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Abstract

We give efficient (polynomial-time) list-decoding algorithms for certain families of error-
correcting codes obtained by “concatenation”. Specifically, we give list-decoding algorithms for
codes where the “outer code” is a Reed-Solomon or Algebraic-geometric code and the “inner
code” is a Hadamard code. Codes obtained by such concatenation are the best known construc-
tions of error-correcting codes with very large minimum distance. Our decoding algorithms
enhance their nice combinatorial properties with algorithmic ones, by decoding these codes up
to the currently known bound on their list-decoding “capacity”. In particular, the number of
errors that we can correct matches (exactly) the number of errors for which it is known that the
list size is bounded by a polynomial in the length of the codewords.

1 Introduction

The list decoding problem for an error-correcting code consists of reconstructing a list of all code-
words within a specified Hamming distance from a received word. List decoding, which was in-
troduced independently by Elias and Wozencraft [6, 33], offers a potential for recovery from errors
beyond the traditional “error-correction radius” (i.e. half the minimum distance) of a code.

Though the notion of list decoding is more than 40 years old, until recently no efficient list
decoding algorithms were known for any (non-trivial) family of codes that could correct asymptoti-
cally more errors than the traditional error-correction radius. The first such list decoding algorithm
was given by Sudan [27] for Reed-Solomon codes, and this algorithm was later improved and also
generalized to the case of algebraic-geometric codes [26, 14]. Reed-Solomon codes suffer from the
drawback of large alphabet size, and though AG-codes can be constructed over small alphabets,
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their list-decodability is limited by their rate vs. distance trade-off, which in turn is limited by
certain lower bounds on the genus of function fields.

In this paper we consider list decoding algorithms for certain families of concatenated codes
that have very large minimum distance. We are motivated mainly by the quest for linear codes
over a small alphabet with very high list-decoding capabilities, i.e. one can efficiently recover a
small list of possible codewords when a very large fraction of the symbols are either erased or are
in error. We consider a number of errors or erasures which is information-theoretically the best one
can hope to recover from, and are interested in codes of good rate that can be list decoded up to
so many errors. Specifically, over the finite field GF(q) (also denoted as Fq), we consider problems
which are of the following form. Suppose one needs to transmit k symbols (over Fq) and one wishes
to recover from a fraction (1−1/q−γ) of errors (this is essentially the best one can hope to recover
from, as a random string agrees with any given codeword in 1/q fraction of the places). We want
to encode the k bits into n symbols over GF(q) and then transmit the encoded string so that this
can be achieved, and our goal is to keep the value of n as small as possible so that the redundancy
in the encoding is small (or, equivalently, the rate of the code is high). Note that we also allow
the parameter γ = γ(n) to be a o(1) function which depends on n, and one can present our results
as constructing a family of codes Cn such that a fraction (1− 1/q − γn) of errors can be corrected
in Cn. In addition to their obvious relevance to coding theory, such codes also have surprising and
elegant applications to certain areas of computer science, some of which are discussed in an earlier
version of this paper [15].

We are also interested in the corresponding question in presence of only erasures, and also in
the presence of both errors and erasures. For instance, we can ask the same question above when
all but γn of the transmitted symbols are erased, and similarly when e errors and s erasures occur
which satisfy q

q−1e+ s ≤ (1− γ)n.
Constructions of codes with this kind of performance typically achieve n = poly(k/γ); we are

interested in the explicit specification of this polynomial. We also show special interest in the case
when the dependence of n is linear in k, so that the resulting code is asymptotically good. We
remark here that all (currently known) codes that can be list decoded efficiently from a fraction
(1 − 1/q − γ) of errors and that have blocklength n = poly(k/γ), are based on the powerful idea
of “code concatenation” introduced by Forney [8]. For example, the maximum fraction of errors
for which algebraic-geometric codes over Fq can be decoded using current techniques is (about)
(1 − q−1/4), and we do not know how to efficiently decode AG-codes from a fraction of errors
approaching (1 − 1/q). Code families with minimum distance approaching (1 − 1/q − ε) can in
principle be list decoded to a radius of (about) (1− 1/q−O(

√
ε)), and constructions of such codes

are known without relying on concatenation [4], but no efficient list decoding algorithm is known
for these codes.
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1.1 Previous Work

Let us first consider the case of erasures. It is shown in [19] that a Reed-Solomon code concatenated
with a Hadamard code together with the outer (list) decoder for Reed-Solomon codes of [27, 14]
implies that a blocklength n = Ω(k2/γ4) suffices to tolerate up to (1 − γ) fraction of erasures1.
We will prove a stronger result in this paper using a much simpler approach. We do this by
showing that any q-ary code of relative distance (1 − 1/q)(1 − δ) can be list decoded from a
fraction (1− δ) of erasures. Reed-Solomon concatenated with Hadamard code achieves a distance
of (1 − 1/q) · (1 − k/

√
n), and this gives n = O(k2/δ2). For the case of asymptotically good

codes, one can achieve a blocklength of n = O(k/δ3) by concatenating a low-rate outer Reed-
Solomon code with an inner code obtained by brute force search for the “best” inner code [9].
This construction is sometimes not “explicit enough”, as the construction complexity is not a
fixed polynomial independent of δ. The first explicit asymptotically good construction of very
large minimum distance was given by Weldon [32] following the work of Justesen [17], and related
constructions appear in the [29, 30]. One can also use algebraic-geometric codes as outer codes in
a concatenation scheme to give explicit construction of codes with n = O(k/δ3), but these codes
inherit the high construction complexity of algebraic-geometric codes. The best code construction
of reasonable complexity that has relative distance (1 − 1/q)(1 − δ) is due to [3], and this also
achieves n = O(k/δ3).

For the case of errors, Zyablov and Pinsker [34] (see also [7]) show that binary linear codes of
rate Ω(γ2) exists that have a small number of codewords in any Hamming ball of radius (1/2− γ),
and thus can, in principle, be list decoded up to this radius. This result, specifically the bound on
the number of codewords, was recently improved in [13]. However, these results are existential in
nature and it is completely unclear how to construct these codes in polynomial time, let alone how
to efficiently list decode such a code. (A recent result [13] shows how to get some constructive results
along this direction together with efficient list decoding algorithms; see Section 1.3 on subsequent
work below for more details.)

