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Fig. 1. Listen, denoise, action! Audio-driven Jazz dance motion synthesised from our proposed model. The 3D avatar is © Motorica AB.

Diffusion models have experienced a surge of interest as highly expressive
yet efficiently trainable probabilistic models. We show that these models are
an excellent fit for synthesising human motion that co-occurs with audio,
e.g., dancing and co-speech gesticulation, since motion is complex and highly
ambiguous given audio, calling for a probabilistic description. Specifically,
we adapt the DiffWave architecture to model 3D pose sequences, putting
Conformers in place of dilated convolutions for improved modelling power.
We also demonstrate control over motion style, using classifier-free guidance
to adjust the strength of the stylistic expression. Experiments on gesture and
dance generation confirm that the proposed method achieves top-of-the-line
motion quality, with distinctive styles whose expression can be made more
or less pronounced. We also synthesise path-driven locomotion using the
same model architecture. Finally, we generalise the guidance procedure to
obtain product-of-expert ensembles of diffusion models and demonstrate
how these may be used for, e.g., style interpolation, a contribution we believe
is of independent interest.
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1 INTRODUCTION
Automated generation of human motion holds great promise for
a wide array of applications such as films and special effects, com-
puter games, crowd simulation, architecture and urban planning,
and virtual agents and social robots. Typically, motion occurs in
context of other modalities such as audio and vision, and moving
appropriately requires taking contextual information into account.
Two motion-generation problems where audio information plays
an important role for human behaviour are dancing and co-speech
gestures. Co-speech gesticulation – that is, hand, arm, and body mo-
tion that co-occur with speaking – is an integral part of embodied
human communication, and can enhance both human-computer in-
teraction (e.g., avatars and social robots) and human-human digital
communication (e.g., in VR and telepresence). Dancing is a social
and deeply human activity that transcends cultural barriers, with
some of the most watched content on platforms like YouTube and
TikTok specifically involving dance.
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However, generating audio-driven motion has proved to be a dif-
ficult problem. Central to the challenge is the fact that such motion
is not well predicted by the associated audio: gestures are highly
individual, nondeterministic, and generally not well-determined by
the speech. The same is true for dancing, which typically synchron-
ises with music structure such as beats and measures, but otherwise
can take a vast array of forms even for a single piece of music and
genre of performance. Machine-learning has struggled to cope with
this ambiguity and great variability, which can only be accurately
captured by a very strong probabilistic model. In the absence of
convincing and controllable motion synthesis models, applications
remain reliant on manual labour in the form of expensive motion
capture or even more expensive hand animation.
Fortunately, the recent emergence of diffusion models [Ho et al.

2020; Sohl-Dickstein et al. 2015; Song and Ermon 2019] offers a gen-
eral and principled way to learn arbitrary probability distributions
using the entire arsenal of deep learning architectures, without
issues such as network restrictions (as required for invertibility
in normalising flows) or difficult minimax optimisation problems
(as required for GANs). In this paper, we demonstrate the advant-
ages of diffusion probabilistic models for generating high-quality,
audio-driven 3D human motion. Our concrete contributions are:

• We pioneer diffusion models for audio-driven human motion
generation, specifically gestures and dance, using Conformers
(Sec. 3).

• We demonstrate style control with the proposed approach,
using classifier-free guidance to adjust the strength of the
stylistic expression (Sec. 4).

• We make available a new dataset with audio and high-quality
3D motion capture from diverse genres of dance (Sec. 4.4).

• We describe and demonstrate how to leverage product-of-
experts ensembles of diffusion models for tasks such as inter-
polation (Sec. 5).

Experiments confirm that the proposed approach outperforms lead-
ing baseline systems on multiple datasets in gesture generation and
dance, and furthermore is capable of distinctive and adjustable ex-
pression of different motion styles. For code, data, and pre-trained
systems, please see speech.kth.se/research/listen-denoise-action/.

2 BACKGROUND AND PRIOR WORK
We now review data-driven gesture generation and dance synthesis,
as well as the use of diffusion models for the same. For a review of
human motion generation with deep learning more broadly, please
see Ye et al. [2021].

