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Abstract

We give the first polynomial-time algorithm for robust regression in the list-
decodable setting where an adversary can corrupt a greater than 1/2 fraction
of examples.

For any α < 1, our algorithm takes as input a sample {(xi, yi)}i≤n of n linear
equations where αn of the equations satisfy yi = 〈xi, ℓ

∗〉+ ζ for some small noise
ζ and (1− α)n of the equations are arbitrarily chosen. It outputs a list L of size
O(1/α) - a fixed constant - that contains an ℓ that is close to ℓ∗.

Our algorithm succeeds whenever the inliers are chosen from a certifiably anti-
concentrated distribution D. As a corollary of our algorithmic result, we obtain a

(d/α)O(1/α8) time algorithm to find a O(1/α) size list when the inlier distribution
is standard Gaussian. For discrete product distributions that are anti-concentrated
only in regular directions, we give an algorithm that achieves similar guarantee
under the promise that ℓ∗ has all coordinates of the same magnitude. To comple-
ment our result, we prove that the anti-concentration assumption on the inliers is
information-theoretically necessary.

To solve the problem we introduce a new framework for list-decodable learning
that strengthens the “identifiability to algorithms” paradigm based on the sum-of-
squares method.

1 Introduction

In this work, we design algorithms for the problem of linear regression that are robust to training sets
with an overwhelming (≫ 1/2) fraction of adversarially chosen outliers.

Outlier-robust learning algorithms have been extensively studied (under the name robust statistics)
in mathematical statistics [43, 37, 25, 23]. However, the algorithms resulting from this line of work
usually run in time exponential in the dimension of the data [6]. An influential line of recent work
[29, 1, 16, 33, 8, 30, 31, 24, 14, 17, 28] has focused on designing efficient algorithms for outlier-robust
learning.

Our work extends this line of research. Our algorithms work in the “list-decodable learning” frame-
work. In this model, a majority of the training data (a 1− α fraction) can be adversarially corrupted
leaving only an α ≪ 1/2 fraction of “inliers”. Since uniquely recovering the underlying parameters
is information-theoretically impossible in such a setting, the goal is to output a list (with an absolute
constant size) of parameters, one of which matches the ground truth. This model was introduced
in [3] to give a discriminative framework for clustering. More recently, beginning with [8], various
works [18, 30] have considered this as a model of “untrusted” data.
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There has been phenomenal progress in developing techniques for outlier-robust learning with a
small (≪ 1/2)-fraction of outliers (e.g. outlier “filters” [13, 14, 10, 15], separation oracles for
inliers [13] or the sum-of-squares method [31, 24, 30, 28]). In contrast, progress on algorithms that
tolerate the significantly harsher conditions in the list-decodable setting has been slower. The only
prior works [8, 18, 30] in this direction designed list-decodable algorithms for mean estimation via
problem-specific methods. Recently [22] addressed the somewhat related problem of conditional
linear regression where the goal is to find a linear function with small square loss conditioned on a
subset of training points whose ‘indices’ satisfy some constant-width k-DNF formula.

In this paper, we develop a principled technique to give the first efficient list-decodable learning
algorithm for the fundamental problem of linear regression. Our algorithm takes a corrupted set
of linear equations with an α ≪ 1/2 fraction of inliers and outputs a O(1/α)-size list of linear
functions, one of which is guaranteed to be close to the ground truth (i.e., the linear function that
correctly labels the inliers). A key conceptual insight in this result is that list-decodable regression
information-theoretically requires the inlier-distribution to be “anti-concentrated”. Our algorithm
succeeds whenever the distribution satisfies a stronger “certifiable anti-concentration” condition that
is algorithmically “usable’. This class includes the standard gaussian distribution and more generally,
any spherically symmetric distribution with strictly sub-exponential tails.

Prior to our work1, the state-of-the-art outlier-robust algorithms for linear regression [28, 19, 12,
39] could handle only a small (< 0.1)-fraction of outliers even under strong assumptions on the
underlying distributions.

