List Decoding in Average-Case Complexity and
Pseudorandomness

Venkatesan Guruswami
Department of Computer Science and Engineering
University of Washington
Seattle, WA, U.S.A.

Email: venkat@cs.washington.edu

Abstract—This is a brief survey into the applications of list
decoding in complexity theory, specifically in relating the worst-
case and average-case complexity of computational problems, and
in construction of pseudorandom generators. Since we do not
have space for full proofs, the aim is to give a flavor of the
utility of list decoding in these settings together with pointers to
where further details can be found.

I. INTRODUCTION

List decoding has been a subject of intense research in
recent years. Under list decoding, given a received word the
goal is to output all codewords that lie within (Hamming)
distance e from it where e is the bound on errors we wish to
correct. The flexibility to output a list of codewords instead
of a unique one permits one to correct beyond the packing
radius (half-the-distance) of the code, while still dealing with
a worst-case model of errors. In fact, over large alphabets,
such as for Reed-Solomon codes, one can perform efficient
list decoding for noise rates close to 100%, while maintaining
constant rate (which tends to 0 as the error fraction approaches
1) and outputting only O(1) codewords in the worst-case.
This ability to perform error correction for such overwhelming
noise rates (when most symbols are in error!) has found
numerous applications in complexity theory [9], [12], [2,
Chap. 12].

Here we sketch two such applications. At a very informal
level, the ability to decode a fully correct codeword from a
received word that is almost fully erroneous, corresponds to
being able to compute a function correctly everywhere on
its domain (i.e., in the worst-case) given access to a noisy
oracle that computes the function correctly only on the average
(on a very small fraction of the domain). As a result, list
decoding has found powerful applications in average-case
complexity, and in relating the worst-case hardness to average-
case hardness for certain important functions and complexity
classes. The first application we sketch is a clean example that
illustrates this general paradigm for the special case of the
permanent function. Using list decoding, we will show that
if we can efficiently compute the permanent on the average
for an inverse polynomial fraction of random matrices, then
we can compute the permanent for every matrix. This result
originally appeared in [1]. In addition to being interesting
in its own right, average-case complexity also has further
applications to constructing pseudorandom generators and

derandomization (i.e., simulation of randomized algorithms by
equivalent deterministic ones).

The second application is a lot more involved [7] and we
only provide a peek into its proof. It shows how list decoding
can be used to build pseudorandom generators directly from
worst-case hardness (without going through average-case hard-
ness), thus providing a fundamental link between hardness
and randomness. Based on a strong enough, but plausible,
worst-case hardness assumption, the pseudorandom generators
are powerful enough to collapse randomized polynomial time
to deterministic polynomial time, i.e., they imply BPP =
P. The high level methodology in this construction is as
follows. The truth table of the hard function is viewed as a
message and encoded by an algebraic list-decodable code, and
the pseudorandom generator is based on this encoding. Any
small circuit that “breaks” the pseudorandom generator (i.e.,
distinguishes its output from a random string) is used, together
with list decoding algorithms for Reed-Solomon codes, to
give a small circuit that computes any desired bit of the
message, or equivalently the hard function on every input,
thereby contradicting the assumed (worst-case) hardness of
the function.

II. RELATING WORST-CASE AND AVERAGE-CASE
COMPLEXITY OF THE PERMANENT

The permanent of an n x n matrix A = {A;;} is defined as
perm(A) = > TTi-; Ais(;) Where the summation is over all
permutations o of n elements. Computing the permanent of a
given matrix is a fundamental problem that occupies a special
place in complexity theory. Valiant showed in 1979 that the
problem is #P-hard even for 0/1 matrices (and is thus no
easier than computing the number of satisfying assignments
to a polynomial size Boolean formula).

This is a worst-case hardness result, showing no efficient
algorithm that correctly computes the permanent of all matri-
ces is likely to exist. Let M), denote the set of all n x n
matrices with entries in {0,1,2,...,p — 1} where p = p(n)
is a large enough prime.

