping systems. LISP-TREE is based on the Domain Name

System and is built on a hierarchical topology. From an

operational point of view the main advantage of LISP-TREE

over LISP+ALT and LISP-DHT is that it enables clients to

cache information about intermediate nodes in the resolution

hierarchy, and direct communication with them. This avoids

resolution request traffic concentration at the root, and as a

result iterative LISP-TREE has much better scaling properties.

Further, LISP+ALT’s scalability also depends on enforcing an

intelligent organization that increases aggregation. Unfortu-

nately, the current BGP system shows that there is a risk of

an organic growth of LISP+ALT, one which does not achieve

aggregation. Neither of the LISP-TREE variants displays this

weakness, since their organization is inherently hierarchical

(and thus inherently aggregable).

Secondly, the hierarchical organization of LISP-TREE also

reduces the possibility for a configuration error which could

interfere with the operation of the network (unlike the situation

with the current BGP). Existing DNS security extensions can

also help produce a high degree of robustness, both against

misconfiguration, and deliberate attack. The direct communi-

cation with intermediate nodes in iterative LISP-TREE also

helps to quickly locate problems when they occur, resulting in

better operational characteristics.

And thirdly, in LISP+ALT and LISP-DHT, since mapping

requests must be transmitted through the overlay network, a

significant share of requests can see substantially increased la-

tencies. Our simulation results clearly show, and quantify, this

effect. Also, our simulations show that the nodes composing

the LISP+ALT and LISP-TREE networks can have thousands

of neighbors. This is not an issue for LISP-TREE, but may be

problematic for LISP+ALT nodes, since handling that number

of simultaneous BGP sessions could be difficult.
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