
1

List Scheduling Algorithm for Heterogeneous
Systems by an Optimistic Cost Table

Hamid Arabnejad and Jorge G. Barbosa, Member, IEEE

Abstract—Efficient application scheduling algorithms are important for obtaining high performance in heterogeneous computing
systems. In this paper, we present a novel list-based scheduling algorithm called Predict Earliest Finish Time (PEFT) for
heterogeneous computing systems. The algorithm has the same time complexity as the state-of-the-art algorithm for the same
purpose, that is, O(v2.p) for v tasks and p processors, but offers significant makespan improvements by introducing a look-ahead
feature without increasing the time complexity associated with computation of an Optimistic Cost Table (OCT). The calculated
value is an optimistic cost because processor availability is not considered in the computation. Our algorithm is only based on an
OCT table that is used to rank tasks and for processor selection. The analysis and experiments based on randomly generated
graphs with various characteristics and graphs of real-world applications show that the PEFT algorithm outperforms the state-
of-the-art list-based algorithms for heterogeneous systems in terms of schedule length ratio, efficiency and frequency of best
results.

Index Terms—Application scheduling, DAG scheduling, random graphs generator, static scheduling.

F

1 INTRODUCTION

AHeterogeneous system can be defined as a range
of different system resources, which can be lo-

cal or geographically distributed, that are utilized to
execute computationally intensive applications. The
efficiency of executing parallel applications on hetero-
geneous systems critically depends on the methods
used to schedule the tasks of a parallel application.
The objective is to minimize the overall completion
time or makespan. The task scheduling problem for
heterogeneous systems is more complex than that
for homogeneous computing systems because of the
different execution rates among processors and pos-
sibly different communication rates among different
processors. A popular representation of an application
is the Directed Acyclic Graph (DAG), which includes
the characteristics of an application program such as
the execution time of tasks, the data size to com-
municate between tasks and task dependencies. The
DAG scheduling problem has been shown to be NP-
complete [14], [18], [31], even for the homogeneous
case; therefore, research efforts in this field have been
mainly focused on obtaining low-complexity heuris-
tics that produce good schedules. In the literature, one
of the best list-based heuristics is the Heterogeneous
Earliest-Finish-Time (HEFT) [29]. In [11], the authors
compared 20 scheduling heuristics and concluded that
on average, for random graphs, HEFT is the best one
in terms of robustness and schedule length.

• Universidade do Porto, Faculdade de Engenharia, Dep. de Engen-
haria Informática, Laboratório de Intelegência Artificial e Ciência dos
Computadores, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
hamid.arabnejad@fe.up.pt, jbarbosa@fe.up.pt

The task scheduling problem is broadly classified
into two major categories, namely Static Schedul-
ing and Dynamic Scheduling. In the Static category,
all information about tasks such as execution and
communication costs for each task and the relation-
ship with other tasks is known beforehand; in the
dynamic category, such information is not available
and decisions are made at runtime. Moreover, Static
scheduling is an example of compile-time schedul-
ing, whereas Dynamic scheduling is representative
of run-time scheduling. Static scheduling algorithms
are universally classified into two major groups,
namely Heuristic-based and Guided Random Search-
based algorithms. Heuristic-based algorithms allow
approximate solutions, often good solutions, with
polynomial time complexity. Guided Random Search-
based algorithms also give approximate solutions, but
the solution quality can be improved by including
more iterations, which therefore makes them more
expensive than the Heuristic-based approach [29]. The
Heuristic-based group is composed of three subcat-
egories: list, clustering and duplication scheduling.
Clustering heuristics are mainly proposed for homo-
geneous systems to form clusters of tasks that are then
assigned to processors. For heterogeneous systems,
CHP algorithms [8] and Triplet [13] were proposed,
but they have limitations in higher-heterogeneity sys-
tems. The duplication heuristics produce the shortest
makespans, but they have two disadvantages: a higher
time complexity, i.e., cubic, in relation to the number
of tasks, and the duplication of the execution of tasks,
which results in more processor power used. This is
an important characteristic not only because of the
associated energy cost but also because, in a shared
resource, fewer processors are available to run other

2

concurrent applications. List scheduling heuristics, on
the other hand, produce the most efficient schedules,
without compromising the makespan and with a com-
plexity that is generally quadratic in relation to the
number of tasks. HEFT has a complexity of O(v2.p),
where v is the number of tasks and p is the number
of processors.

In this paper, we present a new list scheduling
algorithm for a bounded number of fully connected
heterogeneous processors called Predict Earliest Fin-
ish Time (PEFT) that outperforms state-of-the-art al-
gorithms such as HEFT in terms of makespan and
Efficiency. The time complexity is O(v2.p), as in HEFT.
To our knowledge, this is the first algorithm to out-
perform HEFT while having the same time complex-
ity. We also introduce one innovation, a look ahead
feature, without increasing the time complexity. Other
algorithms such as LDCP [15] and Lookahead [7] have
this feature but with a cubic and quartic time com-
plexity, respectively. We present results for randomly
generated DAGs [28] and DAGs from well-known
applications used in related papers, such as Gaussian
Elimination, Fast Fourier Transform, Montage and
Epigenomic Workflows.

This paper is organized as follows: in Section 2,
we introduce the task scheduling problem; in Section
3, we present related work in scheduling DAGs on
heterogeneous systems, and we present in detail the
scheduling algorithms that are used for the compari-
son with PEFT, which is the list scheduling heuristic
proposed here; in Section 4, we present PEFT; in Sec-
tion 5 we present the results and, finally, we present
the conclusions in Section 6.

2 SCHEDULING PROBLEM FORMULATION

The problem addressed in this paper is the static
scheduling of a single application in a heterogeneous
system with a set P of processors. As mentioned
above, task scheduling can be divided into Static
and Dynamic approaches. Dynamic scheduling is ade-
quate for situations where the system and task param-
eters are not known at compile time, which requires
decisions to be made at runtime but with additional
overhead. A sample environment is a system where
users submit jobs, at any time, to a shared comput-
ing resource [1]. A dynamic algorithm is required
because the workload is only known at runtime, as
is the status of each processor when new tasks arrive.
Consequently, a dynamic algorithm does not have all
work requirements available during scheduling and
cannot optimize based on the entire workload. By
contrast, a static approach can maximize a schedule
by considering all tasks independently of execution
order or time because the schedule is generated be-
fore execution begins and introduces no overhead at
runtime. In this paper, we present an algorithm that
minimizes the execution time of a single job on a

set of P processors. We consider that P processors
are available for the job and that they are not shared
during the job execution. Therefore, with the system
and job parameters known at compile time, a static
scheduling approach has no overhead at runtime and
is more appropriate.

An application can be represented by a Directed
Acyclic Graph (DAG), G = (V,E), as shown in Figure
1, where V is the set of v nodes and each node vi ∈ V
represents an application task, which includes instruc-
tions that must be executed on the same machine. E is
the set of e communication edges between tasks; each
e(i, j) ∈ E represents the task-dependency constraint
such that task ni should complete its execution before
task nj can be started. The DAG is complemented by
a matrix W that is a v × p computation cost matrix,
where v is the number of tasks and p is the number of
processors in the system. wi,j gives the estimated time
to execute task vi on machine pj . The mean execution
time of task vi is calculated by equation 1.

wi = (
∑
j∈P

wi,j)/p (1)

The average execution time wi is commonly used to
compute a priority rank for the tasks. The algorithm
proposed in this paper uses the wi,j rather than wi as
explained in section 4.

