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ABSTRACT

Motivation: The problem of reverse engineering the dynamics of
gene expression profiles is of focal importance in systems biology.
Due to noise and the inherent lack of sufficiently large datasets
generated via high-throughput measurements, known reconstruction
frameworks based on dynamical systems models fail to provide
adequate settings for network analysis. This motivates the study of
new approaches that produce stochastic lists of explanations for the
observed network dynamics that can be efficiently inferred from small
sample sets and in the presence of errors.
Results: We introduce a novel algebraic modeling framework,
termed stochastic polynomial dynamical systems (SPDSs) that
can capture the dynamics of regulatory networks based on
microarray expression data. Here, we refer to dynamics of the
network as the trajectories of gene expression profiles over time.
The model assumes that the expression data is quantized in a
manner that allows for imposing a finite field structure on the
observations, and the existence of polynomial update functions
for each gene in the network. The underlying reverse engineering
algorithm is based on ideas borrowed from coding theory, and
in particular, list-decoding methods for so called Reed-Muller
codes. The list-decoding method was tested on synthetic data and
on microarray expression measurements from the M3D database,
corresponding to a subnetwork of the Escherichia coli SOS repair
system, as well as on the complete transcription factor network,
available at RegulonDB. The results show that SPDSs constructed
via list-decoders significantly outperform other algebraic reverse
engineering methods, and that they also provide good guidelines for
estimating the influence of genes on the dynamics of the network.
Availability: Software codes for list-decoding algorithms suitable
for direct application to quantized expression data will be publicly
available at the authors’ web-pages.
Contact: janis.dingel@tum.de; milenkov@uiuc.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Modeling the coupled dynamics of gene expression patterns is
an important task in systems biology that is most accurately
performed via systems of coupled differential equations, derived by
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analyzing involved biochemical reactions of the cell cycle (de Jong,
2002). Besides their accuracy, these modeling approaches also have
the advantage that they lend themselves to stochastic extensions
that capture uncertainties in biological systems (Wilkinson, 2006).
However, systems of differential equations have very high
parametric complexity and can often only be built bottom-
up, i.e. by looking at a detailed list of reactions involved in
gene transcription and by determining parameters of the model
through extensive experimental studies. An alternative approach
to modeling gene networks relies on very coarse approximations
of the system’s dynamics; this coarse approximation allows only
for capturing qualitative features of gene networks, rather than
their exact dynamics. This approach was pioneered by Kauffman,
who proposed using Boolean networks (BNs) as models of gene
regulatory networks (GRN) (Kauffman, 1969). Kauffman’s work
has inspired extensive research in two directions: theoretical analysis
of GRNs and practical application of BNs and generalizations
thereof to gene network modeling.

Probabilistic BNs (PBNs) represent stochastic extensions of
Boolean models (Shmulevich et al., 2002). In a PBN, a list of
Boolean functions is associated with each node in the network,
and each time the state of a gene is updated, only one of these
functions is randomly chosen to compute the new state of the
gene (Shmulevich et al., 2002). Many generalizations of these
models exist, including hybrid systems (Thieffry and Thomas,
1998), finite state linear models (Brazma and Schlitt, 2003) and
deterministic and probabilistic finite dynamical systems (Aviñó
et al., 2004; Jarrah et al., 2007). Significant research effort
has been devoted to fitting discrete models of GRNs to high-
throughput measurements in a manner that allows for good
predictive descriptions of experimental data. Such an approach,
which is often referred to as reverse engineering, is fundamentally
different from the bottom-up methods as it tries to select a model
based purely on the observed data, without making use of detailed
biochemical information. Early approaches to reverse engineering
of GRNs under both Boolean and PBN models have assumed that
time-series data from a network can be perfectly observed (Akutsu
et al., 2000; Liang et al., 1998). More recent methods account for
uncertainty in the data by invoking information theoretic techniques
and computational algebraic frameworks. In the former case, using
the minimum description length principle allows for developing
reverse engineering methods that outperform purely deterministic
approaches (Dougherty et al., 2008). In addition, algebraic analytical
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frameworks allow for fitting a finite dynamical system model to
time-course microarray expressions, assuming purely deterministic
observations (Dimitrova et al., 2007; Laubenbacher and Stigler,
2004). However, noise in the expression measurements and the
inherently stochastic nature of biological processes make reverse
engineering within any of the above described deterministic
frameworks only of limited practical value.

