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LIST DECODING FOR NOISY CHANNELS

Peter Elias
Department of Electrical Engineering and Researcn Laboratory -of Electronics

Massachusetts Institute of Technology, Cambridge, Massachusetts

Summary. Shannon's fundamental coding

theorem for noisy channels states that such a

channel has a capacity C, and that for any trans-

mission rate R less than C it is possible for the

receiver to use a received sequence of n symbols

to select one of the 2nR possible transmitted

sequences, with an error probability Pe which can

be made arbitrarily small by increasing n, keeping

R and C fixed. Recently upper and lower bounds

have been found for the best obtainable Pe as a

function of C,R and n. This paper investigates

this relationship for a modified decoding pro-

cedure, in which the receiver lists L messages,

rather than one, after reception. In this case

for given C and R, it is possible to choose L

large enough so that the ratio of upper and lower

bounds to the error probability is arbitrarily

near to 1 for all large n. This implies that for

large L, the average of all codes is almost as

good as the best code, and in fact that almost

all codes are almost as good as the best code.

Introduction

The binary symmetric channel (abbreviated

BSC) is illustrated in Fig. 1. It accepts two

input symbols, 0 and 1, and produces the same two

symbols as outputs. There is probability p that

an input symbol will be altered in transmission,

from 0 to 1 or from 1' to 0, and probability

This work was supported in part by the Army
(Signal Corps), the Air Force (Office of Scien-
tific Research, Air Research and Development
Command), and the Navy (Office of Naval Research).

q = 1-p that it will be received correctly.

Successive transmitted digits are treated by the

channel with statistical independence.

The capacity C of this channel is given by

C = 1 H(p) bits/symbol (1)

where

H(p) = -p log p - q log q (2)

is the entropy of the p,q probability distribution.

C is plotted in Fig. 1 as a function of p. Note

that if p ? q, the output symbols can be rein-

terpreted, an output 1 being read as a 0 and vice

versa, so that only values of p C q will be

considered. (The logarithms in Eq. 2 and through-

out the paper are taken to the base 2.)

C can be given two interpretations. First,

if 0's and l's are transmitted with equal proba-

bility and statistical independence, then one bit

per symbol is supplied at the input, and an

average of H(p) bits per symbol of equivocation

remains in the output. Second, by the fundamental

coding theorem for noisy channels, if the input

information rate is reduced from 1 bit per symbol

to any rate R < C bits per symbol, it is possible

for the receiver to reconstruct the transmitted

sequence of input symbols with as low an rror

probability,as is desired, at the cost of a& delay

of n symbols between transmission and decoding,

where n must be increased to reduce the error

probability.

In block coding, the input information rate

is reduced by using only a restricted number,
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M = 2R, of the 2n possible sequences of length n.

This gives an average rate of (l/n)log M - R bits

per symbol; the sequences being used with equal

probability. The receiver then lists the single

transmitter sequence which is most probable, on

the evidence of the received sequence of n noisy

symbols. It is sometimes wrong, with a probability

which depends on the particular set of sequences

which have been selected for transmission. We

define Popt a function of n, R and C, as the

minimum average probability of error for a block

code: i.e. as the average error probabilityforthe

code whose transmitter sequences have been chosen

most udiciously, the average being taken over the

different transmitter sequences.

Unfortunately we do not know the optimum

codes for large values of n: for small n, a

number are known (see Slepian (3,4)). However it

is possible to define a lower bound to Popto

which we denote by Pt. which is a fairly simple

function of the code and channel parameters. It

is also possible to define Pa , the average error

probability of all possible codes, which is an

upper bound to Popt' The behavior of Popt is

discussed in some detail in references (1,2). As

the transmission rate approaches the channel

capacity, Pav approaches Pt. so that the error

probability Popt is well defined. For somewhat

lower rates the two bounds differ, but for fixed

R and C their ratio is bounded above and below by

constants as n increases. Since each is decreas-

ing exponentially with n, at least the exponent of

Popt is well-defined. For still lower rates, how-

ever, Pav and Pt decrease with different exponents

as n increases with C and R fixed. In this region

therefore even the exponent of Popt is not known,

although it is bounded. Finally, for very low

rates, it can be shown that the' exponent of Popt

is definitely different from that for either P
av

or Pt'.