Each edge e(i, j) ∈ E is associated with a non-
negative weight ci,j representing the communication
cost between the tasks vi and vj . Because this value
can be computed only after defining where tasks vi
and vj will be executed, it is common to compute the
average communication costs to label the edges [29].
The average communication cost ci,j of an edge e(i, j)
is calculated by equation 2.

ci,j = L+
datai,j

B
(2)

where L is the average latency time of all processors
and B is the average bandwidth of all links connecting
the set of P processors. datai,j is the amount of data
elements that task vi needs to send to task vj . Note
that when tasks vi and vj are assigned to the same
processor, the real communication cost is considered
to be zero because it is negligible compared with
interprocessor communication costs.

Additionally, in our model, we consider processors
that are connected in a fully connected topology. The
execution of tasks and communications with other
processors can be achieved for each processor si-
multaneously and without contention. Additionally,
the execution of any task is considered nonpreemp-
tive. These model simplifications are common in this
scheduling problem [15], [20], [29], and we consider
them to permit a fair comparison with state-of-the-
art algorithms and because these simplifications cor-
respond to real systems. Our target system is a single

3

T10

T1

T2 T3 T4 T5 T6

T7 T8 T9

17 7

13
2931

11 7
57 5

16

9
42

7

3

30

Task P1 P2 P3

T1 22 21 36

T2 22 18 18

T3 32 27 43

T4 7 10 4

T5 29 27 35

T6 26 17 24

T7 14 25 30

T8 29 23 36

T9 15 21 8

T10 13 16 33

Fig. 1: Application DAG and computation time matrix
of the tasks in each processor for a three processor
machine

site infrastructure that can be as simple as a set
of devices (e.g., CPUs and GPUs) connected by a
switched network that guarantees parallel communi-
cations between different pairs of devices. The ma-
chine is heterogeneous because CPUs can be from
different generations and also because other very
different devices such as GPUs can be included. An-
other common machine is the one that results from
selecting processors from several clusters from the
same site. Although a cluster is homogeneous, the set
of processors selected to execute a given DAG forms a
heterogeneous machine. Because the clusters are con-
nected by high-speed networks, with redundant links,
the simplification is still reasonable. The processor la-
tency can differ in a heterogeneous machine, but such
differences are negligible. For low communication-to-
computation ratios (CCRs), the communications are
negligible; for higher CCRs, the predominant factor
is the network bandwidth, and we consider that the
bandwidth is the same throughout the entire network.

Next, we present some of the common attributes
used in task scheduling, which we will refer to in the
following sections.

Definition (1) pred(ni): denotes the set of immedi-
ate predecessors of task ni in a given DAG. A task
with no predecessors is called an entry task, nentry.
If a DAG has multiple entry nodes, a dummy entry
node with zero weight and zero communication edges
can be added to the graph.

Definition (2) succ(ni): denotes the set of immedi-
ate successors of task ni. A task with no successors is
called an exit task, nexit. Similar to the entry node, if
a DAG has multiple exit nodes, a dummy exit node
with zero weight and zero communication edges from
current multiple exit nodes to this dummy node can
be added to the graph.

Definition (3) makespan or schedule length: denotes
the finish time of the last task in the scheduled DAG
and is defined by

makespan = max{AFT (nexit)} (3)

where AFT (nexit) denotes the Actual Finish Time of
the exit node. In the case where there is more than
one exit node and no redundant node is added, the
makespan is the maximum actual finish time of all exit
tasks.

Definition (4) level(ni): the level of task ni is an
integer value representing the maximum number of
edges of the paths from the entry node to ni. For the
entry node, the level is level(nentry) = 1, and for other
tasks, it is given by

level(ni) = max
q∈pred(ni)

{level(q)}+ 1 (4)

Definition (5) Critical Path(CP): the CP of a DAG
is the longest path from the entry node to the exit
node in the graph. The lower bound of a schedule
length is the minimum critical path length (CPMIN),
which is computed by considering the minimum com-
putational costs of each node in the critical path.

Definition (6) EST (ni, pj): denotes the Earliest Start
Time of a node ni on a processor pj and is defined as

EST (ni, pj) = max

{
TAvailable(pj), (5)

max
nm∈pred(ni)

{
AFT (nm) + cm,i

}}
where TAvailable(pj) is the earliest time at which pro-
cessor pj is ready. The inner max block in the EST
equation is the time at which all data needed by ni
arrive at the processor pj . The communication cost
cm,i is zero if the predecessor node nm is assigned to
processor pj . For the entry task, EST

(
nentry, pj

)
= 0.

Definition (7) EFT (ni, pj): denotes the Earliest Fin-
ish Time of a node ni on a processor pj and is defined
as

EFT (ni, pj) = EST (ni, pj) + wi,j (6)

which is the Earliest Start Time of a node ni on a
processor pj plus the computational cost of ni on a
processor pj .

The objective of the scheduling problem is to de-
termine an assignment of tasks of a given DAG to
processors such that the Schedule Length is minimized.
After all nodes in the DAG are scheduled, the sched-
ule length will be the Actual Finish Time of the exit
task, as expressed by equation 3.

3 RELATED WORK

In this section, we present a brief survey of task
scheduling algorithms, specifically list-based heuris-
tics. We present their time complexity and their com-
parative performance.

Over the past few years, research on static DAG
scheduling has focused on finding suboptimal solu-
tions to obtain a good solution in an acceptably short
time. List scheduling heuristics usually generate high-
quality schedules at a reasonable cost. In compari-
son with clustering algorithms, they have lower time

4

complexity, and in comparison with task duplication
strategies, their solutions represent a lower processor
workload.

3.1 List-based algorithms
Many list scheduling algorithms have been developed
by researchers. This type of scheduling algorithm
has two phases: the prioritizing phase for giving a
priority to each task and a processor selection phase
for selecting a suitable processor that minimizes the
heuristic cost function. If two or more tasks have equal
priority, then the tie is resolved by selecting a task
randomly. The last phase is repeated until all tasks
are scheduled to suitable processors. Table 1 presents
some list scheduling algorithms including some of the
most cited, along with their time complexity.

Algorithm Reference Complexity

MH [17] O(v2.p)

DLS [27] O(v3.p)

LMT [23] O(v2.p2)

BIL [24] O(v2.p. log p)

FLB [25] O(v.(log p+ log v) + v2)

CPOP [30], [29] O(v2.p)

HEFT [30], [29] O(v2.p)

HCPT [19] O(v2.p)

HPS [22] O(v2(p. log v))

PETS [21] O(v2(p. log v))

LDCP [15] O(v3.p)

Lookahead [7] O(v4.p3)

TABLE 1: List-based scheduling algorithms for hetero-
geneous systems

The MH and DLS algorithms consider a link con-
tentions model, but their versions for a fully con-
nected network were used for comparison purposes
by other authors and are therefore described here.
The schedules generated by the Mapping Heuristic
(MH) algorithm [17] are generally longer than recently
developed heuristics because MH only considers a
processor ready when it finishes the last task assigned
to it. Therefore, MH ignores the possibility that a
processor that is busy when a task is being scheduled
can complete the task in a shorter time, which thus
results in poorer scheduling. The time complexity
of MH without contention is O(v2.p) and O(v2.p3)
otherwise. Dynamic Level Scheduling (DLS) [27] is
one of the first algorithms that computed an estimate
of the availability of each processor and thus allowed
a task to be scheduled to a currently busy processor.
Consequently, DLS yields better results than MH. The
DLS authors proposed a version for a heterogeneous
machine, but the processor selection was based on
the Earliest Start Time (EST) as the homogeneous ver-
sion, which is one of the drawbacks of the algorithm
because the EST does not guarantee the minimum
completion time for a task. Additionally, DLS does

