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Abstract

The q-ary Reed-Muller codes RMq(u, m) of length n = qm are a generalization of
Reed-Solomon codes, which allow polynomials in m variables to encode the message.
Using an idea of reducing the multivariate case to univariate case, randomized list-
decoding algorithms for Reed-Muller codes were given in [1] and [27]. The algorithm
in [27] is an improvement of the algorithm in [1], it works for up to E < n(1−

√
2u/q)

errors but is applicable only to codes RMq(u, m) with u < q/2. In this paper, we
will propose some deterministic list-decoding algorithms for q-ary Reed-Muller codes.
Viewing q-ary Reed-Muller codes as codes from order domains, we present a list-
decoding algorithm for q-ary Reed-Muller codes, which is a straightforward gener-
alization of the list-decoding algorithm of Reed-Solomon codes in [9]. The algorithm
works for up to n(1− m+1

√
u/q)m − 1 errors, and it is applicable to codes RMq(u, m)

with u < q. The algorithm can be implemented to run in time polynomial in the
length of the codes. Following [12], we show that q-ary Reed-Muller codes are subfield
subcodes of Reed-Solomon codes. We then present a second list-decoding algorithm
for q-ary Reed-Muller codes. This algorithm works for codes with any rates, and
achieves an error-correction bound n(1 −

√
(n− d)/n) − 1. So the second algorithm

achieves a better error-correction bound than the algorithm in [27], since when u is
small, n(1−

√
(n− d)/n) = n(1−

√
u/q). The implementation of the second algorithm

requires O(n) field operations in Fq and O(n3) field operations in Fqm under some as-
sumption. Also, we prove that q-ary Reed-Muller codes can be described as one-point
AG codes. And using the algorithm of AG codes in [9], we give a third list-decoding
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algorithm for Reed-Muller codes. The third algorithm achieves an error-correction
bound n(1 −

√
u(q + 1)m−1/n). The time complexity of the third algorithm is also

bounded from above by polynomials in the length of the codes.

Index Terms: List decoding, Guruswami-Sudan algorithm, q-ary Reed-Muller codes, order

domain, subfield subcodes, one-point AG codes.

1 Introduction

Let C be a [n, k, d] code over the finite field Fq with q elements. Let E < n and b be

positive integers, C is called (E, b)-decodable if every Hamming sphere of radius E in Fn
q

contains at most b codewords. For any received word y = (y1, · · · , yn) ∈ Fn
q , a codeword c

contained in the Hamming sphere centered at y with radius E, i.e., d(c,y) ≤ E, is called a

E-consistent codeword. A list-decoding algorithm is an algorithm which tries to construct a

list which includes all the E-consistent codewords. The parameter E can be greater than the

traditional error-correction bound bd−1
2
c. Thus, a list-decoding algorithm makes it possible

to recover the information from errors beyond the traditional error-correction bound.

List decoding was introduced by Elias [5] and Wozencraft [29]. In [26], Sudan proposed a

list-decoding algorithm for Reed-Solomon codes. Algebraic-geometric (AG) codes are a gen-

eralization of Reed-Solomon codes. In 1999, Shokrollahi and Wasserman generalized Sudan’s

algorithm and derived a list-decoding algorithm for AG codes [22]. Both of the list-decoding

algorithms in [26] and [22] work only for codes of low rates. Guruswami and Sudan [9] later

proposed improved list-decoding algorithms for Reed-Solomon and AG codes. The algo-

rithms of Guruswami and Sudan have better error-correction capabilities than algorithms in

[26] and [22], and work for codes with any rates. Besides AG codes, Reed-Solomon codes can

be generalized in another way, by allowing multivariate polynomials to encode the message.

These generalized codes are known as Reed-Muller (RM) codes. Let Fq[X1, · · · , Xm] be the

ring of polynomials in m variables with coefficients in Fq. Let P1, · · · , Pn be an enumeration

of the points of Fm
q , where n = qm. The q-ary Reed-Muller code RMq(u, m) of order u in

m variables is defined as

RMq(u, m) = {(f(P1), · · · , f(Pn)) | f ∈ Fq[X1, · · · , Xm], deg(f) ≤ u}.

When m = 1, we get a Reed-Solomon code CRS(u) = RMq(u, 1). The list-decoding algo-

rithm for Reed-Solomon code CRS(u) in [9] works for up to E < n(1−
√

(n− d)/n) errors,
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where n and d are the length and minimum distance of the code, respectively.

However, the algorithm in [9] for Reed-Solomon codes has no generalization in any

straightforward way to decode Reed-Muller codes before this work. In [1] and [27] using

an idea of reducing the multivariate case to the univariate case, randomized list-decoding

algorithms for Reed-Muller codes RMq(u, m) were given. The algorithm in [27] improves

upon the algorithm in [1], and it works for up to E < n(1 − c
√

u/q) errors, where c is a

constant greater than
√

2. The algorithm works only for codes RMq(u, m) with u < q/2.

The polynomial ring Fq[X1, · · · , Xm] can be viewed as a special example of order domains.

In [7] the structure of order domains and codes from order domains were studied. It is well

known that the codes from order domains include Reed-Solomon codes, AG codes, and q-ary

Reed-Muller codes as special cases. Root-finding (or factorization) of a polynomial with

coefficients in a ring is an important step of the known list-decoding algorithms. In [30], a

root-finding algorithm was proposed for finding the roots in certain spaces of polynomials

with coefficients in order domains, which gives a potential application to list decodings of

the codes from order domains including Reed-Muller codes.

In this paper, viewing q-ary Reed-Muller codes as codes from order domains, we present a

list-decoding algorithm for q-ary Reed-Muller codes, which is a straightforward generalization

of the list-decoding algorithm of Reed-Solomon codes by Guruswami and Sudan [9]. The

algorithm works for up to n(1 − m+1
√

u/q)m − 1 errors, and it is an effective algorithm for

codes RMq(u, m) with u < q. The algorithm can be implemented to run in time polynomial

in the length of the codes.

Following [12], we show that q-ary Reed-Muller codes are subfield subcodes of Reed-

Solomon codes. Using the list-decoding algorithm of Reed-Solomon codes, we then present a

second list-decoding algorithm for q-ary Reed-Muller codes. This algorithm works for Reed-

Muller codes with any rates, and achieves an error-correction bound n(1−
√

(n− d)/n)− 1.

It is known that when u < q, the minimum distance d = (q−u)qm−1 for the code RMq(u, m)

of length n = qm, so we have n(1−
√

(n− d)/n) = n(1−
√

u/q). Thus, this algorithm works

for up to E < n(1 −
√

u/q) errors when the rate is small, which is better than the error-

correction bound n(1 −
√

2u/q) of the algorithm in [27]. In the case of fixed rate of codes,

the implementation of the second algorithm requires O(n) field operations in Fq and O(n3)

field operations in Fqm .

Also, we prove that q-ary Reed-Muller codes can be described as one-point AG codes.
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Then using list-decoding algorithm of AG codes by Guruswami and Sudan [9], we give a

third list-decoding algorithm for q-ary Reed-Muller codes. The third algorithm achieves a

error-correction bound n(1 −
√

u(q + 1)m−1/n). Since n = qm, when q is large this bound

is very close to n(1−
√

u/q), the error-correction bound of the second algorithm. The time

complexity of the third algorithm is also bounded from above by polynomials in the length

of the codes.

This work is organized as follows. In Section 2, we give the terminology of order domains,

and show that q-ary Reed-Muller codes are codes from order domains. The number of zeros of

a multivariate polynomial is estimated by a generalization of the footprint bound in [6] using

Gröbner basis theory. We then present a list-decoding algorithm for q-ary Reed-Muller codes,

which is a straightforward generalization of the list-decoding algorithm of Reed-Solomon

codes by Guruswami and Sudan [9]. In Section 3, we show that q-ary Reed-Muller codes are

subfield subcodes of Reed-Solomon codes, and propose a second decoding algorithm for q-ary

Reed-Muller codes, using Guruswami-Sudan’s algorithm of Reed-Solomon codes. In Section

4, we prove that q-ary Reed-Muller codes can be described as one-point AG codes, then

using list-decoding algorithm of AG codes by Guruswami and Sudan [9] we give a third list-

decoding scheme for q-ary Reed-Muller codes. In Section 5, we compare the error-correction

capabilities and the complexities of the proposed list-decoding algorithms with each other

and with the algorithm in [27]. Finally in Section 6, we give conclusions.

2 Codes from Order Domains and Decoding

In this section, we give the definitions and properties on order domains necessary to state

our results in sequel, and show that q-ary Reed-Muller codes are codes from order domains.

Generalizing Guruswami-Sudan’s list-decoding algorithm for Reed-Solomon codes [9], we

present a list-decoding algorithm for q-ary Reed-Muller codes.

2.1 Order Domains and RM Codes

Let F be a field, a F-algebra is a commutative ring (with a unit) that contains F as a

unitary subring. Let (Γ, +, 0) be a commutative monoid. A partial order < on Γ is called an

admissible order if 0 ≤ α for all α ∈ Γ; and if α < β, then α + γ < β + γ for all α, β, γ ∈ Γ.