In this article, we present a constructive approach for reverse
engineering gene expression dynamics that is casted within the
algebraic framework developed in (Laubenbacher and Stigler,
2004). First, we develop a theoretical framework for the study
of the reverse engineering problem and show that it is closely
related to problems arising in coding theory (Pellikaan and Wu,
2004). We then focus on the statistical predictive inference problem
of network dynamics given the topology of the network. We
address randomness, measurement errors and small sample size
issues jointly by applying powerful list-decoding algorithms that
can be shown to optimally deal with missing observations and
noise from a coding theoretic perspective. This method overcomes
the drawbacks of models that assume noiseless observations and
that rely on large sample set sizes. Our method is first validated
and compared with existing methods using synthetic simulations.
It is subsequently applied to Escherichia coli DNA microarray
data, where it is successfully used for decoding the responses of
genes in the SOS repair network. We use the well-known concept
of gene influence (D’haeseleer, 2000; Shmulevich et al., 2002) to
evaluate our method, and suggest different methods for computing
this quantity within a general finite field modeling framework. Our
analysis of the complete transcription factor network of E.coli, as
available from RegulonDB, reveals that the predictions made by the
list-decoding algorithm can significantly improve the discrimination
of basic features of network dynamics when compared with standard
algebraic methods. To the best of our knowledge, this is the first
analysis performed on real expression data and networks under the
discrete algebraic model.

2 SYSTEM AND METHODS

2.1 Basic definitions
A GRN is a directed graph G={V ,E} with vertices V ={v1,...,vn}
representing genes and edges E ⊆{1,..,n}×{1,..,n} describing
relationships among the genes. An edge (j,i) is drawn from gene vj to
gene vi if gene vj regulates the expression of gene vi. In this case, we
say that vj is a regulator of vi, and that vi is a regulatee of vj . Let v̆i
denote the vector of regulators of gene vi, i.e. v̆i = (vi1

,...,vim(i)
),∀ik

s.t. (ik,i)∈E. We refer to the number of regulators m(i) of a gene as
its in-degree. We refer to the trajectories of the gene expression levels
in time as the dynamics of the network. We introduce a temporal
dimension t and let vi(t) denote the expression of gene vi at time
t. In this work, we focus on discrete time models and can therefore
assume, without loss of generality, that t ∈N0. The network states at
times t =0,1,2,... are described by the vector v(t)= (v1(t),...,vn(t)).

2.2 BNs and polynomial dynamical systems
BN models (Kauffman, 1969) are discrete deterministic models
which allow genes to be only in two different states—‘ON’or ‘OFF’.
In other words, expression levels can be seen as elements from
a finite field with two elements, denoted by F2. A BN model is

defined via a map of the binary state vector from time t to t+1 that

can be decomposed into n Boolean functions fi :Fm(i)
2 →F2, each

associated with one gene vi in the network:

vi(t+1)= fi(v̆i(t)). (1)

The dynamics of the network are simulated by starting from an initial
state vector v(0), and by iteratively and synchronously updating the
Boolean functions fi. This gives rise to a sequence of states.

The algebraic framework for gene expression profiles considered
in the remainder of this article is a generalization of BNs and was
first introduced in (Laubenbacher and Stigler, 2004). It allows for
a finer representation of gene expression states while maintaining
the analytical tractability of BN models by imposing a special form
on the update functions fi. More specifically, a gene is assumed to
be in a finite number of states q that represent different expression
levels. The number of states is restricted to be a power of a prime p,
q=ps, s∈N, so that the states of the genes correspond to elements
of a finite field, denoted by Fq, i.e. vi(t)∈Fq. This is not an
overly restrictive assumption since many small integers such as
2,3,4,5,7,8,9,11 can be expressed in the form ps, and since very
fine quantization schemes are not of practical interest. Analogous to
BNs, the dynamics of the system are specified through the equivalent
mapping of the state vector v(t)∈Fn

q,t ∈N0:

Fq : Fn
q →Fn

q, v(t) �→v(t+1)=Fq(v(t)). (2)

A crucial point for the methods used in this article is the well-known
fact that any possible function f :Fm

q →Fq defined over an arbitrary
finite field Fq is of the form of a multivariate polynomial, i.e. every
function f can be expressed as

f =
∑

i1,...,im

ai1i2...im
xi1

1 ...xim
m , ai1i2...im

∈Fq. (3)

We use Fq[x1,x2,...,xm] to represent the set of all possible
multivariate polynomials given by Equation (3). Hence, in our
model, a function fi associated with a node vi in the GRN is a
multivariate polynomial in the variables v̆i, the regulators of vi. In
what follows, we refer to this model as a polynomial dynamical
system (PDS).