not try to fill scheduling holes in a processor schedule
(idle time slots that are between two tasks already
scheduled on the same processor), in contrast to other
more recent algorithms. The time complexity of DLS
for a fully connected network is O(v3.p), where the
routing complexity is equal to 1. The Levelized min-
Time Algorithm (LMT) [23] is a very simple heuristic
that assigns priorities to tasks based on their prece-
dence constraints, which are called levels. The time
complexity is squared in relation to the number of
processors and tasks. The schedules produced are sig-
nificantly worse than those produced by other more
recently developed heuristics, such as CPOP [30], [29].
The Best Imaginary Level (BIL) [24] defines a static
level for DAG nodes, called BIL, that incorporates the
effect of interprocessor communication overhead and
processor heterogeneity. The BIL heuristic provides an
optimal schedule for linear DAGs. Fast Load Balanc-
ing (FLB) [25] was proposed with the aim of reducing
the time complexity relative to that of HEFT [30],
[29]. FLB generates schedules comparable to those of
HEFT, but it generates poor schedules for irregular
task graphs and for higher processor heterogeneities.
The Critical Path On a Processor (CPOP) [30], [29]
achieves better schedules than LMT and MH as well
as schedules that are comparable to those of DLS, with
a lower time complexity. The main feature of CPOP
is the assignment of all the tasks that belong to the
critical path to a single processor. Heterogenous Crit-
ical Parent Trees (HCPT) [19] yield better scheduling
results than CPOP, FLB and DLS. The Heterogeneous
Earliest-Finish-Time (HEFT) [30], [29] is one of the
best list scheduling heuristics, as it has quadratic time
complexity. In [11], the authors compared 20 heuris-
tics and concluded that HEFT produces the shortest
schedule lengths for random graphs.

HPS[22] and PETS[21] are other list scheduling
heuristics reported to achieve better results than
HEFT. HPS, PETS, HEFT, HCPT and Lookahead are
explained in more detail in section 3.2, and they are
used in this paper for comparison with our proposed
list scheduling algorithm.

For the Longest Dynamic Critical Path (LDCP) [15],
the authors reported better scheduling results than
HEFT, although these results were not significant
when considering the associated increase in complex-
ity. For random graphs, the improvements in the
schedule length ratio over HEFT were less than 3.1%.
The algorithm builds for each processor a DAG, called
a DAGP, that consists of the initial DAG with the
computation costs of the processors. The complexity is
higher (cubic) because the algorithm needs to update
all DAGPs after scheduling a task to a processor.

Another recent algorithm that reported an average
improvement in makespan over HEFT is the Looka-
head approach [7]. This algorithm has quartic com-
plexity for the one step Lookahead. We consider the
Lookahead for comparison with our algorithm be-

5

cause it has achieved the best results reported thus far
in the literature. Because it has a higher complexity,
it serves as a reference and an upper bound for our
algorithm.

3.2 Selected list scheduling heuristics
Here, we describe the list scheduling heuristics for
scheduling tasks on a bounded number of heteroge-
neous processors selected for comparison with our
proposed algorithm, namely HEFT, HCPT, HPS, PETS
and Lookahead.

3.2.1 Heterogeneous Earliest Finish Time (HEFT)
The HEFT algorithm [29] is highly competitive in
that it generates a schedule length comparable to the
schedule lengths of other scheduling algorithms with
a lower time complexity. The HEFT algorithm has
two phases: a task prioritizing and a processor selection
phase. In the first phase task, priorities are defined
as ranku. ranku represents the length of the longest
path from task ni to the exit node, including the
computational cost of ni, and is given by ranku(ni) =
wi+maxnj∈succ(ni){ci,j+ranku(nj)}. For the exit task,
ranku(nexit) = wexit. The task list is ordered by
decreasing value of ranku. In the processor selection
phase, the task on top of the task list is assigned to the
processor pj that allows for the EFT (Earliest Finish
Time) of task ni. However, the HEFT algorithm uses
an insertion policy that tries to insert a task in at
the earliest idle time between two already scheduled
tasks on a processor, if the slot is large enough to
accommodate the task.

3.2.2 Heterogeneous Critical Parent Trees (HCPT)
The HCPT algorithm [19] uses a new mechanism
to construct the scheduling list L, rather than as-
signing priorities to the application tasks. HCPT di-
vides the task graph into a set of unlisted-parent
trees. The root of each unlisted-parent tree is a
critical path node (CN). A CN is defined as the
node that has zero difference between its AEST and
ALST. The AEST is the Average Earliest Start Time of
node ni and is equivalent to rankd, as indicated by
AEST (ni) = maxnj∈pred(ni){AEST (nj) + wj + cj,i};
AEST (nentry) = 0.

The Average Latest Start Time (ALST) of node ni
can be computed recursively by traversing the DAG
upward starting from the exit node and is given by
ALST (ni) = minnj∈succ(ni)

{
ALST (nj) − ci,j

}
− wi;

ALST (nexit) = AEST (nexit).
The algorithm also has two phases, namely listing

tasks and processor assignment. In the first phase, the
algorithm starts with an empty queue L and an
auxiliary stack S that contains the CNs pushed in
decreasing order of their ALSTs, i.e., the entry node
is on top of S. Consequently, top(S) is examined. If
top(S) has an unlisted parent (i.e., has a parent not

in L), then this parent is pushed on the stack S.
Otherwise, top(S) is removed and enqueued into L. In
the processor assignment phase, the algorithm tries to
assign each task ni ∈ L to a processor pj that allows
the task to be completed as early as possible.

3.2.3 High Performance Task Scheduling (HPS)
The HPS [22] algorithm has three phases, namely a
level sorting, task prioritization and processor selection
phase. In the level sorting phase, the given DAG
is traversed in a top-down fashion to sort tasks at
each level to group the tasks that are independent
of each other. As a result, tasks in the same level
can be executed in parallel. In the task prioritization
phase, priority is computed and assigned to each
task using the attributes Down Link Cost (DLC), Up
Link Cost (ULC) and Link Cost (LC) of the task. The
DLC of a task is the maximum communication cost
among all the immediate predecessors of the task. The
DLC for all tasks at level 0 is 0. The ULC of a task
is the maximum communication cost among all the
immediate successors of the task. The ULC for an exit
task is 0. The LC of a task is the sum of DLC, ULC
and maximum LC for all its immediate predecessor
tasks.

At each level, based on the LC values, the task
with the highest LC value receives the highest priority,
followed by the task with the next highest LC value
and so on in the same level. In the processor selection
phase, the processor that gives the minimum EFT for
a task is selected to execute that task. HPS has an
insertion-based policy, which considers the insertion
of a task in the earliest idle time slot between two
already-scheduled tasks on a processor.

3.2.4 Performance Effective Task Scheduling (PETS)
The PETS algorithm [21] has the same three phases as
HPS. In the level sorting phase, similar to HPS, tasks
are categorized in levels such that in each level, the
tasks are independent. In the task prioritization phase,
priority is computed and assigned to each task using
the attributes Average Computation Cost (ACC), Data
Transfer Cost (DTC) and the Rank of Predecessor Task
(RPT). The ACC of a task is the average computation
cost for all p processors, which we referred to before
as wi. The DTC of a task ni is the communication
cost incurred when transferring the data from task
ni to all its immediate successor tasks; for an exit
node, DTC(nexit) = 0. The RPT of a task ni is the
highest rank of all its immediate predecessor tasks;
for an entry node, RPT (nentry) = 0. The rank is
computed for each task ni based on the tasks ACC,
DTC and RPT values and is given by rank(ni) =
round{ACC(ni) +DTC(ni) +RPT (ni)}.

At each level, the task with the highest rank value
receives the highest priority, followed by the task with
next highest rank value and so on. A tie is broken
by selecting the task with the lower ACC value. As

6

in some of the other task scheduling algorithms, in
the processor selection phase, this algorithm selects
the processor that gives the minimum EFT value for
executing the task. It also uses an insertion-based
policy for scheduling a task in an idle slot between
two previously scheduled tasks on a given processor.