List-decodable regression generalizes the well-studied [11, 26, 21, 44, 2, 9, 45, 41, 34] and easier
problem of mixed linear regression: given k “clusters” of examples that are labeled by one out of k
distinct unknown linear functions, find the unknown set of linear functions. All known techniques
for the problem rely on faithfully estimating certain moment tensors from samples and thus, cannot
tolerate the overwhelming fraction of outliers in the list-decodable setting. On the other hand, since
we can take any cluster as inliers and treat rest as outliers, our algorithm immediately yields new
efficient algorithms for mixed linear regression. Unlike all prior works, our algorithms work without
any pairwise separation or bounded condition-number assumptions on the k linear functions.

List-Decodable Learning via the Sum-of-Squares Method Our algorithm relies on a strengthen-
ing of the robust-estimation framework based on the sum-of-squares (SoS) method. This paradigm
has been recently used for clustering mixture models [24, 30] and obtaining algorithms for moment
estimation [31] and linear regression [28] that are resilient to a small (≪ 1/2) fraction of outliers
under the mildest known assumptions on the underlying distributions. At the heart of this technique is
a reduction of outlier-robust algorithm design to just finding “simple” proofs of unique “identifiability”
of the unknown parameter of the original distribution from a corrupted sample. However, this princi-
pled method works only in the setting with a small (≪ 1/2) fraction of outliers. As a consequence,
the work of [30] for mean estimation in the list-decodable setting relied on “supplementing” the SoS
method with a somewhat ad hoc, problem-dependent technique.

As an important conceptual contribution, our work yields a framework for list-decodable learning
that recovers some of the simplicity of the general blueprint. Central to our framework is a general
method of rounding by votes for “pseudo-distributions” in the setting with ≫ 1/2 fraction outliers.
Our rounding builds on the work of [32] who developed such a method to give a simpler proof of the
list-decodable mean estimation result of [30]. In Section 2, we explain our ideas in detail.

The results in all the works above hold for any underlying distribution that has upper-bounded low-
degree moments and such bounds are “captured” within the SoS system. Such conditions are called as
“certified bounded moment” inequalities. An important contribution of this work is to formalize anti-
concentration inequalities within the SoS system and prove “certified anti-concentration” for natural
distribution families. Unlike bounded moment inequalities, there is no canonical encoding within
SoS for such statements. We choose an encoding that allow proving certified anti-concentration for a
distribution by showing the existence of a certain approximating polynomial. This allows showing
certified anti-concentration of natural distributions via a completely modular approach that relies on a
beautiful line of works that construct “weighted ” polynomial approximators [35].

1There’s a long line of work on robust regression algorithms (see for e.g. [7, 27]) that can tolerate corruptions
only in the labels. We are interested in algorithms robust against corruptions in both examples and labels.
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We believe that our framework for list-decodable estimation and our formulation of certified anti-
concentration condition will likely have further applications in outlier-robust learning.

1.1 Our Results

We first define our model for generating samples for list-decodable regression.

Model 1.1 (Robust Linear Regression). For 0 < α < 1 and ℓ∗ ∈ R
d with ‖ℓ∗‖2 ≤ 1, let LinD(α, ℓ∗)

denote the following probabilistic process to generate n noisy linear equations S = {〈xi, a〉 = yi |
1 ≤ i ≤ n} in variable a ∈ R

d with αn inliers I and (1− α)n outliers O:

1. Construct I by choosing αn i.i.d. samples xi ∼ D and set yi = 〈xi, ℓ
∗〉 + ζ for additive

noise ζ,

2. Construct O by choosing the remaining (1 − α)n equations arbitrarily and potentially
adversarially w.r.t the inliers I.

Note that α measures the “signal” (fraction of inliers) and can be ≪ 1/2. The bound on the norm of
ℓ∗ is without any loss of generality. For the sake of exposition, we will restrict to ζ = 0 for most of
this paper and discuss (see Remarks 1.6 and 4.4) how our algorithms can tolerate additive noise.

An η-approximate algorithm for list-decodable regression takes input a sample from LinD(α, ℓ∗) and
outputs a constant (depending only on α) size list L of linear functions such that there is some ℓ ∈ L
that is η-close to ℓ∗.

