
List Update with Locality of Reference

Spyros Angelopoulos1,2, Reza Dorrigiv1, and Alejandro López-Ortiz1

1 Cheriton School of Computer Science, University of Waterloo
Waterloo, Ont., N2L 3G1, Canada

2 Max-Planck-Institut für Informatic, Saarbrücken, Germany
{sangelop,rdorrigiv,alopez-o}@uwaterloo.ca

Abstract. It is known that in practice, request sequences for the list
update problem exhibit a certain degree of locality of reference. Moti-
vated by this observation we apply the locality of reference model for
the paging problem due to Albers et al. [STOC 2002/JCSS 2005] in con-
junction with bijective analysis [SODA 2007] to list update. Using this
framework, we prove that Move-to-Front (MTF) is the unique optimal
algorithm for list update. This addresses the open question of defining an
appropriate model for capturing locality of reference in the context of list
update [Hester and Hirschberg ACM Comp. Surv. 1985]. Our results hold
both for the standard cost function of Sleator and Tarjan [CACM 1985]
and the improved cost function proposed independently by Mart́ınez and
Roura [TCS 2000] and Munro [ESA 2000]. This result resolves an open
problem of Mart́ınez and Roura, namely proposing a measure which can
successfully separate MTF from all other list-update algorithms.

1 Introduction

List update is a fundamental problem in the context of on-line computation.
Consider an unsorted list of l items. The input to the algorithm is a sequence
of n requests that must be served in an on-line manner. Let A be an arbitrary
on-line list update algorithm. To serve a request to an item x, A linearly searches
the list until it finds x. If x is the ith item in the list, A incurs a cost i to access
x. Immediately after this access, A can move x to any position closer to the front
of the list at no extra cost. This is called a free exchange. Also A can exchange
any two consecutive items at a cost of 1. These are called paid exchanges. An
efficient algorithm can thus use free and paid exchanges to minimize the overall
cost of serving a sequence. This is called the standard cost model [5].

The competitive ratio, first introduced formally by Sleator and Tarjan [22],
has served as a practical measure for the study and classification of on-line algo-
rithms in general and list-update algorithms in particular. An algorithm is said
to be α-competitive (assuming a cost-minimization problem) if the cost of serv-
ing any specific request sequence never exceeds α times the optimal cost (up to
some additive constant) of an off-line algorithm which knows the entire request
sequence. List update algorithms were among the first algorithms studied us-
ing competitive analysis. Three well-known deterministic on-line algorithms are

Move-To-Front (MTF), Transpose, and Frequency-Count (FC). MTF moves the
requested item to the front of the list whereas Transpose exchanges the requested
item with the item that immediately precedes it. FC maintains an access count
for each item ensuring that the list always contains items in non-increasing order
of frequency count. Sleator and Tarjan showed that MTF is 2-competitive, while
Transpose and FC do not have constant competitive ratios [22]. Since then, sev-
eral other deterministic and randomized on-line algorithms have been studied
using competitive analysis. (See [16, 1, 4, 14] for some representative results.)

Notwithstanding its wide applicability, competitive analysis has some draw-
backs. For certain problems, it gives unrealistically pessimistic performance ra-
tios and fails to distinguish between algorithms that have vastly differing perfor-
mance in practice. Such anomalies have led to the introduction of many alterna-
tives to competitive analysis of on-line algorithms (see [13] for a comprehensive
survey). While list update algorithms with better competitive ratio tend to have
better performance in practice the validity of the cost model has been debated.
More precisely, Mart́ınez and Roura [18] and Munro [19], independently ad-
dressed the drawbacks of the standard cost model. Let (a1, a2, . . . , al) be the list
currently maintained by an algorithm A. Mart́ınez and Roura argued that in
a realistic setting a complete rearrangement of all items in the list which pre-
cede item ai would in practice require time proportional to i, while this has cost
proportional to i2 in the standard cost model. Munro provided the example of
accessing the last item of the list and then reversing the entire list. The real cost
of this operation in an array or a linear link list should be O(l), while it costs
about l2/2 in the standard cost model. As a consequence, their main objection
to the standard model is that it prevents on-line algorithms from using their true
power. They instead proposed a new model in which the cost of accessing the ith