3.2.5 Lookahead Algorithm
The Lookahead scheduling algorithm [7] is based
on the HEFT algorithm, whose main feature is its
processor selection policy. To select a processor for
the current task t, it iterates over all available pro-
cessors and computes the EFT for the child tasks
on all processors. The processor selected for task t
is the one that minimizes the maximum EFT from
all children of t on all resources where t is tried.
This procedure can be repeated for each child of t by
increasing the number of levels analyzed. In HEFT,
the complexity of v tasks is O(e.p), where EFT is
computed v times. In the worst case, by replacing e
by v2, we obtain O(v2.p). The Lookahead algorithm
has the same structure as HEFT but computes EFT
for each child of the current task. The number of
EFT calls (graph vertices) is equal to v + p.e for a
single level of forecasting. By replacing this number
of vertices in O(v2.p), in the worst case the total time
complexity of Lookahead is O(v4.p3). The authors
reported that additional levels of forecasting do not
result in significant improvements in the makespan.
Here, we only consider the one-level Lookahead.

4 THE PROPOSED ALGORITHM PEFT
In this section, we introduce a new list-based schedul-
ing algorithm for a bounded number of heterogeneous
processors, called PEFT. The algorithm has two major
phases: a task prioritizing phase for computing task
priorities, and a processor selection phase for selecting
the best processor for executing the current task.

In our previous work [5], we evaluated the perfor-
mance of list-based scheduling algorithms. We com-
pared their results with the solutions achieved by
three meta-heuristic algorithms, namely Tabu Search,
Simulated Annealing and Ant Colony System. The
meta-heuristic algorithms, which feature a higher pro-
cessing time, always achieved better solutions than
the list scheduling heuristics with quadratic complex-
ity. We then compared the best solutions for both
types, step by step. We observed that the best meta-
heuristic schedules could not be achieved if we fol-
lowed the common strategy of selecting processors
based only on current task execution time, because
the best schedules consider not only the immediate
gain in processing time but also the gain in a se-
quence of tasks. Most list-based scheduling heuristics
with quadratic time complexity assign a task to a
processor by evaluating only the current task. This
methodology, although inexpensive, does not evaluate

what is ahead of the current task, which leads to
poor decisions in some cases. Algorithms that analyze
the impact on children nodes, such as Lookahead [7],
exist, but they increase the time complexity to the 4th
order.

The most powerful feature of the Lookahead al-
gorithm, as the best algorithm with the lowest
makespan, is its ability to forecast the impact of
an assignment for all children of the current task.
This feature permits better decisions to made in se-
lecting processors, but it increases the complexity
significantly. Therefore, the novelty of the proposed
algorithm is its ability to forecast by computing an
Optimistic Cost Table while maintaining quadratic time
complexity, as explained in the following section.

4.1 Optimistic cost table (OCT)

Our algorithm is based on the computation of a cost
table on which task priority and processor selection
are based. The OCT is a matrix in which the rows
indicate the number of tasks and the columns indi-
cate the number of processors, where each element
OCT (ti, pk) indicates the maximum of the shortest
paths of ti children’s tasks to the exit node considering
that processor pk is selected for task ti. The OCT value
of task ti on processor pk is recursively defined by
Equation 7 by traversing the DAG from the exit task
to the entry task.

OCT (ti, pk) = max
tj∈succ(ti)

[
min
pw∈P

{
OCT (tj , pw)

+w(tj , pw) + ci,j
}]
,

ci,j = 0 if pw = pk. (7)

where ci,j is the average communication cost, which
is zero if tj is being evaluated for processor pk, and
w(tj , pw) is the execution time of task tj on processor
pw. As explained before, we use the average commu-
nication cost and the execution cost for each processor.
OCT (ti, pk) represents the maximum optimistic pro-
cessing time of the children of task ti because it con-
siders that children tasks are executed in the processor
that minimizes processing time (communications and
execution) independently of processor availability, as
the OCT is computed before scheduling begins. Be-
cause it is defined recursively and the children already
have the optimistic cost to the exit node, only the first
level of children is considered. For the exit task, the
OCT (nexit, pk) = 0 for all processors pk ∈ P .

4.2 Task prioritizing phase

To define task priority, we compute the average OCT
for each task that is defined by equation 8.

7

rankoct(ti) =

∑P
k=1OCT (ti, pk)

P
(8)

Table 2 shows the values of OCT for the DAG
sample of Figure 1. When the new rank rankoct is
compared with ranku, the former shows slight dif-
ferences in the order of the tasks based on these
two priority strategies. For instance, T5 has a lower
rankoct value than T4, where T4 is selected first for
scheduling. With ranku, the opposite is true. The
main feature of our algorithm is the cost table that
reflects for each task and processor the cost to execute
descendant tasks until the exit node. This information
permits an informed decision to be made in assigning
a processor to a task. Task ranking is a less relevant
issue because few tasks in each step are ordered
by priority and the influence on performance is less
relevant. By comparing ranku and rankoct, we can see
that ranku uses the average computing cost for each
task and also accumulates the maximum descendant
costs of descendant tasks to the exit node. In contrast,
rankoct is an average over a set of values that were
computed with the cost of each task on each processor.
Therefore, the ranks are computed using a similar
procedure, and significant differences in performance
are not expected when using either system.

For the tests with random graphs reported in the
results section, when using ranku the performance is
on average better in approximately 0.5%. The OCT
exerts a greater influence in the processor selection
phase, and using ranku would require additional
computations without providing a significant advan-
tage.

Task P1 P2 P3 rankoct ranku

T1 64 68 86 72.7 169
T2 42 39 42 41 114.3
T3 27 41 43 37 102.7
T4 42 39 50 43.7 110
T5 28 37 28 31 129.7
T6 42 39 44 41.7 119.3
T7 13 16 22 17 52.7
T8 13 16 33 20.7 92
T9 13 16 20 16.3 42.3

T10 0 0 0 0 20.7

TABLE 2: Optimistic Cost Table for the DAG of Fig-
ure 1; rankoct and ranku are also shown for compar-
ison purposes

4.3 Processor selection phase
To select a processor for a task, we compute the
Optimistic EFT (OEFT), which sums to EFT the com-
putation time of the longest path to the exit node.
In this way, we are looking forward (forecasting) in
the processor selection; perhaps we are not selecting
the processor that achieves the earliest finish time for

the current task, but we expect to achieve a shorter
finish time for the tasks in the next steps. The aim is
to guarantee that the tasks ahead will finish earlier,
which is the purpose of the OCT table. OEFT is
defined by equation 9.

OEFT (ti, pj) = EFT (ti, pj) +OCT (ti, pj) (9)

4.4 Detailed description of PEFT algorithm
In this section, we present the algorithm PEFT, sup-
ported by an example, to detail the description of each
step. The proposed PEFT algorithm is formalized in
Algorithm 1.

Algorithm 1 The PEFT algorithm
1: Compute OCT table and rankoct for all tasks
2: Create Empty list ready-list and put nentry as initial

task
3: while ready-list is NOT Empty do
4: ni ← the task with highest rankoct from ready-

list
5: for all processor pj in the processor-set P do
6: Compute EFT (ni, pj) value using insertion-

based scheduling policy
7: OEFT (ni, pj) = EFT (ni, pj) +OCT (ni, pj)
8: end for
9: Assign task ni to the processor pj that minimize

OEFT of task ni
10: Update ready-list
11: end while

The algorithm starts by computing the OCT ta-
ble and rankoct at line 1. It then creates an empty
ready − list and places the entry task on top of the
list. In the while loop, from line 4 to 10, in each
iteration, the algorithm will schedule the task with
a higher value of rankoct. After selecting the task for
scheduling, the PEFT algorithm calculates the OEFT

values for the task on all processors. In the processor
selection phase, the aim is to guarantee that the tasks
ahead will finish earlier, but rather than analyzing all
tasks until the end, to reduce complexity we use the
OCT table, which incorporates that information. In
line 9, the processor pj that achieves the minimum
OEFT (ni, pj) is selected to execute task ni.

