
List-Decoding of Linear Functions and Analysis
of a Two-Round Zero-Knowledge Argument

Cynthia Dwork1, Ronen Shaltiel2, Adam Smith3�, and Luca Trevisan4��

1 Microsoft Research, SVC; 1065 La Avenida Mountain View, CA 94043 USA.
dwork@microsoft.com

2 Department of Computer Science and Applied Math,
The Weizmann Institute of Science, Rehovot 76100 Israel.

ronens@wisdom.weizmann.ac.il
3 MIT Computer Science and AI Lab, Cambridge, MA 02139.

adsmith@mit.edu
4 University of California, Berkeley, CA 94720.

luca@cs.berkeley.edu

Abstract. Dwork and Stockmeyer showed 2-round zero-knowledge
proof systems secure against provers which are resource-bounded dur-
ing the interaction [6]. The resources considered are running time and
advice (the amount of precomputed information). We re-cast this con-
struction in the language of list-decoding. This perspective leads to the
following improvements:

1. We give a new, simpler analysis of the protocol’s unconditional secu-
rity in the advice-bounded case. Like the original, the new analysis
is asymptotically tight.

2. When the prover is bounded in both time and advice, we substan-
tially improve the analysis of [6]: we prove security under a worst-
case (instead of average-case) hardness assumption. Specifically, we
assume that there exists g ∈ DTIME(2s) such that g is hard in
the worst case for MAM circuits of size O(2s(1

2+γ)) for some γ > 0.
Here s is the input length and MAM corresponds the class of circuits
which are verifiers in a 3-message interactive proof (with constant
soundness error) in which the prover sends the first message. In con-
trast, Dwork and Stockmeyer require a function that is average-case
hard for “proof auditors,” a model of computation which generalizes
randomized, non-deterministic circuits.

3. Our analyses rely on new results on list-decodability of codes whose
codewords are linear functions from {0, 1}� to {0, 1}�. For (1), we
show that the set of all linear transformations is a good list-decodable
code. For (2), we give a new, non-deterministic list-decoding proce-
dure which runs in time quasi-linear in �.

� Work performed while visiting Microsoft Research, SVC.
�� Work supported by NSF grant CCR-9984703, a Sloan Research Fellowship and an

Okawa Foundation Grant.

M. Naor (Ed.): TCC 2004, LNCS 2951, pp. 101–120, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

102 C. Dwork et al.

1 Introduction

In this paper we consider 2-round (that is, two-message) zero-knowledge proof
systems for NP. Recently, Dwork and Stockmeyer constructed 2-round, black-
box, public-coin, zero-knowledge interactive arguments for all of NP, in a model
in which the prover is resource-bounded [6].

Two kinds of bounds are considered: on the running time of the prover during
the interaction, and on the prover’s advice, that is the number of bits of advice
the prover may have access to during the interaction.

In a little more detail, the prover is split into a preprocessing part and an in-
teraction part. No resource-boundedness is assumed during preprocessing—only
the resources used during the protocol are limited. In the advice-bounded case,
only a bounded amount of information may be passed from the pre-processing
part to the interaction part; in the time-bounded case, the running time of the
interaction part is bounded. By “bounded”, we mean that the resource bounds
are fixed polynomials in the security parameter.

The Dwork-Stockmeyer (DS) protocol uses as a primitive a linear function f
with a certain hardness property. The hardness of f is used to prove the sound-
ness of the protocol against resource-bounded provers. (The specific hardness
property varies according to which resources of the prover are bounded; very
roughly, f must be hard to compute on random inputs by a circuit with the
interacting prover’s resources, plus limited non-determinism.) For the case of
advice-bounded provers, they show that for each �, if f� (f restricted to {0, 1}�)
is a random linear function from {0, 1}� to {0, 1}�, then with high probability
the chosen f� will yield a protocol with soundness error 2−�1/d

, for any constant
d > 1. For provers that are time-bounded (and restricted to polynomial advice,
but with no specific polynomial bound on advice) they conjecture that a fixed,
efficiently computable function f exists that satisfies the appropriate hardness
property, but the conjecture is not shown to be implied by standard complexity
or cryptographic assumptions, and no candidate for such an f is given.

The goal of this work is a better understanding of the hardness assump-
tions behind the protocol’s soundness. We show that the standard connection
between list-decodable error-correcting codes and average-case hardness (see Re-
lated Work) holds in this setting. The challenge in applying this connection
is that the DS protocol requires linear functions—this limits both the kinds
of codes one can use and the running time of the list-decoding algorithms.
Nonetheless, the connection allows us to give a simpler proof that a random
linear function has the required hardness. We also show that a strong, but plau-
sible, complexity-theoretic assumption implies the existence of a fixed function
f satisfying the hardness condition needed to make the Dwork-Stockmeyer pro-
tocol sound against simultaneously time- and advice-bounded provers.

In the rest of this section, we discuss, informally, the Dwork-Stockmeyer
protocol, the connection with coding theory, and our results.

List-Decoding of Linear Functions and Analysis 103

The Dwork-Stockmeyer Protocol

Here is an informal description of the interaction portion of the Dwork-
Stockmeyer protocol. The protocol is based on the existence of a “hard” function
f (more on the complexity requirements on f later). Suppose the prover wants to
prove that τ ∈ L, where L is an NP language. Then the verifier sends a random
x, and the prover replies with a string β and a witness-indistinguishable proof
of (roughly) the statement “either τ ∈ L or β is a valid encryption of f(x).”

Intuitively, the protocol is complete because the honest prover will just send a
random β and will carry out the non-interactive proof using the witness for τ ∈ L;
the protocol is simulatable because the simulator (that is not resource bounded)
will give a β that is an encryption of f(x) and will use this as the witness for the
zap. The main part of [6] involves an implementation that realizes this informal
intuition. The main focus of this paper is the soundness proof for the protocol,
and readers may skip the details of the protocol itself if they wish.

Regarding soundness, if τ �∈ L, then a cheating prover must be able to com-
pute an encryption of f(x) given a random x, but (still intuitively) this is difficult
if f is computationally hard and the prover is resource-bounded. A number of
technical issues arise in formalizing the intuition above; for example, it is not
clear that if f is computationally hard, then producing an encryption of f is also
computationally hard. Finally, it remains to find the right complexity measure
for f which makes the analysis possible.

To this end, Dwork and Stockmeyer introduce the notion of a proof auditor.1

A proof auditor is an abstract computational model that, roughly speaking, is a
randomized and non-uniform version of NP ∩ coNP . The analysis in [6] shows
that a prover that successfully cheats with probability χ can be converted into a
proof auditor of similar complexity (that is, advice size and running time) that
computes f on roughly a χ fraction of inputs.