item of the list plus the cost of reorganizing the first i items is linear in i. We will
refer to this model as the modified cost model. Surprisingly, it turns out that the
off-line optimum benefits substantially more from this realistic adjustment than
the on-line algorithms do. Indeed, under this model, every on-line algorithm has
amortized cost of Θ(l) per access for some arbitrary long sequences, while an
optimal off-line algorithm incurs a cost of Θ(log l) on every sequence and hence
all on-line list update algorithm have a constant competitive ratio of Ω(l/ log l).
One may be tempted to argue that this is proof that the new model makes the
off-line optimum too powerful and hence this power should be removed, how-
ever this is not correct as in real life on-line algorithms can rearrange items at
the cost indicated. Observe that the ineffectiveness of this power for improving
the worst case competitive ratio does not preclude the possibility that under
certain realistic input distributions (or other similar assumptions on the input)
this power might be of use. Mart́ınez and Roura observed this and posed the
question: “an important open question is whether there exist alternative ways to
define competitiveness such that MTF and other good online algorithms for the
list update problem would be competitive, even for the [modified] cost model”.

As well, a common objection to competitive analysis is that it relies on an
optimal off-line algorithm, OPT, as a baseline for comparing on-line algorithms.

While this may be convenient, it is rather indirect: one could argue that in
comparing two online algorithms A and B all the information we should need
is the cost incurred by the algorithms on each request sequence. For example,
for some problems OPT is too powerful, causing all on-line algorithms to seem
equally bad. Certain alternative measures allow direct comparison of on-line
algorithms, for example the Max-Max Ratio [9], Relative Worst Order Ratio
[11], Bijective Analysis and Average Analysis [6]. These measures have been
applied mostly to the paging problem as well as some other on-line problems.
We are not aware of any result in the literature that applies the above measures
to on-line list update algorithms.

Another issue in the analysis of on-line algorithms is that “real-life” sequences
usually exhibit locality of reference. Informally, this property suggests that the
currently requested item is likely to be requested again in the near future. For
the paging problem, several models for capturing locality of reference have been
proposed [23, 2, 8]. Input sequences of list update algorithms in practice show
locality of reference [15, 21, 10] and on-line list update algorithms try to take
advantage of this property [15, 20]. Hester and Hirschberg [15] posed the question
of providing a satisfactory formal definition of locality of reference for the list
update problem as an open problem. However, to the best of our knowledge,
locality of reference for list update algorithms has not been formally studied. In
addition, it has been commonly assumed, based on intuition and experimental
evidence, that MTF is the best algorithm on sequences with high locality of
reference, e.g., Hester and Hirschberg [15] claim: “move-to-front performs best
when the list has a high degree of locality” (see also [3], page 327).

To this end, we introduce a natural measure of locality of reference. Perhaps
not surprisingly, this measure seems to parallel MTF’s behaviour as the latter has
been tailored to benefit from locality of reference. This should not be construed
as a drawback of the measure, but rather as evidence of the fact that the design
of the MTF algorithm optimally incorporates the presence of locality of reference
into its choices. Our theoretical proof of the optimality of MTF in this context
is then perhaps not surprising, yet this fact had eluded proof until now.