If (Γ, +, 0) is a semigroup and < is an admissible total order on Γ, then (Γ, +, 0, <) is called
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a well-ordered semigroup, we sometimes call (Γ, <) a well-order. If < is an order on Γ, then

< is a order on Γ ∪ {−∞} with −∞ as the minimal element.

Let R be a F-algebra, (Γ, <) be a well-order. An order function is a surjective function

ρ : R −→ Γ ∪ {−∞},

satisfying the following properties:

(O.0) ρ(f) = −∞ if and only if f = 0

(O.1) ρ(af) = ρ(f) for all nonzero a ∈ F

(O.2) ρ(f + g) ≤ max{ρ(f), ρ(g)}

(O.3) If ρ(f) < ρ(g) and h 6= 0, then ρ(fh) < ρ(gh)

(O.4) If f and g are nonzero and ρ(f) = ρ(g), then there exists a nonzero a ∈ F such that

ρ(f − ag) < ρ(g)

for all f, g, h ∈ R.

Let R be a F-algebra, (Γ, <) a well-order and ρ : R −→ Γ ∪ {−∞} an order function.

Then (R, ρ, Γ) is called an order structure and R an order domain over F. In this paper, we

assume Γ = Nr
0 = {(n1, · · · , nr) | ni are nonnegative integers} for some r.

Let < be an admissible well-order on (Nr
0, +), and R be a F-algebra. A weight function

of rank r on R is a order function from R to Nr
0 ∪ {−∞} satisfying further

(O.5) ρ(fg) = ρ(f) + ρ(g)

for all f, g ∈ R. It can be proved that every order domain over F with a finitely generated

value semigroup is finitely generated as an algebra over F and has a weight function.

Suppose R is an order domain over F, then it is clear that there exists a basis

{ϕα | ρ(ϕα) = α ∈ Γ} of R over F. Let Rγ be the subspace of R generated by {ϕα | α ≤ γ},
i.e., Rγ = {f ∈ R | ρ(f) ≤ γ}. Then, R =

⋃
γ∈Γ Rγ. For more properties, see [7].
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It is clear that R = Fq[X1, · · · , Xm] is an order domain. Let Γ = Nm
0 , and let < be the

graded lexicographical order. Then the following mapping defines a weight function

ρ : Fq[X1, · · · , Xm] −→ Nm
0 ∪ {−∞}

Xα 7−→ α.

In Γ = Nm
0 , under the graded lexicographical order <

(0, · · · , 0) < (1, 0, · · · , 0) < (0, 1, 0, · · · , 0) < · · · < (0, · · · , 0, 1)

< (2, 0, · · · , 0) < (1, 1, 0, · · · , 0) < · · · < (0, · · · , 0, 2) < · · · .

In Fq[X1, · · · , Xm], we have correspondingly

1 < X1 < X2 < · · · < Xm < X2
1 < X1X2 < · · · < X2

m < · · · .

For any f ∈ Fq[X1, · · · , Xm], let ev(f) = (f(P1), · · · , f(Pn)). We then define an evalua-

tion map

ev : Fq[X1, · · · , Xm] −→ Fn
q .

Let α := (0, · · · , 0, u) ∈ Nm
0 . Then, we have

RMq(u, m) = ev(Rα).

2.2 Generalized Footprint Bound

In this subsection we will give some lemmas which will be used to prove the correctness

of a list-decoding algorithm that we will give in next subsection. The main results in this

subsection are in fact generalizations of the footprint bound [6] of the number of zeros of a

polynomial.

Definition 2.1 Let P = (x1, . . . , xm) ∈ Fm
q . Let f ∈ Fq[X1, . . . , Xm] be a polynomial of

degree d. Define fP (X1, . . . , Xm) = f(X1 + x1, . . . , Xm + xm). Then fP (0) = f(P ) and we

can write

fP = fP,r + · · ·+ fP,d,

where fP,j is homogeneous of degree j in X1, . . . , Xm and both fP,r and fP,d are nonzero.

Then r is the multiplicity of f at P , denoted by rP (f).
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Definition 2.2 The zeroset or vanishing set Z(f) of a polynomial f ∈ Fq[X1, . . . , Xm]

is defined by

Z(f) = { P ∈ F̄m
q | f(P ) = 0 }.

If we want to restrict our attention to the zeros in Fm
q we define

Z(f, Fq) = { P ∈ Fm
q | f(P ) = 0 }.

The vanishing or zeroset Z(I) of an ideal I in Fq[X1, . . . , Xm] is defined by

Z(I) = {P ∈ F̄m
q | f(P ) = 0 for all f ∈ I }.

Definition 2.3 Let I(q, m) be the ideal in Fq[X1, . . . , Xm] generated by the elements

Xq
i −Xi for all i = 1, . . . ,m. Let I(q, r,m) = I(q, m)r.

Gröbner basis theory tells us that the dimension of Fq[X1, . . . , Xm]/I(q, r,m) over Fq is

equal to the size of the footprint ∆(I(q, r,m)). We take the Gröbner basis with respect to

the total degree lexicographic order. The footprint of an ideal I in Fq[X1, . . . , Xm] is the set

of all exponents a ∈ Nm
0 such that Xa is not a leading term of an element of I. Clearly the

monomial

Xqe1

1 · · ·Xqem
m

is the leading monomial of

(Xq
1 −X1)

e1 · · · (Xq
m −Xm)em

which is an element of I(q, r,m) if e1 + · · ·+ em = r. Hence

∆(I(q, r,m)) ⊆ ∆(Xqe1

1 · · ·Xqem
m | e1 + · · ·+ em = r)

Lemma 2.1 The footprint ∆(Xqe1

1 · · ·Xqem
m | e1 + · · ·+ em = r) is the disjoint union of

the sets

{ a ∈ Nm
0 | qbi ≤ ai < q(bi + 1) for all i }

where b ∈ Nm
0 and b1 + · · ·+ bm ≤ r − 1.

Proof: By definition ∆(Xqe1

1 · · ·Xqem
m | e1 + · · ·+ em = r) is equal to the set of all a ∈ Nm

0

such that for all e ∈ Nm
0 with e1 + · · ·+ em = r there exists an i such that ai < qei.
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(1) Suppose that there exists an b ∈ Nm
0 such that b1 + · · · + bm ≤ r − 1 and qbi ≤ ai <

q(bi + 1) for all i. Let e ∈ Nm
0 such that e1 + · · ·+ em = r. Then

b1 + · · ·+ bm ≤ r − 1 < r = e1 + · · ·+ em.

Hence there exists an i such that bi + 1 ≤ ei, so ai < q(bi + 1) ≤ qei.

(2) Conversely, suppose that for all e ∈ Nm
0 with e1 + · · ·+ em = r there exists an i such

that ai < qei. Define bi = bai/qc, i = 1, · · · , n. Then qbi ≤ ai < q(bi + 1) for all i. Now we

have to show that b1 + · · ·+ bm ≤ r− 1. Otherwise b1 + · · ·+ bm ≥ r. Hence there exists an

e ∈ Nm
0 such that e1 + · · ·+ em = r and ei ≤ bi for all i. Then qei ≤ qbi ≤ ai for all i, which

is a contradiction. 2

Lemma 2.2 Let u ∈ N0. Then,

|{a = (a1, · · · , am) ∈ Nm
0 | a1 + · · ·+ am ≤ u}| =

(
u + m

m

)
.

Let R = Fq[X1, . . . , Xm]. Let Mi = (X1 − xi1, . . . , Xm − xim) be the maximal ideal of

the point Pi = (xi1, . . . , xim), where i = 1, . . . , N = qm. The ideals ∩N
i=1Mi and I(q, m) are

radical and have the same zeroset {P1, . . . , PN}. Hence the ideals are the same

I(q, m) = ∩N
i=1Mi.

Now for arbitrary r we have that

I(q, r,m) = I(q, m)r = (∩N
i=1Mi)

r ⊆ (∩N
i=1Mr

i ).

This induces an R-linear map

ϕq,r : Fq[X1, . . . , Xm]/I(q, r,m) −→ ⊕N
i=1Fq[X1, . . . , Xm]/Mr

i .

Theorem 2.3 The map ϕq,r is an isomorphism and for the number of elements of the

footprint we have that

|∆(I(q, r,m))| =
(

m + r − 1

r − 1

)
qm.
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Proof: (1) If i 6= j then the maximal ideals Mi and Mj are distinct, hence Mi +Mj = R

is the whole ring. But also Mr
i +Mr

j = R, since for the zerosets we have that

Z(Mr
i +Mr

j) = Z(Mr
i ) ∩ Z(Mr

j) = {Pi} ∩ {Pj} = ∅.

The Chinese Remainder Theorem [15, II §2, page 64] gives an isomorphism

Fq[X1, . . . , Xm]/(∩N
i=1Mr

i )
∼= ⊕N

i=1Fq[X1, . . . , Xm]/Mr
i .

The map ϕq,r is clearly surjective. Therefore the dimension of Fq[X1, . . . , Xm]/I(q, r,m) is

at least the dimension of ⊕N
i=1Fq[X1, . . . , Xm]/Mr

i over Fq. The last mentioned space has

dimension
(

m+r−1
r−1

)
qm, since for every i we have that the polynomials

(X1 − xi1)
a1 · · · (Xm − xim)am

with a1 + · · · + am ≤ r − 1 represent a basis for the vector space Fq[X1, . . . , Xm]/Mr
i over

Fq.