Table 3 shows an example that demonstrates the
PEFT for the DAG of Figure 1.

Figure 2 shows the scheduling results for the
sample DAG with the algorithms PEFT, Lookahead,
HEFT, HCPT, HPS and PETS. By comparing the
schedules of PEFT and HEFT, we can see that T1 is
assigned to P1 although it does not guarantee the ear-
liest finish time for T1, but P1 minimizes the expected
EFT of all DAGs. This is only one example used to
illustrate the algorithm, but as shown in the results
section, PEFT produces, on average, better schedules
than the state-of-the-art algorithms.

8

Ready Task EFT OEFT CPU

Step List selected P1 P2 P3 P1 P2 P3 Selected

1 T1 T1 22 21 36 86 89 122 P1

2 T4,T6,T2,T3,T5 T4 29 61 55 71 100 105 P1

3 T6,T2,T3,T5 T6 55 46 53 97 85 97 P2

4 T2,T3,T5 T2 51 64 57 93 103 99 P1

5 T3,T5,T8 T3 83 80 96 110 121 139 P1

6 T5,T8,T7 T5 112 73 70 140 110 98 P3

7 T8,T7,T9 T8 112 77 106 125 93 139 P2

8 T7,T9 T7 97 124 129 110 140 151 P1

9 T9 T9 142 148 89 155 164 109 P3

10 T10 T10 132 122 152 132 122 152 P2

TABLE 3: Schedule produced by the PEFT algorithm in each iteration

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

P1 P2 P3

T1

T3

T5

T7

T4

T6

T9

T2

T10

(a) PEFT

T8

T3

T7

T4
T6

T9

T2

T10

T8

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

P1 P2 P3

(a) Lookahead

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

P1 P2 P3

(a) HCPT

T3

T5

T7

T4

T6

T9

T2

T10

T8

T1

T3

T7

T4

T6

T9

T2

T10

T8

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

P1 P2 P3

(a) HEFT

T5

T1

T5

T1

T3

T7

T4

T6

T9

T2

T10

T8

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

P1 P2 P3

(a) PETS

T5

T1

Fig. 2: Schedules of the sample task graph in Figure 1 with (a) PEFT (makespan=122), (b) Lookahead
(makespan=127), (c) HEFT (makespan=133), (d) HCPT (makespan=142), (e) PETS (makespan=147)

In terms of time complexity, PEFT requires the
computation of an OCT table that is O(p(e+v)), and to
assign the tasks to processors the time complexity is of
the order O(v2.p). The total time is O(p(e+ v)+ v2.p).
For dense DAGs, e becomes v2, where the total algo-
rithm complexity is of the order O(v2.p). That is, the
time complexity of PEFT is of the same order as the
HEFT algorithm.

5 EXPERIMENTAL RESULTS AND DISCUS-
SION

This section compares the performance of the PEFT al-
gorithm with that of the algorithms presented above.
For this purpose, we consider two sets of graphs as
the workload: randomly generated application graphs

and graphs that represent some real-world applica-
tions. We first present the comparison metrics used
for the performance evaluation.

5.1 Comparison Metrics
The comparison metrics are Scheduling Length Ratio,
Efficiency, pair-wise comparison of the number of
occurrences of better solutions and Slack.

Scheduling Length Ratio (SLR)
The metric most commonly used to evaluate a sched-
ule for a single DAG is the makespan, as defined by
equation 3. Here, we want to use a metric that com-
pares DAGs with very different topologies; the metric
most commonly used to do so is the Normalized
Schedule Length (NSL) [15], which is also called the

9

Scheduling Length Ratio (SLR) [29]. For a given DAG,
both represent the makespan normalized to the lower
bound. SLR is defined by equation 10.

SLR =
makespan(solution)∑

ni∈CPMIN
minpj∈P (w(i,j))

(10)

The denominator in SLR is the minimum computa-
tion cost of the critical path tasks (CPMIN). There is
no makespan less than the denominator of the SLR
equation. Therefore, the algorithm with the lowest
SLR is the best algorithm.

Efficiency
In the general case, Efficiency is defined as the
Speedup divided by the number of processors used
in each run, and Speedup is defined as the ratio of
the sequential execution time to the parallel execution
time (i.e., the makespan). The sequential execution
time is computed by assigning all tasks to a single
processor that minimizes the total computation cost
of the task graph, as shown by equation 11.

Speedup =

min
pj∈P

[∑
ni∈V

w(i,j)

]
makespan(solution)

(11)

Number of occurrences of better solutions
This comparison is presented as a pair-wise table,
where the percentage of better, equal and worse so-
lutions produced by PEFT is compared to that of the
other algorithms.

Slack
The slack metric [9], [26] is a measure of the ro-
bustness of the schedules produced by an algorithm
to uncertainty in the tasks processing time, and it
represents the capacity of the schedule to absorb
delays in task execution. The slack is defined for a
given schedule and a given set of processors. The
slack of a task represents the time window within
which the task can be delayed without extending
the makespan. Slack and makespan are two conflict-
ing metrics; lower makespans produce small slack.
For deterministic schedules, the slack is defined by
Equation12.

Slack =
[∑
ti∈V

M − blevel(ti)− tlevel(ti)
]
/n (12)

where M is the makespan of the DAG, n is the
number of tasks, blevel is the length of the longest path
to the exit node and tlevel is the length of the longest
path from the entry node. These values are referred
to a given schedule, and therefore the processing
time used for each task is the processing time on the
processor that it was assigned. The aim of using this
metric is to evaluate whether the proposed algorithm
has an equivalent slack to HEFT, which is the reference
quadratic algorithm.

5.2 Random Graph Generator

To evaluate the relative performance of the heuristics,
we first considered randomly generated application
graphs. For this purpose, we used a synthetic DAG
generation program available at [28] with an adap-
tation to the fat parameter, as explained next. Five
parameters define the DAG shape:
• n: number of computation nodes in the DAG (i.e.,

application tasks);
• fat: this parameter affects the height and the

width of the DAG. The width in each level is
defined by a uniform distribution with a mean
equal to fat.

√
n. The height, or the number of

levels, is created until n tasks are defined in the
DAG. The width of the DAG is the maximum
number of tasks that can be executed concur-
rently. A small value will lead to a thin DAG (e.g.,
chain) with low task parallelism, whereas a large
value induces a fat DAG (e.g., fork-join) with a
high degree of parallelism;

• density: determines the number of edges between
two levels of the DAG, with a low value leading
to few edges and a large value leading to many
edges;

• regularity: the regularity determines the unifor-
mity of the number of tasks in each level. A
low value indicates that levels contain dissimilar
numbers of tasks, whereas a high value indicates
that all levels contain similar numbers of tasks;

• jump: indicates that an edge can go from level
l to level l + jump. A jump of 1 is an ordinary
connection between two consecutive levels.