We are interested in the question: could there exist an
algorithm that computes the permanent correctly for a large
fraction of matrices in M), ,? The following elegant, simple
argument due to Lipton [5] (called random self reduction) is
the key to relating the worst and average case complexities

of the permanent. Let B be a matrix drawn uniformly at
random from M, ,. Consider the matrix A 4+ Bx where z
is an indeterminate. Clearly, the permanent of A + Bz is
a univariate polynomial in x of degree at most n; denote
P(z) = perm(A + Bz). Now for each i € {1,2,...,p},
A+ Bi is distributed uniformly in M,, ,. Therefore, if we have
an algorithm that computes the permanent correctly for all but
a 1/(3(n + 1)) fraction of matrices in M,, ,, then running it
on input A+ Bi for 1 < i < n+ 1 will give us the correct
value of P(i) for every i in the range 1 < i < n + 1 with
probability at least 2/3. Since P(z) has degree at most n, these
(n+ 1) values suffice to identify the polynomial P and hence
P(0) = perm(A). The last step amounts to erasure decoding
of Reed-Solomon codes via polynomial interpolation. By em-
ploying error-correction algorithms for Reed-Solomon codes
that correct up to half the distance (plus using a different space
of matrices that is pairwise independent), one can improve
the above connection and show that computing the permanent
correctly on (1/2 + 1/n) fraction of matrices in M, , is as
hard as computing it in the worst-case. The factor 1/2 arises
since unique decoding algorithms can never correct more than
a fraction 1/2 of errors.

Since list decoding permits decoding from error rates close
to 1, it is conceivable that the average-case connection can
be improved to 1/poly(n) fraction of the matrices using list
decoding. However, one faces the problem that list decoding
may provide only a list of values for the permanent whereas
we need to determine the unique correct value. Below, we
see how this is handled by using a special “downward self
reducibility” property of the permanent which in particular lets
us compute the permanent of nxn matrix based on permanents
of (n—1) x (n — 1) matrices.

Suppose for some constant k£ > 0, we have an algorithm A
that computes perm(M) correctly for a fraction v = 1/n* of
matrices in M, ,, for all n and all large enough p, specifically
for p > 10n2%+2. Let us call any M for which A correctly
computes perm(M) as being good.

Let A be the input n x n matrix whose permanent we wish
to compute. Let A/ denote the (n — 1) x (n — 1) minor
of A obtained by deleting the i’th row and j’th column. Let
B,C be (n — 1) x (n — 1) matrices chosen uniformly and
independently at random from M, ,,—;. Consider the matrix
polynomial

D(@) = Y (@) A + ([[@ =) (B +=C)
=1

i=1

where each 0;(z) is a polynomial of degree (n — 1) that has
value 1 at z = 4 and vanishes at x # i and 1 < 2 < n.
Note that D(i) = A®Y for 1 < i < n. Denote by P(x) the
permanent of D(x); P(x) is a polynomial of degree less than
n?. Clearly, we can compute perm(A) if we have the correct
values of P(1), P(2),...,P(n), and therefore certainly if we
knew the polynomial P(z) correctly.

For simplicity, let us assume that p is also upper bounded
by a polynomial in n (this is not necessary, but avoids some

unnecessary technical issues). Let us run the algorithm A on
the (p — n) matrices D(j) for n + 1 < j < p, obtaining
(possibly incorrect) values y; for their permanent; this can
be accomplished in polynomial time due to the bound on
p. For each such j, D(j) is a random matrix in M, _1,
and hence it is good with probability v = 1/n*. Moreover,
for j; # jo, the random variables D(j;) and D(j2) are
independent. Therefore, {D(j) | n+1 < j < p} is a pairwise
independent collection of random matrices. By a standard
Chebyshev inequality argument, with probability close to 1, at
least /2 fraction of the matrices in this collection are good,
and thus A outputs the correct value of the permanent.

Thus, among the pairs (j,y;), j =n+1,n+2,...,p—1,
the polynomial P “agrees” with at least (y/2) - (p — n) of
them, i.e., satisfies y; = P(j) for at least so many values of
j. The goal is to find P, which has degree less than n?. If
v(p—n)/2 > \/n?- (p —n), then the list decoding algorithm
for Reed-Solomon codes from [8], [3] can find all polynomials
that agree on at least y(p —n)/2 pairs. The above condition is
met if p > 10n2**+2. Moreover, the size L of the list £ output
by the algorithm satisfies L < 3/ < 3n*, and this list will
include P(x). We are now left with the problem of identifying
the correct polynomial P(x) from this list.