(2) The dimension of Fq[X1, . . . , Xm]/I(q, r,m) over Fq is equal to the size of the footprint

∆(I(q, r,m)) and

∆(I(q, r,m)) ⊆ ∆(Xqe1

1 · · ·Xqem
m | e1 + · · ·+ em = r)

which is the disjoint union of the sets

{ a ∈ Nm
0 | qbi ≤ ai < q(bi + 1) for all i }

where b ∈ Nm
0 and b1 + · · ·+ bm ≤ r − 1, by Lemma 2.1. Therefore

|∆(I(q, r,m))| ≤
(

m + r − 1

r − 1

)
qm.

(3) Combining (1) and (2) gives the desired result. 2

Definition 2.4 Let f ∈ R. The ideals I(q, m, f) and I(q, r,m, f) in R are defined by

I(q, m, f) = 〈f〉+ I(q, m) and I(q, r,m, f) = 〈f〉+ I(q, r,m).

Lemma 2.4 Let f ∈ R. If t is the number of points in Fm
q where f has at least multi-

plicity r, then

dimFq R/I(q, r,m, f) ≥
(

m + r − 1

r − 1

)
t.
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Proof: Theorem 2.3 gives that for every f ∈ R also the induced map

ϕq,r(f) : R/I(q, r,m, f) −→ ⊕N
i=1R/(Mr

i + 〈f〉).

is an isomorphism. If the multiplicity of f at Pi is at least r, then f ∈Mr
i and R/(Mr

i +〈f〉)
has dimension

(
m+r−1

r−1

)
. 2

Lemma 2.5 Let f ∈ R. Let w = bv/qc. If deg(f) ≤ v < qr, then an upper bound for

the dimension of R/I(q, r,m, f) over Fq is given by(
m + r − 1

m

)
qm + (v − qw)

(
m + r − w − 2

m− 1

)
qm−1 −

(
m + r − w − 1

m

)
qm.

Proof: 1) Define the set ∆(q, r,m) := ∆(I(q, r,m)). In Theorem 2.3 it was shown that

∆(q, r,m) = { a ∈ Nm
0 |

∑m
i=1bai/qc ≤ r − 1 }.

Define for a ∈ Nm
0 the sets 5(q, r,m, a) and ∆(q, r,m, a) by

5(q, r,m, a) = {b ∈ Nm
0 | b ∈ ∆(q, r,m), ai ≤ bi for all i }.

∆(q, r,m, a) = {b ∈ Nm
0 | b ∈ ∆(q, r,m), bi < ai for some i } = ∆(q, r,m) \ 5(q, r,m, a).

Let ∆(q, r,m, f) be the delta set of the ideal I(q, r,m, f). If Xa is the leading monomial of

f , then

∆(q, r,m, f) ⊆ ∆(q, r,m, a).

The dimension of R/I(q, r,m, f) is equal to the size of ∆(q, r,m, f), so we are looking for

an upper bound for this size. For fixed q, r and m we denote 5(q, r,m, a) and ∆(q, r,m, a)

by 5(a) and ∆(a), respectively.

2) We claim that the maximal size of ∆(a), or equivalently the minimal size of 5(a), for

all a ∈ ∆(q, r,m) such that deg(a) := a1 + · · · + am ≤ v, is attained for a = (v, 0, . . . , 0).

Notice that it is assumed that v < rq, so indeed (v, 0, . . . , 0) is an element of ∆(q, r,m). This

claim will be shown by induction on r. In case r = 1 this is a well-known fact in extremal

poset theory [3, 13, 14, 16] and used to find the generalized Hamming weights of Reed-Muller

codes in [10, 28]. Now assume that the claim is shown for all r∗ < r. If a ∈ ∆(q, r,m) and

ai ≥ q for some i, then without loss of generality we may assume that i = m. Consider the

maps

b = (b1, . . . , bm) 7→ b̃ := (b1, . . . , bm−2, bm−1 + q, bm − q) and
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b = (b1, . . . , bm) 7→ b′ := (b1, . . . , bm−2, bm−1, bm − q).

Then deg(ã) ≤ v < rq and ã ∈ ∆(q, r,m), and deg(a′) ≤ v − q < (r − 1)q and a′ ∈
∆(q, r − 1, m). This gives bijections

5(q, r,m, a) →5(q, r,m, ã)) and 5 (q, r,m, a) →5(q, r − 1, m, a′).

The induction hypothesis gives that the minimum is attained for a = (v, 0, . . . , 0). Therefore

we may assume that ai < q for all i. Now let r∗ = 1 and q∗ = rq (for this proof it is not

assumed that q is a prime power). Then

5(q∗, r∗, m, a) = 5(q, r,m, a) ∪5(q∗, r∗, m, (q, q, . . . , q))

is a disjoint union. Hence

| 5 (q∗, r∗, m, a)| = | 5 (q, r,m, a)|+ | 5 (q∗, r∗, m, (q, q, . . . , q))|

Since r∗ = 1, we know that the minimum at the left hand side is attained for a = (v, 0, . . . , 0).

Therefore this is also true for5(q, r,m, a). In this way we have shown the claim by induction.

3) Next the maximal size of ∆(q, r,m, a) is computed. Assume a = (v, 0, . . . , 0). Let

w = bv/qc. Then

∆(q, r,m, a) = { b ∈ ∆(q, r,m) | b1 < v }

which is equal to the following union of disjoint sets

w−1⋃
s=0

{ b ∈ ∆(q, r,m) |
∑m

i=2bbi/qc ≤ r − s− 1 and s = bb1/qc }
⋃

{ b ∈ ∆(q, r,m) |
∑m

i=2bbi/qc ≤ r − w − 1 and wq ≤ b1 < v }

Now the map defined by b = (b1, b2, . . . , bm) 7→ (b2, . . . , bm−1) gives a q to 1 map between

{ b ∈ ∆(q, r,m) |
∑m

i=2bbi/qc ≤ r − s− 1 and s = bb1/qc }

and ∆(q, r − s, m− 1), and a v − wq to 1 map between

{ b ∈ ∆(q, r,m) |
∑m

i=2bbi/qc ≤ r − w − 1 and wq ≤ b1 < v }

and ∆(q, r − w,m− 1). Lemma 2.1 implies

|∆(q, r − s, m− 1)| =
(

m− 2 + r − s

m− 1

)
qm−1.

11



Therefore

|∆(q, r,m, a)| =
w−1∑
s=0

(
m− 2 + r − s

m− 1

)
qm + (v − qw)

(
m− 2 + r − w

m− 1

)
qm−1.

4) A similar argument gives the well-known identity(
m + r − 1

m

)
=

r−1∑
s=0

(
m− 2 + r − s

m− 1

)
.

which is equal to
w−1∑
s=0

(
m− 2 + r − s

m− 1

)
+

r−1∑
s=w

(
m− 2 + r − s

m− 1

)
=

w−1∑
s=0

(
m− 2 + r − s

m− 1

)
+

r−w−1∑
i=0

(
m− 2 + r − w − i

m− 1

)
=

w−1∑
s=0

(
m− 2 + r − s

m− 1

)
+

(
m + r − w − 1

m

)
.

Therefore
w−1∑
s=0

(
m− 2 + r − s

m− 1

)
=

(
m + r − 1

m

)
−
(

m + r − w − 1

m

)
.

Substituting this in the end result of (3) gives the desired upper bound. 2

2.3 Decoding Algorithm

We assume that R = Fq[X1, · · · , Xm], n = qm is the length of the codeRMq(u, m) = ev(Rα),

where α = (0, · · · , 0, u). Let (y1, · · · , yn) ∈ Fn
q be a received word. In the following we give

a list-decoding algorithm which finds all the E-consistent codewords in RMq(u, m) for an

appropriate parameter E.

Algorithm 2.1 (List Decoding of RM Codes over Order Domains)

Input: n, t, α = (0, · · · , 0, u) ∈ Nm, (y1, · · · , yn) ∈ Fn
q , and Pi := (xi1, · · · , xim) ∈ Fm

q ,

i = 1, · · · , n.

12



Step 0: Choose the parameters r, v such that:

• (A.1) s := b v
u
c and

s∑
j=0

(
v − ju + m

m

)
> n

(
m + r
m + 1

)
;

• (A.2) E := n− t, w := bv
q
c and(

m + r − 1

m

)
E <

(
m + r − w − 1

m

)
qm − (v − qw)

(
m + r − w − 2

m− 1

)
qm−1.

Step 1: Find a nonzero polynomial H(T ) ∈ R[T ] of the form

H(T ) = H(X; T ) =
s∑

j=0

hj(X)T j,

where

hj(X) =
∑

(j1,··· ,jm)≤γ−jα

hj1,··· ,jm;jX
j1
1 · · ·Xjm

m ∈ Rγ−jα, j = 0, 1, · · · , s,

with γ := (0, · · · , 0, v), such that for all i = 1, · · · , n, and for any j1, · · · , jm, j ≥ 0 and

j1 + · · ·+ jm + j ≤ r − 1,

h
(i)
j1,··· ,jm;j :=

∑
j′1≥j1

· · ·
∑

j′m≥jm

∑
j′≥j

(
j′1
j1

)
· · ·
(

j′m
jm

)(
j′

j

)
hj′1,··· ,j′m;jx

j′1−j1
i1 · · ·xj′m−jm

im yj′−j
i

= 0.