2.1 Gesture generation
Automatic gesture generation makes for more lifelike and engaging
artificial agents [Salem et al. 2012]. It can also aid learning [Novack
and Goldin-Meadow 2015] and can communicate social informa-
tion such as personality [Durupinar et al. 2016; Neff et al. 2010;
Smith and Neff 2017], and emotion [Castillo and Neff 2019; Fourati
and Pelachaud 2016; Normoyle et al. 2013]. Early work in gesture
generation focussed on rule-based approaches [Cassell et al. 2001;
Kopp et al. 2003; Lee and Marsella 2006; Lhommet et al. 2015] that
typically would play pre-recorded gesture clips (or “lexemes”), at

timings selected by hand-crafted rules; see Wagner et al. [2014] for
a review. Alternatively, machine learning can be used to learn when
to trigger gestures [Kucherenko et al. 2022], even if the gestures
themselves still are rendered using pre-determined clips, e.g., Chiu
et al. [2015]; Levine et al. [2010]; Sadoughi and Busso [2019]; Zhou
et al. [2022], or via motion matching [Habibie et al. 2022] (where
clips only consist of a single frame each [Clavet 2016]). However,
designing a rule-based system requires much manual labour and ex-
pert knowledge. Clip-based models are furthermore fundamentally
limited in that they may struggle to synthesise previously unseen
motion. Many of these systems are driven by text rather than audio.

The rise of deep learning has brought increased attention to the
problem of audio-driven 3D gesture generation, as a more scalable
and generalisable approach to gesture-system creation. Several rel-
atively early deep-learning systems used recurrent neural networks
[Ferstl and McDonnell 2018; Hasegawa et al. 2018; Takeuchi et al.
2017] or convolutional approaches [Kucherenko et al. 2019, 2021a].
These were generally based on 3D joint positions in Cartesian co-
ordinates, whereas the field nowadays tends to favour pose repres-
entations in terms of joint rotations, since the latter can more easily
drive skinned and textured characters in 3D graphics. They were
also limited by treating gesture generation as a regression prob-
lem, with one single output, typically leading to underarticluated,
averaged output and/or other artefacts.

For a more general approach, research has looked to probabilistic
models. These approaches hold substantial promise, since they can
describe an entire range of motion from which distinct realisations
can be sampled and furthermore have the potential to generalise
much better beyond the available data. Example approaches have
leveraged hidden semi-Markov models [Bozkurt et al. 2020], com-
binations of adversarial learning and regression losses [Ferstl et al.
2019; Habibie et al. 2021; Liu et al. 2022b], normalising flows [Al-
exanderson et al. 2020a], VAEs [Ghorbani et al. 2023], VQ-VAEs
[Yazdian et al. 2022], combinations of flows and VAEs [Taylor et al.
2021], and different GAN techniques [Wu et al. 2021a,b]. For more
in-depth reviews see Liu et al. [2021]; Nyatsanga et al. [2023].

2.2 Gesture style control
Embodied human communication is not merely about what and
when we gesture, but also how we do it. Adding control over style
such as identity and mood/emotion to synthetic gestures is thus an
important tool for enhanced communication. Perhaps the dominant
approach for style control today, used by, e.g., Ahuja et al. [2020b];
Fares et al. [2022]; Ghorbani et al. [2022, 2023]; Yoon et al. [2020],
involves learning an encoder that maps a motion clip to a space of
different gesturing styles, often a latent space in a VAE framework.
This setup can be used for one-shot style transfer/adaptation, by
feeding examples of novel gestures styles into the encoder to obtain
a latent representation of their style. The method in Alexanderson
et al. [2020a] differs in its style control, by instead proposing to
define styles in terms of continuous-valued kinematic properties
such as average hand height, in order to be able to generate different
kinds of gesticulation even from a dataset where differences in style
had neither been annotated nor deliberately elicited.
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This paper uses a different type of style control from all of the
above works, which both allows controlling style intensity inde-
pendently of style identity, and unlocks a new and probabilistically
principled way to combine and interpolate between styles.

2.3 Data-driven dance generation
Dance generation is perhaps a less explored topic than gesture gen-
eration, and will be reviewed more briefly. The field has seen a
similar trajectory as gesture generation in terms of modelling ap-
proaches, trying new machine-learning methods as they become
available. Perhaps reflecting the complexity of the probability dis-
tribution of dance motion, many approaches generate output by
stitching together discrete units, such as concatenating motion seg-
ments [Chen et al. 2021a; Fukayama and Goto 2015], dance figures
[Ofli et al. 2011], or the choreographic action units in ChoreoNet
[Ye et al. 2020]. Motion matching has also been used [Fan et al.
2011]. Deep-learning techniques used for directly generating dance
pose sequences include recurrent neural networks and autoencoders
[Crnkovic-Friis and Crnkovic-Friis 2016; Papillon et al. 2023; Tang
et al. 2018], GANs [Hu et al. 2022], combinations of GANs and VAEs
[Lee et al. 2019b], dilated convolutions and gated activation units
[Zhuang et al. 2022], Transformer architectures [Li et al. 2022, 2020,
2021; Valle-Pérez et al. 2021], VQ-VAEs and Transformers with re-
inforcement learning [Siyao et al. 2022], and Conformers [Zhang
et al. 2022b].
The most straightforward application of style control in deep-