2.3 Reverse engineering frameworks
We consider the following reverse engineering problem: one is
given the topology of the network and a limited set of time-
course expression points for all the genes in the network. In this
setting, a reverse engineering algorithm has to infer a PDS that
explains the observed time-course data. Let us first assume that
the expression data is error-free and that the PDS model perfectly
characterizes the real dynamics of the GRN. Then we have to solve
the following problem, which we henceforth refer to as the noiseless
reconstruction problem. Given a time series of T +1 transitions for
each gene vi, i.e. pairs of observed inputs v̆i(t) and corresponding
outputs vi(t+1)

Vi ={(v̆i(0),vi(1)),...,(v̆i(T ),vi(T +1))}
·={(v̆i(t),vi(t+1))}T

t=0,

find the functions fi that reproduce the time series exactly.
This is the framework originally considered in (Laubenbacher
and Stigler, 2004) and the followup work (Aviñó et al., 2004;
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Delgado-Eckert, 2009; Dimitrova et al., 2007; Just, 2006).
In (Laubenbacher and Stigler, 2004), the selection process in the
noiseless reconstruction problem consists in identifying a minimal
solution. Such a solution is obtained by first interpolating a
polynomial fi,(0)(v̆i) through the T +1 points. Here, fi,(0) satisfies

fi,(0)(v̆i(t))=vi(t+1), ∀t =0,...,T .

Next, the set I(Vi) of polynomials vanishing on the input points in
Vi, i.e.

I(Vi)={gi ∈Fq[x1,...,xm] :gi(v̆i(t))=0, t =0,...,T},
is constructed. Such a set, usually called a vanishing ideal, has the
property that any interpolator fi,(0) lies in the coset

fi +I(Vi)={fi +gi :gi ∈ I(Vi)},
where fi denotes an interpolator that cannot be further
decomposed— i.e. a reduced interpolator. A reduced interpolator is
defined by the following property: �(f

′
i ∈Fq[x1,...,xm], g

′
i ∈ I(Vi)) :

fi = f
′
i +g

′
i. In other words, gi represents the part of fi,(0) that lies

in I(Vi) and fi represents the reduction of fi,(0) with respect to
I(Vi). The reduced solution fi subsequently serves as an update
model for the node vi. The ideal of vanishing polynomials I(Vi)
has a finite polynomial Gröbner basis (Cox et al., 1992). This
basis can be computed by the Buchberger–Möller algorithm, and
then used for identifying minimal solutions (Dimitrova et al., 2007;
Laubenbacher and Stigler, 2004). The method described above has
the following drawback: as noted by the authors in Laubenbacher
and Stigler (2004), the interpolation method is extremely sensitive
to measurement errors and it does not consider missing expression
observations. These problems arise due to the fact that in the first
step of the modeling process, an interpolation polynomial is found
that passes through all data points, which may cause overfitting in
the presence of noise. An alternative approach to the method above
is to approximate the time series by using lists of update functions,
thereby accounting for missing samples and read-out errors caused
by noise. To implement this approach, we describe next how this
reverse engineering problem is connected to coding theory, and
introduce a reconstruction method based on list-decoding. List-
decoders can identify the exact update functions in the presence
of both missing values and noise, provided that the total number
of missing values and errors is properly bounded. Robustness with
respect to measurement errors is achieved by bounding the degree
of the update polynomial, thus allowing the interpolated functions
in the list to agree only with a fraction of the observed transitions.

2.4 Stochastic probabilistic models and coding theory
2.4.1 Additive noise We now turn our attention to a more rigorous
formulation of the reverse engineering problem. In this context,
we address two important issues: availability of only a limited
amount of time-course data, even for the best studied organisms;
and errors in the measured data. Noise in the data arises both
due to measurement errors and the fact that biological systems
are inherently stochastic and influenced by factors that cannot be
measured. In this case, the purely deterministic view within the
framework of the noiseless reconstruction problem represents an
inadequate approach. We therefore propose to recast the reverse
engineering problem into a probabilistic framework and consider
the following noisy reconstruction problem: given a time series of

T +1 noisy transitions for each gene vi, i.e. a sequence of pairs of
inputs and corresponding outputs

V ′
i ={(v̆i(t),vi(t+1))}T

t=0,

find a set of functions fi that jointly provide the best approximation
for the observed time series. Here, it is assumed that vi(t+1)=
fi(v̆i(t))+εi(t+1), where εi(t)∈Fq, and P(εi(t) 	=0)=pe denotes
the noise samples. Note that in this setting, small sample sets and
measurement errors are accounted for by forming a list of possible
node update functions, similarly as for the case of probabilistic BN
models (Shmulevich et al., 2002), but with some major differences
summarized in the exposition to follow.