One of our key conceptual contributions is to identify the strong relationship between anti-
concentration inequalities and list-decodable regression. Anti-concentration inequalities are well-
studied [20, 42, 40] in probability theory and combinatorics. The simplest of these inequalities upper
bound the probability that a high-dimensional random variable has zero projections in any direction.

Definition 1.2 (Anti-Concentration). A R
d-valued zero-mean random variable Y has a δ-anti-

concentrated distribution if Pr[〈Y, v〉 = 0] < δ.

In Proposition 2.4, we provide a simple but conceptually illuminating proof that anti-concentration is
sufficient for list-decodable regression. In Theorem 6.1, we prove a sharp converse and show that
anti-concentration is information-theoretically necessary for even noiseless list-decodable regression.
This lower bound surprisingly holds for a natural distribution: uniform distribution on {0, 1}d and

more generally, uniform distribution on [q]d for q = {0, 1, 2 . . . , q}. And in fact, our lower bound
shows the impossibility of even the “easier” problem of mixed linear regression on this distribution.

Theorem 1.3 (See Proposition 2.4 and Theorem 6.1). There is a (inefficient) list-decodable regression
algorithm for LinD(α, ℓ∗) with list size O( 1

α ) whenever D is α-anti-concentrated. Further, there

exists a distribution D on R
d that is (α + ǫ)-anti-concentrated for every ǫ > 0 but there is no

algorithm for α
2 -approximate list-decodable regression for LinD(α, ℓ∗) that returns a list of size < d.

To handle additive noise of variance ζ2, we need a control of Pr[|〈x, v〉| ≤ ζ]. For our efficient
algorithms, in addition, we need a certified version of the anti-concentration condition. Informally,
this means that there is a “low-degree sum-of-squares proof” of anti-concentration of I. We give
precise definition and background in Section 3. For this section, we will use this phrase informally
and encourage the reader to think of it as a version of anti-concentration that the SoS method can
reason about.

Definition 1.4 (Certifiable Anti-Concentration). A random variable Y has a k-certifiably (C, δ)-anti-
concentrated distribution if there is a univariate polynomial p satisfying p(0) = 1 such that there is a
degree k sum-of-squares proof of the following two inequalities:

1. ∀v, 〈Y, v〉2 ≤ δ2E〈Y, v〉2 implies (p(〈Y, v〉)− 1)2 ≤ δ2.

2. ∀v, ‖v‖22 ≤ 1 implies Ep2(〈Y, v〉) ≤ Cδ.

Intuitively, certified anti-concentration asks for a certificate of the anti-concentration property of Y in
the “sum-of-squares” proof system (see Section 3 for precise definitions). SoS is a proof system that

Please note that sections 3-6 are in the supplementary material.
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reasons about polynomial inequalities. Since the “core indicator” 1(|〈x, v〉| ≤ δ) is not a polynomial,
we phrase the condition in terms of an approximating polynomial p. We are now ready to state our
main result.

Theorem 1.5 (List-Decodable Regression). For every α, η > 0 and a k-certifiably (C,α2η2/10C)-
anti-concentrated distribution D on R

d, there exists an algorithm that takes input a sample generated
according to LinD(α, ℓ∗) and outputs a list L of size O(1/α) such that there is an ℓ ∈ L satisfying
‖ℓ − ℓ∗‖2 < η with probability at least 0.99 over the draw of the sample. The algorithm needs a

sample of size n = (kd)O(k) and runs in time nO(k) = (kd)O(k2).

Remark 1.6 (Tolerating Additive Noise). For additive noise (not necessarily independent across
samples) of variance ζ2 in the inlier labels, our algorithm, in the same running time and sample

complexity, outputs a list of size O(1/α) that contains an ℓ satisfying ‖ℓ− ℓ∗‖2 ≤ ζ
α + η. Since we

normalize ℓ∗ to have unit norm, this guarantee is meaningful only when ζ ≪ α.

Remark 1.7 (Exponential Dependence on 1/α). List-decodable regression algorithms immediately
yield algorithms for mixed linear regression (MLR) without any assumptions on the components.
The state-of-the-art algorithms for MLR with gaussian components [34, 41] has an exponential
dependence on k = 1/α in the running time in the absence of strong pairwise separation or small
condition number of the components. Liang and Liu [34] (see Page 10 of their paper) use the
relationship to learning mixtures of k gaussians (with an exp(k) lower bound [38]) to note that
there may not exist any algorithms with polynomial dependence on 1/α for MLR and thus, also for
list-decodable regression.