Codes with large minimum distance are known to have a large list decoding radius, but no simple
connection between the distance of the code and its efficient list decodability exists. Constructions
are therefore much harder to come by if one also requires an efficient list decoding algorithm. It is
known that a concatenated code with an outer Reed-Solomon code and an inner Hadamard code
with blocklength n = poly(k/γ) can be efficiently list decoded up to a fraction (1 − 1/q − γ) of
errors [28] (this is also implicit in [19]), but even for this code the dependence of n on γ was not
optimized. The situation is worse for asymptotically good codes. In Justesen’s original paper [17],
he also gives an algorithm to decode his code construction up to half the minimum distance. Note
that unambiguous decoding (as opposed to list decoding) implies that we cannot hope to recover
from more than 1

2(1−1/q) fraction of errors as any q-ary code (with exponentially many codewords)
has distance less than (1 − 1/q). Moreover, the original binary codes due to Justesen [17] have

1The reader unfamiliar with the definitions of Reed-Solomon codes, Hadamard codes or concatenation, can find a

brief description in Section 2.
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a distance only about 0.11, implying decoding up to about 0.055 fraction of errors. It turns out,
however, that the binary code construction of Weldon [32] has distance 1/2−ε, and can be decoded
up to half the minimum distance using similar ideas. This implies decoding up to a fraction 1/4−γ
of errors for the binary case, and a similar result can be shown for the q-ary case. Beyond this error
radius, one needs the power of list decoding, and no list decoders to handle such high noise seem
to be known for asymptotically good codes. We are able to give two constructions, one resorting
to algebraic-geometric codes, and the other a simpler one by concatenating a Reed-Solomon code
with any asymptotically good inner code with good distance properties. Moreover, our decoding
algorithms can handle both errors and erasures.

1.2 Our Results

[Recovering from erasures:] We show that, using a Reed-Solomon code concatenated with the
Hadamard code, we can reconstruct, in polynomial time, a list of all candidate codewords when
only a fraction γ > 0 of the transmitted symbols are received, provided the blocklength of the code
is n ≥ (k/γ)2. Our result implies, in the terminology of [10, 19], an explicit construction of a binary
code, for any ε > 0, with exponentially (2N

β
for some β > 0) many codewords such that given

any N1/2+ε of the N bits of the codeword, the list of codewords consistent with these bits can be
efficiently recovered.

[Recovering from errors and erasures:] We first establish a combinatorial result proving an upper
bound on the list size possible when decoding from a certain number of errors and erasures. Our
result is analogous to the Johnson bound (see also [12]), and reduces to the one in [12] in presence
of only errors. This places limits on the radius to which one can (currently) hope to list decode
in polynomial time, and restricts qe/(q − 1) + s, where e, s are the number of errors and erasures
respectively, to be at most some quantity that is a function of the minimum distance of the code.
We then give polynomial time list decoding algorithms for certain concatenated codes to recover
from e errors and s erasures provided qe/(q − 1) + s ≤ (1 − γ)n, and express the blocklength n

required to achieve this as a function of k and γ. The specific results we obtain are the following:

(a) A decoding algorithm for Reed-Solomon concatenated with Hadamard code whose blocklength
is n = O(k2/γ4). Our decoding algorithm is novel and uses “soft information” that is passed by
the inner decoder in order to decode the outer Reed-Solomon code. Underlying this procedure is
a powerful weighted polynomial reconstruction algorithm due to [14]. The linear programming
based bounds for codes to provide evidence that this (quartic) dependence of n on γ is probably
the best possible, as long as one uses current minimum-distance based arguments to bound the
list size of candidate codewords by a polynomial.

(b) For asymptotically good codes, we give an algorithm for list decoding algebraic-geometric codes
concatenated with Hadamard code, and the required blocklength is n = O(k/(γ6 log 1/γ)).

(c) The code from (b) above relies on algebraic-geometric codes which have a high construction
complexity, and moreover the decoding algorithm has to assume complicated subroutines over
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function fields. Therefore, we also give a polynomial time decoding algorithm for the alternative
simpler code obtained by concatenating a Reed-Solomon code with any inner code with large
enough minimum distance. This code is constructible in polynomial time and satisfies the
required error-erasure correction property with a blocklength n = O(k/γ8).

One fact of interest is that for the cases (a) and (b) above, the radius to which we are able to
list decode in polynomial time matches (exactly) the bound on the radius for which it is known
that the list size is bounded by a polynomial in the blocklength.

1.3 Recent Related Work

Independently of our work, Nielsen [24] also gave decoding algorithms for concatenated schemes
based on Reed-Solomon codes as outer codes, again using the weighted polynomial reconstruction
algorithm from [14] for decoding the outer code. His algorithms perform well for inner codes with
a small (constant) minimum distance, where as our results focus on inner codes with very large
minimum distance (since our motivation is primarily to correct from very high noise in the low-rate
regime).

Koetter and Vardy [20] use the polynomial reconstruction algorithm of [14] to design soft-
decision decoding algorithms for Reed-Solomon codes that appear to be superior to Forney’s GMD
algorithm [9]. Their techniques can also be used to decode concatenated schemes with an outer
Reed-Solomon (or algebraic-geometric) code, though they do not provide a quantitative (theo-
retical) analysis of the performance of their algorithm for concatenated codes. They do report
experiments demonstrating extraordinary coding gains using an outer Reed-Solomon code and an
inner convolutional code of appropriate parameters. They employ the BCJR [5] forward-backward
algorithm to decode the inner convolutional code and pass reliability information to the outer Reed-
Solomon decoder, after which the outer decoding proceeds along the lines of our approach in this
paper.

The concatenated codes we consider in this paper have the best known blocklength (up to
constant factors) for codes with a given rate and minimum distance, and our results are therefore
qualitatively significant in that no constructions of codes with better information-theoretic list
decoding capabilities were known prior to our work. In subsequent work, Guruswami, H̊astad,
Sudan and Zuckerman [13] improve our bounds and give constructions of binary codes of blocklength
O(k/γ4) that can be efficiently list decoded from a fraction (1

2 − γ) of errors.