Since all polynomials in the list £ have degree less than n?,
a trivial counting argument implies that there are at most 9n2*
values in {0,1,...,p — 1} at which some two polynomials
have the same evaluation. It follows that we can find, in
deterministic polynomial time (say, by a simple brute-force
search), a value v € {0,1,...,p — 1} such that the values
{Q(v)}ger are all distinct. Therefore, knowing the value of
P(v) suffices to identify P.

But P(v) = perm(D(v)), and therefore to compute P(v)
all we need to do is to compute the permanent of a single
(n—1) x (n — 1) matrix in Mj ,_1. We can accomplish this
task recursively, by doing the exact same process we did above,
this time for an (n — 1) X (n — 1) matrix (decomposing it into
(n —2) x (n — 2) minors, etc.)!

Finally, a comment about the error probability. With suit-
able choice of parameters, we can ensure the error proba-
bility in the recursive step for m X n matrices is at most
1/(100n2). Therefore, applying this till the size of the matrix
becomes some small constant B, incurs an error probability
of Z?:B 1/(10042) < 1/3.

In summary, given access to an algorithm that succeeds
onal /nk fraction of matrices in M, ,, we can compute
the permanent correctly in the worst-case in randomized
polynomial time. We want to stress the crucial use of list
decoding of Reed-Solomon codes for noise rates approaching
100% in the above argument.

Extreme average-case hardness from worst-case hardness:
We also point the reader to the work [10] where a very strong
average-case hardness is established starting from worst-case
hardness. Assuming that no circuit of size 2°™ can correctly
compute some function f : {0,1}" — {0,1} in the worst-
case, a related function f’ on n’ = O(n) bits is presented such

that f’ cannot be computed correctly even on a 1/2 + 9—0'n’
fraction of the inputs by circuits of size 297" Note that
getting agreement 1/2 with f’ is trivial — one of the two
constant functions 0 or 1 does the job. The result shows that
even a tiny bit of advantage over this trivial bound is hard
to get. In turn, such an extremely hard-on-average function
can be used to build pseudorandom generators that stretch
O(logn) bits to n bits and thereby establish P = BPP [6].
The construction in [10] makes crucial use of error-correcting
codes, specifically Reed-Muller codes and a highly efficient
list decoding algorithm for it, which in turn uses, among
other things, the Reed-Solomon list decoding algorithm as an
important subroutine. In the next section, we discuss work that
constructs pseudorandom generators directly from worst-case
hard functions without the intermediate hardness amplification
step. This result again heavily borrows on tools from coding
theory and list decoding.

III. PSEUDORANDOM GENERATORS FROM WORST-CASE
HARDNESS

We now describe the pseudorandom generator construction
by Shaltiel and Umans [7]. This work uses list decoding in
a delicate and clever combination with several other involved
ideas from algebra and probability. Therefore, we will only
be able to provide an informal and incomplete peek into this
application.

We now define precisely the notion of a pseudorandom
generator. A pseudorandom generator G : {0,1}* — {0, 1}V
maps a short seed of length s into a longer string of length
N such that no circuit of size N can distinguish (with a
non-negligible advantage) between a truly random string from
{0,1}" and the output of G on a uniformly random input from
{0,1}*%. The shorter the seed of the generator, the better it is.
If we achieve s = O(log N), then the generator can be used
to derandomize polynomial time randomized algorithms with
only a polynomial slow down, thus establishing BPP = P.
Indeed, this can be done by simply running the randomized
algorithm using the output of G on each of the polynomially
many seeds in place of the /N-bit random string it needs, and
then taking a majority vote over all such runs. Assuming the
randomized algorithm has circuit complexity at most N, its
inability to break the pseudorandom generator implies that it
has essentially the same success probability when its random
choices are distributed according to the output distribution of
G on a random seed as it does on a uniformly random string.
Therefore, the above majority voting scheme will yield the
correct answer.