Measurement noise affects both the inputs and the outputs of the
time series. However, one can assume that only an ‘output noise’
component exists, since the effect of input noise can be transformed
into an equivalent output noise component. To clarify this issue,
assume that the noise-free input is v̆′

i(t), with corresponding noise
free output v′

i(t+1), and that a noise sample ε̆′
i(t) is added to the

input, and a noise sample ε′
i (t+1) is added to the output. Let v̆i(t) :=

v̆′
i(t)+ ε̆′

i(t) and let εi(t+1) := fi(v̆i(t))−v′
i(t+1)+ε′

i (t+1) denote
the ‘transformed noise’ affecting only the output. Then, fi(v̆

′
i(t)+

ε̆′
i(t))+ε′

i (t+1)=v′
i(t+1)+εi(t+1), as claimed.

2.4.2 Reed–Muller codes As shown above, the noiseless and
noisy reverse engineering problems are essentially interpolation and
approximation problems for polynomials over finite fields. This is
a well-studied subject in coding theory, due to its application in
various decoding algorithms. The coding-theoretic objects of interest
are generalized q-ary Reed–Muller (RM) codes, defined as follows.
Let a multivariate polynomial f be of the form (3). The total degree
of f is defined as

totdeg=max{i1 +i2 +···+im :ai1i2...im
	=0}.

A q-ary RM code RMq(u,m) is the set of all m-variate polynomials
f ∈Fq[x1,...,xm] with totdeg(f )≤u, evaluated at the qm distinct
elements of the finite field αj ∈Fqm , i.e.

RMq(u,m)={( f (α0),...,f (αqm−1)) :
f ∈Fq[x1,...,xm],totdeg( f )≤u}. (4)

RM codes are used to encode messages into codewords, in order
to subsequently reconstruct the message from an observed noisy
codeword. The reconstruction process is called decoding. As already
pointed out, in RM codes, the encoded messages—codewords—are
multivariate polynomials of bounded degree. Given noisy samples

cε = ( f (α0)+ε0,...,f (αqm−1)+εqm−1) (5)

an optimal maximum-likelihood RM decoder has to find the
polynomial f of bounded degree u that most likely led to the
observation. However, this problem is computationally intractable
for long codeword lengths and suboptimal decoders must be used
instead. Recently, a class of algorithms was described in coding
literature that can closely approach the optimal performance with
polynomial computational times. Among these decoding algorithms,
list-decoders are of special interest, since they can operate in
extremely noisy regimes. From the simple discussion above, it
is apparent that the decoding problem is equivalent to the noisy
reconstruction problem.
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2.4.3 List-decoding List-decoding algorithms can handle very
large noise levels and missing sample points, while allowing the
decoder to generate a list of possible solutions, rather than a unique
candidate output. With small sample sizes encountered in gene
network reconstruction problems, one inevitably has to employ list-
decoding and allow for non-unique solutions. A list-decoder takes
the noisy samples cε and produces a list {g1,...,gL} that contains
all polynomials g∈Fq[x1,...,xm] of total degree less than or equal
to u, such that the Hamming distance (i.e. the number of positions
in which two words disagree) of g and cε is smaller than or equal to
a predefined constant eθ , called the decoding radius. Alternatively,
the list includes polynomials g such that

|{ j :g(αj) 	= f (αj)+εj}|≤eθ . (6)