Step 2: Using the root-finding algorithm in [30], find all the roots f ∈ Rα of the polynomial

H(T ). For each such f , check if f(Pi) = yi for at least t values of i ∈ {1, · · · , n}, and

if so, include f in output list.

2

2.4 Analysis of Algorithm 2.1

The task of finding a nonzero H(T ) in Step 1 is that of solving a system of homogeneous

linear equations, where the undetermined coefficients hj1,··· ,jm;j of H(T ) are the unknowns.

To prove the existence of H(T ), it is sufficient to prove that the number of unknowns is

strictly greater than the number of equations.

The following lemma gives the number of the undetermined coefficients of H(T ).

13



Lemma 2.6 Assume α = (0, · · · , 0, u) and γ = (0, · · · , 0, v) with s = bv/uc. Then

|{hj1,··· ,jm;j | (j1, · · · , jm) ≤ γ − jα, j = 0, 1, · · · , s}| =
s∑

j=0

(
v − ju + m

m

)
.

Lemma 2.7 Let u be a positive integer such that u < q. Define µ := m+1
√

u/q. Choose

a positive integer r such that

r ≥ qmµ + 1

q(1− µ)
.

Define v = dq(r + m)µe and w = bv/qc. Let E a positive integer such that

E <
[q(r − w)]m − (v − qw)m[q(m + r − w − 2)]m−1

(m + r − 1)m
.

Let t = n− E. Then conditions (A.1) and (A.2) of Algorithm 2.1 hold.

Proof:

(1) The condition on r implies that q(r + m)µ + 1 ≤ rq. So

v = dq(r + m)µe < q(r + m)µ + 1 ≤ rq.

(2) It is easy to verify the following inequalities

(r + 1)m

m!
≤
(

m + r

m

)
≤ (m + r)m

m!
.

(3) Using the above inequalities we have

s∑
j=0

(
v − ju + m

m

)
≥

s∑
i=0

(
m + iu

m

)
>

um

m!

s∑
i=0

im ≥ umsm+1

(m + 1)!
=

vm+1

u(m + 1)!
.

(4) The definition of v gives vm+1 ≥ uqm(m + r)m+1. Now n = qm. Hence

s∑
j=0

(
v − ju + m

m

)
>

vm+1

u(m + 1)!
≥ n(m + r)m+1

(m + 1)!
≥ n

(
m + r

m + 1

)
,

by (2). Therefore we have the desired inequality (A.1) as a consequence of (3).
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(5) The assumption on E implies

(m + r − 1)m

m!
E <

(r − w)m

m!
qm − (v − qw)

(m + r − w − 2)m−1

(m− 1)!
qm−1.

Applying three times the inequalities (2) we get condition (A.2):(
m + r − 1

m

)
E <

(
m + r − w − 1

m

)
qm − (v − qw)

(
m + r − w − 2

m− 1

)
qm−1.

2

Lemma 2.8 Assume condition (A.1) of Algorithm 2.1 holds. Then a nonzero polynomial

H(T ) as sought in Step 1 of Algorithm 2.1 does exist.

Proof: By Lemma 2.6, the number of the undetermined coefficients of H(T ) is equal

to
b v

u
c∑

j=0

(
v − ju + m

m

)
. On the other hand, the number of constraints of H(T ) is equal to

n ·
∣∣{(j1, · · · , jm, j) ∈ Nm+1

0 | j1 + · · ·+ jm + j ≤ r − 1
}∣∣, which is equal to n ·

(
m + r
m + 1

)
.

So by condition (A.1), the number of unknowns is greater than the number of equations, we

can get such a H(T ) by solving a homogeneous linear system. 2

Let f = f(X1, · · · , Xm) =
∑

j1,j2,··· ,jm

aj1j2···jmXj1
1 · · ·Xjm

m ∈ R = Fq[X1, · · · , Xm]. From

Definition 2.1, P = (x1, · · · , xm) ∈ Fm
q is a zero of f of multiplicity r if and only if

fP (X1, · · · , Xm) = f(X1 + x1, · · · , Xm + xm) =
∑

j1,j2,··· ,jm

bj1j2···jmXj1
1 · · ·Xjm

m with that

bj1j2···jm = 0 for all j1, · · · , jm ≥ 0, j1 + · · · + jm ≤ r − 1 and bj1j2···jm 6= 0 for some

j1 + · · · + jm = r. The constraints for H(X; T ) in the Step 1 of Algorithm 2.1 mean that

every (Pi; yi) is a zero of H(X; T ) of multiplicity ≥ r. Let H(X; T ) be such a polynomial,

then we can prove

Lemma 2.9 Let f ∈ R. For any i ∈ {1, · · · , n}, if f(Pi) = yi, then Pi is a zero of

H(f) = H(X; f(X)) of multiplicity ≥ r.

Proof: Let G(X) := H(X; f(X)). Denote

f (i)(X) = f(X + Pi)− yi = f(X1 + xi1, · · · , Xm + xim)− yi.
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Since f(Pi) = yi, we have f (i)(0) = 0. So there exist f
(i)
k (X) for all k = 1, . . . ,m such that

f (i)(X) =
m∑

k=1

Xkf
(i)
k (X).

Hence

G(X) = H(X; f(X))
= H(Pi,yi)(X − Pi; f(X)− yi)
= H(Pi,yi)(X − Pi; f

(i)(X − Pi))

= H(Pi,yi)(X1 − xi1, · · · , Xm − xim;
∑m

k=1(Xk − xik)f
(i)
k (X − Pi))

where H(Pi,yi)(X; T ) = H(X + Pi; T + yi) = H(X1 + xi1, · · · , Xm + xim; T + yi).

From Step 1 of Algorithm 2.1 we have

H(Pi,yi)(X; T ) =
∑

j

∑
l

h
(i)
jl Xj1

1 · · ·Xjm
m T l,

and h
(i)
jl = 0 for j1 + · · · + jm + l ≤ r − 1. In other words, the first nonzero terms of

H(Pi,yi)(X; T ) are

h
(j)
jl Xj1

1 · · ·Xjm
m T l, with j1 + · · ·+ jm + l ≥ r.

Now we have G(X) is equal to

H(Pi,yi)(X1 − xi1, · · · , Xm − xim;
m∑

k=1

(Xk − xik)f
(i)
k (X − Pi))

∑
j

∑
l

h
(i)
jl (X1 − xi1)

j1 · · · (Xm − xim)jm

(
m∑

k=1

(Xk − xik)f
(i)
k (X − Pi))

)l

.

So, G(X + Pi) is equal to

∑
j

∑
l

h
(i)
jl Xj1

1 · · ·Xjm
m

( ∑
l,l1+···lm=l

(
l

l1, . . . , lm

)
X l1

1 · · ·X lm
m (f

(i)
1 (X))l1 · · · (f (i)

m (X))lm

)
=

∑
j

∑
l

∑
l,l1+···lm=l

(
l

l1, . . . , lm

)
h

(i)
jl Xj1+l1

1 · · ·Xjm+lm
m (f

(i)
1 (X))l1 · · · (f (i)

m (X))lm .

The first nonzero terms of G(X + Pi) contain the monomials

Xj1+l1
1 · · ·Xjm+lm

m ,
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where

(j1 + l1) + · · ·+ (jm + lm) = j1 + · · ·+ jm + l ≥ r.

Thus, Pi is a zero of G(X) of multiplicity ≥ r. 2

Lemma 2.10 If f ∈ Rα is such that f(Pi) = yi for at least t values of i ∈ {1, · · · , n}
and condition (A.2) holds, then H(f) = 0, i.e., H(f) is identically zero as a polynomial in

R = Fq[X1, · · · , Xm].

Proof: Since f ∈ Rα, we have ρ(H(f)) ≤ γ = (0, · · · , 0, v). If H(f) is not identically

zero, then the dimension of R/I(q, r,m, H(f)) is at most(
m + r − 1

m

)
qm + (v − qw)

(
m + r − w − 2

m− 1

)
qm−1 −

(
m + r − w − 1

m

)
qm

by Lemma 2.5. On the other hand, f(Pi) = yi for at least t values of i ∈ {1, · · · , n}, and

from Lemma 2.9, for each such i, Pi is a zero of H(f) of multiplicity ≥ r. Thus, from Lemma

2.4,

dimFqR/I(q, r,m, (H(f)) ≥
(

m + r − 1
r − 1

)
t.

From the two inequalities we derive a contradiction with condition (A.2). 2

Theorem 2.11 Let q be a power of a prime, u be a positive integer such that 0 < u < q.

Let RMq(u, m) be the Reed-Muller code of length n = qm. Let µ = m+1
√

u/q. Let ∆ be any

real number such that 0 < ∆ ≤ min
{

mn(1−µ)
µ

, n
}
. Let r and M be integers defined by

r =

⌈
2m(m + µ)n

∆

⌉
and M =

⌈
r + m

µm

⌉
.

