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Abstract—In this paper, the advantages of list decoding for
short packet transmission over fading channels with an unknown
state are illustrated. The principle is applied to polar codes
(under successive cancellation list decoding) and to general short
binary linear block codes (under ordered-statistics decoding).
The proposed decoders assume neither a-priori knowledge of
the channel coefficients, nor of their statistics. The scheme relies
on short pilot fields that are used only to derive an initial channel
estimate. The channel estimate is required to be accurate enough
to enable a good list construction, i.e., the construction of a list
that contains, with high probability, the transmitted codeword.
The final decision on the message is obtained by applying a
non-coherent decoding metric to the codewords composing the
list. This allows one to use very few pilots, thus reducing the
channel estimation overhead. Numerical results are provided for
the Rayleigh block-fading channel and compared to finite-length
performance bounds. The proposed technique provides (in the
short block length regime) gains of 1 dB with respect to a
traditional pilot-aided transmission scheme.

I. INTRODUCTION

Recently, there has been an increasing interest in design-

ing wireless communication systems with short information

blocks, up to a few tens of bits, due to emerging applications

with strict latency constraints [1]. As capacity is far beyond

what is achievable for such message lengths, the fundamental

limits of communications for finite-length messages have

received renewed attention [2]–[5]. Code designs [6]–[8] and

sophisticated decoding algorithms [9], [10] closing the gap to

those limits in the moderate- and short-length regimes have

been proposed. It is possible to operate within a few tenth of

a dB from the finite length bounds as illustrated in a recent

survey [11] comparing various code classes and finite-length

bounds. While most of the attention has been focused on

communication over additive white Gaussian noise (AWGN)

channels, some applications require communicating with short

packets over a fading channel where no a priori channel state

information (CSI) is available at the transmitter and receiver

[1]. In fact, classic pilot-assisted transmission (PAT) methods

[12] become highly sub-optimal when short blocks are used

[13]. The rates achievable over fading channels, when the CSI

is not a priori available have been investigated in [14], [15] for
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a fixed blocklength and error probability. Bounds on the error

probabilities are provided in [16] not only for non-coherent

transmission but also for various PAT strategies.

Recently, a novel decoding strategy for PAT schemes has

been proposed [17], which aims at approaching the bounds de-

veloped in [16] without significantly increasing the complexity

with respect to the so-called coherent setup where perfect CSI

is available at the receiver. The decoder, in particular, assumes

neither a priori knowledge of the channel coefficients, nor

of their statistics. The technique relies on the use of very

few pilot symbols to obtain a channel estimate, which is

used to initialize an efficient list decoder. The list decoder

provides a set of candidate codewords, which includes, with

a sufficiently high probability, the transmitted codeword. For

the final decision, a non-coherent decision metric is adopted.

The effectiveness of the method was illustrated for a quasi-

cyclic code under ordered-statistics decoder (OSD) [9], [18].

Although the gains were remarkable, the list sizes required by

OSD to provide such gains are relatively large. In this paper,

we apply the same principle to polar codes with successive

cancellation list (SCL) decoding. We show that larger gains

can be achieved in this setting, with much smaller list sizes

than for the OSD, over a single-input single-output (SISO)

Rayleigh block-fading channel.

II. PRELIMINARIES

We use capital letters, e.g., X , for random variables (RVs)

and their lower case counterparts, e.g., x, for their realizations.

We denote the random vectors via capital bold letters, e.g.,

X = [X1, X2, . . . , Xn], and their vector realizations via the

lower case counterparts, e.g., x = [x1, x2, . . . , xn]. As an

exception, Ia refers to the a×a identity matrix. The probability

density function of the continuous RV X is denoted as pX .

We use ‖·‖ for the l2-norm, 〈·, ·〉 for the inner product of

two vectors, ln(·) for the natural logarithm, and E[·] for

the expectation. We write CN (µ, σ2) to denote a complex

Gaussian distribution with mean µ and variance σ2.

A. System Model

We consider a SISO Rayleigh block-fading channel, i.e., the

random fading coefficient is constant for nc channel uses and

changes independently across ℓ coherence blocks, which are

also called diversity branches. Therefore, the packet size is



n = ℓnc. Such a setup is relevant for OFDM systems, e.g.,

LTE and 5G (see [19]). The input-output relationship of the

channel for the ith coherence block is

yi = hixi + ni, i = 1, . . . , ℓ

where xi ∈ Xnc and yi ∈ C
nc denote the transmitted

and received vectors, hi is the realization of the channel

coefficient, which is distributed as Hi ∼ CN (0, 1) and ni

is the corresponding AWGN term, which is distributed as

Ni ∼ CN (0, σ2Inc
). The mutually independent RVs Hi and

Ni are assumed to be independent over i. We will focus on

quadrature phase shift keying (QPSK) signalling where the

energy per symbol is normalized to 1.