Note that the parameters L and eθ are intimately connected to the
error rate, and that each list-decoding algorithm provides different
operational regions for these parameters. Detailed overviews of
list-decoding algorithms can be found in Guruswami and Sudan
(1999), Gaborit and Ruatta (2006), Gopalan et al. (2007) and
(Santhi, 2007). We focus our attention on a list-decoding method
for RM codes recently described by Pellikaan and Wu (2004),
which exploits the fact that RMq(u,m) codes defined over Fq are
subfield–subcodes of the well-studied generalized Reed–Solomon
(RS) codes, defined over Fqm . Note that the Pelilikaan–Wu (PW)
algorithm is just one of many possible list-decoding methods for
RM codes: some very recent results that offer excellent performance
for small field sizes include Gopalan et al. (2008). We focus
on the former technique because of its easy implementation and
simple operational principles. Exactly the same procedure can be
applied for reverse engineering stochastic polynomial dynamical
systems (SPDSs) models for GRNs. In this case, the inputs v̆i(t)

of the m(i) regulators are interpreted as points from the field F
m(i)
q

corresponding to the evaluation points αi of the RM code with
m=m(i) in Equation (4). The node function fi ∈Fq[x1,...,xm(i)]
corresponds to the encoded message and the outputs vi(t+1)
represent (noisy) codeword symbols of the RM code. Note that the
assumption of bounded degree of RM codewords does not impose
a severe restriction on the biological properties of gene networks,
since this parameter can be freely chosen and fairly large values for
the degree bound can be tested in a sequential manner.

A more detailed description of the PW algorithm can be found in
the Supplementary Material.

3 THE REVERSE ENGINEERING ALGORITHM

3.1 Microarray data preprocessing
We quantized gene expressions using q levels, in terms of K-
means clustering. Quantization of microarray data is a critical
step in the reverse engineering process, and the influence of
quantization on network dynamics inference is still not completely
understood. Still, quantization is an integral step of all finite state
gene network modeling approaches (Brazma and Schlitt, 2003;
de Jong, 2002; Schlitt and Brazma, 2007) including Bayesian
network techniques. Quantization is most often performed using
simple thresholding and clustering techniques or fitting Gaussian
mixture models (Bulashevska and Eils, 2005; Gat-Viks et al.,
2006; Pe’er et al., 2001; Shmulevich and Zhang, 2002). To the
best of our knowledge, there still does not exist a quantization

technique that takes into account error models for DNA microarray
measurements (Ideker et al., 2000). As a consequence, different
quantizers may lead to quite different outputs of the reverse
engineering algorithm. By using a sufficiently large number of
quantization levels, this problem can be avoided to a certain degree,
and this motivates the use of non-binary network dynamics models.
A rigorous analysis of the influence of the number of quantization
levels on the accuracy of the reconstruction method is beyond the
scope of the present work, and will be presented elsewhere.

3.2 Constructing lists of approximating polynomials
As described in the previous section, we are given a set of noisy
transitions for each node in the network. The first step in the
reconstruction algorithm is to reduce the observations to a set of
unique transitions. The observed inputs v̆i(t) in the set V ′

i may not be

unique, i.e. there may exist pairs of indices (t,t′)∈{0,...,T}2, t 	= t′,
for which v̆i(t)= v̆i(t′). Note that due to noise, the existence of such
pairs does not imply that the corresponding outputs vi(t+1) and
vi(t′+1) are equal. Hence, we can encounter ‘multiple transitions’
for the same input. In order to analyze whether the source of
such inconsistent data is the discretization method, we applied four
different quantization schemes to the expression data described in
Section 4.2.1, and analyzed their effect on the multiple transition
problem using the RegulonDB transcription factor network (Gama-
Castro et al., 2008). Data were quantized using q=3,5,7 expression
levels. All genes in the network with in-degree smaller or equal to
three were considered. Ideally, quantization schemes should take
into account error models for microarray measurements and the
distribution of gene expression. However, determining such models
is an open research problem. A quantization scheme that tries to fit a
certain type of error model was proposed in Di Camillo et al. (2005),
but it requires redundant gene expression data. Other methods model
expression values as mixtures of Gaussian variables (Chung et al.,
2006). Both approaches are not suitable for the considered dataset,
and we therefore focus on model-free approaches. The different
quantization schemes tested include K-means clustering, maximum
entropy quantization, uniform (linear) quantization and a method
presented by Shmulevich and Zhang (2002) for binary discretization
which we generalized for the qary case. The methods are described
in more detail in the Supplementary Material. Multiple transitions
were observed for all quantization schemes—which may imply that
this effect is not caused by quantization only.

We used mutual information between the input stimulus and
the corresponding output of a gene as an evaluation measure for
the quantization methods. The mutual information is large if the
input and output states are always consistent and small if the
input and output states seem to occur independently. The averaged
mutual information per gene, obtained for the different quantization
schemes we tested, is shown in Table 1.