In the present study, we used this synthetic DAG
generator to create the DAG structure, which includes
the specific number of nodes and their dependencies.
To obtain computation and communication costs, the
following parameters are used:
• CCR (Communication to Computation Ratio): ra-

tio of the sum of the edge weights to the sum of
the node weights in a DAG;

• β (Range percentage of computation costs on
processors): the heterogeneity factor for processor
speeds. A high β value implies higher hetero-
geneity and different computation costs among
processors, and a low value implies that the
computation costs for a given task are nearly
equal among processors [29]. The average com-
putation cost of a task ni in a given graph wi

is selected randomly from a uniform distribution
with range

[
0, 2 × wDAG

]
, where wDAG is the

average computation cost of a given graph that is
obtained randomly. The computation cost of each
task ni on each processor pj is randomly set from
the range of equation 13.

wi ×
(
1− β

2

)
≤ wi,j ≤ wi ×

(
1 +

β

2

)
(13)

10

In our experiment, for random DAG generation, we
considered the following parameters:
• n =

[
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200

300, 400, 500
]

• CCR =
[
0.1, 0.5, 0.8, 1, 2, 5, 10

]
• β =

[
0.1, 0.2, 0.5, 1, 2

]
• jump =

[
1, 2, 4

]
• regularity =

[
0.2, 0.8

]
• fat =

[
0.1, 0.4, 0.8

]
• density =

[
0.2, 0.8

]
• Processors =

[
4, 8, 16, 32

]
These combinations produce 70,560 different DAGs.

For each DAG, 10 different random graphs were
generated with the same structure but with different
edge and node weights. Thus, 705,600 random DAGs
were used in the study.

Figure 3a shows the average SLR and Figure 3b
shows the average slack for all algorithms as a function
of the DAG size. For DAGs featuring up to 100
tasks, Lookahead and PEFT present similar results.
For larger DAGs, PEFT is the best algorithm, as it
outperforms the Lookahead algorithm. All quadratic
algorithms maintain a certain level of performance, in
contrast to the Lookahead algorithm, which after 100
tasks suffers a substantial decrease in performance.
The Lookahead algorithm bases its decisions on the
analysis of the children nodes for the current task,
expecting that those nodes will be scheduled shortly.
However, if there are too many concurrent tasks to
schedule, as observed for DAGs with more than 100
tasks, the processor load is substantially changed by
the concurrent tasks to be scheduled after the current
task. This finding implies that when the children tasks
are scheduled, the conditions are different and the
optimization decision made by the parent task is not
valid, which results in poorer performance. Compared
with HEFT, our PEFT algorithm improves by 10% for
10 task DAGs. This improvement gradually decreases
to 6.2% for 100 task DAGs and to 4% for 500 task
DAGs. Despite this significant improvement, we can
observe that PEFT maintains the same level of Slack
as HEFT. Thus, the schedules produced, although
shorter, have the same robustness to uncertainty as
those produced by HEFT.

To illustrate the results statistically, boxplots are
presented, where the minimum, 25%, mean and 75%
values of the algorithm results are represented. The
maximum is not shown because there is a broad
distribution in the results; therefore, we only show
values up to the Upper Inner Fence. We also show the
average values, which are indicated by an individual
line in each boxplot.

The SLRs obtained for the PEFT, Lookahead, HEFT,
HCPT, HPS and PETS algorithms as a function of
CCR and heterogeneity are shown in Figure 4a and
4b, respectively. We can see that PEFT has the lowest
average SLR and a smaller dispersion in the distri-
bution of the results. The second best algorithm in

terms of SLR is Lookahead. In terms of Efficiency,
Figure 4c, Lookahead is the best algorithm, with a
performance very similar to that of PEFT. This is an
important finding because with the proposed algo-
rithm, we improved the SLR and also achieved high
values of Efficiency that are only comparable with
those of a higher-complexity algorithm. PEFT was the
best quadratic algorithm in our simulation.

Table 4 shows the percentage of better, equal and
worse results for PEFT when compared with the
remaining algorithms, based on makespan. Compared
with HEFT, PEFT achieves better scheduling in 72%
of runs, equivalent schedules in 3% of runs and worse
schedules in 25% of runs.

PEFT Lookahead HEFT HCPT PETS HPS

better 66% 72% 79% 91% 90%
PEFT worse * 28% 25% 18% 9% 8%

equal 6% 3% 3% 0% 2%

better 28% 64% 70% 86% 84%
Look- worse 66% * 31% 26% 14% 14%
ahead equal 6% 5% 4% 0% 2%

better 25% 31% 29% 91% 72%
HEFT worse 72% 64% * 20% 8% 9%

equal 3% 5% 51% 0% 18%

better 18% 26% 20% 86% 68%
HCPT worse 79% 70% 29% * 14% 13%

equal 3% 4% 51% 0% 18%

better 9% 14% 8% 14% 39%
PETS worse 91% 86% 91% 86% * 60%

equal 0% 0% 0% 0% 1%

better 8% 14% 9% 13% 60%
HPS worse 90% 84% 72% 68% 39% *

equal 2% 2% 18% 13% 1%

TABLE 4: Pair-wise schedule length comparison of the
scheduling algorithms

5.3 Real-world application graphs
In addition to the random graphs, we evaluated the
performance of the algorithms with respect to real-
world applications, namely Gaussian Elimination [2],
Fast Fourier Transform [12], [29], Laplace Equation
[32], Montage [3], [6], [16] and Epigenomics [4], [10].
All of these applications are well known and used
in real-world problems. Because of the known struc-
ture of these applications, we simply used differ-
ent values for CCR, heterogeneity and CPU number.
The range of values that we used in our simulation
was [0.1, 0.5, 0.8, 1, 2, 5, 10] for CCR, [0.1, 0.2, 0.5, 1, 2]
for heterogeneity and [2, 4, 8, 16, 32] for CPU number.
For Montage and Epigenomics, we also considered
64 CPUs. The range of parameters considered here
represents typical values within the context of this
work [15], [29]. The CCR and heterogeneity represent
a wide range of machines, from high-speed networks
(CCR=0.1) to slower ones (CCR=10) and from nearly
homogeneous systems (heterogeneity equal to 0.1) to
highly heterogeneous machines (heterogeneity equal
to 2). We also considered a wide range of CPU

11

10 20 30 40 50 60 70 80 90 100 200 300 400 500
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Number of Tasks

A
ve

ra
ge

 S
LR

HEFT
HCPT
PETS
HPS
lookahead
PEFT

(a)

10 20 30 40 50 60 70 80 90 100 200 300 400 500
0

500

1000

1500

2000

2500

Task Number

A
ve

ra
ge

 S
la

ck

HEFT
HCPT
PETS
HPS
lookahead
PEFT

(b)

Fig. 3: (a) Average SLR and (b) slack for random graphs as a function of DAG size

0.1 0.5 0.8 1 2 5 10
0

1

2

3

4

5

6

7

8

9

CCR

S
L
R

HEFT
HCPT
PETS
HPS
lookahead
PEFT

(a)

0.1 0.2 0.5 1 2
0

2

4

6

8

10

12

14

Heterogeneity

S
L
R

HEFT
HCPT
PETS
HPS
lookahead
PEFT

(b)

4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CPU Number

E
ffi

ci
en

cy

HEFT
HCPT
PETS
HPS
lookahead
PEFT

(c)

Fig. 4: (a) Boxplot of SLR as a function of CCR; (b) boxplot of SLR as a function of heterogeneity and (c)
efficiency for random graphs

numbers to simulate higher concurrent environments
with 2 processors, as well as low concurrent situations
where the total number of processors, in most of
the cases, is higher than the maximum number of
concurrent tasks ready to be scheduled at any given
instant.

5.3.1 Gaussian Elimination
For Gaussian Elimination, a new parameter, matrix
size m, was used to determine the number of tasks.
The total number of tasks in a Gaussian Elimination
graph is equal to m2+m−2

2 . The values considered for
m were

[
5, 10, 15, 20, 30, 50, 100

]
. The boxplot of SLR

as a function of the matrix size is shown in Figure 5.
For all matrix sizes, PEFT produced shorter sched-

ules than all other algorithms with quadratic com-
plexity and almost the same results as the Lookahead
algorithm, which has quartic complexity. Figure 6
shows the SLR boxplot as a function of the CCR
parameter. For low CCRs, PEFT yielded results equiv-
alent to those of HEFT, and for higher CCRs, PEFT
performed significantly better, obtaining an average
improvement of 2%, 9% and 16% over HEFT for CCR
values of 2, 5 and 10, respectively. From the boxplots,
we can see that statistically, PEFT produced schedules
with lower SLR dispersion than the other quadratic
algorithms.