1.4 Organization

In Section 2 we describe the codes we shall use and the high level idea behind our decoding
algorithms. Section 3 proves an upper bound on the list size when decoding q-ary codes from both
errors and erasures. Our code constructions and decoding algorithms for erasures as well for the
errors and erasures case are described in detail in Section 5.
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2 Basic Outline

We start by identifying some standard parameters of codes. A linear error-correcting code C
over a q-ary alphabet of block length n is a linear subspace of GF(q)n. Its dimension, typically
denoted by k, is the information content of the code. The minimum distance of the code, denoted
usually by d, is the minimum Hamming distance between any two distinct members of the code.
A code with these parameters is referred to as an [n, k, d]q code. It is also convenient to normalize

these quantities by dividing them by the blocklength. We use the rate (def= k/n) and the relative
(minimum) distance (def= d/n) to denote the normalized quantities.

Some of the standard constructions of codes we deal with are described below.

• (Generalized) Reed Solomon Codes: These are obtained by viewing the message as specifying
a k−1-dimensional polynomial; and evaluating it at n distinct points of GF(q). It needs n ≤ q,
and often we will use n = q. The minimum distance of this code is n− k + 1.

• Hadamard Codes: These are obtained by viewing the message as the coefficients of a homoge-
neous degree 1 polynomial in k variables, and evaluating it at all inputs: Thus it gives a code
of block length qk with minimum distance qk − qk−1.

• Algebraic-geometric codes: We will not be able to describe the codes here; however we can
describe their parameters. They are constructible for any q that is an even power of a prime,
and can achieve a distance of at least n− k + 1− n/(√q − 1).

• Concatenated codes [9]: These are codes obtained by combining an “outer” code over a qk-ary
alphabet with an ”inner” code of dimension k over a q-ary alphabet. The combined codeword
corresponding to a given message is obtained by first encoding the message using the outer
code, and then encoding each symbol of the resulting string by the inner code. The resulting
code has block length that is a product of the two block lengths and distance that is the product
of the two distances.

All codes for which we give efficient list decoding algorithms from high noise are based on the
idea of code concatenation. The outer codes we use will be algebraic codes like Reed-Solomon or
Algebraic-geometric codes. The specific concatenated codes we give decoding algorithms for are:

(a) Reed-Solomon code concatenated with Hadamard code

(b) Reed-Solomon code concatenated with any q-ary inner code which has relative distance very
close to (1− 1/q)

(c) Algebraic-geometric code concatenated with Hadamard code

These codes are by no means new to our paper and have been often considered in the past. The
Reed-Solomon code concatenated with a Hadamard code, in particular, has been a popular code
and has been considered for instance in [1, 4, 19, 28]. The novel aspect of our work is in the (list)
decoding algorithms we give to decode these codes in the presence of a very large number of errors
and erasures. Our decoding algorithms for these concatenated codes begin by a decoding of the
inner code which can be accomplished by brute-force since the total number of inner codewords
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is of polynomial complexity. Information from the inner decoding is then passed onto the outer
decoder which then completes the decoding. The information passed from the inner decoder can
be of several kinds: one possibility could be to just pass the most likely inner codeword for each of
the outer codeword positions. This typically is too weak as the inner decoder is forced to make a
single hard decision on its codeword which may lead the outer decoder astray. Our inner decoding
algorithms work in one of the following two ways:

1. Returns a (small) list of possible codewords; this list is typically the list of all codewords within a
certain distance of the inner received word. Thus for each codeword position, the outer decoder
is given a list of possibilities for the corresponding symbol, and it needs to list decode from
this information. This is possible for Reed-Solomon and algebraic-geometric codes [27, 14].
One important aspect that is required for the outer decoder to work is that the total number
of candidates passed by the inner decoder is not too large. In order to ensure this, we need
combinatorial bounds on the maximum number of possible codewords with a certain number
of errors and erasures from a received word. Such a bound, which is of independent interest,
is stated and proved in the next section.

2. Returns weights for each possible inner codeword; the weight corresponding to an inner code-
word is a measure of the confidence which the inner decoder has in the fact that it was that
codeword which was actually transmitted. (This is similar to the approach behind Forney’s
GMD decoding algorithm [9], except that in GMD decoding, only one candidate codeword
is passed by the inner decoder for each position, together with an associated confidence pa-
rameter. Thus our approach gives the decoding process more flexibility as it allows the inner
decoder to pass more “soft information” to the outer decoder.) It is reasonable that the weight
a certain inner codeword receives under the inner decoding should be somehow related to and
decrease with its distance from the actual inner word that was received. The outer decoder
then uses this “reliability/confidence information” in its decoding. An algorithm that can use
such reliability information was given for Reed-Solomon codes by the authors in [14]; a similar
algorithm actually exists for algebraic-geometric codes as well. These algorithms are detailed
in Appendix B.

3 A bound on list size in presence of errors and erasures

The aim of this section is to state and prove an upper bound on the number of codewords possible
when list decoding from e errors and s erasures provided e, s satisfy some condition with respect
to the distance d of the code. This bound will place limits on the number of errors and erasures
for which one is guaranteed a polynomial list size, and can therefore hope for efficient list decoding
algorithms. The bound will also be important to one of our decoding algorithms (specifically the
one which decodes a Reed-Solomon code concatenated with any inner code, see Theorem 9), where
we need an upper bound on the number of inner codewords that can exist with a certain number
of errors and erasures. The result below generalizes a similar bound in [12] and specializes to that
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bound for the errors only case, although our proof is different and simpler. In very recent work [16],
this result has been improved and its proof further simplified, but we include a full proof here for
the sake of completeness.

Theorem 1 For a q-ary code of blocklength n and distance d = (1 − 1/q)(1 − δ)n, and for any
received word with s = σn erasures, the number of codewords differing from the received word in at
most e places, where qe/(q − 1) + s = (1− γ)n, is at most (1−σ)(1−δ)

γ2−(1−σ)δ
, provided γ >

√
(1− σ)δ.