Multiple transitions are coped with according to the procedure
described next. First, the observed set V ′

i is reduced to a set of
unique transitions Ui as follows: assume we observe the same
input to gene vi exactly r times, v̆i(t1)= v̆i(t2)=···= v̆i(tr ), with
corresponding outputs vi(t1 +1),...,vi(tr +1). We retain only one
transition pair in Ui, with input v̆i(t1) and corresponding output
equal to the majority vote of the observed outputs. Ties are broken
arbitrarily. The inputs in Ui are subsequently regarded as the sample
points of an RM code of unknown dimension, i.e. unknown bounded
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Table 1. Mutual information between the input stimulus and the
corresponding output of a gene for different quantization schemes

Method Mutual Information

q=3 q=5 q=7

K-means 0.2479 0.5895 0.9360
Method by Shmulevich and Zhang (2002) 0.0555 0.1988 0.3491
Maximum entropy 0.3110 0.8738 1.3912
Uniform 0.2323 0.5483 0.8776

degree u of the encoder function fi; then, the corresponding outputs
represent noisy sample points of this polynomial. Upon reduction
of the set V ′

i , we have qm −|Ui| missing transitions at node vi that
we model as ‘erasures’ during decoding. List-decoding is used to
explore the space of low-degree polynomials that approximate the
above described time series: one starts with the smallest possible
degree u=1, and then tries to find polynomials that approximate the
transitions in Ui. In other words, the goal is to try to find interpolating
functions that can disagree with the pairs in Ui up to a fraction of
points. In the next iteration, we increase u by one and repeat the
decoding process. For each value of u, the list of decoded codewords

is stored in C(u)
i . The output of the algorithm for node vi is the list

Ci =
⋃

uC(u)
i . Optionally, the solution found by the Gröbner basis

method as described in Section 2.3 can be added to the list as
well. When the algorithm produces a non-empty list for a given
node, its output is replaced by one of the decoded words and the
measurements of its regulatees are updated. In this way parent nodes
can be used to aid the decoding of their children by correcting their
input measurements. Our algorithm accounts for this feature through
an iterative refinement technique that is used until no changes in
the regulatee’s lists are observed. The complexity of the algorithm
is determined by the complexity of the list-decoding algorithm at
hand, which for the PW method is roughly O(|Ui|2θ4) operations
per gene. Here, θ ≥1 denotes an adjustable integer parameter that
determines the designed decoding radius eθ given in Equation (6).
As each node in the network is decoded separately, the complexity
grows approximately linear with the number of nodes in the network
(approximately because of the iterative update scheme). The steps
of this algorithm are summarized in the Supplementary Material. A
flowchart of the overall procedure is shown in Figure 1.

3.3 Reconstruction bounds
Consider the collection of noisy samples in Equation (5). There
are two types of errors: an ‘erasure’ occurs when a sample is erased
from the observations. This is equivalent to an unobserved transition
at a given network node that arises due to small sample set sizes.
An error due to noise occurs at positions j corresponding to εj 	=0.
Note the important difference between erasures and errors: in the
former case, the positions of inaccurate symbols are known a priori
to the algorithm, whereas in the latter case those positions are
unknown. Based on the list-decoding framework, it is possible to
describe exact analytical bounds for the minimum required number
of measured transitions for reconstructing update function lists of a
given size. It is easy to show that the polynomial f can be uniquely
recovered from the noisy samples as long as the combined number of

Fig. 1. Flowchart of our method.

errors e and erasures s satisfies s+2e<dmin, where dmin denotes the
minimum Hamming distance between any two codewords. Note that
this bound applies to both the noiseless problem (for which e=0),
as well as the noisy reconstruction problem. It is known that for an
RM code, dmin depends on the total degree of the polynomials, and
dmin decreases when u increases (Pellikaan and Wu, 2004). This is
a very intuitive result because it basically states that the more non-
linearity is present in our network the more samples must be taken
in order to infer the functions and less noise can be tolerated in this
case.

When list-decoding is employed, the number of errors and
erasures that can be accounted for is significantly larger—linear in
the size of the complete dataset. For illustration, several examples
of performance characteristics for list-decoders of RM codes with
small values of q are shown in Table 2. These numerical values are
based on the bounds described in the previous section.