The construction of the Shaltiel-Umans pseudorandom gen-
erator begins with a hard function z : {0,1}°¢" — {0,1}
(which has n bits of information). Let us assume that no circuit
of size at most n%-%! can compute x in the worst-case (note
that as a function of the length of the input to z (i.e., logn),
this is an exponential lower bound). Given such an z, we
will present a pseudorandom generator as above with seed
length logarithmic in the output length. The pseudorandom

generator is based on an encoding of x by an algebraic error-
correcting code similar to the Reed-Muller code, except with
some additional properties.

We begin with some notation. We denote by [n] the set
{0,1,...,n—1}. Let F be a field of size ¢, and H a subfield
of F of size h (for a suitable h = n®*(1), and ¢ < ROW).
Let d = O(logn/logh) so that hY > n. We encode = as a
low-degree polynomial # : F¢ — T such that x is “embedded”
within the evaluations of # on the subcube H¢ of F¢ (since
h% > n there are enough slots in H¢ for all n bits of x).
In other words, & will be any polynomial of degree h — 1 in
each variable such Z(¢(i)) = (i) for each ¢ € [n] where
¢ : [n] — H? is an efficiently computable one-one map.
(This is therefore a systematic version of the Reed-Muller
encoding, and is often referred to as the low-degree extension
of x.) The parameters will be picked so that the map ¢ can
take a particularly simple and convenient form (some non-
trivial algebra concerning finite fields is needed to ensure this).
Specifically, £(i) = AP* .1 where A is a generator of the
(cyclic) multiplicative group of F¢ (when F¢ is viewed as an
extension field of F), T € H? C F? refers to the all-ones
vector, and the multiplication takes place using the extension
field interpretation of F?. (The integer p will be such that A?
generates the multiplicative group of H?, viewed as a field
extension of H.)

The initial idea for the pseudorandom generator, which
won’t quite work but is a step in the right direction, is as
follows. We use as seed a random element of F¢; thus the seed
is a string of dlog ¢ bits. On input 7 € F¢, the output of the
generator consists of the evaluation of & on m = h consecutive
elements of F? obtained by successive multiplication by A
(again, the multiplication happens in the extension field view
of). Formally,

G, (0) = 2(A'W) 0 2(A%T) 0 - - - 0 #(A™T) .

The above outputs field elements where as we would like to
output bits. This is achieving using ideas from code concate-
nation. Let C be the encoding function of a binary code of
dimension log g that has an efficient list decoding algorithm up
to a fraction 1/2 — p of errors where p = 1/m?, and moreover
has block length 7 = (10%)0(1) (it is well known that such
codes exist, cf. [4]). The binary pseudorandom generator G‘I
now takes as seed both 7 € F¢ and an index j € [n] and
outputs the j’th bits of the encoding (by C') of the field
elements output by G:

Go(0:4) = C(&(A'D)); 0 C((A%D))j 0+ 0 C(2(A™D)); .

Note that the output length m = h = n®%(1) and the seed
length equals dlog g + O(log h 4 log logq) which can be seen
to be O(log n). By well-established techniques (Yao’s next bit
predictor lemma plus list decoding the inner binary code), a
small circuit that breaks the pseudorandom generator G, can
be used to give a small circuit for a “next-element predictor”
function that with probability Q(p3) correctly predicts the
m’th field element output by G, based on its first m — 1

field elements. In other words, for a random point ¢ € Fe,
the probability that

f(2(A'D), 2(A%D), . . .,

is at least Q(p3). The fundamental idea in this construction
is to repeatedly use the next-element predictor f, with an
error-correction step following each application to ensure the
correctness of its output, to efficiently compute z(¢) for any
desired ¢. If we can implement such a procedure with a small
enough circuit, this would contradict the assumed hardness of
the function x, and thus establish that Gm is a pseudorandom

F(A™TLY)) = 2(A™D)

generator.
We now elaborate a bit more on how this idea is imple-
mented. Suppose the goal is to compute z(i) = #(A™1).