Proof: Let y ∈ Fn−sq be a received word with s erasures, say the last s = σn positions are erasures.
Also assume without loss of generality that y is the symbol q repeated (n − s) times (we let the
field elements to be in one-one correspondence with the integers 1, 2, . . . , q). Let C1, C2, . . . , Cm be
all the codewords which differ from y in at most e places, where qe/(q − 1) + s = (1 − γ)n. Our
goal is to get an upper bound on m provided γ is large enough.

We associate with the received word y and each codeword Ci an nq-dimensional real vector.
The vector is to be viewed as having n blocks each having q components (the n blocks correspond to
the n codeword positions). For 1 ≤ l ≤ q, denote by êl the q-dimensional unit vector with 1 in the
lth position and 0 elsewhere. For 1 ≤ i ≤ m, the vector ~vi associated with the codeword Ci has in
its jth block the components of the vector êCi[j] (Ci[j] is the jth symbol of Ci, treated as an integer
between 1 and q). The vector ~r associated with the received word y is defined similarly for the first
(n− s) blocks, and the last s blocks of ~r (which correspond to the erased positions) will have 1/q
in every position. (The intuition behind this is the following: the vector (1/q, 1/q, . . . , 1/q) ∈ Rq is
the centroid of the q points corresponding to the q field elements, and hence associating this vector
with a position amounts to saying that we have absolutely no idea about the value at this position,
or in other words this position was erased.)

The key quantity we will estimate now is the sum

S =
∑

1≤j,k≤m
〈(~vj − ~r), ( ~vk − ~r)〉.

Let us first give a lower bound on S. The dot product above can be written as the sum of the
dot products over the n blocks. We ignore the contribution from the s erased positions (which is
clearly non-negative); for blocks p, 1 ≤ p ≤ (n − s), let Np denote the number of vectors ~vj − ~r
which are non-zero, and let Npβ, for 1 ≤ β ≤ (q− 1), denote the number of those vectors which are
of the form 0β−110q−β−1(−1); clearly

∑
β Npβ = Np. The contribution to S from the q columns in

block p is

N2
p +

q−1∑
β=1

N2
pβ ≥

( q

q − 1

)
N2
p .

Now,
∑n−s

p=1 Np =
∑m

j=1 ej = mē where ej is the number of places Cj differs from y, and ē is the
average number of errors over the codewords C1, C2, . . . , Cm. Hence

∑
pN

2
p ≥ (mē)2/(n− s), and

thus we get

S ≥ q

q − 1

(m2ē2

n− s

)
. (1)
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Now for the upper bound on S. Let us consider a fixed pair of vectors (~vj − ~r) and (~vk − ~r). If
j = k, then one easily computes

〈(~vj − ~r), (~vj − ~r)〉 = 2ej +
(q − 1)
q

· s. (2)

When j 6= k, if djk is the distance between the codewords Cj , Ck (note djk ≥ d), one can show that

〈(~vj − ~r), ( ~vk − ~r)〉 = 〈~vj , ~vk〉+ 〈~r, ~r〉 − 〈~vj , ~r〉 − 〈 ~vk, ~r〉

=
(

1− 1
q

)
s+ ej + ek − djk

≤ q − 1
q

s+ ej + ek − d. (3)

From Equations (2) and (3), we get

S ≤ 2m2ē+
q − 1
q

m2s−m(m− 1)d (4)

¿From (1) and (4), we get

m ≤ d
(

q

q − 1
ē2

n− s
− 2ē− q − 1

q
s+ d

)−1

. (5)

Using ē ≤ e, and that the function in the parentheses above decreases in the range (0, e), we can
get an upper bound on m as long as( q

q − 1

) e2

n− s
− 2e− q − 1

q
s+ d > 0

⇐⇒
(
n− s− q

q − 1
e
)2

> (n− s)2 + (n− s)s− d(n− s)
( q

q − 1

)
⇐⇒ (γn)2 > (n− s)(n− q

q − 1
d)

⇐⇒ γ2 > (1− σ)δ .

(The last step follows since d = (1 − 1/q)(1 − δ)n and s = σn.) Hence if γ >
√

(1− σ)δ, we get,
using Equation (5), that

m ≤ (1− σ)(1− δ)
γ2 − (1− σ)δ

. 2

4 Distance properties of some concatenated codes

From Theorem 1, it is clear that in order to list decode from a large amount of noise, we would
like the underlying code to have large minimum distance, so that we will, to begin with, at least
have the combinatorial guarantee that size of the list to be output is small. We now quantify the
distance properties of the main concatenated codes we will use; namely we express the blocklength
n of the code in terms of the dimension k and the distance parameter δ = 1− qd/(q − 1).
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Proposition 2 For every k, δ > 0, there is an explicitly specified q-ary linear code, denoted
CRS−Had(k, δ), that is obtained by concatenating a Reed-Solomon code with a Hadamard code,
and that has dimension k, blocklength n = O( k2

δ2 log2(1/δ)
) and minimum distance at least d =

(1− 1/q)(1− δ)n.2

Proof: Let the code CRS−Had(k, δ) be obtained by concatenating a Reed-Solomon code of dimen-
sion k/m over GF(qm) with the Hadamard code associated with GF(qm). The dimension of the
concatenated code is clearly k, and its blocklength is n def= (qm)2. The relative minimum distance
of the code is (1− 1/q)(1− k/m−1

qm ), and thus n = O(( k
δ log 1/δ )2) as desired. 2

The above construction has good (in fact the best possible) dependence of the blocklength on δ, but
is, however, not asymptotically good (i.e n is not linear in k). We next describe two asymptotically
good constructions.

Proposition 3 For every k, δ > 0, there exists an explicitly specified q-ary code, denoted CAG−Had(k, δ),
with the following properties:

(i) CAG−Had(k, δ) has dimension k, blocklength n = O( k
δ3 log 1/δ

) and minimum distance at least
d = (1− 1/q)(1− δ)n.

(ii) It is obtained by concatenating an (appropriate) algebraic-geometric code with a Hadamard
code.