4 RESULTS

4.1 Synthetic networks
We tested the performance of our algorithm on random synthetic
networks. We simulated 1000 PDS over the alphabet F5, with
20 nodes and random topologies. Nodes had either in-degree
0 (30%), 2 (50%) or 3 (20%). The degrees of the node update
functions were randomly chosen from {1,2,3,4,5}. We restricted
our attention to small degrees only, since biological networks have
similar properties. The network was initialized with a random
state v(0)∈F20

5 , and five transitions of the network were recorded.
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Table 2. Decoding radius eθ for different total degrees u and list size upper
bound Lθ

In-degree 2 In-degree 3

u eθ Lθ u eθ Lθ

1 13 9 1 66 11
2 8 3 2 44 11
3 5 5 3 27 11
4 2 1 4 12 1
5 1 1 5 9 1

Fig. 2. Comparison of the performance of the proposed algorithm and the
Gröbner bases method in silico.

This was repeated 50 times, producing a set of 250 synthetic
expression samples. Different additive white Gaussian noise samples
were added to these ‘measurements’. Figure 2 shows the fraction
of correctly inferred node functions of our reverse engineering
approach for the simulated network, given different noise levels.
For comparison, the performance of the Gröbner basis method
described in Section 2.3 is shown as well. It can be observed that our
algorithm significantly outperforms the latter. Even in the noiseless
case, we achieve a significantly higher reconstruction rate and the
performance of the Gröbner approach drops quite fast when noise
is introduced to the measurements. Note that for the simulations,
noise was also added to the inputs v̆i(t) and the probability that any
symbol in the data was changed is termed ‘the noise level’.

4.2 Application to the E.coli network
4.2.1 Data In order to facilitate the analysis of expression data
compiled from multiple laboratories, Faith et al. (2007) recently
developed M3D, a unified microarray database for several microbial
organisms. M3D contains only single-channel arrays using the same
platform, and the raw expression data is uniformly normalized
to enable the analysis across different experiments without any
additional user-dependent processing. We used the M3D microarray
data for E.coli. and filtered time-course experiments providing at
least one transition of the network. We found a total of 90 time points
from 21 different experiments, resulting in a total of 69 transitions.

4.2.2 Escherichia coli SOS network We extracted a small sub-
network consisting of nine genes whose topology is given in Gardner
et al. (2003). Our nine gene ‘test network’ includes the transcription

Fig. 3. Diagram of interactions in the SOS network as described in (Gardner
et al., 2003). Angled boxes denote genes and small rounded boxes proteins.

factor lexA and recA, a gene that catalyzes DNA strand exchange
and renaturation. Both genes are known to interact with each other
and to regulate many genes directly and tens or possibly hundreds
indirectly. The four genes (ssb, recF, dinI and umuDC) are regulatory
genes involved in the SOS response system, while the three genes
(rpoD, rpoH and rpoS) code for sigma factors. The topology of the
network is depicted in Figure 3. We applied our algorithm using
different numbers of quantization levels q. At quantization level
q=5, we found statistically significant low-degree approximating
polynomials for three of the nine genes in the network. The inferred
input/output responses are shown in Figure 4. Statistical significance
was evaluated by randomly choosing nine genes from the available
set of 4292 genes, and by applying the reverse engineering algorithm
assuming the same topology as in Figure 3. Functions found in this
way are counted as false positives. This experiment was repeated
1000 times and the number of non-empty lists was counted. Only
in six out of the 1000 iterations, three nodes were simultaneously
inferred in the same network. The overall observed false positive
rate per node was <3.8%. The sigma factors rpoS and rpoH exhibit
identical responses; both are regulated by rpoD and include a self-
loop, which may explain this finding. All inferred polynomials are
linear (u=1), indicating that non-linear functions could not be found
with the provided number of samples and quality of data.

4.2.3 Known E.coli transcription factor network We also applied
our method to the complete transcription factor gene network
available at RegulonDB (Gama-Castro et al., 2008). We removed
all genes from this network for which there were no entries in the
M3D database, so that the reduced network consisted of 1384 genes.
Our algorithm was applied to all nodes in this network with in-
degree 2 or 3 (a total of 526 genes), by setting q=3 for all nodes.
Additionally, polynomials inferred by the Gröbner basis method
were added to the lists. In order to verify that the new constructive
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Fig. 4. Inferred responses of the E.coli. genes lexA, rpoS, rpoH. Each of
these genes has two regulators that can take five different values resulting in
52 =25 possible input combinations v̆i(t) that are shown in the last row. Rows
1–3 show the quinternary response vi(t+1) of the genes to the corresponding
input at time t depicted in row 4.