Our Results. We begin by showing that all on-line list update algorithms are
equivalent according to Bijective Analysis under the modified cost model. We
then extend a model for locality of reference, proposed by Albers et al. [2] in the
context of the paging problem to the list update problem. The validity of the
extended model is supported by experimental results obtained on the Calgary
Corpus, which is frequently used as a standard benchmark for evaluating the
performance of compression algorithms (and by extension list update algorithms,
e.g. [7]). Thus, we resolve the open problem posed by Hester and Hirschberg
[15]. Our main result proves that under both the standard and the modified cost
functions MTF is never outperformed in our model, while it always outperforms
any other on-line list update algorithm in at least one instance. As mentioned
earlier, Mart́ınez and Roura [18] posed the open problem of finding an alternative
measure that shows the superiority of MTF in the modified cost model and
suggested that this can be done by adding some restrictions over the sequences

of requests. Our analysis technique allows us to resolve this problem as well. As
noted above the model used for this proof builds upon the work of Albers et
al. and Angelopoulos et al. for paging with locality of reference. As such, the
results in this paper also provide evidence of the applicability of these models
to problems other than paging.

2 Bijective Analysis

In this section, we first provide the formal definitions of Bijective Analysis and
Average Analysis and then we show equivalence of all list update algorithms
under the modified model according to these measures. We choose to employ
these measures since they reflect certain desirable characteristics for comparing
online algorithms: they allow for direct comparison of two algorithms without
appealing to the concept of the “optimal” cost (see [6] for a more detailed dis-
cussion), and they do not evaluate the performance of the algorithm on a single
“worst-case” request, but instead use the cost that the algorithm incurs on each
and all request sequences. These two measures have already been successfully
applied in the context of the paging problem [6].

For the sake of simplicity, in this paper we only consider the static list update
problem. This means that we only have accesses to list items and do not have
any insert or delete operations. In particular, we have a set S = {a1, a2, . . . , al}
of l items initially organized as a list L0 = (a1, a2, . . . , al). The results in this
paper can easily be extended to the dynamic version of the problem. For an
on-line algorithm A and a sequence σ, we denote by A(σ) the cost that A incurs
to serve σ. We denote by In the set of all request sequences of length n, and by
Ik+1(σ) where |σ| = k, the set of sequences in Ik+1 which have σ as their prefix.

Informally, Bijective Analysis aims to pair input sequences for two algorithms
A and B using a bijection in such a way that the cost of A on input σ is no
more than the cost of B on the image of σ, for all request sequences σ of the
same length. In this case, intuitively, A is no worse than B. On the other hand,
Average Analysis compares the average cost of the two algorithms over all request
sequences of the same length.

Definition 1. [6] We say that an on-line algorithm A is no worse than an
on-line algorithm B according to Bijective Analysis if there exists an integer
n0 ≥ 1 so that for each n ≥ n0, there is a bijection b : In ↔ In satisfying
A(σ) ≤ B(b(σ)) for each σ ∈ In. We denote this by A �b B. Otherwise we
denote the situation by A 6�b B. Similarly, we say that A and B are the same
according to Bijective Analysis if A �b B and B �b A. This is denoted by
A ≡b B. Lastly we say A is better than B according to Bijective Analysis if
A �b B and B 6�b A. We denote this by A ≺b B.

Definition 2. [6] We say that an on-line algorithm A is no worse than an on-
line algorithm B according to Average Analysis if there exists an integer n0 ≥ 1
so that for each n ≥ n0,

∑
I∈In

A(I) ≤
∑

I∈In
B(I). We denote this by A �a B.

Otherwise we denote the situation by A 6�a B. A ≡a B, and A ≺a B are defined
as for Bijective Analysis.

Observation 1 [6] If A 6�a B, then A 6�b B. In addition, if A �b B, then
A �a B and similar statements hold for A ≡b B and A ≺b B.