Concerning heterogeneity, PEFT outperformed
HEFT in average SLR by 2%, 3%, 4%, 6% and 7%

5 10 15 20 30 50 100
0

2

4

6

8

10

12

14

16

18

20

Matrix Size

S
L
R

HEFT
HCPT
PETS
HPS
lookahead
PEFT

Fig. 5: Boxplot of SLR for the Gaussian Elimination
graph as a function of matrix size

for heterogeneity values of 0.1, 0.2, 0.5, 1 and 2,
respectively. Concerning the number of CPUs, the
improvement over HEFT was 2%, 6%, 12% and
12% for sets of 4, 8, 16 and 32 CPUs, respectively.
Graphical representation is not provided for SLR as
a function of heterogeneity and CPU numbers.

5.3.2 Fast Fourier Transform
The second real application was the Fast Fourier
Transform (FFT). As mentioned in [29], we can sepa-
rate the FFT algorithm into two parts: recursive calls
and the butterfly operation. The number of tasks
depends on the number of FFT points (n), where there

12

0.1 0.5 0.8 1 2 5 10
0

1

2

3

4

5

6

7

8

CCR

S
L
R

HEFT
HCPT
PETS
HPS
lookahead
PEFT

Fig. 6: Boxplot of SLR for the Gaussian Elimination
graph as a function of the CCR

are 2 × (n − 1) + 1 recursive call tasks and n log2 n
butterfly operation tasks. Also, in this application,
because the structure is known, we simply change
CCR, β and the CPU number. Figure 7 shows the
SLR for different FFT sizes.

4 8 16 32
0

5

10

15

20

25

Input Points

S
L
R

HEFT
HCPT
PETS
HPS
lookahead
PEFT

Fig. 7: Boxplot of SLR for the Fast Fourier Transform
graph as a function of the input points

In this type of application, PEFT and Lookahead
yielded the worst results, although the results were
similar to those obtained using HEFT. This example
allowed us to conclude, with additional experiments,
that PEFT does not perform better than HEFT when
all tasks belong to a critical path, i.e., when all paths
are critical.

5.3.3 Montage Workflow
Montage is an application for constructing custom
astronomical image mosaics of the sky.

We considered Montage graphs with 25 and 50
tasks, and as in the other real applications, because the
graph structure was defined, we simply considered
different values of CCR, β and CPU number. Figure
8 shows the boxplots of SLR as a function of different
hardware parameters.

All algorithms except for PEFT and Lookahead ex-
hibited the same performance for this application. The
average SLR improvement for PEFT over HEFT for
different values of CCR (Figure 8a) started at 0.8% for

0.1 0.5 0.8 1 2 5 10
0

20

40

60

80

100

CCR

S
L
R

HEFT
HCPT
PETS
HPS
lookahead
PEFT

(a)

4 8 16 32 64
0

10

20

30

40

50

60

70

80

90

CPU

S
L
R

HEFT
HCPT
PETS
HPS
lookahead
PEFT

(b)

0.1 0.2 0.5 1 2
0

5

10

15

20

25

30

35

40

heterogeneity

S
L
R

HEFT
HCPT
PETS
HPS
lookahead
PEFT

(c)

Fig. 8: Boxplot of SLR for Montage with respect to (a)
CCR, (b) number of CPUs and (c)heterogeneity factor

a low CCR value (equal to 0.1) and increased to 22%
at a CCR value equal to 10. Concerning the number
of CPUs, the improvement was 10% with 4 CPUs and
increased to 19% for 64 CPUs, as shown in Figure 8b.
The improvement for different heterogeneities, Figure
8c, started at 15% for low heterogeneity (β = 0.1) and
increased to 18% for a heterogeneity of 2 (β = 2).

5.3.4 Epigenomic Workflow

The Epigenomic workflow is used to map the epige-
netic state of human cells on a genome-wide scale.
As was the case for the other real application graphs,
the structure of this application is known; therefore,

13

we simply considered different values of CCR, β and
CPU number. In our experiment, we used graphs with
24 and 46 tasks.

0.1 0.5 0.8 1 2 5 10
0

10

20

30

40

50

60

70

80

90

CCR

S
L
R

HEFT
HCPT
PETS
HPS
lookahead
PEFT

(a)

4 8 16 32 64
0

10

20

30

40

50

60

70

CPU

S
L
R

HEFT
HCPT
PETS
HPS
lookahead
PEFT

(b)

0.1 0.2 0.5 1 2
0

5

10

15

20

25

30

35

heterogeneity

S
L
R

HEFT
HCPT
PETS
HPS
lookahead
PEFT

(c)

Fig. 9: Boxplot of SLR for Epigenomic Workflow as a
function of (a) CCR, (b) CPU number and (c) hetero-
geneity factor

Figure 9 shows the boxplot for SLR as a function of
the hardware parameters. Also, for this application,
PEFT always outperformed the other algorithms, in-
cluding the Lookahead algorithm. The average SLR
improvement of PEFT over HEFT for a low CCR
value of 0.1 was 0.1% and increased to 22% for a
CCR value of 10 (Figure 9a). Similarly, PEFT showed
(Figure 9b) a range of SLR improvement for different
CPU numbers: 3% for 4 CPUs and 21% for 64 CPUs. In

addition, we observed an average SLR improvement
of 15% to 21% for low heterogeneity (β = 0.1) to high
heterogeneity (β = 2) (Figure 9c).

6 CONCLUSIONS
In this paper, we proposed a new list scheduling
algorithm with quadratic complexity for heteroge-
neous systems called PEFT. This algorithm improves
the scheduling provided by state-of-the-art quadratic
algorithms such as HEFT [29]. To our knowledge,
PEFT is the first algorithm to outperform HEFT while
maintaining the same time complexity of O(v2.p). The
algorithm is based on an Optimistic Cost Table (OCT)
that is computed before scheduling. This cost table
represents for each pair (task, processor) the minimum
processing time of the longest path from the current
task to the exit node by assigning the best proces-
sors to each of those tasks. The table is optimistic
because it does not consider processor availability at
a given time. The values stored in the cost table are
used in the processor selection phase. Rather than
considering only the Earliest Finish Time (EFT) for
the task that is being scheduled, PEFT adds to EFT the
processing time stored in the table for the pair (task,
processor). All processors are tested, and the one
that gives the minimum value is selected. Thus, we
introduce the look ahead feature while maintaining
quadratic complexity. This feature has been proposed
in other algorithms, but all such algorithm increase
the complexity to cubic or higher orders.

To prioritize the tasks, we also use the OCT table to
define a new rank that is given by the average of the
costs for a given task over all processors. Although
other ranks could be used, such as ranku [29], we
concluded that with the new rank, similar perfor-
mance is obtained. Therefore, the use of ranku would
require additional computations without resulting in
a significant advantage.

In terms of Scheduling Length Ratio (SLR), the
PEFT algorithm outperformed all other quadratic al-
gorithms considered in this work for random graph
sizes of 10 to 500. Statistically, PEFT had the lowest
average SLR and a lower dispersion in the distribution
of the results.

We also compared the algorithms in terms of ro-
bustness to uncertainty in the task processing time,
given by the Slack function, and we obtained the same
level of robustness for PEFT and HEFT, which is an
important characteristic of the proposed algorithm.