B. Decoding Metrics over the Rayleigh Fading Channel

If the channel coefficients are known to the receiver, then

the (coherent) maximum likelihood (ML) decoding rule is

x̂ = argmax
x∈C

pY |X,H(y|x,h)

= argmin
x∈C

ℓ
∑

i=1

||yi − hixi||
2

where C is the set of transmitted signal vectors induced by the

chosen channel code and modulation. When ‖xi‖ is constant

across codewords and blocks, we have

x̂ = argmax
x∈C

ℓ
∑

i=1

ℜ{〈yi, hixi〉}. (1)

This is the case, for instance, if the modulation is QPSK. The

idealized setting described above is often approximated by

including pilot symbols in the transmitted sequence, which

are used to obtain an estimate ĥ of the channel coefficients.

The estimate is treated as ideal by the decoder, yielding the

mismatched decoding rule (1) where hi is replaced by ĥi.

Assume next that the decoder does not have access to the

channel coefficients and to their distribution, and that no pilots

are embedded in the transmitted sequence. In this case, the

problem of decoding can be tackled, for instance, by designing

a generalized likelihood ratio test (GLRT) [20], yielding

x̂ = argmax
x∈C

sup
h

pY |X,H(y|x,h)

= argmin
x∈C

ℓ
∑

i=1

inf
hi

||yi − hixi||
2 (2)

= argmax
x∈C

ℓ
∑

i=1

|〈yi,xi〉|
2

‖xi‖2
. (3)

The last step follows because the estimate ĥi achieving (2) is

ĥi = 〈yi,xi〉/‖xi‖
2. Note that, under the assumption that the

signals in C have the same energy over each coherence block,

(3) reduces to

x̂ = argmax
x∈C

ℓ
∑

i=1

|〈yi,xi〉|
2. (4)

C. Successive Cancellation List Decoding of Polar Codes

Polar codes [21], [22] are the first class of provably

capacity-achieving codes with low encoding and decoding

complexity over any binary-input memoryless symmetric

channel under successive cancellation (SC) decoding [22]. For

a length-n polar code, a matrix Gn is constructed as

Gn = BnK
⊗m
2

where Bn is the n×n bit-reversal permutation [22] and K⊗m
2

denotes m-fold Kronecker product of K2 defined as

K2 ,

[

1 0
1 1

]

with m = log2 n. A polar code of dimension k is designed by

selecting the indexes of n−k bit positions, to be included in a

set A. Then, an n-bit vector u is defined for encoding, where

ui = 0 for all i ∈ A, yielding the so-called frozen bits, and the

remaining k elements of u carry information bits. Encoding is

performed as c = uGn. SC decoding [22] estimates ui, i =
1, 2, . . . , n, by using the channel observations and the previous

decisions û1, û2, . . . , ûi−1. The code constraints imposed by

the set A are taken into account by setting ûi to 0 if i ∈ A.

In SCL decoding [10], the two hypotheses 0/1 are kept active

instead of making a hard decision for each bit ui (if it is not

a frozen bit). More specifically, several instances of an SC

decoder run in parallel. Each relies on a different hypothesis,

which we call path, on the previous information bits. At step

i, each SC decoder instance computes the likelihoods for two

new paths, corresponding to ûi = 0 and ûi = 1, arising from

the same path. This doubles the number of paths for each i /∈
A. Whenever the number of paths exceeds a given maximum

list size L, the least likely paths are pruned from the list. At

the final stage, the decoder outputs the codeword maximizing

the relevant decision metric.

D. Ordered-Statistics Decoding of Binary Linear Block Codes

An OSD represents an instance of a list decoding algorithm,

which can be used for any binary linear block code [9], [18].

With a moderate complexity, it provides a very competitive

performance at short blocklengths [11]. For a given (n, k)
code with generator matrix G, the algorithm starts by ordering

the bit-wise channel log-likelihood ratios (LLRs) in decreasing

order of reliability. This reordering is reflected in a permutation

of the columns of the generator matrix G. The permuted

generator matrix is put into systematic form.1 For a given

parameter t, the decoder assumes that the maximum number

of erroneous bits in the k most reliable bit positions is t.
Based on this assumption, the decoder generates a list L of

codewords with a size equal to |L| =
∑t

i=0

(

k
i

)

, by first taking

hard decisions on the k most reliable positions and then by

adding to them all the error patterns with Hamming weight

up to t. Each vector is encoded via the systematic (permuted)

1This step might require an additional reordering of both the generator
matrix and LLRs in case the first k columns of the permuted generator matrix
are not linearly independent.



generator matrix to produce the candidate codewords in L.