Let E be an integer such that

E ≤ n(1− µ)m −∆.

Then Algorithm 2.1 correctly finds all the E-consistent codewords in RMq(u, m), and the

number of the E-consistent codewords is at most M .

Proof: From the upper bound on ∆ and the definition of r, we have

r ≥ 2m(m + µ)n

∆
>

2m2n

∆
≥ 2mµ

1− µ
≥ qmµ + 1

q(1− µ)
,
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as is assumed in Lemma 2.7. Let v and w be defined as in Lemma 2.7.

Suppose that the following two inequalities hold(
q(r − w)

m + r − 1

)m

> n(1− µ)m −∆/2, (2.1)

(v − qw)mqm−1(m + r − w − 2)m−1

(m + r − 1)m
< ∆/2. (2.2)

Then we have

E ≤ n(1− µ)m −∆

<

[(
q(r − w)

m + r − 1

)m

+ ∆/2

]
−
[
(v − qw)m[q(m + r − w − 2)]m−1

(m + r − 1)m
−∆/2

]
−∆

=
[q(r − w)]m − (v − qw)m[q(m + r − w − 2)]m−1

(m + r − 1)m
.

Therefore by Lemma 2.7, conditions (A.1) and (A.2) of Algorithm 2.1 hold. Then by Lemmas

2.8 and 2.10, Algorithm 2.1 correctly finds all the E-consistent codewords.

Now we are ready to prove that both (2.1) and (2.2) hold. Denote

f(r) :=
r − w

m + r − 1
=

1− w
r

1 + m
r
− 1

r

, and A := 1− µ.

Let η be a small real number defined by η = (m + µ)/r. Let w be defined as in Lemma 2.7.

Then

1− w

r
≥ 1− v

rq
> 1− q(r + m)µ + 1

rq
= A− qmµ + 1

rq
.

Therefore
f(r)− A =

1−w
r

1+m
r
− 1

r

− A

>
A− qmµ+1

rq

1+m
r
− 1

r

− A

= −A(m−1)
r+m−1

− qmµ+1
q(m+r−1)

> −A(m−1)
r

− mµ+1
r

= −m+µ
r

= −η.

Now by applying the Lagrange Intermediate-Value Theorem to the function (A − x)m we

have

(A− η)m − Am = −mη(A− ξ)m−1,
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where 0 < ξ < η. We have A − η < A − ξ < A < 1. Since r =
⌈

2m(m+µ)n
∆

⌉
and ∆ ≤ n ≤

2mn(2 − µ) = 2mn(1 + A), we have r ≥ m+µ
1+A

. Thus, A − η ≥ −1. So −1 < A − ξ < 1.

Therefore we have −mη(A− ξ)m−1 ≥ −mη, and

(f(r))m − Am > (A− η)m − Am ≥ −mη = −m(m + µ)

r
≥ −∆

2n
.

This implies (2.1).

On the other hand

(v − qw)mqm−1(m + r − w − 2)m−1

(m + r − 1)m
<

mqm

r
≤ ∆/2

by the definition of r. So (2.2) holds.

By Lemma 2.10, the number of E-consistent codewords is at most the degree

degT (H(T )) = b v
u
c. And

bv
u
c <

q(r + m)µ + 1

u
=

r + m

µm
+

1

u
≤ M +

1

u
.

Since 0 < 1
u
≤ 1. So b v

u
c ≤ M . 2

Remark 2.1: Let µ = m+1
√

u/q. Let E be a positive integer such that

E ≤ n
(
1− m+1

√
u/q
)m

− 1 (2.3)

and

M = O
(
m2u−

m
m+1 n1+ 1

m+1

)
.

Then by the theorem above, the q-ary Reed-Muller code RMq(u, m) is (E, M)-decodable.

In fact, by the theorem above Algorithm 2.1 is a list-decoding algorithm for RMq(u, m),

which works for up to n
(
1− m+1

√
u/q
)m

−∆ errors, where 0 < ∆ ≤ min{mn(1−µ)
µ

, n}. Now

let ∆ = min{mn(1−µ)
µ

, 1}. Then for any E satisfying

E ≤ n
(
1− m+1

√
u/q
)m

− 1

we have E ≤ n
(
1− m+1

√
u/q
)m

−1 ≤ n
(
1− m+1

√
u/q
)m

−∆. So the algorithm can correctly

find all the E-consistent codewords for E satisfying the inequality above. Again by Theorem
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2.11, the number of E-consistent codewords is at most M and

M = O
(

r
µm

)
= O

(
m2n
µm∆

)
= O

(
max

{
m

µm−1−µm , m2n
µm

})
= O

(
m

µm−1(1−µ)
+ m2n

µm

)
= O

(
m

µm−1

(
n
E

) 1
m + m2n

µm

)
= O

(
mn

1
m

µm−1 + m2n
µm

)
= O

(
m2u−

m
m+1 n1+ 1

m+1

)
.

This implies that the number of E-consistent codewords is bounded by a polynomial in n

for all m. 2

Remark 2.2: The inequality (2.3) gives an error-correction bound of Algorithm 2.1.

We see that Algorithm 2.1 works only for u < q, that is, this algorithm works only for

Reed-Muller codes with low rates.

Let us see an example of Reed-Muller code of low rate. Let q = 29 = 512 and m = 2.

Consider the Reed-Muller code C = RMq(u, m) with u = 23. The parameters of C are

n = qm = 218, and d = 504× 512 = 258048.

So the traditional error-correction bound is bd−1
2
c = 129023.

Algorithm 2.1 works for up to E = n(1− m+1
√

u/q)m − 1 = 147455 errors, which is much

greater than the traditional error-correction bound. 2

Now let us evaluate the time complexity of Algorithm 2.1. The task of Step 1 is solving a

system of homogeneous linear equations to determine a polynomial H(T ), i.e., the coefficients

hj1,··· ,jm;j of H(T ). Let N denote the number of coefficients of H(T ). Using Gaussian

elimination, Step 1 can be implemented to run using O(N3) field operations over Fq.

Next, consider the number of field operations over Fq required to find all the roots f ∈
Rα of H(T ). We use the root-finding algorithm in [30]. From [30], for the polynomial

H(T ) = h0 + h1T + · · · + hsT
s returned from Step 1 of Algorithm 2.1, h0, h1, · · · , hs can

be written as polynomials in ϕ1, ϕ2, · · · with coefficients in Fq. Let {ϕ1, ϕ2, · · · , ϕk} be a

basis of Rα. The main tasks of Step 2 of Algorithm 2.1 is finding f1, f2, · · · , fk ∈ Fq such

that H(f1ϕ1 + · · ·+ fkϕk) = 0. Steps 1 and 3 of the root-finding algorithm in [30] calculate
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the leading coefficients of H1(fkϕk) and Hi+1(fk−iϕk−i), respectively, where H1 and Hi+1 are

polynomials generated from H(T ) and are of T -degree less than or equal to s. It is clear

that both of them require O(kN) operations over Fq. Step 4 calculates the roots in Fq of a

polynomial over Fq of degree at most s. From [2], the roots in Fq of a polynomial over Fq

of degree s can be found in expected time complexity O((slog2s) · (loglogs) · logq). From

the discussion above, it is easy to see that the roots in f ∈ Rα of H(T ) can be found using

O(k(N + slog2s · log(logs) · logq)) field operations over Fq. Note that s < N . So the time

complexity of Step 2 of Algorithm 2.1 is bounded from above by O(kN2), where kN2 ≤ N3,

since k ≤ N . So, the time complexity of Algorithm 2.1 is O(N3).

From Lemma 2.6, we have N =
s∑

j=0

(
v−ju+m

m

)
, where s = b v

u
c ≤ M . Since the dimension

of RMq(u, m) is k =
(

u+m
m

)
, we have

N =
s∑

j=0

(
v−ju+m

m

)
<

s+1∑
i=1

(
iu+m

m

)
<

s+1∑
i=1

k · im

= O((s + 1)m+1k)
= O(Mm+1k)
= O(m2(m+1)u−mnm+2k).

Hence Algorithm 2.1 can be implemented to run in time polynomials in the lengths and

dimensions of the codes for all m.

3 Subfield Subcodes of RS Codes and Decoding

Alternant codes are subfield subcodes of Generalized Reed-Solomon codes, and it is shown

[9, Theorem 15] that the Guruswami-Sudan algorithm can be applied to this situation.

Following [12] in this section we will show that the q-ary Reed-Muller code RMq(u, m)

is a subfield subcode of a generalized Reed-Solomon code over Fqm , and then we give a

list-decoding algorithm for the q-ary Reed-Muller code.

Let ζ be a primitive element of Fqm , then Fqm = {0, 1, ζ, ζ2, · · · , ζqm−2}. The field Fqm can

be viewed as an m-dimensional vector space over Fq with 1, ζ, · · · , ζm−1 as basis elements,

every ζj can be expressed as a linear combination of 1, ζ, · · · , ζm−1

ζj =
m−1∑
i=0

aijζ
i, 0 ≤ j ≤ qm − 2,
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where aij ∈ Fq, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ qm − 2. In other words, the elements of Fqm can be

written in the vector form as

ζj =


a0j

a1j
...

am−1,j

 , j = 0, 1, · · · , qm − 2.