Certifiably anti-concentrated distributions In Section 5, we show certifiable anti-concentration
of some well-studied families of distributions. This includes the standard gaussian distribution and
more generally any anti-concentrated spherically symmetric distribution with strictly sub-exponential
tails. We also show that simple operations such as scaling, applying well-conditioned linear transfor-
mations and sampling preserve certifiable anti-concentration. This yields:

Corollary 1.8 (List-Decodable Regression for Gaussian Inliers). For every α, η > 0 there’s
an algorithm for list-decodable regression for the model LinD(α, ℓ∗) with D = N (0,Σ) with

λmax(Σ)/λmin(Σ) = O(1) that needs n = (d/αη)
O
(

1
α4η4

)

samples and runs in time n
O
(

1
α4η4

)

=

(d/αη)
O
(

1
α8η8

)

.

We note that certifiably anti-concentrated distributions are more restrictive compared to the families of
distributions for which the most general robust estimation algorithms work [31, 30, 28]. To a certain
extent, this is inherent. The families of distributions considered in these prior works do not satisfy
anti-concentration in general. And as we discuss in more detail in Section 2, anti-concentration is
information-theoretically necessary (see Theorem 1.3) for list-decodable regression. This surprisingly
rules out families of distributions that might appear natural and “easy”, for example, the uniform
distribution on {0, 1}n.

We rescue this to an extent for the special case when ℓ∗ in the model Lin(α, ℓ∗) is a "Boolean
vector", i.e., has all coordinates of equal magnitude. Intuitively, this helps because while the the
uniform distribution on {0, 1}n (and more generally, any discrete product distribution) is badly
anti-concentrated in sparse directions, they are well anti-concentrated [20] in the directions that are
far from any sparse vectors.

As before, for obtaining efficient algorithms, we need to work with a certified version (see Defini-
tion 4.5) of such a restricted anti-concentration condition. As a specific Corollary (see Theorem 4.6
for a more general statement), this allows us to show:

Theorem 1.9 (List-Decodable Regression for Hypercube Inliers). For every α, η > 0 there’s an
η-approximate algorithm for list-decodable regression for the model LinD(α, ℓ∗) with D is uniform

on {0, 1}d that needs n = (d/αη)
O( 1

α4η4 )
samples and runs in time n

O( 1
α4η4 )

= (d/αη)
O( 1

α8η8 )
.

In Section 4.1, we obtain similar results for general product distributions. It is an important open
problem to prove certified anti-concentration for a broader family of distributions.

Please note that sections 3-6 are in the supplementary material.
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2 Overview of our Technique

In this section, we give a bird’s eye view of our approach and illustrate the important ideas in our
algorithm for list-decodable regression. Thus, given a sample S = {(xi, yi)}

n
i=1 from LinD(α, ℓ∗),

we must construct a constant-size list L of linear functions containing an ℓ close to ℓ∗.

Our algorithm is based on the sum-of-squares method. We build on the “identifiability to algorithms”
paradigm developed in several prior works [5, 4, 36, 31, 24, 30, 28] with some important conceptual
differences.

An inefficient algorithm Let’s start by designing an inefficient algorithm for the problem. This
may seem simple at the outset. But as we’ll see, solving this relaxed problem will rely on some
important conceptual ideas that will serve as a starting point for our efficient algorithm.

Without computational constraints, it is natural to just return the list L of all linear functions ℓ that
correctly labels all examples in some S ⊆ S of size αn. We call such an S, a large, soluble set. True
inliers I satisfy our search criteria so ℓ∗ ∈ L. However, it’s not hard to show (Proposition B.1 ) that
one can choose outliers so that the list so generated has size exp(d) (far from a fixed constant!).

A potential fix is to search instead for a coarse soluble partition of S, if it exists, into disjoint
S1, S2, . . . , Sk and linear functions ℓ1, ℓ2, . . . , ℓk so that every |Si| ≥ αn and ℓi correctly computes
the labels in Si. In this setting, our list is small (k ≤ 1/α). But it is easy to construct samples S for
which this fails because there are coarse soluble partitions of S where every ℓi is far from ℓ∗.