Hence, for the protocol to be sound, one must use functions f that are hard on
average against proof auditors of bounded complexity. For completeness, there
is another requirement: one should be able, in polynomial time, to compute an
encryption of f(x) given an encryption of x. This is possible if f is a linear
function over GF (2) and if the encryption scheme is XOR malleable. 2 The
Goldwasser-Micali cryptosystem, based on the quadratic residuosity assumption,
is XOR-malleable.

In summary, the function f to be used in the Dwork-Stockmeyer protocol
should be a linear function over GF (2) and should be hard on average against
resource-bounded proof auditors. If we want the protocol to be sound against
advice-bounded provers (with no running time restriction), then f has to be
hard against advice-bounded proof auditors (with no running time restriction).
If we want the protocol to be sound only against time-bounded provers (with an
1 The proof auditor is an imaginary device used in the analysis of the protocol, it is

not part of the protocol.
2 A 1-bit encryption scheme is XOR-malleable if one can create an encryption of a⊕ b

from encryptions of a and b. The value of malleable encryption schemes was first
noted by Rivest, Adleman and Dertouzos [19].

104 C. Dwork et al.

Protocol SDS
for language L, using function f : {0, 1}� → {0, 1}� which is linear on GF (2),
committing encryption scheme E that is XOR-malleable, a probabilistic public-key
cryptosystem generator G, a zap (2-round witness-indistinguishable proof system) Z,
and constants a, d, e; with inputs τ and w.

0. Before the protocol starts, P does the following precomputation:
(i) Run G(k) to produce an encryption key E. Let s be the random string used

to produce E.
(ii) Let � = kd and x∗ ∈R {0, 1}�, choose α ∈R E(x∗) and set β = φf (E, α).

Here φf (E, α) is a uniformly distributed encryption of f(x∗). The existence
of a function φf (that takes an encryption key E and ciphertext α ∈ E(x)
and produces ciphertext β ∈ E(f(x))) follows from the linearity of f and
malleability of E .

(Note: the length of the precomputed information, E, s, α, β, is O(�k).)
1. V −→ P : V chooses x ∈R {0, 1}� and an additional string ρ of random bits that

will used in zaps, and sends x and ρ to P .
2. P −→ V :

(i) Send to V : τ , E, α, and β.
(ii) For using the witness w proving that τ ∈ L, send the second-round message

of a zap that

τ ∈ L ∨ (E ∈ G(k) ∧ α ∈ E(x)). (1)
3. V accepts iff:

(i) P responds within time ake (time-bounded case only), and
(ii) β = φf (E, α) and
(iii) the verifier for the zap in (1) accepts.

Fig. 1. Protocol SDS (simplification of Dwork-Stockmeyer [6] protocol).

advice bound also implied by the time bound), then f has to be hard against
time-bounded proof auditors.

Dwork and Stockmeyer [6] give a complicated proof that a random linear
function is hard against advice-bounded proof auditors. They conjecture that
there are explicit functions that are hard against time-bounded proof auditors,
but they give no such construction based on other complexity assumptions.

Figure 1 gives a more precise description of the DS protocol. The version here
is somewhat simplified from the original one, and allows us to assume that the
proof auditor coming from the reduction is “single-valued” (see Theorem 2.1).
Because the focus of this paper is on the assumptions behind the protocol’s
soundness, we refer the reader to [6] or to the full version of this paper for more
details on the protocol itself.

Our Results

Advice-bounded Proof Auditors. Our first result is a connection between list-
decodable codes and hardness against advice-bounded proof auditors (of arbi-
trary running time). We show that if we fix any error-correcting code with good

List-Decoding of Linear Functions and Analysis 105

combinatorial list-decoding properties3, and we pick a random codeword c from
the code and let f be the function whose truth-table is c, then with high proba-
bility, f is very hard on average against proof auditors of bounded advice. (This
is very similar to Trevisan’s proof [24] that a random member of a list-decodable
code is average-case hard for small circuits with high probability.)

We also show that the set of all linear functions has reasonably good
list-decoding properties, even up to twice the minimum distance of the code.
It follows that a random linear function is hard on average against advice-
bounded proof auditors, and there exist linear functions f for which the Dwork-
Stockmeyer protocol is unconditionally sound.4 Dwork and Stockmeyer had al-
ready proved that random linear functions are hard for advice-bounded proof
auditors, but our proof is simpler, and it seems to get to the heart of what makes
their protocol sound.

Adding Time-Boundedness. Next, we turn to proof auditors that are simulta-
neously time- and advice-bounded. We show how to construct an explicit hard
function starting from more standard complexity-theoretic assumptions.

Roughly speaking, we start from a function g that is hard in the worst case
against a certain type of sub-exponential non-deterministic circuit. We view the
truth-table of g as a matrix A, and we define f to be the linear mapping x �→ Ax.
We then show that if there is a proof auditor that can compute f well on average,
then there is a non-deterministic circuit that can reconstruct A, and therefore g,
violating g’s hardness assumption. This analysis can be seen as an algorithmic
version of our results that linear functions have good combinatorial list-decoding
properties: here we do the list-decoding explicitly, using non-uniformity to choose
from the list, and using non-determinism to help with the decoding.

Specifically, we prove security under the assumption that there exists g ∈
DTIME(2s) such that g is hard in the worst case for MAM circuits of size
O(2s(1

2+γ)) for some γ > 0. Here s is the input length and MAM corresponds
the class of circuits which are verifiers in a 3-message IP (with constant soundness
error) in which the prover sends the first message.

Challenges of List-Decoding Linear Functions. The use of list-decoding to con-
struct hard-on-average functions is not new (see Related Work). However, the
fact that we need hard linear functions adds challenges which are the focus of
the results described above. First of all, the code itself must be a sub-code of the
set of all linear functions. More importantly, there is very little room for play
in the hardness assumptions. Any linear function can be computed exactly by a
circuit of size and time O(�2) on inputs of length �. This means there is at most a
quadratic gap between the resources required to remember a single pair x, f(x)
and the resources required to cheat in the [6] protocol. This, in turn, means
that the reductions we give (i.e. the list-decoding algorithms) must take much
3 That is, a code such that every sphere of bounded radius contains few codewords.
4 Alternatively, this non-explicit construction can be replaced by a preprocessing phase

in which V (or a trusted party) randomly chooses such a function and announces it.

106 C. Dwork et al.

less than quadratic time. For this reason we cannot use standard list-decoding
techniques and complexity reductions, since those typically involve polynomial
blow-ups.

Non-linear Functions. It is an open question whether completely malleable en-
cryption systems exist. By a completely malleable encryption system we mean
that given the encryption of x and a circuit C, one can compute an encryp-
tion of C(x) (malleable shemes were originally called privacy homomorphisms
by Rivest, Adleman and Dertouzos [19]).