Suitability of the Measure Note that rather than considering a worst case se-
quence, these measures take into account all sequences of the same length. To
be precise, bijective analysis compares the performance of two algorithms over
pairs of different inputs of the same size. A natural question is if this is a reason-
able comparison. To answer this, it is necessary to briefly review standard worst
case analysis. Worst case analysis of an algorithm A considers the running time
of A over all possible inputs of a given size n and selects as representative for
this set the maximum or worst case time observed in that class. Let IA,n denote
this worst case input of size n for A. Now when the worst case performance of
A is compared to that of algorithm B, worst case analysis compares the tim-
ing of A on IA,n with that of B on IB,n. Observe that in general IA,n 6= IB,n

and hence bijective analysis is no different than worst case analysis in terms of
pairing different inputs of the same size. The main difference is that bijective
analysis studies the performance of both algorithms across the entire spectrum
on inputs of size n as opposed to the worst case. This is similar to average case
analysis which also measures performance across all inputs of a given size.

The following theorem proves that under the modified cost model all list
update algorithms are equivalent. This result parallels the equivalence of all lazy
paging algorithms under Bijective Analysis as shown in [6].

Theorem 1. Let A and B be two arbitrary on-line list update algorithms. Under
the modified cost model, we have A ≡b B.

Proof. We prove that for every n ≥ 1 there is a bijection bn : In ↔ In so
that A(σ) ≤ B(bn(σ)) for each σ ∈ In. We show this by induction on n, the
length of sequences. Since A and B start with the same initial list, they incur
the same cost on each sequence of length 1. Therefore the statement trivially
holds for n = 1. Assume that it is true for n = k. Thus there is a bijection
bk : Ik ↔ Ik so that A(σ) ≤ B(bk(σ)) for each σ ∈ Ik. Let σ be an arbitrary
sequence of length k and σ′ = bk(σ). We map Ik+1(σ) to Ik+1(σ

′) as follows.
Let L(A, σ) = (a1, a2, . . . , al) be the list maintained by A after serving σ and
L(B, σ′) = (b1, b2, . . . , bl) be the list maintained by B after serving σ′. Consider
an arbitrary sequence σ1 ∈ Ik+1(σ) and let its last request be to item ai. We
map σ1 to the sequence σ2 ∈ Ik+1(σ

′) that has bi as its last request. Since
A(σ) ≤ B(σ′) and A’s cost on the last request of σ1 is the same as B’s cost
on the last request of σ2, we have A(σ1) ≤ B(σ2). Therefore we get the desired
mapping from Ik+1(σ) to Ik+1(σ

′). We obtain a bijection bk+1 : Ik+1 ↔ Ik+1

by considering the above mapping for each sequence σ ∈ Ik. Thus our induction
statement is true and we have A �b B. Using a similar argument, we can show
B �b A. Therefore we have A ≡b B.

We will call a list update algorithm economical if it does not use paid exchanges.
Since an economical list update algorithm does not incur any cost for reorganiz-
ing the list we can prove the following statement using an argument analogous
to the proof of Theorem 1.

Corollary 1. All economical on-line list update algorithms are equivalent ac-
cording to Bijective Analysis under the standard cost model.

These results show that so long as we consider all possible request sequences,
all on-line list update algorithms are equivalent in a strong sense. However, as
stated earlier, in practice request sequences tend to exhibit locality of reference.
Therefore, the algorithm can focus on input sequences with this property. In the
next section we show that we can use such an assumption to prove the superiority
of MTF.

3 List Update with Locality of Reference

As stated in the Introduction, several models have been proposed for paging with
locality of reference [23, 2, 8]. In this paper, we consider the model of Albers et
al. [2], in which a request sequence has high locality of reference if the number
of distinct requests in a window of size n is small. In Section 4 we will present
experimental evidence which supports the validity of this model for the list
update problem. Consider a function that represents the maximum number of
distinct items in a window of size n, on a given request sequence. For the paging
problem, extensive experiments with real data show that this function can be
bounded by a concave function for most practical request sequences [2]. Let f be
an increasing concave function. We say that a request sequence is consistent with
f if the number of distinct requests in any window of size n is at most f(n),
for any n ∈ N . In order to model locality, we restrict the request sequences
to those consistent with a concave function f . Let If denote the set of such
sequences. We can easily modify the definitions of Bijective Analysis and Average
Analysis (Definition 1 and Definition 2) by replacing I with If throughout. We