Proof: Let the code CAG−Had(k, δ) be obtained by concatenating an algebraic-geometric code over
GF(qm) of dimension k/m and blocklength n0, with the Hadamard code that encodes an element
of GF(qm) by qm symbols over GF(q). The distance of the outer code is n0−k/m−g+1 where g is
the genus of the underlying function field; we will use function fields with g = n0/(qm/2 − 1) (such
constructions are given, for instance, in [31, 22, 11]). The dimension of the concatenated code is
clearly k and the blocklength is n def= n0q

m. The relative minimum distance of the code is at least
(1− 1/q)(1− k/m−1

n0
− 1/(qm/2 − 1)), and this gives n = O( k

δ3 log 1/δ
). 2

Proposition 4 For every k, δ, ρ > 0 and prime power q, there is a linear code over GF(q), denoted
CRS−GoodInner(k, δ, ρ), with the following properties:

(i) CRS−GoodInner(k, δ, ρ) has dimension k, blocklength n = O( k
δρ2

) and minimum distance at least
d = (1− 1

q )(1− δ)(1− ρ)n.

(ii) It is obtained by concatenating an outer Reed-Solomon code of rate δ with any q-ary inner
code of appropriate dimension that has relative distance at least (1− 1

q )(1− ρ).

2Here and elsewhere by a bound like n = O(ka/δb) we mean the following: there exists a constant c such that

for every k and every δ > 0, there is a distance (1− 1/q)(1− δ) q-ary code of dimension k and blocklength at most

cka/δb.
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Moreover such a code can be constructed in time polynomial in n.3

Proof: We use the same construction as in Proposition 2 except we use, instead of the Hadamard
code, an [n1,m, d1]q inner code where d1 ≥ (1 − 1/q)(1 − ρ)n1 with m = Ω(ρ2n1) (such a code
exists by the Gilbert-Varshamov bound and can be found in 2O(n1) = poly(n) time by searching
in the Wozencraft’s ensemble of randomly shifted codes [32]). The blocklength is n = n1q

m =
O(n1 · k/mδ ) = O( k

δρ2
). 2

Remark: The above codes have, up to constant factors, the smallest blocklength possible for a
given value of rate and relative minimum distance. In addition they have this concatenated structure
with a nice algebraic outer code, and hence we will be able to design list decoding algorithms for
these that can handle a large amount of noise. In particular, for the codes CRS−Had and CAG−Had we
will be able to decode up to exactly the radius specified in the combinatorial bound of Theorem 1.

5 Performance of the Decoding algorithms

This section formally describes our code constructions and decoding algorithms and quantifies their
error-erasure correction performance.

5.1 Erasure Codes

The following simple but useful fact also follows from Theorem 1, but we include an easier proof
below.

Lemma 1 If C is a q-ary code of blocklength n and minimum distance d, then for any received
word with at most q

q−1d erasures, the list of possible codewords consistent with the received word is

of size at most q2

q−1d.

Proof: Let y be a received word with s ≤ qd/(q − 1) erasures. Suppose C1, C2, . . . , CM are the
distinct codewords of C consistent with y, i.e they agree with y in all the non-erased positions. By
the distance property of C, these codewords must differ from each other in at least d places in the
s erased positions. Projecting the codewords C1, C2, . . . , CM to the erased positions, we get a code
of blocklength s ≤ qd/(q − 1) with distance d. By a standard coding theory bound, any such code
can have at most qs codewords, implying M ≤ q2

q−1d. 2

Corollary 1 Any q-ary code of relative minimum distance (1 − 1/q)(1 − γ) can be efficiently list
decoded from erasures as long as the fraction of erasures is at most (1− γ).

Proof: By Lemma 1, we know that for any received word with less than a fraction (1−γ) of erasures,
the list of possible codewords is of polynomial (in fact linear) size. Now to recover from erasures, a

3Actually we can even explicitly specify such a code by using a different code from the Wozencraft’s ensemble of

codes for the various outer codeword positions (see, for instance, [17, 32]).
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small list size implies efficient decodability, since recovering from erasures only involves finding all
possible solutions to a linear system of equations, and if the number of solutions is guaranteed to
be polynomial in number, then they can certainly be found and output in polynomial time. 2

Hence one way to construct codes that handle a large number of erasures is to construct codes with
very large minimum distance.

Theorem 5 For any finite field Fq and for any integer k and γ > 0, there exists an explicitly
specified code which encodes k symbols over Fq into n symbols over Fq where n = O(k/γ3), such
that the list of possible codewords can be recovered in polynomial time when up to a fraction (1− γ)
of the symbols in the received word are erased.4

Proof: By Corollary 1, we only need to construct a code with dimension k, blocklength n and
minimum distance (1 − 1

q )(1 − γ)n. As shown by Alon et. al. [3], such a code can be constructed
in polynomial in n time (with the exponent being independent of γ) provided n = Ω(k/γ3). We
could have similarly used the code CAG−Had(k, γ) from Proposition 3. 2

While the construction of the previous theorem has linear dependence of n on k (and hence
the code family is asymptotically good), we would also like constructions with better dependence
on γ. The Gilbert-Varshamov bound shows the existence of codes with n = O(k/γ2) (in fact
a random code with such a value of n has the required property), but we know of no explicit
way of constructing such codes. We now present an explicit construction with better than a
γ−3 dependence at the expense of worse dependence of n on k (hence this construction is not
asymptotically good).

Theorem 6 For any prime power q, and any k, γ, the statement of Theorem 5 holds with n =
O(k2/γ2 log2(1/γ)).

Proof: By Proposition 2 and Corollary 1, it follows that the code CRS−Had(k, γ) has this property. 2

The quadratic dependence of n on γ is unavoidable using just the “distance based” approach
of Corollary 1. This is because the McEliece-Rodemich-Rumsey-Welch upper bound [23] on the
rate of codes implies that a q-ary code relative minimum distance (1− 1/q)(1− δ) can have rate at
most O(δ2 log(1/δ)). In fact, Alon [2] has pointed out that an explicit construction of erasure codes
which beat the quadratic dependence of n on γ is probably difficult as it would imply improvements
on the bipartite Ramsey problem; specifically it would give an explicit construction of an N × N
matrix over GF(2) with no monochromatic p× p submatrix for p much smaller than N1/2, and it
is currently not known how to achieve this.