If semantically secure, completely malleable encryption is possible, then one
does not need f to be linear in the Dwork-Stockmeyer protocol. This avoids
the difficulties described above. In particular, one can use Reed-Solomon codes
instead of linear functions in the case of advice-bounded proof auditors, and a
different (more standard) transformation of a worst-case hard function g into an
average case hard function f in the time-bounded case. This leads to a larger
(arbitrary polynomial) gap between the resources of an honest prover and those
required to cheat. However, the assumption of a completely malleable cryptosys-
tem seems very strong; no candidate is known.

Related Work. The work of Dwork and Stockmeyer followed a long line of
work on protocols whose participants have bounded computational power and/or
bounded communication; we refer the reader to [6] for a discussion. We focus here
on the origins of the techniques we use and on previous uses of derandomization
in cryptography.

Derandomization Tools in Cryptography. The mathematical tools used in de-
randomization, such as error-correcting codes, limited independence, expander
graphs, and list-decoding, have been used in cryptography for a long time, a
prime example being Goldreich-Levin hard bits [7]. There has been a recent
explosion of work in cryptography using these tools more explicitly—see, for
example, the work of Lu [14] and later Vadhan [26] improving encryption proto-
cols for Maurer’s bounded storage model [16,1] (the work of Lu partly inspired
this work). The most closely related work to ours is that of Barak, Ong and
Vadhan [2]. By de-randomizing the 2-round zap construction in [5], Barak et
al. obtained uniform non-interactive witness-indistinguishable proofs and argu-
ments ([5] shows the existence of a non-uniform non-interactive protocol). As in
our work on the simultaneously advice- and time-bounded case, [2] base security
of a cryptographic protocol on an assumed worst-case circuit lower bound.

List-Decoding and Average-Case Hardness. The main technique which we
take from the derandomization literature is the connection between list-decoding
and average-case hardness. The connection had been part of the oral tradition
of the community since the early 1990s, due to the independent observation
by Impagliazzo and Sudan that the result of [7] could be interpreted as a list-
decoding algorithm for the Hadamard code and that other list-decodable codes
could be used to prove similar results.

More specifically, our proof that linear functions form a combinatorially good
list-decodable code relies on a lemma of Chor and Goldreich [4] on list-decoding

List-Decoding of Linear Functions and Analysis 107

punctured Hadamard codes. In the reduction of Section 4, we need to show
that the problem of list-decoding a certain code with certain parameters can be
solved in quasi-linear “MAM-time.” This result is inspired by a reduction in [25],
that also involves very efficient list-decoding algorithms that are sped-up using
non-determinitism (actually, in [25], list-decoding is performed by circuits with
Σi gates, for various i).

Finally, the results on non-linear functions rely on the techniques of Trevisan
and Vadhan [25] just mentioned, and also on the techniques of [13,18,20] which
gave hardness results for non-deterministic circuits.

2 Resource-Bounded Provers and Proof Auditors

As discussed above, Dwork and Stockmeyer reduced the soundness of their pro-
tocol to the existence of linear functions which are hard for i.o. proof auditors
with bounded resources (recall that completeness and zero-knowledge follow from
more standard assumptions). In this section we collect the results we will need
from [6]. First, we give a precise definition of proof auditors and state the reduc-
tion from [6]; we conclude with the statement of their result on the hardness of
linear functions for advice-bounded auditors.

In our discussion, we emphasize that the proof auditors coming from the
reduction can be made single-valued, a property which we will use in the sequel.

Definition 2.1 (i.o. proof auditors). An i.o. proof auditor for function f is
a randomized non-deterministic device. In order to bound the non-uniformity
involved, we fix a universal Turing machine UTM which takes an advice string
p ∈ {0, 1}a. Let A denote the circuit corresponding to the behaviour of the uni-
versal machine on advice string p. That is, for any input ω ∈ {0, 1}∗, we say
A(ω) = UTM(p, ω).

The circuit A takes an input x ∈ {0, 1}�, as well as a random input r ∈
{0, 1}R and a non-deterministic input z, and outputs a pair (b, v) ∈ {0, 1} ×
{0, 1}�. We say that an i.o. proof auditor has agreement ε with a function f if
for infinitely many values � ∈ N:

Pr
x∈{0,1}�,r∈{0,1}R

[
∀y

(∃z ∈ {0, 1}N (A(x, r, z) = (1, y)) ⇐⇒ y = f(x)
)]

≥ ε(�)

The important parameters of an auditor are its advice bound a, its random-
ness bound R, its non-determinism bound N , its success probability ε, and its
running time T . Here “i.o.” stands for infinitely often (over � ∈ N).

An i.o. proof auditor A is said to be single-valued everywhere if for any fixed
input x and sequence of coin tosses r, there is at most one value y

def= f̃A(x, r)
for which there exists a string z such that A(x, r, z) = (1, y).

In other words, an single-valued i.o. proof auditor ε-approximates f if there
is an ε fraction of the (input,coins) pairs (x, r) on which the auditor outputs a
unique y = f(x). A given circuit A can ε-approximate several different functions.

108 C. Dwork et al.

Theorem 2.1 (Dwork, Stockmeyer [6]). Let P ∗ be a cheating prover which
is limited, during the protocol, to advice bound A∗(k), time bound T ∗(k), and
randomness R∗(k). Let ε∗(k) denote P ∗’s probability of cheating successfully.
There exist constants c1, c2, c3, e such that there is a single valued i.o. proof
auditor for f having the following bounds, where k =

⌊
�1/d

⌋
for a constant d

appearing in the description of the protocol:

advice a(k) ≤ A∗(k)
running time T (k) ≤ T ∗(k) + O(ke + �kc1 + kc2)

non-determinism N(k) ≤ O(kc3)
randomness R(k) ≤ R∗(k)

agreement probability ε(k) ≤ ε∗(k) − 2 · 4−k

Thus, the DS protocol for f is sound against a certain class of cheating provers
if f has no proof auditors from (roughly) the same class with non-negligible
agreement.

One of the main results of [6] shows that appropriately “hard” linear functions
f exist for the advice bounded case—hence, no special assumptions are neces-
sary beyond the XOR malleable cryptosystem (which can be based on standard
number theoretic assumptions), and the existence of trapdoor permutations. 5

Theorem 2.2 (Random linear functions, [6]). With probability 1 − δ, a
random linear function f : {0, 1}� → {0, 1}� has no proof auditor with success
rate ε and advice bound a = �2 − 3 log 1

ε + log δ.

3 Advice-Bounded Proof Auditors

In this section we show that a random codeword from a list-decodable code
defines a hard function for advice-bounded proof auditors, and we show that
linear functions have good list-decodability properties. These two results imply
that random linear functions are hard for advice-bounded proof auditors.

Definition 3.1 (List-decodable code.). Let Σ be a finite alphabet. An injec-
tive mapping C : {0, 1}n → ΣL is an (ε, t(ε)) list-decodable code if for all ε > 0
and all u ∈ ΣL (u need not be in the image of C), there are fewer than t(ε)
codewords (i.e., elements of the image) at Hamming distance L(1 − ε) or less
from u.