Finally, the codeword in L that maximizes the decision metric

of choice is selected. Typically, the likelihood metric is used

if it is known and if it can be computed efficiently.

E. On the Complexity of Non-Coherent Decoding

Efficient maximum likelihood decoders (such as Viterbi

decoding over the code trellis) as well as decoding algorithms

that relies on the factorization of the channel likelihood (such

as belief propagation decoding of low-density parity-check

and turbo codes, SCL decoding of polar codes or OSD

of a generic code) require to be initialized with bit-wise

LLRs. However, the decoding metric in (4) does not admit

a simple factorization, which prevents a straightforward use

of such efficient decoders. A typical approach to address this

issue relies on PAT. More specifically, np pilot symbols are

embedded into each coherence block. For the ith coherence

block, the vector of pilot symbols is denoted by xp

i. The pilots

are followed by nc − np coded symbols, denoted by xd

i. The

corresponding channel outputs are yp

i and yd

i , respectively. The

rate in bits per channel use (bpcu) is R = k/(ℓnc) where k
is the number of information bits encoded by C. The rate of

the code C is R0 = k/(ℓ(nc − np)). As a result, for a fixed

rate R and a fixed blocklength ℓnc, a large number of pilots

comes at the cost of an increase in the code rate R0, and

thus a reduction of the error correction capability. This yields

a trade-off between resources allocated to channel estimation

and error correction [13].

The approach that will be used as reference in the following

relies on a separation between the channel estimation and

the channel decoding steps. In particular, upon observing the

channel output, the pilot symbols are used in each coherence

block to perform an ML estimation of the corresponding

channel coefficient, i.e., we have

ĥi =
〈yp

i ,x
p

i〉

‖xp

i‖
2
, i = 1, . . . , ℓ. (5)

The channel estimates (5) are treated as perfect and

the bit-wise LLRs based on the mismatched likelihoods

pY |X,H(yd

i |x
d

i, ĥi), with i = 1, . . . , ℓ, are fed to the (list)

decoder in use. We refer to such approach as pragmatic PAT

decoding. In the following, we demonstrate the effectiveness of

a recently introduced technique [17] compared to the reference

described above. It relies on a very limited number of pilot

symbols (yielding a coarse initial channel estimate) to generate

a list, from which the final decision is obtained according to

a non-coherent metric.2

III. LIST DECODER WITH IN-LIST GLRT

A simple modification of pragmatic PAT decoding can be

devised for algorithms relying on list decoding. The modi-

fication works as follows. The initial channel estimates (5)

2An alternative approach to reduce the pilot overhead is to use it-
erative decoding and channel estimation algorithms [23]–[25]. A per-
formance/complexity comparison between the technique outlined in this
manuscript and iterative decoding and channel estimation approaches is
beyond the scope of this paper.

are used by the list decoder to form the list L of codewords

through the mismatched LLRs. Then, each codeword in the

list is modified by re-inserting the pilot symbols, which yields

a modified list L′. We finally apply the GLRT rule (4) on the

codewords in L′ to obtain the decision as follows:

x̂ = argmax
x∈L′

ℓ
∑

i=1

|〈yi,xi〉|
2

= argmax
x∈L′

ℓ
∑

i=1

ℜ{〈yd

i , ĥix
d

i〉}+
1

2np
|〈yd

i ,x
d

i〉|
2. (6)

Note that the decoding metric has two contributions: a first

term that resembles a coherent metric based on the estimate

ĥ, and a second term that is related to the non-coherent

correlation. The second term is weighted by the inverse of

the number of pilots; hence it becomes negligible when np is

large (i.e., when the channel estimate is reliable).

An alternative derivation of the results is as follows. Observe

that the channel estimate ĥi provides the decoder with a

statistical knowledge of the actual channel coefficient [26].