4Both the construction of the code and the list decoding can be performed in time which strongly polynomial in

both n and 1/γ.
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5.2 Decoding from errors and erasures

Theorem 7 For an [n, k, d]q code CRS−Had(k, δ) with d ≥ (1− 1/q)(1− δ)n, there is a polynomial
time list decoding algorithm for e errors and s = σn erasures as long as

qe

q − 1
+ s ≤ n(1−

√
(1− σ)δ)−O(1) .

Corollary 2 For any finite field Fq and for any integer k and γ > 0, there exists an explicitly
specified linear code over Fq of dimension k and blocklength n where n = O(k2/γ4), such that for
any received word y with s erasures, the list of all codewords differing from y in at most e places
can be found in polynomial time, provided q/(q − 1)e+ s ≤ (1− γ)n.

Proof: Follows from Proposition 2 and Theorem 7. 2

Proof of Theorem 7: Before we begin proving the theorem note that this matches the combina-
torial bound for list decoding proved in Theorem 1.

Recall that CRS−Had(k, δ) is constructed by concatenating an outer [n′ = qm, k/m, n′−k/m+1]qm
Reed-Solomon code with the Hadamard code associated with GF(qm), and it has blocklength
n = n′2 and distance d = (1 − 1/q)(1 − δ) with δ = k/m−1

n′ . Now let y be a received word with
s = σn erasures in all, we would like to obtain a list of all codewords in CRS−Had(k, δ) that differ
from y in at most e places. For 1 ≤ i ≤ n′, denote by yi the portion of y in block i of the codeword
(i.e the portion corresponding to the encoding of the ith symbol of the outer code), and let si be
the number of erasures in yi (where

∑n′

i=1 si = s). The n′ codewords of the inner Hadamard code
are in one-to-one correspondence with the n′ elements α1, α2, . . . , αn′ of the field GF(qm) (which
are viewed as m-tuples over GF(q)). For 1 ≤ i, j ≤ n′, let eij be the number of positions where yi
differs from αj , and define the weight wij as:

wij
def= (1− si

n′
− q

q − 1
· eij
n′

).

One key property of these weights, proved in Corollary 5 in Appendix A is that, for each i,∑
j

w2
ij ≤ (1− si

n′
). (6)

These weights will be the “soft information” passed to the outer decoder for Reed-Solomon
codes. In order to exploit this information, we will use as outer decoder, a weighted polynomial
reconstruction algorithm presented in [14] (see also Proposition 12 of Appendix B). More precisely,
the decoder is given weights wij on pairs (αi, αj) of field elements, and the algorithm can find,
in poly(n′, 1/ε) time, a list of all outer codewords RS(p), which correspond to degree (k/m − 1)
polynomials p over GF(qm), that satisfy

n′∑
i=1

wi,p̃(i) >

√
(k/m− 1)

∑
1≤i,j≤n′

w2
ij + εmax

ij
wij

13



where p̃ : [n′]→ [n′] is defined by p̃(i) = j iff p(αi) = αj .
For our definition of weights, using Equation (6), the decoding algorithm can thus retrieve all

codewords corresponding to polynomials p for which

n′∑
i=1

(1− si
n′
− q

q − 1
·
ei,p̃(i)

n′
) >

√√√√(k/m− 1)
n′∑
i=1

(1− si
n′

) + ε,

or, equivalently, one can find all codewords at a distance e from the received word y provided

n′ − s

n′
− qe

(q − 1)n′
>

√
(
k

m
− 1)(n′ − s

n′
) + ε or

qe

q − 1
+ s < n

(
1−

√
k/m− 1

n′
(1− s

n
)− ε√

n

)
⇐=

q

q − 1
e+ s ≤ n

(
1−

√
(1− σ)δ

)
−O(1)

provided we pick ε ≤ 1/
√
n. 2

Remark: The (quartic) dependence of n on γ in Corollary 2 seems to be the best one can currently
hope for. Current combinatorial bounds guarantee a small list size as long as γ in Corollary 2 is of
the order of

√
δ where (1− 1/q)(1− δ) is the relative minimum distance of the code. Beyond this

radius it is unknown if the number of codewords can always be bound by a polynomial. By the
McEliece-Rodemich-Rumsey-Welch upper bound [23], for codes with such high minimum distance,
we must have k/n = O(γ4 log(1/γ)). This is shown in [23] only for the case of fixed constant
γ > 0, but the proof can be extended to a more general case, by studying the asymptotic behavior
of the smallest roots of Krawtchouk polynomials [4, 25]. Thus when γ = n−1/4, we must have
k = O(log n), and this shows that the γ−4 dependence of n matches the performance possible given
the best known combinatorial bounds on list decodability.

The dependence of the blocklength on the dimension in the construction CRS−Had is quadratic,
and hence the above code family is not asymptotically good. We next provide a list decoding
algorithm for CAG−Had that matches the bound of Theorem 1, and then also give a good list
decoding algorithm for the simpler construction CRS−GoodInner. These results will prove that one
can indeed construct asymptotically good codes which can correct from such large fractions of
errors and erasures as we are interested in, with only a moderate worsening of the dependence of
n on γ.

Theorem 8 For an [n, k, d] code CAG−Had(k, δ) over GF(q) with d ≥ (1− 1/q)(1− δ)n, there is a
polynomial time list decoding algorithm for e errors and s = σn erasures as long as

qe

q − 1
+ s ≤ n(1−

√
(1− σ)δ)−O(1) .
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Corollary 3 For any finite field Fq and for any integer k and γ > 0, there exists an explicitly
specified linear code over Fq of dimension k and blocklength n where n = O( k

γ6·log(1/γ)
), such that

for any received word y with s erasures, the list of all codewords differing from y in at most e places
can be found in polynomial time, provided q/(q − 1)e+ s ≤ (1− γ)n.

Proof of Theorem 8 (Sketch): Recall that CAG−Had(k, δ) is constructed by concatenating an
outer [n0, k/m, d0]qm algebraic-geometric code with the Hadamard code associated with GF(qm),
and it has blocklength n = n0q

m, dimension k and minimum distance at least d = (1− 1/q)(1− δ)
where δ = 1− d0/n0.