denote the corresponding relations by A �f
b B, A �f

a B, etc. Observe that the
performance of list update algorithms are now evaluated within the subset of
request sequences of a given length that are consistent with f , which we denote
as If

n , where n is the length of the requence sequences.
Note that the inductive argument used to prove that all on-line list update

algorithms are equivalent according to Bijective Analysis (Theorem 1) does not
necessarily carry through under concave analysis because the bijection of the
proof may map a sequence in If to one not in If .

Definition 3. Let A and B be list update algorithms, and f be a concave func-
tion. A is said to (m, f)-dominate B for some integer m, if we have

∑

σ∈I
f
m

A(σ) ≤
∑

σ∈I
f
m

B(σ).

A is said to dominate B if there exists an integer m0 ≥ 1 so that for each
m ≥ m0 and every concave function f , A (m, f)-dominates B.

Observation 2 A �f
a B if and only if there exists an integer m0 ≥ 1 so that A

(m, f)-dominates B for each m ≥ m0.

Lemma 1. For every on-line list update algorithm A, MTF dominates A.

Proof. Let f be an arbitrary concave function and m be a positive integer. For
any 1 ≤ i ≤ m, let Fi,m(A) be the total cost A incurs on the ith request of
all sequences in If

m. We will first show that Fi,m(MTF) ≤ Fi,m(A) for any
1 ≤ i ≤ m. For i = 1, we have F1,m(MTF) = F1,m(A), as all algorithms start
with the same list. Now suppose that i > 1. Let σ be an arbitrary sequence of
length i− 1, Tσ denote the set of all sequences in If

m that have σ as their prefix,
and Fi,m(A |σ) be the total cost A incurs on the ith request of all sequences in
Tσ. Denote by L(MTF, σ) = (a1, a2, . . . , al) and L(A, σ) = (b1, b2, . . . , bl) the
lists maintained by MTF and A after serving σ, respectively. Suppose that cj

(resp., dj) sequences in Tσ have aj (resp., bj) as their ith request, for 1 ≤ j ≤ l.
Note that

∑
1≤j≤l cj =

∑
1≤j≤l dj = |Tσ| and (d1, d2, . . . , dl) is a permutation of

(c1, c2, . . . , cl).
We first show that cj+1 ≤ cj for 1 ≤ j < l. Let Cj and Cj+1 denote the

set of sequences in Tσ that have aj and aj+1 as their ith request. We provide
a one-to-one mapping from Cj+1 to Cj which proves that |Cj+1| ≤ |Cj |. We
map every sequence τ in Cj+1 to a sequence τ ′ in Cj by replacing every aj

with aj+1 and every aj+1 by aj , starting from position i. Since aj occurs before
aj+1 in MTF’s list after serving σ, we know that the last request to aj occurs
after the last request to aj+1 in σ. Therefore if τ is consistent with f , so is τ ′.
Thus every sequence in Cj+1 is mapped to a unique sequence in Cj and we have
cj+1 = |Cj+1| ≤ |Cj | = cj .

Therefore (c1, c2, . . . , cl) is a permutation of (d1, d2, . . . , dl) in non-increasing
order, and thus Fi,m(MTF |σ) =

∑
1≤j≤l j × cj ≤

∑
1≤j≤l j ×dj = Fi,m(A |σ) .

Now since

Fi,m(MTF) =
∑

σ∈Ii−1

Fi,m(MTF |σ) and Fi,m(A) =
∑

σ∈Ii−1

Fi,m(A |σ),

we get Fi,m(MTF) ≤ Fi,m(A). We have

∑

σ∈I
f
m

MTF (σ) =
∑

1≤i≤m

Fi,m(MTF) ≤
∑

1≤i≤m

Fi,m(A) =
∑

σ∈I
f
m

A(σ).