We are interested in codes which support list-decoding when almost all of the
positions in a codeword have been corrupted. We think of elements in ΣL as
functions mapping {0, 1, . . . , L − 1} to elements of Σ in the following natural
way: for 0 ≤ i < L, i is mapped to the ith element in the L-tuple. Let v be a
5 Although the security of the Goldwasser-Micali cryptosystem implies the existence

of trapdoor permutations based on factoring, we have no reason to assume that this
will be true of all XOR-malleable systems.

List-Decoding of Linear Functions and Analysis 109

codeword. For all functions g : {0, 1, . . . , L − 1} → Σ, g has agreement ε with v
if and only if g is within distance (1 − ε)L of v.

We begin with some intuition.
Suppose that an auditor is a deterministic machine restricted to a bits of

advice (think of the advice as a description of the auditor, to be fed to a universal
Turing machine). Suppose we also have a code such that in any ball of relative
radius 1 − ε there are at most t = t(ε) codewords. The number of codewords
that have agreement ε with some auditor is then at most t2a. If we have 2n

codewords and we pick one of them at random, then the probability that we
pick a codeword having agreement ε with some auditor is at most t2a/2n. This
intuition does not quite suffice, since we are actually using two different notions
of agreement: agreement of a function (g) with a function (defined by a codeword
v), and agreement of a proof auditor with a function. In the first case, the notion
of agreement is over choices of inputs to the function: two functions f, g have
agreement ε if the probability over inputs x that f(x) = g(x) is ε. In the second
case, the probability is also over random coin tosses made by the auditor (see
Definition 2.1).

In the proof of the theorem below, we use the list-decoding property, which
talks about agreement of the first kind, to bound the number of codewords with
which an auditor can have agreement of the second kind.

Theorem 3.1. Let C : {0, 1}n → ΣL be a list-decodable error-correcting code,
with L = 2d, Σ = {0, 1}m, and list size t(ε). Let c ∈R C, and let f : {0, 1}d →
{0, 1}m be given by f(i) = ci. With probability 1−δ, there is no single-valued i.o.
proof auditor for f with advice bound a = n − log t(ε2/4) − log(2/ε) − log(1/δ)
and which has agreement ε or more with f . 6

Proof. Recall that we describe an auditor as an input to a universal Turing
machine. Consider a particular auditor A = UTM(p, ·), where |p| = a. We may
define a second auditor, A′, that has no non-deterministic inputs, as follows. On
input (x, r), A′ tries all possible values for z to see if there is a unique y such
that A(x, r, z) = (1, y) as z varies. If no such y exists, then A′(x, r) outputs
(0, ⊥). If such a y exists, then A′(x, r) outputs (1, y). Note that, by construction
of A′, ∀f

Pr
(x,r)

[A′(x, r) = (1, f(x))] = Pr
(x,r)

[∃z(A(x, r, z) = (1, y)) ⇐⇒ y = f(x)]. (2)

Thus, for all ε and all functions f , A is a single valued ε-auditor for f if and
only if A′ is an ε-auditor for f .

At this point, it may be that for any given x, there may exist many r′, y′

such that A′(x, r′) = (1, y′). We wish to restrict our attention to those values
y′ that occur with sufficient support among the choices for r. To this end, we
define a third auditor, A′′: On input (x, r), A′′ runs A′(x, r) to obtain (b, y). If
6 The parameter m does not appear explicitly in the proof of Theorem 3.1. In fact, m

affects the function t(ε) in the definition of a list-decodable code. The proof never
needs specific values for this function.

110 C. Dwork et al.

b = 0, then A′′(x, r) outputs (0, ⊥). If b = 1, then A′′(x, r) tries enough of the
possible choices for r necessary to see if, for at least an ε/2 fraction of the r’s,
A′(x, r) = (1, y). If so, A′′(x, r) outputs (1, y); otherwise it outputs (0, ⊥). A′′

has the property that, on any particular x, different values of r can give rise to
at most 2/ε different values of A′′(x, r).

Lemma 3.2 If A′ is an ε-auditor for f , then A′′ is an ε/2-auditor for f .

Proof. For a particular function f , let Wf (x) denote the fraction of random
inputs r such that A′(x, r) = (1, f(x)). We know that the expected value (over
choice of x) of Wf (x) is the probability (over x and r) with which A′ agrees with
f . If E denotes expected value, we have:

Ex[Wf (x)] = Pr
x,r

[A′(x, r) = (1, f(x))] ≥ ε. (3)

By construction, A′′(x, r) = (1, f(x)) precisely when both A′(x, r) = (1, f(x))
and Wf (x) ≥ ε/2, so that

Pr
x,r

[A′′(x, r) = (1, f(x))] = Ex[Wf (x)|Wf (x) ≥ ε/2] · Pr
x

[Wf (x) ≥ ε/2].

Hence we can write:

ε ≤ Ex[Wf (x)]
= Pr

x,r
[A′′(x, r) = (1, f(x))] + Ex[Wf (x)|Wf (x) < ε/2] · Pr

x
[Wf (x) < ε/2]

≤ Pr
x,r

[A′′(x, r) = (1, f(x))] + Ex[Wf (x)|Wf (x) < ε/2]

The second term in the last sum can be at most ε/2, since we condition on the
fact that Wf (x) < ε/2. Thus, the probability (over x and r) with which A′′

agrees with f must be at least ε/2. �

To conclude the proof of Theorem 3.1, we let J = �2/ε�, and,
for each x, choose values g1(x), ..., gJ(x) so that {g1(x), ..., gJ(x)} =
{y : ∃r A′′(x, r) = (1, y)}. The probability (over x and r) with which A agrees
with f is at most the sum of the agreements of f with the functions g1(·), ..., gJ(·).
Assuming A′′ is an ε/2 auditor for f , there must be some i ∈ [J] such that f
has agreement ε

2J = ε2/4 with gi. Thus, the total number of functions f for
which the original A is an ε auditor is at most J · t(ε2/4) = 2

ε t(ε2/4). If describ-
ing the auditor requires only a bits of advice, we can describe all the functions
which have ε-auditors with advice bound a using a + log t(ε2/4) + log J bits.
Since there are 2n codewords, choosing one at random will yield a function
with an ε-auditor with probability at most (2a+log t(ε2/4)+log(2/ε))/2n = δ (when
a = n − log t(ε2/4) − log(2/ε) − log(1/δ), as in the theorem). Thus, choosing a
codeword at random yields a function not having an ε-auditor with advice bound
a with probability at least 1 − δ. �

List-Decoding of Linear Functions and Analysis 111

Now let C be the set of all linear functions mapping � bits to � bits. Each
element of C can be described by �2 bits (as a matrix). Letting Σ = {0, 1}� and
L = 2�, we can also think of each linear function as a vector in ΣL by listing
its evaluation on all possible inputs. In that view, C is an error-correcting code
with dimension �2 and minimum distance L/2

Proposition 3.3 The code C has list-size t(ε) = 22.7�(log 1
ε + 4

3) = (1
ε)O(�).