Anti-Concentration It turns out that any (even inefficient) algorithm for list-decodable regression
provably (see Theorem 6.1) requires that the distribution of inliers2 be sufficiently anti-concentrated:

Definition 2.1 (Anti-Concentration). A R
d-valued random variable Y with mean 0 is δ-anti-

concentrated3 if for all non-zero v, Pr[〈Y, v〉 = 0] < δ. A set T ⊆ R
d is δ-anti-concentrated

if the uniform distribution on T is δ-anti-concentrated.

As we discuss next, anti-concentration is also sufficient for list-decodable regression. Intuitively,
this is because anti-concentration of the inliers prevents the existence of a soluble set that intersects
significantly with I and yet can be labeled correctly by ℓ 6= ℓ∗. This is simple to prove in the special
case when S admits a coarse soluble partition.

Proposition 2.2. Suppose I is α-anti-concentrated. Suppose there exists a partition
S1, S2, . . . , Sk ⊆ S such that each |Si| ≥ αn and there exist ℓ1, ℓ2, . . . , ℓk such that yj = 〈ℓi, xj〉
for every j ∈ Si. Then, there is an i such that ℓi = ℓ∗.

Proof. Since k ≤ 1/α, there is a j such that |I ∩ Sj | ≥ α|I|. Then, 〈xi, ℓj〉 = 〈xi, ℓ
∗〉 for every

i ∈ I ∩ Sj . Thus, Pri∼I [〈xi, ℓj − ℓ∗〉 = 0] ≥ α. This contradicts anti-concentration of I unless
ℓj − ℓ∗ = 0.

The above proposition allows us to use any soluble partition as a certificate of correctness for the
associated list L. Two aspects of this certificate were crucial in the above argument: 1) largeness:
each Si is of size αn - so the generated list is small, and, 2) uniformity: every sample is used in
exactly one of the sets so I must intersect one of the Sis in at least α-fraction of the points.

Identifiability via anti-concentration For arbitrary S, a coarse soluble partition might not exist.
So we will generalize coarse soluble partitions to obtain certificates that exist for every sample S
and guarantee largeness and a relaxation of uniformity (formalized below). For this purpose, it is
convenient to view such certificates as distributions µ on ≥ αn size soluble subsets of S so any
collection C ⊆ 2S of αn size sets corresponds to the uniform distribution µ on C.

To precisely define uniformity, let Wi(µ) = ES∼µ[1(i ∈ S)] be the “frequency of i”, that is,
probability that the ith sample is chosen to be in a set drawn according to µ. Then, the uniform
distribution µ on any coarse soluble k-partition satisfies Wi =

1
k for every i. That is, all samples

Please note that sections 3-6 are in the supplementary material.
2As in the standard robust estimation setting, the outliers are arbitrary and potentially adversarially chosen.
3Definition 1.4 differs slightly to handle list-decodable regression with additive noise in the inliers.
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i ∈ S are uniformly used in such a µ. To generalize this idea, we define
∑

i Wi(µ)
2 as the distance

to uniformity of µ. Up to a shift, this is simply the variance in the frequencies of the points in S
used in draws from µ. Our generalization of a coarse soluble partition of S is any µ that minimizes
∑

i Wi(µ)
2, the distance to uniformity, and is thus maximally uniform among all distributions

supported on large soluble sets. Such a µ can be found by convex programming.

The following claim generalizes Proposition 2.2 to derive the same conclusion starting from any
maximally uniform distribution supported on large soluble sets.

Proposition 2.3. For a maximally uniform µ on αn size soluble subsets of S,
∑

i∈I ES∼µ[1 (i ∈ S)] ≥ α|I|.

The proof proceeds by contradiction (see Lemma 4.3). We show that if
∑

i∈I Wi(µ) ≤ α|I|, then we
can strictly reduce the distance to uniformity by taking a mixture of µ with the distribution that places
all its probability mass on I. This allow us to obtain an (inefficient) algorithm for list-decodable
regression establishing identifiability.