Thus MTF (m, f)-dominates A for every concave function f , and every integer
m ≥ 1. Hence MTF dominates A.

Corollary 2. For any concave function f and any on-line list update algorithm
A,

MTF �f
a A.

Therefore MTF is an optimal algorithm according to Average Analysis, when
we classify the input sequences by locality of reference. A natural question is
whether MTF is a unique optimum or not, i.e., is there an on-line list update
algorithm A that dominates MTF?

Lemma 2. No on-line list update algorithm (other than MTF itself) dominates
MTF.

Proof. Assume by way of contradiction that an on-line list update algorithm A
dominates MTF and that A is different from MTF. According to the definition,
there exists an integer m0 ≥ 1 so that for each m ≥ m0 and every concave
function f , A (m, f)-dominates MTF, i.e.,

∑

σ∈I
f
m

A(σ) ≤
∑

σ∈I
f
m

MTF (σ).

Following the proof of Lemma 1, this holds only if Fi,m(A |σ) = Fi,m(MTF |σ)

for every m ≥ m0, 2 ≤ i ≤ m, and every sequence σ of length i−1. Let σ ∈ If
i−1

be a sequence so that L(A, σ) is different from L(MTF, σ), k be the largest index
so that y = ak 6= bk = x (for ak and bk defined as in Lemma 1, and p be the
smallest index so that σ[p..i−1] contains at most k−1 distinct items. Select the
concave function f so that ⌊f(i−p)⌋ = ⌊f(i−p+1)⌋ = k−1. Since y ∈ σ[p..i−1]
and x 6∈ σ[p..i−1] , we have ck = 0 < dk (the sequence of length m > i obtained
by repeating y in any position starting from ith position is consistent with f).
Therefore

Fi,m(MTF |σ) =
∑

1≤j≤l

j × cj <
∑

1≤j≤l

j × dj = Fi,m(A |σ),

which is a contradiction.

Theorem 2. Let A be an on-line list update algorithm other than MTF. Then
MTF �f

b A and there exists at least one concave function f so that

A 6�f
a MTF, which implies A 6�f

b MTF.

We can prove separation with respect to Bijective Analysis between MTF
and specific algorithms, e.g., Transpose, for a much larger family of concave
functions.

Theorem 3. For all concave functions f such that f(l) < l (l is the size of list),

Transpose 6�f
b MTF.

Proof. Let L0 = (a1, a2, . . . , al) be the initial list. Assume by way of contradic-

tion that Transpose �f
b MTF . Therefore there is an integer n0 ≥ 1 so that

for each n ≥ n0, there is a bijection b : If
n ↔ If

n satisfying Transpose(σ) ≤
MTF (b(σ)) for each σ ∈ If

n . Now consider a sequence σ of length m ≥ n0 ob-
tained by considering the prefix of the infinite sequence alal−1alal−1 Trans-
pose incurs a cost of l on each request and we have Transpose(σ) = m × l.
Note that σ is consistent with f , because it has two distinct items.1 Thus
σ ∈ If

m and from the assumption there should exist some sequence σ′ ∈ If
m

so that m × l = Transpose(σ) ≤ MTF (σ′). Therefore MTF should incur a

1 We can assume that f(2) = 2 because otherwise we are restricted to sequences that
contain only one item.

cost of l on each request of σ′. Hence σ′ should be a prefix of the sequence
alal−1al−2 . . . a1alal−1al−2 . . . a1 Now any window of size l in σ′ has l dis-
tinct items. Since we started with f(l) < l, σ′ is not consistent with f and this
contradicts the assumption that σ′ ∈ If

m.