Note that the proposition does not follow from the Johnson bound [11,10],
which is the usual tool for proving list-decodability of a code. That bound applies
when the radius of interest is less than the minimum distance of the code. In our
case, the minimum distance is L/2, but we’re interested in bounding the number
of words within distance L(1 − ε).

Proof. (Sketch.) For any v ∈ ΣL and any x ∈ {0, 1}�, we write v(x) to denote
the value of v applied to x (recall, words in ΣL are functions). To prove the
Proposition, it suffices to demonstrate how to describe any �×� matrix A having
agreement ε with v using only 2.7�(log 1

ε +4/3) bits. Let a1, ..., a� ∈ {0, 1}� denote
the rows of A, and vi(x) denote the ith bit of v(x).

Fact 3.4 (Chor, Goldreich [4]) If S ⊆ {0, 1}� has at least ε · 2� elements,
and g : S → {0, 1} is an arbitrary function, then there are at most 9/ε vectors
a ∈ {0, 1}� such that Prx∈S [g(x) = a · x] > 2/3, where a · x denotes the inner
product of a and x.

Let Ei denote the event that Ax and v(x) agree in the ith bit, for x ∈ {0, 1}�

(that is, ai · x = vi(x), where ai is the ith row of A). We have

ε ≤ Pr
x

[E1 · · ·E�] = Pr
x

[E1] · Pr
x

[E2|E1] · · ·Pr
x

[E�|E1 · · ·E�−1].

We first note that at most log3/2(1/ε) < 1.7 log(1/ε) terms in this product
can be smaller than 2/3. To describe the corresponding “bad” rows of A, we
specify ai explicitly, using a total of at most 1.7� log 1

ε bits.
Now for each of the remaining “good” rows, we have Pr[ai · x =

vi(x)|E1 · · ·Ei−1] ≥ 2/3. Letting Si =
{
x ∈ {0, 1}�|E1 ∧ · · · ∧ Ei−1

}
, we can ap-

ply Fact 3.4 to see that each such “good” ai requires only log(9/ε) ≤ log(1/ε)+4
bits to specify (given the description of the previous ones). Hence, the total num-
ber of bits required to describe A is 1.7� log 1

ε + �(log 1
ε + 4).

�
The result of [6] on advice bounded provers is now a corollary to Proposi-

tion 3.3 and Theorem 3.17. In the next section, we address the non-constructive
nature of these results.
7 The bound in [6] is slightly stronger: the 6 is replaced by 3. Another proof can

be obtained using a constructions of sets of 2�2−2� log 1
δ linear functions which have

pairwise relative distance 1−δ2/4 (Meshulam, Sphilka [17,21]). Yet another possible
approach comes from the results of Mansour et al. [15] on universal hash families.
Unfortunately, they are too general to yield tight bounds for binary linear maps.

112 C. Dwork et al.

Corollary 3.5 ([6], Theorem 7.8 on advice-bounded provers) There ex-
ists a family of linear functions {f�}�∈N, such that the Dwork-Stockmeyer proof
system has soundness error at most ε + 2 · 4−k against provers who are limited
to �2 − 6� log 1

ε bits of advice (for all ε < 1/32).

4 Simultaneously Time- and Advice-Bounded Provers

We now turn our attention to the case of provers that are simultaneously time-
and advice-bounded during the execution of the protocol. We show how to con-
struct efficiently decodable linear functions f that have no simultaneously time-
and advice- bounded auditors, based on the rather natural assumption that there
exist functions g : {0, 1}s → {0, 1} computable in time 2O(s) with no MAM cir-
cuits (defined below) of size O(2s(1

2+γ)), for some γ > 0. We create a matrix
for the linear function by setting its entries to be the truth table of a suitably
hard function, call it g. This hard function may have a very short description.
The role of the advice bound is again to prevent a cheating prover from bringing
the entire matrix of the linear function into the interaction; however, now the
prover may be able to bring in the short description of the hard function g, from
which the linear function is constructed. It is the time bound, together with
the assumed hardness of g, that prevents a cheating prover from computing the
entries in the matrix during the course of the execution of the protocol.

One can view the results of this section as an algorithmic version of the results
of the previous section: not only are there few linear functions in any given ball
of bounded radius, but given the ball, some extra advice, and non-determinism,
each of these linear functions is easy to compute.

The basic schema for our proof comes from the literature on derandomization
and hardness amplification.

Let A be an �× � matrix for a linear function mapping {0, 1}� to {0, 1}�. Let
f̃ : {0, 1}� → {0, 1}� be any (not necessarily linear) function having agreement
ε with A. Then, given a description of f̃ , we can describe A using only log t(ε)
additional bits. This is because, by Proposition 3.3, the linear functions form a
list-decodable code with codewords in ({0, 1}�)2

�

, and f can be represented as a
string in ({0, 1}�)2

�

.
This means that, given a circuit C for f̃ , we can describe A using at most

|C| + log t(ε) bits, where |C| denotes the size of C. We now wish to consider
situations in which this short description of A is in fact a circuit for computing
the bits of A.

Suppose that we have an extremely efficient decoding procedure. That is,
suppose that given

(a) a circuit C̃ that has agreement ε with a codeword given by a matrix A, and
(b) �1+o(1) additional bits of advice (say, to specify A completely),

we can construct a circuit C̃ which, on inputs i, j, outputs Ai,j in time �1+o(1), and
using O(1) calls to C̃. Then the existence of a “small” circuit C̃ which correctly

List-Decoding of Linear Functions and Analysis 113

computes the linear map x �→ Ax with probability ε implies the existence of a
“small” circuit C which, on inputs i, j, computes Ai,j , where “small” means size
O(�(1+γ)) for some constant γ > 0. Thus, if we use the truth table of a hard
function g — one which can’t be computed using “small” circuits — to provide
the bits of the matrix A, then we know that no small circuit can have agreement
ε with the linear map x �→ Ax.

Theorem 4.1. Suppose there exists a function g : {0, 1}s → {0, 1} that is in
E = DTIME(2O(s)), but which has no MAM verifier circuits of size 2s(1

2+γ),
for some constant γ > 0. Then, if XOR-malleable cryptosystems exist, for any
constant γ′ such that 0 < γ′ < 2γ, there is a uniformly constructible Dwork-
Stockmeyer proof system with negligible soundness error against provers with
advice and computation time bounded by O(�1+γ′

), where � is the input/output
length of the public function f , and k = �Θ(1) is the security parameter for the
encryptions and zaps.

In order to prove Theorem 4.1, we first give our result on list-decoding of
linear functions, where the list-decoding circuits we construct are in fact verifiers
for an MAM proof system. We defer the proof of Theorem 4.1 to the end of this
section.