The simulations performed for real-world applica-
tions also verified that PEFT performed better then
the remaining quadratic algorithms. These tests also
revealed an exceptional case (the FFT transform) in
which PEFT did not perform better. We concluded
that this lack of improvement by PEFT occurs for
graphs with the same characteristics as FFT and that
are characterized by having all tasks belong to a
critical path, i.e., having all paths be critical.

14

From the results, we can conclude that among the
static scheduling algorithms studied in this paper,
PEFT exhibits the best performance for the static
scheduling of DAGs in heterogeneous platforms with
quadratic time complexity and the lowest quadratic
time complexity.

REFERENCES

[1] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen and R.F.
Freund, ”Dynamically mapping of a class of independent tasks
onto heterogeneous computing systems”, Journal of Parallel and
Distributed Computing, vol. 59, pp. 107-131, 1999.

[2] A.K. Amoura, E. Bampis and J.C. Konig, ”Scheduling algo-
rithms for parallel Gaussian elimination with communication
costs”, IEEE Transactions on Parallel and Distributed Systems, vol.
9, no. 7, pp. 679-686, 1998.

[3] Montage, An Astronomical Image Mosaic Engine,
http://montage.ipac.caltech.edu/

[4] USC epigenome center, http://epigenome.usc.edu/
[5] H. Arabnejad and J.G. Barbosa, ”Performance Evaluation of

List Based Scheduling on Heterogeneous Systems”, Euro-Par
2011: Parallel Processing Workshops, vol. 7155 of Lecture Notes in
Computer Science, pp. 440-449, 2012.

[6] G.B. Berriman, J.C. Good, A.C. Laity, A. Bergou, J. Jacob, D.S.
Katz, E. Deelman, C. Kesselman, G. Singh, M.-H. Su and R.
Williams, ”Montage: A grid enabled image mosaic service for
the national virtual observatory”, Astronomical Data Analysis
Software and Systems (ADASS) XIII, vol. 314 of Astronomical
Society of the Pacific Conference Series, pp. 593-596, 2004.

[7] L.F. Bittencourt, R. Sakellariou and E.R.M. Madeira, ”DAG
Scheduling Using a Lookahead Variant of the Heterogeneous
Earliest Finish Time Algorithm”, 18th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing
(PDP’10), pp. 27-34, 2010.

[8] C. Boeres, J.V. Filho and V.E.F. Rebello, ”A Cluster-based
Strategy for Scheduling Task on Heterogeneous Processors”
16th Symposium on Computer Architecture and High Performance
Computing, pp. 214-221, 2004.

[9] L. Bölöni and D.C. Marinescu, ”Robust scheduling of metapro-
grams”, Journal of Scheduling, vol. 5, no. 5, pp. 395-412, 2002.

[10] D.A. Brown, P.R. Brady, A. Dietz, J. Cao, B. Johnson and J.
McNabb, ”A case study on the use of workflow technologies
for scientific analysis: Gravitational wave data analysis”, Work-
flows for e-Science, pp. 39-59, 2007.

[11] L.C. Canon, E. Jeannot, R. Sakellariou and W. Zheng, ”Com-
parative evaluation of the robustness of dag scheduling heuris-
tics”, in Sergei Gorlatch, Paraskevi Fragopoulou and Thierry
Priol, Grid Computing - Achievements and Prospects, pp. 73-84,
Springer, 2008.

[12] Y.C. Chung and S. Ranka, ”Applications and performance
analysis of a compile-time optimization approach for list
scheduling algorithms on distributed memory multiproces-
sors”, Proceedings Supercomputing’92, pp. 512-521, 1992.

[13] B. Cirou and E. Jeannot, ”Triplet: A clustering scheduling
algorithm for heterogeneous systems”, International Conference
on Parallel Processing Workshops, pp. 231-236, 2001.

[14] Edward G. Coffman, ”Computer and Job-Shop Scheduling
Theory”, John Wiley & Sons Inc, 1976.

[15] M.I. Daoud and N. Kharma, ”A high performance algorithm
for static task scheduling in heterogeneous distributed com-
puting systems”, Journal of Parallel and Distributed Computing,
vol. 68, no. 4, pp. 399-409, 2008.

[16] E. Deelman, G. Singh, M.H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob
and D.S. Katz, ”Pegasus: A framework for mapping complex
scientific workflows onto distributed systems”, Journal of Sci-
entific Programming, vol. 13, no. 3, pp. 219-237, IOS Press, 2005.

[17] H. El-Rewini and T.G. Lewis, ”Scheduling Parallel Program
Tasks onto Arbitrary Target Machines”, Journal of Parallel and
Distributed Computing, vol. 9, no. 2, pp. 138-153, 1990.

[18] M. R. Garey and D. S. Johnson, ”Computers and intractability;
a guide to the theory of NP-completeness”, W.H. Freeman,
1979.

[19] T. Hagras and J. Janeček, ”A Simple Scheduling Heuristic for
Heterogeneous Computing Environments”, Proceedings Second
International Symposium on Parallel and Distributed Computing,
pp. 104-110, 2003.

[20] T. Hagras and J. Janeček, ”A high performance, low complex-
ity algorithm for compile-time task scheduling in heteroge-
neous systems”, Journal of Parallel Computing, vol. 31, no. 7,
pp. 653-670, 2005.

[21] E. Ilavarasan and P. Thambidurai, ”Low complexity perfor-
mance effective task scheduling algorithm for heterogeneous
computing environments”, Journal of Computer sciences, vol. 3,
no. 2, pp. 94-103, 2007.

[22] E. Ilavarasan and P. Thambidurai and R. Mahilmannan, ”High
performance task scheduling algorithm for heterogeneous
computing system”, Distributed and Parallel Computing, vol.
3719 of Lecture Notes in Computer Science, pp. 193-203, 2005.

[23] M.A. Iverson, F. Özgüner and G.J. Follen, ”Parallelizing exist-
ing applications in a distributed heterogeneous environment”,
4th Heterogeneous Computing Workshop (HCW’95), pp. 93-100,
1995.

[24] H. Oh and S. Ha, ”A Static Scheduling Heuristic for Hetero-
geneous Processors”, Euro-Par’96 Parallel Processing, vol. 1124
of Lecture Notes in Computer Science, pp. 573-577, 1996.

[25] A. Radulescu and A.J.C. van Gemund, ”Fast and Effective
Task Scheduling in Heterogeneous Systems”, 9th Proceedings
Heterogeneous Computing Workshop (HCW), pp. 229-238, 2000.

[26] Z. Shi, E. Jeannot and J.J. Dongarra, ”Robust task scheduling
in non-deterministic heterogeneous computing systems”, IEEE
International Conference on Cluster Computing, pp. 1-10, 2006.

[27] G.C. Sih and E.A. Lee, ”A Compile-Time Scheduling Heuris-
tic for Interconnection-Constrained Heterogeneous Processor
Architecture”, IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 4, no. 2, pp. 175-187, 1993.

[28] F. Suter, ”DAG Generation Program”, http://www.loria.fr/
˜suter/dags.html, 2010.

[29] H. Topcuoglu, S. Hariri and M. Wu, ”Performance-Effective
and Low-Complexity Task Scheduling for Heterogeneous
Computing”, IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 13, no. 3, pp. 260-274, 2002.

[30] H. Topcuoglu, S. Hariri and M. Wu, ”Task scheduling algo-
rithms for heterogeneous processors”, 8th Proceedings Hetero-
geneous Computing Workshop (HCW), pp. 3-14, 1999.

[31] J.D. Ullman, ”NP-complete scheduling problems”, Journal of
Computer and System Sciences, vol. 10, no. 3, pp. 384-393, 1975.

[32] M.Y. Wu and D.D. Gajski, ”Hypertool: A Programming Aid
for Message-Passing Systems”, IEEE Transactions on Parallel and
Distributed Systems, vol. 1, no. 3, pp. 330-343, 1990.