Let n = qm. The vector space Fm
q has n elements which are often called points. Let

P0 := 0, Pj := (a0,j−1, a1,j−1, . . . , am−1,j−1), j = 1, · · · , n− 1. (3.1)

Then P0, P1, · · · , Pn−1 is an enumeration of the points of Fm
q . Under this enumeration, a

q-ary Reed-Muller code RMq(u, m) of order u is defined as

RMq(u, m) = {(f(P0), f(P1), · · · , f(Pn−1)) | f ∈ Fq[X1, · · · , Xm], deg(f) ≤ u}.

For two vector U = (a1, · · · , an) and V = (b1, · · · , bn), define the vector product as

UV = (a1b1, a2b2, · · · , anbn).

Now let

VI = (1, 1, · · · , 1) ∈ Fn
q ,

Vi = (0, ai0, ai1, · · · , ai,n−2), i = 0, 1, · · · , m− 1.

With these vectors in Fn
q , we construct a matrix Gu as

Gu =

(
VI

V k0
0 V k1

1 · · ·V km−1

m−1

)
,

with VI and V k0
0 V k1

1 · · ·V km−1

m−1 as rows for all nonnegative integers k0, k1, . . . , km−1 such that
m−1∑
t=0

kt ≤ u.

It is clear that the code over Fq generated by Gu is exactly the Reed-Muller code

RMq(u, m). From this representation of Reed-Muller codes, we can easily find a Reed-

Solomon code over Fqm such that RMq(u, m) can be embedded into the Reed-Solomon code

as a subfield subcode.

Let

vI = (1, 1, · · · , 1) ∈ Fn−1
q ,
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vi = (ai0, ai1, · · · , ai,n−2), i = 0, 1, · · · , m− 1.

Note that vI and vi are punctured vectors of VI and Vi, respectively, with the first digits

dropped. Let G∗
u be the matrix with vI and vk0

0 vk1
1 · · ·vkm−1

m−1 as rows for all nonnegative

integers k0, k1, . . . , km−1 such that
m−1∑
t=0

kt ≤ u. We denote the code over Fq generated by G∗
u

as RM∗
q(u, m). It is easy to see that RM∗

q(u, m) is the punctured code of RMq(u, m) with

the first digit dropped. Conversely RMq(u, m) is the extended code of RM∗
q(u, m). Hence

(ξ, c∗) ∈ RMq(u, m) if and only if c∗ ∈ RM∗
q(u, m) and ξ +

∑
c∗i = 0.

It is well known that for given q, m and u, let u⊥ = m(q− 1)− u− 1, then the dual code

of RMq(u, m) is equal to RMq(u
⊥, m). Let ρ be the rest after division of u⊥ + 1 by q − 1

with quotient σ, that is

u⊥ + 1 = σ(q − 1) + ρ, where ρ < q − 1.

Define d = (ρ + 1)qσ. Then d − 1 is the minimum distance of RM∗
q(u, m) and d is the

minimum distance of RMq(u, m).

Let h be an integer such that 0 ≤ h ≤ qm − 1. Express h in radix-q form

h = δ0 + δ1q + δ2q
2 + · · ·+ δm−1q

m−1.

Define the weight of h as

W (h) = δ0 + δ1 + δ2 + · · ·+ δm−1.

The following proposition is taken from Theorem 5 and Corollary 2 of [12].

Proposition 3.1 Let d−1 be the minimum distance of RM∗
q(u, m). Then the q-ary code

RM∗
q(u, m) is the subfield subcode of the BCH code over Fqm whose generator polynomial

has ζ, ζ2, · · · , ζd−2 as all its roots. Furthermore RM∗
q(u, m) is the cyclic code over Fq with

generator polynomial g(X) such that ζh is a zero of g(X) if and only if 0 < W (h) ≤ u⊥.

Denote by CBCH the BCH code over Fqm whose generator polynomial has ζ, ζ2, · · · , ζd−2

as all its roots. Then

RM∗
q(u, m) = CBCH ∩ Fn−1

q .
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The following matrix H is a parity-check matrix of CBCH

H =


1 ζ ζ2 · · · ζn−2

1 ζ2 ζ4 · · · ζ2(n−2)

...
...

...
...

1 ζd−2 ζ2(d−2) · · · ζ(d−2)(n−2)

 .

Let a∗ = (1, ζ, ζ2, · · · , ζn−2). Then the matrix H is a generator matrix of the generalized

Reed-Solomon code GRSd−2(a
∗, a∗) over Fqm , see [17, ch.10 §8]. So CBCH is the dual code

of GRSd−2(a
∗, a∗).

By [17, Theorem 4, ch.10 §8], the dual of GRSd−2(a
∗, a∗) is a generalized Reed-Solomon

code GRSn−d+1(a
∗,b∗) for some b∗. From the fact that

1 + ζ i + ζ2i + · · ·+ ζ(n−1)i = 0, for 1 ≤ i ≤ n− 2,

we have that

G =


1 1 1 · · · 1
1 ζ ζ2 · · · ζn−2

...
...

...
...

1 ζn−d ζ2(n−d) · · · ζ(n−2)(n−d)


is a generator matrix of GRSn−d+1(a

∗,b∗) with b∗ = 1 = (1, · · · , 1). And GRSn−d+1(a
∗,1)

has a parity-check matrix H. Hence,

CBCH = GRSn−d+1(a
∗,1).

Therefore, we have embedded RM∗
q(u, m) into GRSn−d+1(a

∗,1) as the subfield subcode,

where d− 1 is the minimum distance of RM∗
q(u, m).

Let a = (0, a∗) = (0, 1, ζ, · · · , ζn−2). Then GRSn−d+1(a,1) is the extended code of

GRSn−d+1(a
∗,1). Hence RMq(u, m) is the subfield subcode of GRSn−d+1(a,1), where d is

the minimum distance of RMq(u, m), i.e.,

RMq(u, m) = GRSn−d+1(a,1) ∩ Fn
q .

GRSn−d+1(a,1) is a [n, n − d + 1, d] Reed-Solomon code over Fqm . We can decode

GRSn−d+1(a,1) using the list-decoding algorithm of Guruswami-Sudan in [9]. We give a

list-decoding algorithm for RMq(u, m) as follows.
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Algorithm 3.1 (List Decoding of RM Codes as Alternant Codes)

Input: n = qm, y = (y0, y1, · · · , yn−1) ∈ Fn
q .

Step 0: (1) Compute the minimum distance d of RMq(u, m) and a parameter E = dn−√
n(n− d)− 1e.

(2) Construct the extension field Fqm using an irreducible polynomial of degree m

over Fq.

(3) Find a primitive element ζ of Fqm . Generate the code GRSn−d+1(a,1) with a =

(0, 1, ζ, · · · , ζn−2).

Step 1: Using Guruswami-Sudan algorithm find the set L(1) of all the codewords c of

GRSn−d+1(a,1) satisfying

d(c,y) ≤ E.

Step 2: For every c ∈ L(1), check if c ∈ Fn
q , if so, forward c into L. Output L.

From [9, Theorem 8 and Proposition 9] we have the following theorem.

Theorem 3.2 Assume d is the minimum distance of the q-ary Reed-Muller code

RMq(u, m). Then RMq(u, m) is (E, M)-decodable, provided that

E < n−
√

n(n− d) and M = O(
√

(n− d)n3).

The algorithm above correctly finds all the E-consistent codewords for any received vector

y ∈ Fn
q .

Remark 3.1: Note that Algorithm 3.1 outputs a set of E-consistent codewords of the q-

ary Reed-Muller code defined by the enumeration of points of Fm
q , say P0, P1, · · · , Pn−1,

given by (3.1). If RMq(u, m) is defined by another enumeration of the points of Fm
q ,

namely P ′
0, P

′
1, · · · , P ′

n−1, we can get the correct E-consistent codewords by the follow-

ing steps: (1) Find the permutation π such that Pi = P ′
π(i), i = 0, 1, · · · , n − 1, and

the inverse permutation π−1. (2) Let y∗ = (yπ(0), yπ(1), · · · , yπ(n−1)). Then, go to Steps

0-2 of Algorithm 3.1 with y∗. (3) For every codeword c = (c0, c1, · · · , cn−1) ∈ L, let
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π−1(c) = (cπ−1(0), cπ−1(1), · · · , cπ−1(n−1)). Then, π−1(L) = {π−1(c) | c ∈ L} is the set of

E-consistent codewords of RMq(u, m). 2

Remark 3.2: It is clear that Algorithm 3.1 works forRMq(u, m) with any u > 0. So the

algorithm is applicable to q-ary Reed-Muller codes of any rates. Theorem 3.2 gives an error-

correction bound of Algorithm 3.1, E < n−
√

n(n− d). When u < q, the minimum distance

of RMq(u, m) is given by d = (q − u)qm−1. In this case, n−
√

n(n− d) = n(1−
√

u/q) >

n
(
1− m+1

√
u/q
)m

. 2

In Step 0 of Algorithm 3.1, to construct the extension field Fqm , it requires to find an

irreducible polynomial g(x) of degree m over Fq. It is well known that there are efficient

algorithms for finding irreducible polynomials over finite fields [25]. In [23], a probabilistic

algorithm is given for finding an irreducible polynomial of degree m over Fq with expected

number of O((m2logm + mlogq)logmloglogm) field operations in Fq.