The decoding algorithm is exactly similar to the one in Theorem 7 except that instead of a
weighted polynomial reconstruction routine, one uses a weighted version of the decoding algorithm
of [14] for algebraic-geometric codes (stated formally in Appendix B). Using exactly the same
definition of weights as earlier and arguing as in Theorem 7, we conclude that, for any ε > 0, we
can find all codewords at a distance e from a received word y with s erasures provided

n0 −
s

qm
− q

q − 1
· e
qm

>

√
(n0 − d0)(n0 −

s

qm
) + ε

⇐=
q

q − 1
e+ s ≤ n(1−

√
(1− σ)δ)−O(1)

provided we choose ε ≤ 1/qm. 2

Caveat: When we claim polynomial time decodability in the above theorem, this is valid only
under some assumptions about the function field underlying the algebraic-geometric code which
we use as the outer code (say the Garcia-Stichtenoth codes of [11]). We next present a decoding
algorithm for the simpler construction of CRS−GoodInner(k, δ, ρ) from Proposition 4.

Theorem 9 For an [n, k, d]q code CRS−GoodInner(k, δ, ρ), where d ≥ (1 − 1/q)(1 − δ)(1 − ρ)n, for
every ε > 0, one can list decode in poly(n, 1/ε) time from e errors and s = σn erasures as long as

qe

q − 1
+ s ≤ n

(
1−

√
(1 + ε)ρ−

√
δ(1− σ)

ερ

)
.

Proof: Recall that CRS−GoodInner(k, δ, ρ) with the specified parameters is obtained by concatenating
an outer [n0, k/m, d0]qm Reed-Solomon code where n0 = qm and d0 = n0 − k/m + 1 = (1 − δ)n0,
with any inner code over GF(q) that has blocklength n1, dimension m and minimum distance at
least (1− 1/q)(1− ρ)n1.

The decoding algorithm will work as follows. The received word y (which has s = σn erasures)
can be divided into n0 blocks yi corresponding to the n0 outer codeword positions. For 1 ≤ i ≤ n0,
let si denote the number of erasures in yi, with

∑
i si = s. For each block i, the inner decoder,

by going over all inner codewords (since there are qm = n0 inner codewords, we can do this in
polynomial time), outputs a list Li of all (inner) codewords that differ from yi in at most ei places
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where ei is defined so that qei/(q − 1) + si = (1− ζ)n1 for some ζ >
√
ρ; by Theorem 1 the size `i

of each Li is at most (1− si/n1)(1− ρ)/(ζ2 − ρ).
The inner decoder thus passes to the outer decoder a list of at most L =

∑n0
i=1 `i ≤

(1−σ)(1−ρ)n0

(ζ2−ρ)
points {(xi, zij) : 1 ≤ i ≤ n0, 1 ≤ j ≤ `i} (here x1, x2, . . . , xn0 are the elements of the field GF(qm)
and zij ∈ GF(qm)). Using the decoding algorithm in [14], we can find all outer codewords, i.e
polynomials p ∈ GF(qm)[X] of degree less than k/m, such that p(xi) ∈ {zij : 1 ≤ j ≤ `i} for more

than t
def=
√

(k/m− 1)L values of i.
If this algorithm fails to output a codeword corresponding to a polynomial p when receiving y,

there must be at least (n0 − t) blocks i of y for which p(xi) does not belong to the list Li output
by the inner decoder. This implies that the number ei of positions where the encoding of p(xi) (by
the inner code) differs from yi satisfies qei/(q − 1) + si > (1 − ζ)n1. Hence the algorithm fails to
output a codeword which differs from y at e places (recall y has s erasures) only if

q

q − 1
· e+ s > (n0 − t)(1− ζ)n1

=
(
n0 −

√
(k/m− 1)L

)
(1− ζ)n1.

Thus we can decode from e errors and s erasures provided

q

q − 1
· e+ s ≤

(
1−

√
(k/m− 1)

n0

L

n0

)
(1− ζ)n0n1

⇐ q

q − 1
· e+ s ≤

(
1−

√
δ(1− σ)

(1− ρ)
(ζ2 − ρ)

)
(1− ζ)n.

Setting ζ =
√

(1 + ε)ρ, we see that the above condition is met if

qe

q − 1
+ s ≤ n

(
1−

√
(1 + ε)ρ−

√
δ(1− σ)

ερ

)
. 2

Corollary 4 [Simpler Construction than that of Corollary 3]: For any finite field Fq and for any
integer k and γ > 0, the statement of Corollary 3 holds with n = O(k/γ8), and the code is actually
a Reed-Solomon code concatenated with any inner code with large enough distance.

Proof: Follows from Theorem 9 and Proposition 4 with the following choice of parameters: δ =
O(γ4), ρ =

√
δ, ε = 1. 2
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A Fourier Transforms over a q-ary alphabet

Proposition 10 Let f : Fmq → Fq be an arbitrary function, and for every α ∈ Fmq , let the linear
function lα : Fmq → Fq be defined by: lα(x) =

∑m
i=1 αixi (all operations performed over Fq). Then

∑
α∈Fmq

(
1− q

q − 1
Dist(f, lα)

)2
≤ 1.
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Remark: For the case q = 2, (1−2Dist(f, lα)) equals the Fourier coefficient f̂α of f with respect to
lα, and the statement of the Proposition holds with equality, and is simply the standard Parseval’s
identity

∑
α f̂

2
α = 1. The result for the non-binary case appears in [18], and the proof there is

based on the MacWilliams-Sloane identities for the weight distribution of dual codes; we give a
more elementary proof below.

Proof: The proof works by viewing any f : Fmq → Fq as a qm-tuple over Fq, and embedding it as
a qm · q-dimensional real unit vector. The vectors associated with lα and lβ will be orthogonal (in
the usual dot product over Rqm·q) whenever α 6= β. The quantity (1 − q

q−1Dist(f, g)) for any two
functions f, g will simply be the dot product of the vectors associated with f, g. The result will then
follow since the sum of the squares of the projections of a unit vector along pairwise orthogonal
vectors can be at most 1.