We pick a random low-degree curve S; through F? (given
by a degree t polynomial S; : F — F9). Let Sa,...,S,_1
be the successive translates of the curve by multiplication
by A4, ie, S; = A1 .S for 2 < i < m, where A -5,
denotes the multiplication of each point in S; by A. Note that
each of the S;’s are degree ¢ curves since multiplication by
A viewed as a field element of the extension field acts as a
linear transformation on the vector space F? and so preserves
degrees. Note that the restriction of Z to any degree ¢ curve is
a univariate polynomial of degree less than tdh. We assume
that the correct evaluations of & on Sy, ..., S,,_1 are given to
us as “advice” — this is the so-called “non-uniformity” in this
construction, and we can assume that the advice is “hardwired”
in the final circuit we build to compute z.

The procedure to compute x(z) for the input index ¢ is as
follows. Consider the sequence of curves S, = A-S,_1 for
a > 2, and let r be the smallest index for which (i) € S,.
Thus if we knew the values of & on S,, we will also know
Z((i)) = x(i). We compute the values of & on the S’s
in sequence using the next-element predictor f, with the
advice providing the initial information needed to kick-start
the process. In the first step, we run the next-element predictor
f in turn for each (m—1)-tuple of points on Sy, Sa, . .., S;m_1
(note that we know the value of Z on all these curves via the
advice). This gives us a prediction for & () for each @ € S,
By virtue of the quality of the next-element predictor, we
know that at least a fraction Q(p®) of these predictions are
correct, i.e., give the true value of Z at the respective points.
Our goal is to find the univariate polynomial g, based
on these predictions. Now, suppressing details on the certain
conditions our parameters must obey, if we solve an underlying
Reed-Solomon list decoding problem with these predictions as
received word, we can find a list of all univariate polynomials
with agreement at least (p3) with the predictions. This list
will therefore include the restriction Z|s,, of % on the curve
S

If we could somehow identify the correct polynomial g,
from this list, we could continue the above process, predicting
the value of Z|g, ., through f and using list decoding to
correct the erroneous predictions and identify Z|g, ., and so
on till we compute Z|g, . Again, similar to what we saw in the
previous permanent application, if we knew the value of the

correct polynomial (i.e., Z|g,,) at a random point on the curve
Sm., then this can be used to uniquely identify the polynomial
from the list (with high probability). Shaltiel and Umans [7]
achieve precisely this using a clever idea where instead of one
iterative process as above, they run two iterative processes that
are interleaved in a carefully chosen way. Each of the iterative
processes runs as above, but things are set up so that when a
process needs the value of the polynomial at a random point
on its current curve, this value has already been calculated
by the other process! Therefore, the two processes working
in tandem enable picking the correct element from the list
for each of the list decoding steps. It goes without saying that
several technical details are involved in making this work, and
we point the reader to [7] for further details on this aspect.

We now mention the serious (and basic) problem with the
above approach. Our goal is to construct a circuit to compute
x(i) on input 4 that has size less than n%-%! (so that this would
contradict the assumed hardness of z:). Now the point £(¢) may
be very far-off from the initial curve Sy, i.e., the index r for
which S, = A"~1S; contains /(i) may be very large, in fact
we can have r ~ ¢?~! = Q(n). Thus the above iterative
process will run for about n time steps, much more than we
can afford.

As shown in [7], the ideas discussed above suffice to argue
that the above construction yields a good randomness extractor
(with = being input from a weak-random source, and (7, j)
being the random seed); see also [11] for a precursor to
this extractor construction. However, to get a pseudorandom
generator, further ideas are needed which can substantially
speed up the above iterative process to compute Z(£()).

These further ideas are quite natural. In order to travel from
the initial curve to any desired location #(¢) quickly, we use
several generators, each with its own “stride” or “successor
function”, and then combine them suitably. Specifically, for
0 <7 < d, define the function Gg(f) ;e — F™ as follows:

G(7) = 2(AT15) 0 (AT 2F) 0 -+ 0 B(AT ™) .