On the other hand, to generate the Reed-Solomon code GRSn−d+1(a,1) over Fqm , we

need to find a primitive element of Fqm . From [25], a primitive element of Fqm can be found

in deterministic time O((qm)1/4+ε) = O(n1/4+ε), where n = qm is the length of the code, ε

denotes an arbitrary positive number.

Step 1 of Algorithm 3.1 can be implemented using Guruswami-Sudan algorithm in [9]

for Reed-Solomon code GRSn−d+1(a,1) over Fqm . We can also use directly Algorithm 2.1

for RMqm(n − d, 1) = GRSn−d+1(a,1). From [9, Themorem 12 and Corollary 13], if t2 >

(1 + δ)n(n− d) and E = n− t < n−
√

n(n− d), then Guruswami-Sudan algorithm can be

implemented to run in O(n3δ−6) field operations in Fqm . If furthermore the rate of Reed-

Solomon codes is fixed, the complexity of this algorithm is O(n3).

So, the implementation of Algorithm 3.1 requires O(n) field operations in Fq and O(n3)

field operations in Fqm .

4 One-Point AG Codes and Decoding

It is known that every linear code is a weakly algebraic-geometric code (AG) by [18]. In this

section we prove that for appropriate u the Reed-Muller codeRMq(u, m) can be described as

a one-point algebraic-geometric code. Then using Guruswami-Sudan algorithm for algebraic-

geometric codes [9] we give a list-decoding algorithm for the Reed-Muller codes.
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Let X be a projective, absolutely irreducible, reduced and non-singular curve defined

over the finite field Fq. Let P = (P1, . . . , Pn) be an enumeration of n distinct Fq-rational

points of X . Let G be a Fq-rational divisor of X . Let L(G) be the vector space defined as

L(G) = {f is a rational function on X , (f) + G ≥ 0 or f = 0}.

Suppose that Pi is not in the support of G for i = 1, · · · , n. Then the evaluation map

evP : L(G) −→ Fn
q

with evP(f) = (f(P1), . . . , f(Pn)) is well defined. Its image is denoted by CL(X ,P , G) or

CL(P , G) for short. If C is a linear code and C = CL(X ,P , G) for some X , P and G as

above, then this is called a weakly algebraic-geometric (WAG) representation of C. See [18].

If moreover deg(G) < n, then the code is called algebraic geometric (AG) and the parameters

[n, k, d] of this code satisfy

k ≥ deg(G) + 1− g and d ≥ n− deg(G).

This code is called strongly algebraic geometric (SAG) if

2g − 2 < deg(G) < n.

Then we have equality for the lower bound of the dimension, i.e.,

k = deg(G) + 1− g.

The number d′ := n − deg(G) is called the designed minimum distance of the code. If P is

an Fq-rational point that is distinct form the Pi and G = lP , then the code is called a one

point (weakly or strongly) algebraic-geometric code.

Sudan’s decoding algorithm has been applied to AG codes, see [9, Theorem 27] and [22]

with the following result.

Proposition 4.1 Let C be a one-point algebraic-geometric code of length n and designed

distance d′. Then there is a list-decoding algorithm of polynomial time complexity that cor-

rects up to E errors if

E < n−
√

n(n− d′).
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Let p be a prime and q a power of p. Let X (m, q) be the scheme over Fp in the m

dimensional projective space Pm defined by the homogeneous ideal

I(m, q) = (Xq+1
i −X2

i Xq−1
0 + Xi+1X

q
0 −Xq

i+1X0, i = 1, . . . ,m− 1)

in Fq[X0, . . . , Xm]. According to Propositions 3 and 4 of [18] the following holds.

Proposition 4.2 The scheme X (m, q) is a projective, absolutely irreducible, reduced

curve over Fp. It has exactly one point P∞ = (0 : 0 : · · · : 0 : 1) at the hyperplane H

with equation X0 = 0, the curve is nonsingular outside P∞ and goes through all the qm

rational points of Pm over Fq outside the hyperplane H. The normalization of X (m, q) has

genus g(m, q), where

g(m, q) = 1
2
((q2 − 1)(q + 1)m−1 − qm+1 + 1) .

Let

N : Y(m, q) −→ X (m, q)

be the normalization of X (m, q). Then there is exactly one point Q∞ on Y(m, q) above P∞.

Let K∞(Q∞) be the ring of all rational functions on Y(m, q) that have no poles outside Q∞.

Let zi = (Xi/X0) ◦ N . Then K∞(Q∞) = Fq[z1, . . . , zm], see [19, Example 3]. Let v∞ be the

valuation at Q∞ counting the pole order at Q∞ of a rational function on Y(m, q). Then zi

is a rational function on Y(m, q) and

v∞(zi) = −qm−i(q + 1)i−1.

The vector space L(lQ∞) consists of all rational functions on Y(m, q) that have no poles

outside Q∞ and with pole order at most l at Q∞. And

K∞(Q∞) = ∪∞l=1L(lQ∞).

Proposition 6 of [18] gives

Proposition 4.3 The vector space L(lQ∞) over Fq is generated by the set of all

zk1
1 · · · zkm

m

such that
m∑

i=1

kiq
m−i(q + 1)i−1 ≤ l.
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Let n = qm. Let b be a positive integer. Let P = (P1, . . . , Pn) be an enumeration of all

the points of Fm
q . Now Fm

q is the set of all Fq-rational points of the affine space Am which

we embed in the projective space Pm by the map (a1, . . . , am) 7→ (1 : a1 : . . . : am). Let Qi

be the unique point of Y(m, qb) above Pi. Let Q = (Q1, . . . , Qn). Consider the evaluation

maps

evP : Fq[Y1, . . . , Ym] −→ Fn
q

and

evQ : K∞(Q∞) −→ Fn
q .

Consider the ring morphism

θ : Fq[Y1, . . . , Ym] −→ K∞(Q∞)

defined by θ(Yi) := zi. Then evP = evQ ◦ θ.

The image under evP of all polynomials of degree at most u is RMq(u, m). The image

under evQ of L(lQ∞) is the weakly algebraic geometry code on the curve Y(m, qb) with

respect to the points Q and the divisor lQ∞ and is denoted by CL(Y(m, qb),Q, lQ∞). By

Proposition 4.3, we have that for any b ≥ 1,

RMq(u, m) ⊆ CL(Y(m, qb),Q, u(qb + 1)m−1Q∞).

Especially, RMq(u, m) ⊆ CL(Y(m, q),Q, u(q + 1)m−1Q∞).

We will have a close look at b in l = u(qb + 1)m−1. Choose the positive integer b such

that

qb > ( m−1
√

1 + 1/u− 1)−1.

The inequality above is u(qb + 1)m−1 < (u + 1)qb(m−1), so by this choice of b we have that

u(qb + 1)i < (u + 1)qbi for i = 0, 1, . . . ,m− 1.

From these inequalities above, we can prove that

m∑
i=1

kiq
b(m−i)(qb + 1)i−1 ≤ u(qb + 1)m−1 if and only if k1 + · · ·+ km ≤ u.

Therefore the monomials

zk1
1 · · · zkm

m with k1 + · · ·+ km ≤ u

generate the space L(u(qb + 1)m−1Q∞) by Proposition 4.3. In this way we have shown the

following proposition.
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Proposition 4.4 Let

qb > ( m−1
√

1 + 1/u− 1)−1.

Then

RMq(u, m) = CL(Y(m, qb),Q, u(qb + 1)m−1Q∞).

This representation of RMq(u, m) is algebraic geometric if and only if u(qb+1)m−1 < qm,

which is equivalent to b = 1 and u < qm/(q + 1)m−1.

Now by Propositions 4.3 and 4.4, we the following corollary

Corollary 4.5 Denote CL := CL(Y(m, q),Q, u(q +1)m−1Q∞). Then RMq(u, m) ⊆ CL.

Moreover

(1) If u < qm/(q + 1)m−1, then CL is a one-point algebraic-geometric code.

(2) If u < min
{

qm

(q+1)m−1 ,
qm−1

(q+1)m−1−qm−1

}
, then CL is a one-point algebraic-geometric code

and RMq(u, m) = CL.

The following is a list-decoding algorithm for RMq(u, m) with u < qm/(q + 1)m−1.

Algorithm 4.1 (List Decoding of RM Codes as AG Codes)

Input: n = qm, y = (y1, y2, · · · , yn) ∈ Fn
q .

Step 0: Compute a parameter E =

⌈
n

(
1−

√
u(q+1)m−1

n

)
− 1

⌉
.

Step 1: Using Guruswami-Sudan algorithm find the set L(1) of all the codewords c of CL

satisfying

d(c,y) ≤ E.

Step 2: For every c ∈ L(1), check if c ∈ RMq(u, m), if so, forward c into L. Output L.
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Theorem 4.6 Assume that u < qm/(q + 1)m−1. The algorithm above is a list-decoding

algorithm for RMq(u, m), which works for up to E errors, provided that

E < n

(
1−

√
u(q + 1)m−1

n

)
.