learning dance synthesis is to use discrete labels representing dif-
ferent dance genres as an additional model input. GANs and Trans-
formers have also been used for dance style transfer [Yin et al. 2023],
where style is defined by a motion example rather than a simple
label. Oftentimes, published systems use a large set of audio features
together with their style control, which might impact the ability to
generalise across different-sounding music pieces and genres, in the
sense that it risks creating models that chose their style of dance
based on the music rather than the style label supplied by the user.
A goal of our approach is to be able to generate any style of dance
to any music.

The prior publications most similar to our work might be Zhang
et al. [2022b] since it integrates Conformers [Gulati et al. 2020] in
the architecture, but with adversarial learning in a non-probabilistic
setting, or Valle-Pérez et al. [2021], which leverages Transformers
and probabilistic deep generative modelling, albeit in the form of
normalising flows.

2.4 Diffusion models for motion and audio
Diffusion models [Ho et al. 2020; Sohl-Dickstein et al. 2015; Song
and Ermon 2019] are a new paradigm in deep generative model-
ling that is setting new standards in terms of perceptual quality
scores [Dhariwal and Nichol 2021] and also demonstrating very
competitive log-likelihood numbers [Kingma et al. 2021]. Central
to this success is that diffusion models combine two very powerful
properties: the ability to describe highly general probability distri-
butions (only limited by the expressivity of arbitrary deep-learning
architectures) with the ability to efficiently learn these distributions

from data by minimising a simple squared-error loss on a carefully
designed denoising task.
Diffusion models have recently produced blockbuster results in

text-conditioned generation of images [Ramesh et al. 2022; Rombach
et al. 2022; Saharia et al. 2022] and video [Ho et al. 2022a,b; Höppe
et al. 2022; Voleti et al. 2022]. Whilst text-conditioned 3D motion
generation has been demonstrated without diffusion models [Ghosh
et al. 2021a; Guo et al. 2022; Petrovich et al. 2022], diffusion models
have quickly been adopted for that task [Kim et al. 2022; Tevet
et al. 2023; Zhang et al. 2022a]. These models have been trained on
short clips paired with written descriptions of the motion performed
and use Transformer architectures [Vaswani et al. 2017] under the
hood. Speech audio is not considered as a model input, nor are
text transcriptions of speech. Style control is possible by specifying
desired gesture properties as part of the text prompt, assuming these
properties can be adequately captured and articulated in words.

In a parallel development, diffusion models have been applied to
generate audio waveforms from acoustic information (a.k.a. neural
vocoding) [Chen et al. 2021b; Kong et al. 2021]. However, prior mod-
els with audio-derived input (i.e., acoustic features) do not generate
motion as the output. This is the contribution of this paper, with
speech-driven gesture generation and music-driven dance synthesis
as example applications.

We note that, in the time span between our initial arXiv preprint
and the camera-ready version of our paper, several concurrent works
on audio-driven motion synthesis have been made public. These
consider either gesture generation [Ao et al. 2023; Zhang et al. 2023]
or dance synthesis [Dabral et al. 2022; Ma et al. 2022; Tseng et al.
2023], but never both. It has not been possible to include these works
in our empirical comparison, but videos of their motion are available
with their respective papers for informal comparison to our results.

3 METHOD
The task in this paper is to generate a sequence of human poses 𝒙1:𝑇
given a sequence of audio features 𝒂1:𝑇 for the same time instances,
and optionally a style vector 𝒔. This section presents the math-
ematical properties of diffusion models, the new diffusion-model
architecture we demonstrate for audio-based motion generation,
and how we include style into the models. Our proposal for style
interpolation using products of experts is presented separately in
Sec. 5. In the exposition, bold type signifies vectors and non-bold
type scalars. Limits of summation are written in upper case (e.g.,𝑇 ),
with lower case denoting indexing operations and colons delimiting
ranges of indexing for sequences.