In other words, the ¢’th generator uses multiplication by AT
to compute successwe points. The binary version G of
the generator G is obtained analogously to how G, was
obtained from G:

G (7§) = C(HAT 7)) ;00 (AT 25))jor - oC (AT ™),
If none of the GY fori = 0,1,2,...,d—1isa pseudorandom
generator, then using a similar reasoning to the above, we will
have next-element predictors f () . Fm=1 — F with decent
success probability for Ggf) for each 1 =0,1,...,d — 1.
Suppose the advice contains the value of Z at the points
Ac-T1, At T, ..., A™™=1 .7 for some constant c¢. Now for
(i) € F?, one can travel from the point A° - 1 (which lies
on the first curve Sp) to it quickly, in much smaller than ¢%
steps, as follows. We know that £(i) = A?1. Therefore we
need to “travel” b = ip —a (mod ¢? — 1) multiples of A
from the curve S; to reach curve A®S; (which will contain
£(i)). Let b = Z?;ll bjq’ be the g-ary representation of b. We

first use the predictor f(°) for strides of length ¢° = 1 to take
by steps of size 1. At this stage our current location and /(%)
agree on the least significant digit in the g-ary representation.
We next take use the predictor f() to compute & at a point
that agrees with £(i) on the least significant two digits, and
so on. In the actual implementation, things are a little more
subtle than this since we need to ensure that at each stride
we have knowledge of the m — 1 previous evaluations to
kick-start the iterative process with the predictor f() for that
stride. But this description should suffice to illustrate the main
idea. In all, after O(dmgq) prediction steps, we would get to
the location (i) and compute z(i) = &(¢()). Note that this
is much smaller than the Q(g?) steps needed in the earlier
approach (with only one stride).

Thus, the above gives a construction of d generators one of
which is in fact a pseudorandom generator with the desired
property. However, we do not know which one this might
be. This problem has a simple fix: we take the output of
all the d generators, on independent seeds, and do a bitwise
XOR of their outputs. It is not hard to show that this will
yield a pseudorandom generator (against circuits of slightly
smaller size). Therefore, our final pseudorandom generator
construction is the following:

GUEnaD (o v ya) = GO (yo) @ - - @ GUD ()

This completes a description of the main ideas behind the
construction in [7]. We hope that this has both given the reader
some flavor of the utility of codes and list decoding in this
application, as well as piqued the reader’s interest to refer to
the original paper [7] for more details.

REFERENCES
[1

—

Jin-Yi Cai, A. Pavan, and D. Sivakumar. On the hardness of the perma-
nent. In Proceedings of the 16th International Symposium on Theoretical
Aspects of Computer Science, March 1999.

[2] V. Guruswami. List decoding of error-correcting codes. Springer, Lecture

Notes in Computer Science 3282, 2004.

V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and

algebraic-geometric codes. IEEE Transactions on Information Theory,

45:1757-1767, 1999.

[4] V. Guruswami and M. Sudan. List decoding algorithms for certain
concatenated codes. In Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing, pages 181-190, 2000.

[5] R. Lipton. New directions in testing, In Distributed Computing and
Cryptography, volume 2 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 191-202, AMS, 1991.

[6] N. Nisan and A. Wigderson. Hardness vs Randomness. J. Comput. Syst.
Sci., 49(2):149-167, 1994.

[71 R. Shaltiel and C. Umans. Simple Extractors for All Min-Entropies and
a New Pseudo-Random Generator. Journal of the ACM, 52(2): 172-21,
2005.

[8] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction
bound. Journal of Complexity, 13(1):180-193, 1997.

[9] M. Sudan. List Decoding: Algorithms and Applications. SIGACT News,
31:16-27, 2000.

[10] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators
without the XOR lemma. Journal of Computer and System Sciences,
62(2):236-266, March 2001.

[11] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller
codes. In Proceedings of the 42nd Annual Symposium on Foundations of
Computer Science, pages 638—-647, 2001.

[12] L. Trevisan. Some Applications of Coding Theory in Computational

Complexity. Quaderni di Matematica, 13:347-424, 2004.

3

—

	Introduction
	Relating Worst-case and Average-case Complexity of the Permanent
	Pseudorandom generators from worst-case hardness
	References