Suppose the q elements of Fq are x1, x2, . . . , xq. Associate a q-dimensional vector ei with xi

as follows (eij denotes the jth component of ei): eii =
√

(q − 1)/q and eij = −1/
√
q(q − 1) for

j 6= i. Note that this definition satisfies 〈ei, ei〉 = 1 and 〈ei, ej〉 = −1
q−1 for i 6= j. Treating a function

f : Fmq → Fq as a string over Fq, we view f as the qm · q-dimensional vector obtained in the obvious
way by juxtaposing the q-dimensional vectors for each of the qm values which f takes on its domain,
and then normalizing it to a unit vector. Note that when we take the inner product 〈f, g〉, we get a
contribution of 1 corresponding to the positions where f, g agree, and a contribution of −1/(q− 1)
corresponding to places where f, g differ. Hence 〈f, g〉 = (1−Dist(f, g)) ·1+Dist(f, g) ·−1/(q−1) =
1 − q

q−1Dist(f, g). Hence 〈lα, lα〉 = 1. For α 6= β, Dist(lα, lβ) = (q − 1)/q (two distinct codewords
in the Hadamard code corresponding to Fmq agree is exactly qm−1 places and differ in qm−1(q − 1)
places), and thus 〈lα, lβ〉 = 0 when α 6= β. The result now follows since∑

α∈Fmq

(
1− q

q − 1
Dist(f, lα)

)2
=
∑
α

〈f, lα〉2 ≤ 〈f, f〉 = 1.2

Corollary 5 Suppose f : Fmq → Fq is a string of qm symbols over Fq except that a fraction s

of them are erased. Let eα be the fraction of positions (among the non-erased positions) where f
differs from lα. Then ∑

α∈Fmq

(1− s− q

q − 1
· eα)2 ≤ (1− s).

Proof: As in the proof of Proposition 10, view f as a qm · q-dimensional vector over the reals,
except that now the vector has zeroes at the q coordinates corresponding to every erased position.
Now ∑

α

(1− s− q

q − 1
eα)2 =

∑
α

〈f, lα〉2 ≤ 〈f, f〉 = (1− s). 2
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B List decoding Reed-Solomon and Algebraic-geometric codes with

weights

In this section we present a version of the weighted polynomial reconstruction algorithm due to
[14]. The algorithm as presented in [14] handled integer weights and ran in time polynomial in the
sum of the weights. Here we note that with an ε degradation in performance, the algorithm can be
implemented to run in poly(n, 1/ε) time, even when the weights are arbitrary rational numbers.

Let us first formally define the weighted polynomial reconstruction problem.

(Weighted polynomial reconstruction)
Input: n distinct points {(x1, y1), . . . , (xn, yn)} in F × F , F a field, together with n non-negative

weights w1, . . . , wn, and parameters k and t. (Assume w1 ≤ w2 ≤ · · · ≤ wn.)

Output: All polynomials p of degree less than k such that∑
i:p(xi)=yi

wi ≥ t.

Important Note: The xi’s above need not be distinct.

Theorem 11 ([14]) If the weights are non-negative integers the weighted polynomial reconstruc-

tion problem can be solved in time polynomial in the sum of wi’s provided t >
√

(k − 1)
∑n

i=1w
2
i .

Proposition 12 For any tolerance parameter ε > 0, the weighted polynomial reconstruction prob-
lem can solved in polynomial (in n and 1/ε) time provided

t >

√√√√(k − 1)
n∑
i=1

w2
i + εwn.

Proof: Pick any large integer L ≥ n
ε , and form the integer weights w′i = bLwi/wnc. Since wi ≤ wn

for all i, the weights w′i are all at most L, and now the algorithm of [14] can used to in find, in
poly(nL) time, a list of all polynomials p of degree less than k, provided

∑
i:p(xi)=yi

w′i >

√√√√(k − 1)
n∑
i=1

w′2i .

But since Lwi/wn ≥ w′i ≥ Lwi/wn − 1, this implies we find in poly(nL) = poly(n, 1/ε) time all
polynomials p of degree less than k, provided

∑
i:p(xi)=yi

(Lwi
wn
− 1
)

>

√√√√(k − 1)
n∑
i=1

(
Lwi
wn

)2

⇐=
∑

i:p(xi)=yi

wi >

√√√√(k − 1)
n∑
i=1

w2
i +

nwn
L
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⇐=
∑

i:p(xi)=yi

wi >

√√√√(k − 1)
n∑
i=1

w2
i + εwn

(the last step follows since L ≥ n/ε). 2

As already remarked in the introduction, the weighted polynomial reconstruction routine from
[14] is also at the heart of the soft-decision Reed-Solomon decoding algorithm reported recently by
Koetter and Vardy [20]. Nielsen [24] has also used it in decoding concatenated schemes with an
outer Reed-Solomon code up to half the (designed) minimum distance (and for some specific inner
codes even beyond half the designed distance).

Weighted list decoding of Algebraic-geometric codes: Though it is not explicitly stated in
[14], their techniques also imply a decoding algorithm for algebraic-geometric codes with weights on
the codewords positions. Let x0, x1, . . . , xn be n+1 distinct rational points in an algebraic function
field over Fq. Then an algebraic-geometric code has codewords corresponding to the evaluations
of “functions” f which have at most α poles at x0 (α is a parameter of the code) and no poles
elsewhere (this space of functions is denoted by Lα,x0), at the rational points x1, x2, . . . , xn. The
results of [14], together with the trick of Proposition 12 above, imply the following.

Proposition 13 Let C be an algebraic-geometric code of blocklength n defined over Fq with rational
points {x0, x1, . . . , xn} and the space Lα,x0 of functions; the designed distance d of C is (n−α). Sup-
pose we are given N pairs (pi, yi), 1 ≤ i ≤ N with associated weights wi, where pi ∈ {x1, x2, . . . , xn}
and yi ∈ Fq. Then, for any ε > 0, a list of all f ∈ Lα,x0 such that

∑
i:f(pi)=yi

wi >

√√√√(n− d)
N∑
i=1

w2
i + εmax

i
wi

can be found in poly(N, 1/ε) time provided certain assumptions about the algebraic function field
underlying C hold (see [14] for details on these assumptions). 2
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