As can be seen-from this brief description,

the behavior of Popt is complicated, and not well-

defined, even for the channel which has been

studied most intensively. The present paper

discusses a somewhat more complicated transmission

procedure for use with the BSC, which has the

advantage that the description of its error prob-

ability behavior is much simpler. Our procedure -

block coding with list decoding - leaves a little

equivocation in the received message. Instead of

a unique selection of one message out of M, the

receiver provides a list of L messages, L < M.

As soon as a little residual equivocation is per-

mitted, it turns out that P has the same exponentav

as Pt' and thus as Popt' for all transmission rates

and not just those which are near capacity. This

is essentially Theorem 1. It also turns out that

as L increases, Pa actually approaches Pt. so

that Popt itself, and not just its exponent,

becomes well-defined. This is the content of

Theorem 2. As a result of this simplification,

the cause of detection errors in a system using

list detection can be interpreted simply: mistakes

are made when, in a particular block of n symbols,

the channel gets too noisy. In the case of

ordinary block coding, on the other hand, errors

also occur because of unavoidable weak spots in

the code, which causes the complication in the

description of Popt for such codes.
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Operation

The operation of a block code with list

decoding is illustrated in Fig. 2. There are M

equiprobable messages, represented by the integers

from 1 to M, and the source selects one, say the

integer m = 2. This is coded into a sequence

um = U2 of n binary digits, 011 in the example,

for which n = 3. The sequence u is transmittedm

over the noisy BSC. The channel alters some of

the digits: its effect is to add a noise sequence

wr, in this case the sequence 010, to the trans-

mitted sequence um to produce the received noisy

sequence, 2 = 001. (The addition is modulo 2,

digit by digit: 1+1 = 0+0 = 0, 1+0 = 0+1 = 1.)

The received sequence is decoded into a list of

L messages - L = 3 in the Figure. If the list

includes the message which the source selected,

the system has operated correctly and no error has

occurred. If not there has been an error. Since

2 is on the list 1,2,3, the transmission illustrated

was successful.

The behavior of the system is determined by

the choice of u I,...u m .... ,uM, the transmitter

sequences. An encoding codebook, illustrated for

the example-in Fig. 3, assigns M = 4 such se-

quences each of length n = 3, to the four messages

m = 1,2,3,4. The 2 = 8 possible noise sequences

of length n are ranked, by an index r, so that the

sequence with no l's, w = 000, comes first, a

sequence with k l's precedes one with k+l l's, and

sequences with the same number of l's are ranked

by their size as binary numbers. In the example

the noise sequence w3 = 010 is added to the trans-

mitted sequence to produce the received sequence

v2 : the 2n possible received sequences vl...,v2n

being ranked in the same manner as the noise

sequences. The received sequence is decoded by

means of a decoding codebook, as illustrated in

Fig. 3, which provides a list of L = 3 messages

for each received sequence.

The decoding codebook is constructed by list-

ing, after each received sequence, the L messages

whose transmitter sequences are converted into the

given received sequence by noise sequences of the

lowest possible rank. Because of the equal prob-

ability of the transmitter sequences and the

statistical independence of transmitter sequence

and noise sequence in the BSC, the L messages

which are most probable on the evidence of the

received sequence are those which are converted

into the received sequence by the L most probable

noise sequences. These are just the ones which

will be listed in the .codebook, except that the

ranking of the noise sequences will provide an

unambiguous decision when several noise sequences

have the same probability. This follows because

the probability Prob[wr] of a noise sequence wr

with k l's is just

Prob[wr pkqn-k qn (p/q)k (3)

which is monotone decreasing in k for p < q,

while rank is monotone increasing with k.

The behavior of the system under all possible

circumstances is illustrated in the table of

possible events in Fig. 3. The message sequence

U2 and the noise sequence w3 determine a row and a

column in the table. The received sequence v2 =001

which is their digit-by-digit sum modulo two is

entered at the intersection. The decoding code-

book shaws that v2 will be decoded as the list

1,2,3 which includes the message m = 2 which was
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actually transmitted. This entry in the table is

therefore circled, as an event which the system

will handle without error, and so are all such

events. The probability of error for the system

is then just the sum of the probabilities of the

uncircled events, which are all of the entries in

the last two columns.