approach can improve the prediction of the system dynamics, the
following experiment was performed: first, an influence measure
was developed. With the notation x(j,k) = (x1,...,xj =k,...,xm), the
influence of gene vj on vi is defined as

Iji =Ex

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

∑
(k,l)
k 	=l

fi(x(j,k))−fi(x(j,l))

k−l

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (7)

Equation (7) is a mathematical formalism for measuring the
influence of a gene on its regulatees. For all input combinations,
we calculate the change in the output of gene vi when changing
the input of vj from l to k, while fixing all regulators other than
vj . Expression levels are regarded as integers and the expectation
is taken with respect to all regulators except vj . The resulting
variable Iji should have the following properties: the sign of Iji
must give the type of regulation (activating or repressing). The
magnitude |Iji| should correlate with the strength of this interaction.1

Second, the values of Iji were used to indicate an activating influence
(Iji >0) of gene vj on gene vi, or repressing influence (Iji <0).
The magnitude Iji reflects the strength of the influence. It can be
seen that Equation (7) represents a generalization of the notion
of influence developed for PBNs (Shmulevich et al., 2002). We
compared our predictions obtained from Equation (7) with the
influences of regulators annotated in RegulonDB. Influences Iji for
all edges that connect to a gene with in-degree 2 or 3 (1225 edges)
were calculated before and after applying list-decoding. Calculation
of the influence before decoding was based on taking the consensus
of a gene’s output for multiple transitions and simply neglecting
unobserved input combinations in Equation (7). We then ranked
genes according to their influence magnitude |Iji| and compared
the influence predictions based on sign(Iji) to the RegulonDB
annotation for different set sizes of high ranking genes. Figure 5
shows the fraction of the top 600,500,...,200 ranked genes in terms

1Note that several other influence measures can be used instead (see also
the provided Supplementary Material). We focused on this influence model
because it offered the best overall prediction performance for the genes tested.
See Figure 5 for an illustration.
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Fig. 5. Predictive power of influence values as obtained from Equation (7)
for the E.coli transcription factor network before and after our algorithm.
For comparison, we show the performance of a measure based on the Lee
distance further described in the Supplementary Material.

of |Iji| matching the annotation in RegulonDB. While there is no
indication for correlation of matching predictions with high |Iji|
before ‘decoding’, we observe that after ‘decoding’ the predictions
could be significantly improved up to ∼70% matching for the 200
highest ranked genes.

5 DISCUSSION
The presented approach to the reverse engineering of gene network
dynamics builds upon two important principles: that the biological
systems are inherently stochastic and that only small and possibly
erroneous datasets are available for analysis. Our approach accounts
for these facts by setting the problem into a probabilistic and noisy
framework, and by allowing for non-unique solutions explaining
each node dynamics with a whole list of functions. Our algorithm is
guaranteed to find all approximating polynomials that generate time
series within a predefined Hamming distance from the measured
data, as long as the combined number of missing values (erasures)
and errors does not exceed the decoding radius of the list-decoder.
The decoding radius of the list-decoder is influenced by an adjustable
parameter and can be increased at the expense of increased
reconstruction complexity. In our simulations, we used the parameter
setting that ensures lowest complexity. Thus, the performance of our
algorithm represents a lower bound on the achievable performance.
As expected, our algorithm outperforms the Gröbner basis approach
significantly both in the noisy and noiseless scenario. We used
the method based on Gröbner bases as a comparative reference;
however, we would like to point out that this method was originally
developed for joint inference of both the topology and the dynamics
of the network. Due to the fact that there do not exist other
known approaches within this modeling framework, and since both
methods are based on different assumptions, we think that it is
important to perform such a comparison within the proposed context.
However, the results of this comparison must be interpreted with
care. Many methods concentrating solely on the inference of the
network topology are known (Dimitrova et al., 2007), and it may
be reasonable to separate the topology inference problem from the
dynamics inference problem. The application of our algorithm to
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time-course data from E.coli validates the usefulness of our approach
even with the present small amount of data available. The analysis
on the SOS network suggests that at least some gene functions can be
approximated by low degree polynomials, while more data seems to
be necessary for robust regression of other functions. Furthermore,
our approach is constructive in the sense that it returns well-defined
functions that specify the response to all possible combinations of
inputs. The results regarding the transcription factor network of
E.coli also show that our constructive approach can significantly
improve the analysis of certain features of system dynamics, such
as gene influence.
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