In particular, assuming the a priori distribution of the fading

to be unknown to the decoder, the distribution of the channel

coefficient for the ith coherence block given its estimate can

be modeled as a complex Gaussian distribution with mean ĥi

given in (5) and variance σ2‖xp

i‖
−2. Using this knowledge,

we obtain

x̂ = argmax
x∈C′

ℓ
∏

i=1

E[pY d|Xd,Hi
(yd

i |x
d

i, Hi)]

= argmax
x∈C′

ℓ
∑

i=1

|〈yd

i ,x
d

i〉|
2 + 2‖xp

i‖
2ℜ{〈yd

i , ĥix
d

i〉}

‖xi‖2

+
‖xp

i‖
2|ĥi|

2‖xd

i‖
2

‖xi‖2
+ σ2 ln

(

‖xp

i‖
2

‖xi‖2

)

(7)

where (7) follows because the conditional received vec-

tor yd

i per coherence block given the transmitted sequence

xd

i is complex Gaussian with mean ĥix
d

i and covariance

σ2
(

Inc
+ ‖xp

i‖
−2(xd

i)
Hxd

i

)

and C′ is the modified channel

code obtained by re-inserting the pilot symbols to each code-

word. By assuming QPSK and restricting the search space to

L′, we recover (6).

IV. FINITE-BLOCKLENGTH BOUNDS

Next, we introduce the tools from finite-blocklength infor-

mation theory that we shall use to benchmark our coding

schemes. We provide an outer (converse) bound based on

the metaconverse theorem in [5, Thm. 28] and for the inner

(achievability) bound, we use a relaxed version of the random

coding union (RCU) bound in [5, Thm. 16] that is commonly

referred to as the RCUs bound [27, Thm. 1].

Let q : C
nc × C

nc → R
+ be an arbitrary

block-wise decoding metric and let (X̄i,Xi,Yi) ∼
pX(x̄i)pX(xi)pY |X(yi|xi), i = 1, . . . , ℓ, be independent



across coherence blocks. We define the generalized informa-

tion density as

ıs(xi,yi) = ln
q(xi,yi)

s

E[q(X̄i,yi)s]
(8)

where s > 0 and the expectation is with respect to X̄ . The

RCUs achievability bound states that, for a given rate R, the

average error probability is upper-bounded as

ǫ ≤ inf
s>0

E

[

e−[
∑ℓ

i=1
ıs(Xi,Yi)−ln(2Rncℓ−1)]

+
]

. (9)

We evaluate the bound in (9) for the following combinations of

input distributions and decoding metrics [16, Sec. III.A-III.D]:

i) Input symbols uniformly distributed on a shell in C
nc ,

and ML decoding, i.e., q(xi,yi) = pY |X(yi|xi);
ii) a pilot-assisted scheme as in Section II-E with the nc−np

data symbols uniformly distributed on a shell in C
nc−np

and ML decoding, i.e., q(xi,yi) = p
Y d|Xd,Ĥ(yd

i |x
d

i, ĥi);
iii) input distribution as in ii), and pragmatic PAT decoding,

i.e., q(xi,yi) = exp(−‖yd

i − ĥix
d

i‖
2).

For the converse bound, we let pX be as in i) and define

s(xi,yi) = ln
pY |X(yi|xi)

qs
Y
(yi)

(10)

where qs
Y
(yi) =

1
µ(s)E[pY |X(yi|X̄)s]1/s and µ(s) is chosen

so that qs
Y
(yi) integrates to 1. Then, for a given rate R, the

average error probability is lower-bounded as

ǫ ≥ sup
s>0

sup
λ>0

P

[

ℓ
∑

i=1

s(Xi,Yi) ≤ λ

]

− eλ−Rncℓ. (11)

For more details on this bound, the reader is referred to [28].

V. NUMERICAL RESULTS

We present next the performance achieved by the modified

list decoders proposed in Section III. We consider two coding

schemes: a quasi-cyclic code and a polar code. The results are

obtained by Monte Carlo simulations and are provided in terms

of block error rate (BLER) vs. signal-to-noise ratio (SNR) with

the SNR espressed as Es/N0, where Es is the expected energy

per symbol and N0 the single-sided noise power spectral

density. The results are compared with the bounds of Section

IV. We consider a Rayleigh block-fading channel with 4 diver-

sity branches. Each branch consists of 17 channel uses. This

results in 68 channel uses per message. For the simulations,

we transmit k = 32 information bits within each codeword,

yielding a rate R = 32/68 ≈ 0.47 bpcu. The symbols are

taken from a QPSK constellation. The (128, 32) quasi-cyclic

code used in the simulations is obtained by tail-biting termina-

tion of a rate−1/4 non-systematic convolutional code with a

memory 14 and generators [47633, 57505, 66535, 71145] [29,

Table 10.14]. A suitable number of codeword bits is punctured

to accommodate the pilot symbols within the 68 channel uses.