Rate of Transmission

The average amount of information received

over this kind of system when no error has been

made depends on the probabilities of the different

messages on the decoded list. To make it constant,

we assume that the messages on the list are

shuffled in order before being given to the sink,

so that they are equiprobable to him. Then the

rate is

R = log M - log L
n bits/symbol, (4)

and to transmit at rate R requires that

M = L.2nR (5)

messages be transmitted. In the example of Figs.2

and 3, we have M = 4, L = 3, n = 3, and R = (1/3)

log (4/3) - 0.14 bits/symbol.

Note that the largest M which can be used

effectively is M = 2n, since there are only that

many distinct sequences. Thus L = 2 n(
1- R) is as

large a list as would be of any interest. This

would correspond to transmitting uncoded infor-

mation-i.e., all possible sequences.

Error Probability: Lower Bound

In any row of the table in Fig. 3, all 2n

possible received sequences appear, since each of

the 2 n noise sequences produces a distinct received

sequence when added to the given transmitter

sequence. Therefore the number of circled entries

in row m is equal to the total number of times

that the integer m appears in all of the 2n lists

of L messages in the decoding codebook. Thus a

total of L 2n entries are circled, out of the

total of M-2n entries in the table, or an average

of 2 n(l
- R) circles per message.

Clearly the minimum probability of error

would be obtained if all of the circles were as

far to the left as possible in the table. This is

true for the code in Fig. 3, but will not be possi-

ble for other values of M, L and n. However it

provides a lower bound to error probability in any

case. We define Pt as the error probability for a

code (perhaps unrealizeable) with such a table.

Let r be the last column in which any circled

entries appear:

rlM 2 L2 n > (rl-)M, or

(6)
r1 > 2n(1-R)> 1

Then Pt is bounded:

2
n

r=rI

Prob[Wr] > Pt 

2
n

Prob[wr] (7)

r=rl+l

The quantity Pt is characteristic of the

channel, and of its use at rate R in blocks of

N symbols, but is independent of the code used.

The channel parameters p,q enter in evaluating

Prob[wr]

ProbEwr] = pk(r)qn-k(r) (8)

where k(r) is determined by means of the binomial

coefficients () = n!/j!(n-j) ,
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k(r)

,; (in

k(r)-l

j =0
(/)

Using Eq. 8, and introducing k1 as an

abbreviation for k(r1) defined through Eq.

have the following bounds for Pt:

giving equal weights to each.

(9) Pay can be expressed as a sum over r of the

probability of occurrence of the rth noise sequence

wr, times the ensemble average conditional prob-

(9), we ability QL(r) of making a decoding erro when the

noise sequence wr occurs:

n

kk (l+l n-k

1rr~

(10)

(11)

The first of these is needed for Theorem 2.

The second, which is simpler to evaluate, suffices

for Theorem 1.

Error Probability: Upper Bound

An upper bound to the best attainable average

error probability is obtained by Shannon's pro-

cedure of random coding - i.e. by computing the

average error probability for all possible codes.

This turns out to be much easier than computing

the error probability for any one particular code.

Since a code is uniquely determined by its set

ul,...,uM of transmitter sequences, there are as

many codes possible, for rate R, list size L and

length n, as there are selections of M = L.2n R

objects out of 2n possibilities, repetitions

permitted, or

2 nM 2nL* 2n R

in all. We define P as the average error
av

probability, averaged over all transmitter

sequences in any one code and over all codes,

av r(12)

Now we can bound P above and below. Since
av

it is an average of quantities all of which are

greater than Pt. Pt is a lower bound. Since QL(r)

is a conditional probability and thus less than

one, it can be bounded above by one for a portion

of the range of summation. Thus, using Eq. 10,

2n

rl+ l

r,

pk(r) n-k(r)((r )

k(r) n-k(r) (13)

pk(r)n-k(r)%(r) +

More crudely, we define Q (k):

q(k(r)) = ( (n) ) Q(r) ,
j =0

(14)

by Eq. 9 and the fact that QL(r) is monotone

increasing in r (See Eq. 16, below). Then

k0
k=O

(15)

Finally, an explicit expression can be given

for Q(r). Given that the rth noise sequence has

occurred in a transmission, the probability of a
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decoding error is just the probability that L or

more of the other M-1 transmitter sequences differ

from the received sequence by error sequences of

rank r . This is the probability of L successes

in M-1 statistically independent tries, when the

average probability of success is r/2n, for in the

ensemble Gff codes the different transmitter se-

quences are si.seically independent. Thus QL(r)

is a binomial sum:

QL(r) = L(Ml ) (r/2 n) (1-r/2n) . (16)
3JL

The Parameter pi . Theorem 1 .