Theorem 4.2. Let F be a field of size q = 2�log 10/ε2�. Let A be a single-valued
i.o. proof auditor with non-uniformity bound a, randomness bound R, time bound
T , and non-determinism bound N (see Definition 2.1). Let f̃A : F �′ ×{0, 1}R →
F be the function computed by A, that is f̃A(x, r) is the single value that A may
output on inputs x, r. Suppose that f̃A agrees with a linear function given by
vector v ∈ F �′

with probability at least ε, in the following sense:

Pr
x,r

[f̃A(x, r) = v · x] ≥ ε.

Then we can construct a verifier circuit Arthur for an MAM protocol which
computes the row vector v ∈ F �′

with probability at least 2/3. The circuit uses
O(a+log �′ log(1/ε)) bits of non-uniform advice (some of these are necessary just
to have v well-specified), and communication O(�′ log 1

ε +R+N) (this corresponds
to non-deterministic advice from Merlin). The running time of the circuit for
Arthur is Õ(T + �′ log 1

ε + R + N).

Proof (of Theorem 4.2). There are three phases to the reduction. First, use non-
determinism (i.e., the first message from the prover Merlin to verifier Arthur) to
guess a candidate vector v′. Next, we use a non-deterministic counting technique,
due to Stockmeyer [22], to verify that the candidate v′ has agreement close to ε
(specifically, ε/2) with f̃ . By Lemma 4.3, there are at most O(1/ε) such vectors.
Finally, we provide the verifier a few bits of advice, enabling it to perform a
test which, among those close vectors, is passed only by v. The remainder of the
advice bits are used as advice in the calls to A. We now describe the details of
the agreement test and the selection of v using short advice.

114 C. Dwork et al.

Agreement Test. Let S ⊆ F �′ × {0, 1}R be the set of pairs (x, r) such that
f̃A(x, r) = v′ · x. We wish to verify that |S| ≥ εq�′

2R. In fact, we only test that
|S| ≥ (ε/2)q�′

2R.
To do this, the verifier chooses a pairwise-independent random sample U

of size M/ε from the set D = F �′ × {0, 1}R, where M is some large constant.
Consider the set U ∩ S. One can choose M appropriately so that when |S| ≤
εq�′

/2, the probability of there being more than 3M/4 points is at most 1/3.
Conversely, when |S| ≥ εq�′

that same probability is at least 2/3. Thus, to allow
Arthur to check that each of the points is also in S, the prover need only send
the verifier 3M/4 points (x, r) in U , together with the non-deterministic inputs
z used by A to produce an output on the input pairs (x, r) (a different z for each
pair).

For representing the sample U and verifying membership efficiently, view D
as the field GF (2�′ log q+R). Then to choose U , the verifier need only choose 2
elements α, β ∈ D at random. To specify an element of U , a string of log 1

ε +
O(1) bits suffices, and it only takes time Õ(�′ log q + R) to reconstruct the full
representation (this is the time needed for multiplication in D).

Using Short Advice to Select v. It remains to give a short test to determine
whether a given v′, having agreement at least ε/2, is the correct v′. Let e =
log(10/ε2). We view v′ as a string of �′ log 10/ε2 = �′e bits, and apply a standard
polynomial fingerprinting scheme.

Namely, choose p = O(�′ log(1/ε) · 1
ε2), such that p is a power of 2, and work

in GF (p). For any string a ∈ {0, 1}�′e, write a as a sequence of �′e
log p elements in

GF (p), and let a(·) : GF (p) → GF (p) denote the polynomial corresponding to
those coefficients. The degree of a(·) is at most D = �′e

log p . Choosing x ∈ GF (p)
at random means that any two distinct strings a, a′ will satsify a(x) = a′(x) with
probability at most D/p < �′e/p. Now there are O(1/ε) strings which we want
to distinguish (Lemma 4.3), and hence O(1

ε2) pairs. Thus, by the union bound
the probability that a random point x fails to distinguish some pair is at most
O(�′e/(pε2)). To ensure that there is an x distinguishing all pairs, we choose p
so as to make this expression less than one. Thus, by appropriately choosing
p, we get that there exists some value x such that all the possible strings v′

have different values of v′(x). The needed advice is only x, v(x), which requires
2 log p = O(log �′ +e) bits. The running time of this procedure is roughly D field
operations in GF (p), which takes no more than �′e

log p Õ(log p) = Õ(�′e) steps.
(This is less than the computation time necessary in previous phases.) �

The proof above uses the following technical lemma:

Lemma 4.3 When q ≥ 10/ε2, there are at most O(1/ε) candidate vectors v′ ∈
F �′

which have agreement ε/2 with any fixed function f̃ : F �′ × {0, 1}R → F .

Proof. Any two distinct linear functions over F agree on at most a 1/q = ε2/10
fraction of the points in the set F �′ × {0, 1}R. By the Johnson bound [11,10],
any code with minimum relative distance 1 − ε2/10 has list size t(ε) ≤ 3/ε. �

List-Decoding of Linear Functions and Analysis 115

Finally, we can prove Theorem 4.1:

Proof (Proof of Theorem 4.1). Fix some soundness target ε, and choose q to
be the smallest power of two greater than 10/ε2. Let log(1/ε) = �γ′

, so that
� log 1

ε = O(�1+γ′
) and ε is negligible in �.

Let �′ = �/ log q. We will use a truth table for g to specify the bits of the
matrix A ∈ GF (q)�′×�′

describing the (linear) function f to be used for the
proof system. We obtain the truth table by listing the value of g on all strings
of length log(�2). Since g ∈ E, we can compute the truth table in time poly(�).
Moreover, since f is also linear of GF (2), the protocol will be complete (based
on the existence of XOR-malleable cryptosystems).

By choosing a sufficiently small constant α such that k = �α, we can ensure
that the reduction from prover to proof auditor loses no more than � ·kc1 ≤ �1+γ′

(additively) in both running time and required advice (see Theorem 2.1). Thus a
cheating prover which uses time and advice O(�1+γ′

), no non-determinism, and
success probability ε+2·4−k, can be converted to a single-valued i.o. proof auditor
which has time and advice bounds �1+γ′

and success rate ε (the single-valued
property comes from the specifics of the Dwork-Stockmeyer reduction).

Now a proof auditor for a linear map x �→ Ax is, in particular, a proof auditor
(with at least the same success rate) for the linear function given by any row v of
A. By Theorem 4.2, we can construct a verifier for an MAM proof system which
computes the row vector v, and whose circuit size is Õ(T+a+� log 1

ε) = O(�1+2γ).
We can modify this circuit to take an additional input i ∈ {1, ..., �′}, which
tells it which row of A it should be computing, so that essentially the same
reduction produces a verifier circuit of size O(�1+2γ) which can be used verify
the correctness of any bit of the matrix A.8 This contradicts the (worst-case)
hardness assumption for g, and hence we get that the protocol is secure against
provers of time and advice bound �1+γ′

. �

5 Assuming Complete Malleability

If we are willing to assume the existence of a completely malleable cryptosystem
we are no longer forced to work with functions f which are linear. To guarantee
the security of the protocol in this setup we only require that f does not have
a proof auditor which is simultaneously time bounded and advice bounded. We
have no candidate for arbitrarily malleable cryptosystem. Nonetheless, in this
section we give two additional illustrations of the power of such a (hypothetical)
cryptosystem.