Remark 4.1: From the theorem above, Algorithm 4.1 works only for RMq(u, m) with

u < qm/(q + 1)m−1 < q. Since n = qm, when q is large, u(q + 1)m−1/n is very close to u/q.

So, for large q, n(1−
√

u(q + 1)m−1/n) ≈ n(1−
√

u/q) ≥ n(1− m+1
√

u/q)m. Therefore, when

u < qm/(q + 1)m−1 and q is large, the error-correction bound of Algorithm 4.1 is better than

that of Algorithm 2.1. 2

Now let us consider the complexity of Algorithm 4.1. Denote by K the function field

of Y(m, q). From [9, Proposition 22], Step 1 of Algorithm 4.1 can be reduced to a root-

finding problem over the function field K of a univariate polynomial H(y) of degree s ≤ l
n−d′

with at most O
(

l6

(n−d′)3

)
operations over Fq and O(nl2) operations over K, where d′ =

n− deg(u(q + 1)m−1Q∞) = n− u(q + 1)m−1, and l is a parameter given by

l = O

(
max

{
g(n− E) + n(n− d′)

(n− E)2 − n(n− d′)
, n− E

})
,

g = g(m, q) is the genus of Y(m, q).

Using the algorithm in [31] the root-finding problem of H(y) can be solved with

O(ks(n2 +s2 +log2s · loglogs · logq)) operations over Fq and O(ks2) operations over K. So the

implementation of Algorithm 4.1 requires O
(

l6

(n−d′)3
+ ks(n2 + s2 + log2s · loglogs · logq)

)
operations over Fq and O(nl2 + ks2) operations over K.

Assume δ = n−
√

n(n− d′)−E is fixed such that 0 < δ ≤ 1. Then n−E =
√

n(n− d′)+

δ = O(n). On the other hand, g = 1
2
((q2 − 1)(q + 1)m−1 − qm+1 + 1) = O(n). We have

l = O

(
max

{
g(n− E) + n(n− d′)

(n− E)2 − n(n− d′)
, n− E

})
= O(n

3
2 ),

since (n − E)2 − n(n − d′) = 2δ
√

n(n− d′) + δ2 ≥ 2δ
√

n. Then Algorithm 4.1 can be

implemented in O(n9) operations over Fq and O(n4) operations over K.
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5 Analysis and Comparison

In this section, we will compare the proposed list-decoding algorithms with each other and

with the known algorithms of [1] and [27].

In [1] and [27], randomized algorithms for RMq(u, m) were given, for any codewords c

within relative Hamming distance (1−ε) to the received word y, i.e., d(c,y)/n ≤ 1−ε, those

algorithms correctly find c. In [1] the parameter ε (which is called fraction of agreement) is

an unspecified polynomial in u and 1/q. The result in [27] is a strengthening of the result in

[1], and the algorithm in [27] works for a smaller fraction of agreement given by ε > c
√

u/q,

where the constant c can be pushed down to any constant greater than
√

2 assuming u/q

is sufficiently small. This means that the algorithm in [27] works for at most E < n(1− ε)

errors where ε >
√

2 ·
√

u/q, and the algorithm is applicable only to those RMq(u, m) with

u < q/2.

Consider the error-correction capabilities of our algorithms. By Remark 2.1, Algorithm

2.1 works for up to E < n(1 − m+1
√

u/q)m errors. It is clear that (1 − m+1
√

u/q)m is often

smaller than 1 −
√

2 ·
√

u/q. But Algorithm 2.1 is applicable to RMq(u, m) with u < q.

From Theorem 3.2, Algorithm 3.1 works for up to E < n(1 −
√

(n− d)/n), where d is

the minimum distance of the code. Since when u < q, for RMq(u, m) we have n = qm

and d = (q − u)qm−1. So, 1 −
√

(n− d)/n = 1 −
√

u/q > 1 −
√

2 ·
√

u/q. Therefore,

Algorithm 3.1 has a better error-correction capability than the list decoding algorithm in

[27]. More importantly, Algorithm 3.1 is applicable to any q-ary Reed-Muller code. Next

consider Algorithm 4.1. From Theorem 4.6, this algorithm is applicable to Reed-Muller

codes RMq(u, m) with u < qm/(q + 1)m−1, and it works for up to E < n

(
1−

√
u(q+1)m−1

n

)
errors. Since n = qm, when m is fixed and q is sufficiently large, 1−

√
u(q+1)m−1

n
is very close

to 1−
√

u/q and greater than 1−
√

2 ·
√

u/q. Thus, Algorithm 4.1 can be also better than

the algorithm in [27] in the sense of error-correction capability.

To compare the proposed algorithms with each other, we define the following error-

correction-capability (ECC) functions:

F (u) =
d

2
, u > 0,

G(u) = n(1− m+1
√

u/q)m, 0 < u < q,

H(u) = n(1−
√

(n− d)/n), u > 0,
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V (u) = n(1−
√

u(q + 1)m−1/n), 0 < u < qm/(q + 1)m−1.

The traditional decoding algorithms can correct at most E ≤ dF (u) − 1e errors; E ≤
bG(u)−1c gives a upper bound for the error-correction capability of Algorithm 2.1; Algorithm

3.1 works for up to E ≤ dH(u)−1e errors; and Algorithm 4.1 works for up to E ≤ dV (u)−1e
errors. We have following properties:

(5.1) For sufficiently small u, G(u) > F (u), and Algorithm 2.1 can correct more errors
than traditional decoding algorithms.

(5.2) For any positive integer u, H(u) > F (u). Algorithm 3.1 can correct more errors
than any traditional decoding algorithm.

(5.3) When u < q, H(u) ≥ G(u), so, Algorithm 3.1 can correct more errors than
Algorithm 2.1.

(5.4) For 0 < u < qm/(q + 1)m−1, H(u) > V (u). So, Algorithm 3.1 can correct
more errors than Algorithm 4.1. But when q is large, V (u) ≈ H(u), the error-
correction capability of Algorithm 4.1 is close to that of Algorithm 3.1.

The following figure illustrates the error-correction capabilities of the proposed algorithms

and traditional decoding algorithms. In the figure, q = 64 and m = 2, the values of functions

F (u), G(u), H(u) and V (u) are shown for 0 < u ≤ 63.

Figure 1: Comparison of the ECC functions

Regarding the time complexity of the proposed algorithms, we have proved in Section

2.4 that the implementation of Algorithm 2.1 requires O(N3) operations in Fq, where N

is bounded from above by a polynomial in m, the code length n and the dimension k.

Let t >
√

(1 + δ)n(n− d). Assume that the number of errors is at most E < n − t.

Then Step 1 of Algorithm 3.1 requires O(n3δ−6) operations in the extension field Fqm .

And we need to construct the extension field Fqm and to generate the Reed-Solomon code

GRSn−d+1(a,1) over Fqm before decoding. The implementation of Algorithm 4.1 requires

O
(

l6

(n−d′)3
+ ks(n2 + s2 + log2s · loglogs · logq)

)
operations over Fq and O(nl2 + ks2) opera-

tions over the function field K, where d′ = n− deg(u(q + 1)m−1Q∞) = n− u(q + 1)m−1, and

l is a parameter given by

l = O

(
max

{
g(n− E) + n(n− d′)

(n− E)2 − n(n− d′)
, n− E

})
,
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g = g(m, q) is the genus of Y(m, q). Under some assumption, Algorithm 4.1 can be imple-

mented in O(n9) operations over Fq and O(n4) operations over K.

We mention that for fixed and small m Algorithm 2.1 runs over the field Fq with low

complexity, and when u/q is sufficiently small, the error-correction capability of Algorithm

2.1 can be close to that of Algorithms 3.1 and 4.1 (one can also see this from Figure 1). So in

some practical applications, Algorithm 2.1 can be preferable for the decodings of Reed-Muller

codes of small rates.

6 Conclusions

In this paper, viewing q-ary Reed-Muller codes as codes from order domains, we present

a list-decoding algorithm for q-ary Reed-Muller codes, which is a straightforward gener-

alization of the list-decoding algorithm of Reed-Solomon codes by Guruswami and Sudan

in [9]. The algorithm works for up to bn(1 − m+1
√

u/q)m − 1c errors, and it is applicable

to codes RMq(u, m) with u < q. This algorithm can be implemented to run in time

polynomial in the length of the codes. We show that q-ary Reed-Muller codes are subfield

subcodes of Reed-Solomon codes, and then present a second list-decoding algorithm for

q-ary Reed-Muller codes. This algorithm works for codes with any rates, and achieves

an error-correction bound dn(1 −
√

(n− d)/n) − 1e. The second algorithm achieves a

better error-correction bound than the algorithm in [27]. The implementation of the second

algorithm requires O(n) field operations in Fq and O(n3) field operations in Fqm under some

assumption. Also, we prove that q-ary Reed-Muller codes can be described as one-point

AG codes. And using the algorithm of AG codes in [9], we give a third list-decoding

algorithm for Reed-Muller codes. The third algorithm achieves an error-correction bound

dn(1−
√

u(q + 1)m−1/n)− 1e. The time complexity of the third algorithm is also bounded

from above by polynomials in the length of the codes.
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