It would be desirable to express the error

probability directly as a function of rate, capaci-

ty, block size n and list size L. However it

turns out to be more convenient for Theorem 1 to

use, instead of rate, the parameter p = kl/n,

where k = k(rl) is defined by Eq.9. Fixing P1

and n determines the rate R through Eq. 6. For

large n the relation is simple: if we define the

rate R1 by the equation

R1 = 1 - H(pl1) (17)

as illustrated in Fig. lb, then for fixed Pi,

R approaches R1 from above as n increases. This

is shown in references (1,2).

We can now state

Theorem 1

Given a BSC with error probability p, and

given any P1, with o p (p1< i, and any

L > Lo(p,p), the ratio of PaV to Pt for list

decoding with list size L is bounded, independent

of n:

1 Pav/Pt = A(pp 1,L) (18)

The value of L needed for the theorem is
0

log(q/p)
L = - 1 .

0 log(ql/pl) (19)

Corollary

Under the same conditions, the exponent of

P as n increases is
opt

= lim l/n)log opt 
n- cs= lim (l/n)log a)

lim (l/n)lo -g Pt )

= (P1)- (p) - (pl-p)log(q/p) 

(20)

The proof of the corollary given the theorem

is direct. Taking logarithms and limits in Eq. 18

shows that Pv and Pt have a common exponent.

Since they bound Popt above and below, it shares

the same exponent. The value given in Eq. 20 is

the exponent of Pt, as found in references (1,2).

It is illustrated geometrically in Fig. lb.

Proof of Theorem 1.

Bounding Pav in terms of Pt requires bounding

the sum in Eq. 15. For the last term in the sum we

use the bound Q(kl) =1 For the earlier terms

we use the bound of Eq. A6, derived in Appendix A.

Eq. 15 then becomes

Pa eL (n j pkqnk { () / (knPay -% eP- / (k q
k=o

Q+ (n ) kI n-k I
p q + Pt

(21)

Now the sum in Eq. 21 can be bounded by a

geometric series, which sums:
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kl-l

k=-o

kqn-k () / (kllY L+l
p ) k-

kll n-kl+l
P q

i - (q/p)(pl/ql)L~

where we have used k1 = npl and n-k = nql.

convergence of the series is guaranteed by the

requirement that L > L as given by Eq. 19, 

that the denominator on the right in Eq. 22 ii

positive.

Substituting Eq. 22 in Eq. 21 and regrou]

Pa Is n ) lk n-k1 1 +
av \k)

+qP

Pql

L

1 - (q/p)(pl/ql)L+
+ Pt

Now, from Eq. 11,

t kl+l n-k -l
=t k + p q

= (P/q) k)

Substituting Eq.

Eq. 23 gives

Pav/Pt (q/p) 1 +

qPl
+

Pq

k1 n-k1
P q

24, read in reverse, in

I

e

s

s

L

(q/ppl/ L+ +
1 - (q/p)(p 1/q1)LJ

QED.

Theorem 2.

The proof of Theorem 1 suggests that

A(p,pl,L) increases with L, but this is due to

the weakness of the bound of Eq. A6 on Q(k) for

k near k1. Actually A(p,pl,L) decreases as L

increases. In fact we have

Theorem 2

(22) Given a BSC with capacity C, and a rate R

with 0 < R < C < 1 , and given any e > 0 ,it

is possible to find an L(e) so large that for all

he n > n(L),

0 1 PaV/Pt = 1+ . (26)

Corollary

ping, For sufficiently large L and n, almost all

codes are almost as good as the best code.

Given the theorem, the corollary follows by

(23) an argument of Shannon's in reference (5). The

difference between Popt and the error probability

of any code is positive or zero, and the average

value of the difference, by Theorem 2, is < c.

Thus only a fraction 1/T of the codes may have

such a difference Te , and at least a fraction

(l-l/T) have an error probability (l+Tc)Pop t ,

(24) QED. The result here is stronger than in Shannon's

application because of the nearby lower bound.

Proof of Theorem 2.

For a constant rate R,p1 = kl/n is not a

constant, but depends on n . However for suf-

ficiently large n it is arbitrarily close to the

(25) limiting value given by setting R R1 in Eq. 17.