8 The only difficulty here is that there were log �′ log 1
ε

bits of advice which were
specific to v and hence to the index i. However, including all �′ possible advice
strings that Arthur might use increases the circuit size by at most O(�′ log �′ log 1

ε
).

This is dominated by other terms in the circuit size.

116 C. Dwork et al.

5.1 Advice-Bounded Provers and Reed-Solomon Codes

Theorem 3.1 allows us to use almost any good list-decodable code, regardless
of linearity. (Polynomial-time computability of any particular component of a
codeword is still necessary for completeness.) A natural candidate is the Reed-
Solomon code. Suppose that we want a power p gap between the advice needed
by the honest prover during the proving time and the advice necessary in order to
cheat with probabilitty (roughly) ε. If we consider polynomials of degree d = �p−1

over the field F = GF (2�), then we get a class of functions such that (a) any
function is describable by �p bits, and (b) any two distinct functions from the
class agree on at most a fraction d/2� of the input values in F . By the Johnson
bound [11,10], the corresponding Reed-Solomon code has list size t(α) ≤ 3/α for
any α > 4

√
d/2�.

Setting log 1
ε = �/5 for concreteness, we can apply Theorem 3.1. Using α =

ε2/2, we see that as long as cheating provers have less than �p − log t(α) −
log(1/ε) = �p(1 − o(1)) bits of advice, then there exists a function f (given by
some codeword) for which a cheater has at most a probability of ε + 2 · 4−k

chance of breaking the protocol, whereas the honest prover requires advice � · kc

for some constant c. This in fact also requires d/2� < ε4/32, but this holds
whenever 32�p−1 < 2�/5, i.e. for all sufficently large �.

5.2 Simultaneously Time- and Advice-Bounded Provers

To guarantee the security of the protocol in this setup we only require that f
does not have a proof auditor which is simultaneously time bounded and advice
bounded.

In this section we show that such a proof auditor gives rise to variants of
non-deterministic circuits which compute f on a non-negligible fraction of the
inputs. We can use “hardness amplification” techniques to construct (non-linear)
functions f which are hard on average from functions h which are hard on the
worst case. This allows us to base the security of the Dwork-Stockmeyer protocol
on more standard complexity assumptions in which the time it takes to compute
the hard function is an arbitrary polynomial in its hardness: There are functions
computable in E which cannot be computed on the worst case by small Σ3-
circuits.9 We remark that analogous assumptions are used in derandomization
to obtain that AM = NP [13,18,20] and to construct extractors for samplable
distributions [25].

Theorem 5.1. Suppose there exists a constant γ and a function h = {hs},
hs : {0, 1}s → {0, 1} computable in time 2O(s) such that h cannot be computed
by Σ3-circuits of size 2γs, and assume the existence of a completely malleable
cryptosystem. Then let n denote the length of the statement τ , and k > n denote
the security parameter. For every constant p > 1 the DS protocol is secure with
soundness ε∗(k) = Ω(2−k), dishonest prover bounds: T ∗(k) = a∗(k) = kp and
9 A Σi-circuit is a circuit which can have gates which compute a complete language

in Σi (the i’th level of the polynomial hierarchy).

List-Decoding of Linear Functions and Analysis 117

honest prover bounds T (k) = a(k) = kO(1) for some fixed constant which does
not depend on p.

As the prover is both time bounded and advice bounded we can assume that
all the parameters of the single valued proof auditor are bounded by some bound
S. More precisely, that a + R + N + T < S where these parameters are taken
from Definition 2.1. We call such an auditor S-bounded. We can also assume that
the proof auditor isn’t randomized, that is R = 0. This is because the auditor
can get the “best” random string r as additional short advice.10 The auditor is
now a circuit A(x, w) of size S such that:

Pr
x∈{0,1}�

[(∃z ∈ {0, 1}N (A(x, z) = (1, y)) ⇐⇒ y = f(x)
)]

≥ ε(�)

In words, on ε fraction of the inputs x, there is a unique answer y such that
every “non-deterministic guess” z on which A answers is labelled with y. We
have no guarantee on how A behaves on the remaining x’s. In particular it may
be the case that for every z, the first output of A(x, z) is 0, or that there are
contradictory answers (different z’s lead to different y’s such that A(x, z) =
(1, y)).

We first observe that we can transform A into a circuit C (with an NP
oracle) such that C does have a unique value for every input.

Lemma 5.2 There is a circuit C with NP -oracle of size SO(1) such that

Pr
x∈{0,1}�

[C(x) = f(x)] ≥ ε(l)

Proof. Let A1 (resp. A2) denote the first (resp. second) output of A. On input
x, C uses its NP -oracle to check if x ∈ {x|∀z.A1(x, z) = 0}. In that case x is
not one of the good inputs on which A agrees with f and C answers arbitrarily.
If x is good then C uses its NP -oracle to find z such that A(x, z) = (1, y) and
outputs y. �

We can now use a result by Trevisan and Vadhan [25] (see also [23]) which
shows that if f is a low-degree multivariate polynomial then C can be trans-
formed into a small circuit C ′ (with Σ3-oracle) which computes f correctly on
every input.

Theorem 5.3. [25] Let F be a finite field (with some fixed, efficient representa-
tion), and let f : F t → F be a polynomial of total degree at most d. If there is a
Σi-circuit C which computes f correctly on at least an ε = c(

√
d/|F |) fraction of

points (for some constant c) then there is a Σi+2-circuit C ′ with size poly(|C|, d)
which computes f correctly everywhere.
10 This was not possible in previous proofs in this paper. For example, in the advice

bounded case R could be much larger than a, making it impossible to store the
“best” random tape.

118 C. Dwork et al.

A nice feature of this result is that the size of C ′ does not depend on ε. This
will allow us to use very small ε which translates into negligible success proba-
bility of the cheating prover. We now recall that any function can be extended
into a low degree polynomial.

Definition 5.1 (Low-degree extension). The low degree extension of a func-
tion h : {0, 1}s → {0, 1} into a multivariate polynomial f : F t → F over a field
F with at leats 2s/t elements works by taking some subset H ⊆ F of size 2s/t

and identifying Ht with {0, 1}s. For every x ∈ Ht we define f(x) = h(x). We
can now interpolate and extend f into a polynomial in t variables with degree
at most |H| in every variable. The total degree of such a polynomial is at most
d = |H|t = 2s/tt.