Proposition 2.4 (Identifiability for List-Decodable Regression). Let S be sample from Lin(α, ℓ∗)
such that I is δ-anti-concentrated for δ < α. Then, there’s an (inefficient) algorithm that finds a list
L of size 20

α−δ such that ℓ∗ ∈ L with probability at least 0.99.

Proof. Let µ be any maximally uniform distribution over αn size soluble subsets of S . For k = 20
α−δ ,

let S1, S2, . . . , Sk be independent samples from µ. Output the list L of k linear functions that
correctly compute the labels in each Si.

To see why ℓ∗ ∈ L, observe that E|Sj∩I| =
∑

i∈I E1(i ∈ Sj) ≥ α|I|. By averaging, Pr[|Sj∩I| ≥
α+δ
2 |I|] ≥ α−δ

2 . Thus, there’s a j ≤ k so that |Sj ∩ I| ≥ α+δ
2 |I| with probability at least

1 − (1 − α−δ
2 )

20
α−δ ≥ 0.99. We can now repeat the argument in the proof of Proposition 2.2 to

conclude that any linear function that correctly labels Sj must equal ℓ∗.

An efficient algorithm Our identifiability proof suggests the following simple algorithm: 1) find
any maximally uniform distribution µ on soluble subsets of size αn of S, 2) take O(1/α) samples
Si from µ and 3) return the list of linear functions that correctly label the equations in Sis. This is
inefficient because searching over distributions is NP-hard in general.

To make this into an efficient algorithm, we start by observing that soluble subsets S ⊆ S of size αn
can be described by the following set of quadratic equations where w stands for the indicator of S
and ℓ, the linear function that correctly labels the examples in S.

Aw,ℓ :



















∑n
i=1 wi = αn

∀i ∈ [n]. w2
i = wi

∀i ∈ [n]. wi · (yi − 〈xi, ℓ〉) = 0

‖ℓ‖2 ≤ 1



















(2.1)

Our efficient algorithm searches for a maximally uniform pseudo-distribution on w satisfying (2.1).
Degree k pseudo-distributions (see Section 3 for precise definitions) are generalization of distributions
that nevertheless “behave” just as distributions whenever we take (pseudo)-expectations (denoted

by Ẽ) of a class of degree k polynomials. And unlike distributions, degree k pseudo-distributions

satisfying4 polynomial constraints (such as (2.1)) can be computed in time nO(k).

For the sake of intuition, it might be helpful to (falsely) think of pseudo-distributions µ̃ as simply
distributions where we only get access to moments of degree ≤ k. Thus, we are allowed to compute

expectations of all degree ≤ k polynomials with respect to µ̃. Since Wi(µ̃) = Ẽµ̃ wi are just
first moments of µ̃, our notion of maximally uniform distributions extends naturally to pseudo-
distributions. This allows us to prove an analog of Proposition 2.3 for pseudo-distributions and gives
us an efficient replacement for Step 1.

Please note that sections 3-6 are in the supplementary material.
4See Fact 3.3 for a precise statement.

6



Proposition 2.5. For any maximally uniform µ̃ of degree ≥ 2,
∑

i∈I Ẽµ̃[wi] ≥ α|I| =

α
∑

i∈[n] Ẽµ̃[wi] .

For Step 2, however, we hit a wall: it’s not possible to obtain independent samples from µ̃ given only
low-degree moments.

Rounding by Votes To circumvent this hurdle, our algorithm departs from rounding strategies for
pseudo-distributions used in prior works and instead “rounds” each sample to a candidate linear
function. While a priori, this method produces n different candidates instead of one, we will be able
to extract a list of O( 1

α ) size that contains the true vector from them. This step will crucially rely on
anti-concentration properties of I.

Consider the vector vi =
Ẽµ̃[wiℓ]

Ẽµ̃[wi]
whenever Ẽµ̃[wi] 6= 0 (set vi to zero, otherwise). This is simply the

(scaled) average, according to µ̃, of all the linear functions ℓ that are used to label the sets S of size
αn in the support of µ̃ whenever i ∈ S. Further, vi depends only on the first two moments of µ̃.