Let p be this limit. Then

lim kl*
~k / -1) = (27)

100
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Choose J so that

(pl/,l) = -(l+a)

Then breaking the sum in Eq. 13 at

k1-J

° L ( k)o
k=o

Substituting this in Eq. 32, we have

(29) r1

r=r

Q(r) < p q

and using the bound of Eq. A6 with the substi-

"tution of Eq. 27 below this point gives a term

which is bounded by

-(L+l)a (n p kqn-kl

1- (q/p)(p*/q*L+l (30:
LP)(l / ql)

Next, the portion of the sum in Eq. 13 which

is between r, given in Eq. 29, and rl, is

kn-k
bounded. Since p q is monotone decreasing in

k, we have

0

(34)

Now the denominator under C1 increases

arbitrarily with L, and the denominator under C2

increases arbitrarily with n. Thus the summation

in Eq. 34 becomes negligible for large n and L

compared to the term

k1 n-k n

q k (35)

(31)

Z: pk(r)qn-k(r)QL(r) (q/p)Jpklqn-kl (r).

r=r r=rr

We now bound QL(r) by Eq. B4, derived in

appendix B. This gives

r2 2 
(r) e-(L/2)(rl - r ) /r

r=r
o

r1

r=r
o

1+ f-Lr 2 /2r1 2

0

dr

, C 1 + (r 1/2) V&-IL

From Eq. 9, using a geometric series to

bound the sum of binomial coefficients as in

references (1,2,6) gives

So does the expression in Eq. 30 which bounds the

remainder of the sum in EQ. 13, because of its

exponential factor. But from Eq. 24, this is not

true for Pt which is in fact of the order of the

expression in Eq. 35. Thus in the limit the right

side of E. 13 approaches Pt, QSD.

Conclusion.

Two points should be noted in conclusion.

First, if L grows exponentially with n - that is,

if there is a residual percentage of equivocation,

rather than a esidual amount - then the ratio

Pav /Pt approaches 1 exponentially, since\Lf is

then a negative exponential in n . Second, the

discussion of Theorem 2 shows that Popt is very

near Pt but does not say Just how big either of

them are. Pt is of course given by Eq. 9, with r

101
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defined by -Eq. 6, and the exponent is given by

Eq. 20. But no really tight bounds for Pt or

Popt in terms of C, R, and finite n and L have

been given. These take a good deal more of

detailed algebra, which will be presented elsewhere.
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APPENDIX A: A BOUND ON Q( r).

The probability of L or more successes in- M-1

tries, with probability r/2n of success on each

try, can be bounded by the product of (r/2n)L, the

probability of success in a part&cular L o the

M-1 tries, times the number of ways of selecting

L from M-1 :

QL(r) (M1) (r/2n)L

(Al)

< ( /Lt)(r/ 2n)

Stirling's lower bound to L gives

(r) )(/L(rn) L

< (L/E' )(Mr/L2n)L (A2)

i (e /'2nL )(r/2n(1-R),

making use of Eq. 5. From Eq. 6 we have

QL(r) = (e/ )(r/(rfl))L (A3)

Now from Eq.'s 6 and 9,
kl-l

(1-) = ( n1

And, by term-by-term comparison, for k - k 1-l,

E (in) 
j=o

k -lk1- 1

J-o

so from Eq. A2 and the definition

have for k - kl-,

in Eq. 14 we

QL(k) = (eL/ ) {() / (kl }

(A6)

APPENDIX B: ANO1HERO BOUND ON (r).

A result due to Chernoff (7), which may also

be derived from Cramer (8), provides bounds on the

tails of distributions of sums of random variables

in terms of the moment-generating function of the

parent distribution. Applying this to the binomial

distribution, Shannon (9) shows that for

kb = N%> Npa ,

Pb (a) } N
k=kb {( )

102
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Taking 1/N times the natural logarithm of the

right side of Eq. B1, and defining & =Pb-Pa > O,

gives

Pb loge(1-S/) + b loge(l+6/%b)

(B2)

q1J.( S/J) 1 ( )J
cs Pbb- 

QL(r) exp ( - (M/2)(rl-r)2 /rl.2n )

Iexp ( - (L/2)(rl-r)/2n(1-R)rl1 ) (B4)

= exp ( - (L/2)(r 1 -r)
2 /r )
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