It immediately follows that:

– If h is computable in time 2O(s) then f is computable in time poly(2s, log |F |).
– A circuit which computes f induces a circuit which computes h.

Lemma 5.4 For every constant γ > 0 there exists constant γ′ > 0 such that
if there exists a function h = {hs}, hs : {0, 1}s → {0, 1} computable in time
2O(s) such that h cannot be computed by Σ3-circuits of size 2γs, then for every
2 < a ≤ 2s there is a function f = {fs}, fs : {0, 1}as → {0, 1}as such that f is
computable in time 2O(s) and for every s and every NP -circuit C of size 2γ′s:

Prx∈{0,1}as [C(x) = fs(x)] < 2−Ω(as)

Proof. We let fs be the low-degree extension of hs, taking t = c′s/γ (where
c′ is a constant to be determined later), and |F | = 2as/t. We note that f is
computable in time poly(2s, log |F |) = 2O(s). By Theorem 5.3 any NP -circuit C

of size 2γ′s which computes f correctly on ε = c
√

(2s/tt)/2as/t < 2−Ω(as) can
be transformed into a Σ3-circuit C ′ of size poly(2γ′s, 2s/tt) which computes f
everywhere. We choose γ′ small enough and c′ large enough so that the size of
C ′ is at most 2γs. �

We conclude that the assumption of Lemma 5.4 is sufficient for the security
of the Dwork-Stockmeyer protocol.

Proof. (of Theorem 5.1) On inputs of length n and security parameter k > n we
choose s = c log k for some constant c > 1 to be determined later. We use Lemma
5.4 with a = k We obtain a function fs that takes inputs of length � = as =
O(ck log k), is computable in time poly(k) and is hard for NP -circuits of size
2γ′s = kcγ′

. By Lemma 5.2, fs is hard for (cγ′)/c′
-bounded proof auditors where

c′ is the constant hidden in the O(·) notation in Lemma 5.2. By Theorem 2.1 the
DS-protocol is (2−Ω(as)+2·4−k)-sound against provers with T ∗ = T −Ω(�kO(1)).
It follows that for every constant p we can choose the constant c so that T ∗ > kp

and ε∗(k) < O(4−k). Note that the honest prover runs in time �kO(1) = kO(1)

for some fixed constant that doesn’t depend on c. �

List-Decoding of Linear Functions and Analysis 119

Acknowledgements. We are grateful for discussions with Oded Goldreich,
Moni Naor, Amir Shpilka and Madhu Sudan, as well as for comments from our
anonymous referees.

References

1. Y. Aumann, Y.Z. Ding, M. Rabin, Everlasting Security in the Bounded Storage
Model. IEEE Transactions on Information Theory, 48(6), pp. 1668–1680, 2002.

2. B. Barak, S. J. Ong, S. Vadhan. Derandomization in Cryptography In CRYPTO
2003.

3. G. Brassard, D. Chaum, C. Crépeau. Minimum Disclosure Proofs of Knowledge.
J. Comput. Sys. Sci., 37(2), pp. 156–189, 1988.

4. B. Chor, O. Goldreich. Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity. SIAM J. Computing, 17(2), pp. 230–261, 1988.

5. C. Dwork, M. Naor. Zaps and their applications, Proc. 41st IEEE Symp. on Foun-
dations of Computer Science, 2000, pp. 283–293.

6. C. Dwork, L. Stockmeyer. 2-Round Zero Knowledge and Proof Auditors. Proc.
34th ACM Symp. on Theory of Computing, 2002.

7. O. Goldreich, L. Levin. A hard-core predicate to any one-way function, Proc. 21st
ACM Symp. on Theory of Computing, 1989.

8. S. Goldwasser, S. Micali. Probabilistic encryption, J. Comput. Syst. Sci. 28, pp.
270–299, 1984.

9. S. Goldwasser, S. Micali, C. Rackoff. The knowledge complexity of interactive proof
systems, SIAM J. Comput. 18(1), pp. 186–208, 1989.

10. V. Guruswami, M. Sudan. Extensions to the Johnson bound. Manuscript, 2001.
11. S. Johnson. A new upper bound for error-correcting codes. IEEE Transactions on

Information Theory, 9, pp. 198–205, 1963.
12. J. Kamp, D. Zuckerman. Deterministic Extractors for Bit-Fixing Sources and

Exposure-Resilient Cryptography. Proc. 44th IEEE Symp. on Foundations of Com-
puter Science, 2003.

13. A. R. Klivans, D. van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. In Proc. 31st ACM Symp.
on Theory of Computing, 1999, 1999.

14. C. Lu. Hyper-encryption against Space-Bounded Adversaries from On-Line Strong
Extractors. In CRYPTO 2002, pp. 257–271.

15. Y. Mansour, N. Nisan, P. Tiwari. The computational complexity of universal
hashing. In Proc. 22nd ACM Symp. on Theory of Computing, 1990.

16. U. Maurer. Conditionally-Perfect Secrecy and a Provably-Secure Randomized Ci-
pher. J. Cryptology, 5(1), pp. 53–66, 1992.

17. R. Meshulam. Spaces of Hankel matrices over finite fields, Linear Algebra Appl.
218, pp. 73–76, 1995.

18. P. B. Miltersen, N. V. Vinodchandran. Derandomizing Arthur-Merlin games using
hitting sets. In Proc. 40th IEEE Symp. on Foundations of Computer Science, 1999,
pp. 71–80.

19. R. Rivest, L. Adleman, M. Dertouzos. On data banks and privacy homomorphisms.
In Foundations of Secure Computation, R. de Millo et al, eds, 1978.

20. R. Shaltiel, C. Umans. Simple extractors for all min-entropies and a new pseudo-
random generator. In Proc. 42nd IEEE Symp. on Foundations of Computer Sci-
ence, 2001.

120 C. Dwork et al.

21. Amir Shpilka. A note on matrix rigidity. Manuscript, 2002.
22. L. Stockmeyer. On approximation algorithms for #P . SIAM J. Computing 14(4),

pp. 849–861, 1985.
23. M. Sudan, L. Trevisan, S. Vadhan. Pseudorandom generators without the XOR

lemma. In Proc. 31st ACM Symp. on Theory of Computing, 1999.
24. L. Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4),

pp. 860–879, 2001.
25. L. Trevisan, S. Vadhan. Extracting randomness from samplable distributions. In

Proc. 41st IEEE Symp. on Foundations of Computer Science, 2001, pp. 32–42.
26. S. Vadhan. On Constructing Locally Computable Extractors and Cryptosystems

in the Bounded Storage Model. In CRYPTO 2003.

	Introduction
	Resource-Bounded Provers and Proof Auditors
	Advice-Bounded Proof Auditors
	Simultaneously Time- and Advice-Bounded Provers
	Assuming Complete Malleability
	Advice-Bounded Provers and Reed-Solomon Codes
	Simultaneously Time- and Advice-Bounded Provers