4 Experimental Results and Analysis

In this section we test the validity of the locality of reference assumption as
described in Section 3 against experimental data. For our experiments, we con-
sidered the fourteen files of the Calgary Compression Corpus [24] which are
frequently used as a standard benchmark for file compression. Recall that list
update algorithms can be used in a very direct way in file compression. For each
file, we computed the maximum number of characters in windows of all possible
sizes, up to the size of the whole file. Figures 1 and 2 show the resulting graphs.
Note that since we observed that the maximum number of distinct items does
not change much as we increase the size of window to values more than 3500,
we only show the results for windows of size up to 3500.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ax

im
um

 #
 o

f d
is

tin
ct

 it
em

s

Size of window

book2
paper1
paper2

progc
progl

progp
pic

Fig. 1. Maximum number of distinct characters in windows of size up to 3500 for the
files in Calgary Compression Corpus.

As can be seen from these graphs, the curves have an overall concave shape.
We should note that for some of the input files, the function we obtained is

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ax

im
um

 #
 o

f d
is

tin
ct

 it
em

s

Size of window

geo
book1

bib
news
obj1
obj2

trans

Fig. 2. Maximum number of distinct characters in windows of size up to 3500 for the
files in Calgary Compression Corpus.

not concave for some intervals. However, this is not a major concern, since we
can bound said function by any concave function f which is such that f(i) is
an upper bound on the maximum number of distinct items in windows of size
i. For instance, we can take the upper convex hull of the data points. In fact,
Albers et al. [2] observed that similar non-concavity (mostly localized within
small intervals) was present in their experimental results concerning locality of
reference in typical request sequences for the paging problem. Albers et al. put
forth this argument to justify the fact that local small deviations from concavity
do not impose a serious problem.

Albers and Mitzenmacher [3] compared the efficiency of MTF and Timestamp
(TS) algorithms for compressing the files of the Calgary Compression Corpus.
TS is a list update algorithm that is 2-competitive [1]. After accessing an item a,
TS inserts a in front of the first item b that appears before a in the list and was
requested at most once since the last request for a. If there is no such item b, or if
this is the first access to a, TS does not reorganize the list. They compared MTF
and TS in two settings: with or without Burrows-Wheeler transform (BWT).
Informally, BWT transforms a string to one of its permutations that has more
locality of reference, which is hence more readily compressible [12, 17]. Their
results show that although TS outperforms MTF on compression without BWT,
MTF usually has better performance when we use BWT. This is consistent with

our results as BWT is a transform designed with the goal of increasing the
locality of reference in the representation of the string.

5 Conclusions

In this paper we addressed certain open questions concerning the well-studied list
update problem. We first considered the issue of modeling locality of reference
for typical request sequences for this problem. We provided experimental evi-
dence which suggests that the concave-function model of Albers et al., originally
devised for the context of paging algorithms, can satisfactorily model locality of
reference within the domain of list update. We then combined this model with
two recently proposed measures for comparing online algorithms, namely Bijec-
tive Analysis and Average Analysis. Our choice was based on the fact that these
measures allow direct comparison of two online algorithms, by considering their
relative performance on all requests sequences of the same length, rather than
on some specific pathological sequences. These measures have been previously
applied with success in separating several paging algorithms, a situation which
has long been known but cannot be resolved by resorting solely to competitive
analysis.

Using the above framework, we showed that while all list update algorithms
are equivalent in the modified-cost model, when locality of reference is consid-
ered, MTF emerges as the sole optimum online algorithm for the problem. This
resolves an open problem posed by Mart́ınez and Roura. We believe that our
techniques might well be applicable to other problems in which competitive anal-
ysis has failed to yield satisfactory results such as the online bin packing, but
this remains the subject of future work.

The model proposed is, to our knowledge, the first that both incorporates
locality of reference and achieves full separation of MTF. However locality of
reference is a phenomenon which has only recently begun to be thoroughly un-
derstood. Thus we fully expect that future further refinements of the model by
researchers in the field will reflect even more faithfully locality of reference as it
is observed in practice.

References

1. S. Albers. Improved randomized on-line algorithms for the list update problem.
SIAM Journal on Computing, 27(3):682–693, June 1998.