We think of vis as “votes”cast by the ith sample for the unknown linear function. Let us focus
our attention on the votes vi of i ∈ I - the inliers. We will show that according to the distribution

proportional to Ẽ[w], the average ℓ2 distance of vi from ℓ∗ is at max η:

1
∑

i∈I Ẽ[wi]

∑

i∈I

Ẽ[wi]‖vi − ℓ∗‖2 < η . (⋆)

Before diving into (⋆), let’s see how it gives us our efficient list-decodable regression algorithm:

1. Find a pseudo-distribution µ̃ satisfying (2.1) that minimizes distance to uniformity
∑

i Ẽµ̃[wi]
2.

2. For O( 1
α ) times, independently choose a random index i ∈ [n] with probability proportional

to Ẽµ̃[wi] and return the list of corresponding vis.

Step 1 above is a convex program - it minimizes a norm subject on the convex set of pseudo-
distributions - and can be solved in polynomial time. Let’s analyze step 2 to see why the algorithm
works. Using (⋆) and Markov’s inequality, conditioned on i ∈ I, ‖vi − ℓ∗‖2 ≤ 2η with probability

≥ 1/2. By Proposition 2.5,
∑

i∈I
Ẽ[wi]

∑

i∈[n] Ẽ[wi]
≥ α so i ∈ I with probability at least α. Thus in each

iteration of step 2, with probability at least α/2, we choose an i such that vi is 2η-close to ℓ∗.
Repeating O(1/α) times gives us the 0.99 chance of success.

(⋆) via anti-concentration As in the information-theoretic argument, (⋆) relies on the anti-
concentration of I. Let’s do a quick proof for the case when µ̃ is an actual distribution µ.

Proof of (⋆) for actual distributions µ. Observe that µ is a distribution over (w, ℓ) satisfying (2.1).

Recall that w indicates a subset S ⊆ S of size αn and wi = 1 iff i ∈ S. And ℓ ∈ R
d satisfies all the

equations in S.

By Cauchy-Schwarz,
∑

i ‖Eµ[wiℓ]−Eµ[wi]ℓ
∗‖ ≤ Eµ[

∑

i∈I wi‖ℓ−ℓ∗‖]. Next, as in Proposition 2.2,

since I is η-anti-concentrated, and for all S such that |I ∩ S| ≥ η|I|, ℓ− ℓ∗ = 0. Thus, any such S
in the support of µ contributes 0 to the expectation above. We will now show that the contribution
from the remaining terms is upper bounded by η. Observe that since ‖ℓ− ℓ∗‖ ≤ 2,
Eµ[

∑

i∈I wi‖ℓ− ℓ∗‖] = Eµ[1 (|S ∩ I| < η|I|)wi‖ℓ− ℓ∗‖] = Eµ[
∑

i∈S∩I ‖ℓ− ℓ∗‖] ≤ 2η|I|.

SoSizing Anti-Concentration The key to proving (⋆) for pseudo-distributions is a sum-of-squares
(SoS) proof of anti-concentration inequality: Prx∼I [〈x, v〉 = 0] ≤ η in variable v. SoS is a restricted
system for proving polynomial inequalities subject to polynomial inequality constraints. Thus, to
even ask for a SoS proof we must phrase anti-concentration as a polynomial inequality.

Please note that sections 3-6 are in the supplementary material.
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To do this, let p(z) be a low-degree polynomial approximator for the function 1 (z = 0). Then, we
can hope to “replace” the use of the inequality Prx∼I [〈x, v〉 = 0] ≤ η ≡ Ex∼I [1(〈x, v〉 = 0)] ≤ η
in the argument above by Ex∼I [p(〈x, v〉)

2] ≤ η. Since polynomials grow unboundedly for large
enough inputs, it is necessary for the uniform distribution on I to have sufficiently light-tails to
ensure that Ex∼Ip(〈x, v〉)

2 is small. In Lemma A.1, we show that anti-concentration and strictly
sub-exponential tails are sufficient to construct such a polynomial.

We can finally ask for a SoS proof for Ex∼Ip(〈x, v〉) ≤ η in variable v. We prove such certified
anti-concentration inequalities for broad families of inlier distributions in Section 5.
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