The minimum distance of the quasi-cyclic code is upper-

bounded by the free distance of the underlying convolutional

code, which is 37. In addition, we designed a (128, 32) polar
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Fig. 1: BLER vs. SNR for the proposed scheme adopting quasi-
cyclic code under OSD ( ) and polar code under SCL decoding
( ) with np = 1 (top), np = 2 (middle) and np = 3 (bottom).
Finite length performance bounds given by the converse bound of
(11) ( ), the achievability of (9) for a non-coherent setup with
ML decoding ( ), for PAT under ML decoding ( ) and for
PAT under pragmatic PAT decoding ( ). The performance of the
pragmatic PAT scheme of Section II-E adopting both quasi-cyclic
and polar codes, ( ) and ( ), respectively, are provided as a
reference.



code using the Gaussian approximation of density evolution

with a design SNR of Es/N0 = 3 dB. As for the quasi-

cyclic code, puncturing is applied according to the number of

channel uses available after pilot insertion. For the polar code,

quasi-uniform puncturing [30] is adopted, while the quasi-

cyclic code is punctured randomly. For both codes, a random

interleaver is applied to the codeword bits after encoding. The

receiver uses an OSD to decode the quasi-cyclic code. The

OSD order is set to 3, which provides a reasonable trade-

off between performance and decoding complexity. With this

choice, the OSD builds a list L of 5489 candidate codewords.

For the polar code, the list size of the SCL decoder is set to

1024.

In Fig. 1, we compare the performance of the proposed

modified list decoders to the performance of the pragmatic

decoders described in Section II-E for different numbers of

pilot symbols (np ∈ {1, 2, 3}) per coherence block. For the

tested cases, the gains achieved by the proposed technique

is no less than 1 dB compared to pragmatic PAT decoding

at a BLER ≈ 10−3. Remarkably, the polar code under

SCL decoding outperforms the quasi-cyclic code under OSD

despite the much smaller list size, attaining a performance

close to the RCUs achievability bound for PAT under ML

decoding.

VI. CONCLUSIONS

In this paper, the performance of short block codes over the

Rayleigh block fading channel have been analyzed under list

decoding. The analysis deals with the case where no channel

state information is available at the transmitter/receiver, and

where no information on the fading distribution is available

at the decoder. Focusing on pilot-aided transmission, it is

shown how (modified) list decoders can provide an efficient

solution to the reduction of the pilot overhead. The approach

has been applied to polar codes under successive cancellation

list decoding and quasi-cyclic codes with an ordered statistics

decoder, and it was shown that the former operate within

∼ 0.25 dB from the best known random coding achievability

bounds at a block error rate ≈ 10−4, with a remarkably smaller

list size than the ordered statistics decoder.
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[15] G. Durisi, T. Koch, J. Östman, Y. Polyanskiy, and W. Yang, “Short-
packet communications over multiple-antenna Rayleigh-fading chan-
nels,” IEEE Trans. Commun., vol. 64, no. 2, pp. 618–629, Feb. 2016.
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[19] J. Östman, G. Durisi, E. G. Ström, J. Li, H. Sahlin, and G. Liva, “Low-
latency ultra-reliable 5G communications: Finite block-length bounds
and coding schemes,” in Int. ITG Conf. Sys. Commun. Coding (SCC),
Hamburg, Germany, Feb. 2017.

[20] D. Warrier and U. Madhow, “Spectrally efficient noncoherent commu-
nication,” IEEE Trans. Inf. Theory, vol. 48, no. 3, pp. 651–668, Mar.
2002.

[21] N. Stolte, “Rekursive Codes mit der Plotkin-Konstruktion und ihre
Decodierung,” Ph.D. dissertation, TU Darmstadt, 2002.

[22] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE

Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.
[23] H. Wymeersch, Iterative Receiver Design. Cambridge: Cambridge

University Press, 2007.
[24] C. Herzet, N. Noels, V. Lottici, H. Wymeersch, M. Luise,

M. Moeneclaey, and L. Vandendorpe, “Code-aided turbo synchroniza-
tion,” Proc. of the IEEE, vol. 95, no. 6, pp. 1255–1271, 2007.

[25] M. Khalighi and J. J. Boutros, “Semi-blind channel estimation using the
EM algorithm in iterative MIMO APP detectors,” IEEE Trans. Wireless

Commun., vol. 5, no. 11, pp. 3165–3173, Nov. 2006.
[26] G. Taricco and E. Biglieri, “Spacetime decoding with imperfect channel

estimation,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1874–
1888, June 2005.

[27] A. Martinez and A. Guillén i Fàbregas, “Saddlepoint approximation of
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