2. S. Albers, L. M. Favrholdt, and O. Giel. On paging with locality of reference.
Journal of Computer and System Sciences, 70(2):145–175, 2005.

3. S. Albers and M. Mitzenmacher. Average case analyses of list update algorithms,
with applications to data compression. Algorithmica, 21(3):312–329, 1998.

4. S. Albers, B. von Stengel, and R. Werchner. A combined bit and timestamp

algorithm for the list update problem. Information Processing Letters, 56:135–139,
1995.

5. S. Albers and J. Westbrook. Self-organizing data structures. In Online Algo-
rithms: The State of the Art, Lecture Notes in Computer Science 1442, pages
13–51. Springer, 1998.

6. S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz. On the separation and equiva-
lence of paging strategies. In Proceedings of the 18th ACM-SIAM Symposium on
Discrete Algorithms (SODA ’07), pages 229–237, 2007.

7. R. Bachrach and R. El-Yaniv. Online list accessing algorithms and their appli-
cations: Recent empirical evidence. In Proc. 8th Annual ACM-SIAM Symp. on
Discrete Algorithms (SODA ’97), pages 53–62, 1997.

8. L. Becchetti. Modeling locality: A probabilistic analysis of LRU and FWF. In
Proceedings of the 12th Annual European Symposium on Algorithms (ESA ’04),
volume 3221 of Lecture Notes in Computer Science, pages 98–109, 2004.

9. S. Ben-David and A. Borodin. A new measure for the study of on-line algorithms.
Algorithmica, 11:73–91, 1994.

10. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

11. J. Boyar and L. M. Favrholdt. The relative worst order ratio for on-line algorithms.
In Proceedings of the 5th Italian Conference on Algorithms and Complexity, 2003.

12. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report 124, DEC SRC, 1994.

13. R. Dorrigiv and A. López-Ortiz. A survey of performance measures for on-line
algorithms. SIGACT News (ACM Special Interest Group on Automata and Com-
putability Theory), 36(3):67–81, September 2005.

14. R. El-Yaniv. There are infinitely many competitive-optimal online list accessing
algorithms. Manuscript, 1996.

15. J. H. Hester and D. S. Hirschberg. Self-organizing linear search. ACM Computing
Surveys, 17(3):295, Sept. 1985.

16. S. Irani. Two results on the list update problem. Information Processing Letters,
38:301–306, 1991.

17. H. Kaplan, S. Landau, and E. Verbin. A simpler analysis of burrows-wheeler based
compression. In Proceedings of the 17th Annual Symposium on Combinatorial
Pattern Matching (CPM ’06), volume 4009 of Lecture Notes in Computer Science,
pages 282–293, 2006.

18. C. Mart́ınez and S. Roura. On the competitiveness of the move-to-front rule.
Theoretical Computer Science, 242(1–2):313–325, July 2000.

19. J. I. Munro. On the competitiveness of linear search. In Proceedings of the 8th
Annual European Symposium on Algorithms (ESA ’00), volume 1879 of Lecture
Notes in Computer Science, pages 338–345, 2000.

20. N. Reingold, J. Westbrook, and D. Sleator. Randomized competitive algorithms
for the list update problem. Algorithmica, 11:15–32, 1994.

21. F. Schulz. Two new families of list update algorithms. In Proceedings of the 9th
International Symposium on Algorithms and Computation (ISAAC ’98), volume
1533 of Lecture Notes in Computer Science, pages 99–108. Springer, 1998.

22. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28:202–208, 1985.

23. E. Torng. A unified analysis of paging and caching. Algorithmica, 20(2):175–200,
1998.

24. I. H. Witten and T. Bell. The Calgary/Canterbury text
compression corpus. Anonymous ftp from ftp.cpsc.ucalgary.ca
/pub/text.compression/corpus/text.compression.corpus.tar.Z.