3.1 Diffusion models
Let 𝒙 be distributed according to an unknown density 𝑞(𝒙). To
construct a diffusion model of 𝒙 , we first define a diffusion process,
a Markov chain 𝑞 (𝒙𝑛 | 𝒙𝑛−1) for 𝑛 ∈ {1, . . . , 𝑁 } that progressively
adds noise to an observation 𝒙0 (𝑛 = 0), eventually erasing all traces
of the original observation, so that𝑞 (𝒙𝑁 | 𝒙0) has a standard normal
distribution. The idea is then to train a network to reverse the 𝑞-
process and “undo” the diffusion steps, creating observations out of
noise. This produces the so-called reverse or denoising process, 𝑝 .
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We assume that the noise added by each step of the diffusion
process 𝑞 is zero-mean Gaussian, so that

𝑞 (𝒙𝑛 | 𝒙𝑛−1) = N(𝒙𝑛 ; 𝛼𝑛𝒙𝑛−1, 𝛽𝑛 𝑰 ) (1)

for some {𝛼𝑛, 𝛽𝑛}𝑁𝑛=1, where N denotes a multivariate Gaussian
density function evaluated at 𝒙𝑛 . In this paper we also set 𝛼𝑛 =√︁

1 − 𝛽𝑛 [Ho et al. 2020; Sohl-Dickstein et al. 2015], in which case
{𝛽𝑛}𝑁𝑛=1 completely defines the diffusion process.
If the noise added in step 𝑛 is small relative to 𝒙𝑛 , the reverse

distribution is also Gaussian [Sohl-Dickstein et al. 2015]. A Gaussian
approximation

𝑝 (𝒙𝑁 ) = N(𝒙𝑁 ; 0, 𝑰 ) (2)
𝑝 (𝒙𝑛−1 | 𝒙𝑛) = N(𝒙𝑛−1; 𝝁 (𝒙𝑛, 𝑛), 𝚺(𝒙𝑛, 𝑛)), (3)

whereN denotes amultivariate Gaussian density function evaluated
at 𝒙𝑛−1, is therefore likely to be accurate. In practice, good results
have been achieved by setting 𝚺 equal to a scaled identity matrix
[Ho et al. 2020]. The learnt distribution is then completely specified
by the mean 𝝁 (𝒙𝑛, 𝑛), which is predicted by a neural network.
Diffusion models are usually trained through so-called score-

matching [Hyvärinen and Dayan 2005], which (similar to energy-
based models) does not require knowing the normalisation constant
of a distribution. With a diffusion model, score-matching leads [Ho
et al. 2020] to minimising a loss of the form

L (\ | D) = E𝒙0, 𝑛, 𝜺 [^𝑛 ∥𝜺 − �̂� (𝛼𝑛𝒙0 + 𝛽𝑛𝜺, 𝑛)∥2
2], (4)

in addition to a minor loss term based on the negative log likelihood
− ln𝑝 (𝒙0 | 𝒙1). In Eq. (4), 𝒙0 is uniformly drawn from the training
data D, 𝑛 is uniform on {1, . . . , 𝑁 }, 𝜺 ∼ N(0, 𝑰 ), and – critically –
�̂� (𝒙, 𝑛) is a neural network that predicts the noise 𝜺 that was added
to 𝒙0. This is the neural network that defines the denoising process,
and thus also the learnt probability density 𝑝 (𝒙0). 𝛼𝑛 and 𝛽𝑛 are
constants that depend on {𝛽𝑛}𝑁𝑛=1, while ^𝑛 are weights. However,
a differently-weighted version of the loss, which sets ^𝑛 = 1 as
proposed by [Ho et al. 2020], is widely used in practice, since it
tends to achieve better subjective results [Kingma et al. 2021]. For a
conditional probability model conditioned on some variable 𝒄 , one
simply trains a network �̂� (𝒙, 𝒄, 𝑛) with 𝒄 as an additional input.
It is interesting to note that the training objective in Eq. (4) con-

tains a simple squared-error minimisation. Under normal circum-
stances, the squared-error loss is minimised by the (conditional)
expected value, which would regress towards the mean pose and
give unnatural motion. However, the presence of the random vari-
able 𝜺 distinguishes the setup from classic minimum mean-squared
error, and one can show that score-matching as in Eq. (4) in fact
corresponds tomaximising a variational lower bound on the data log-
likelihood [Kingma et al. 2021]. This means that diffusion models ac-
tually learn an entire probability distribution. The variational bound
gets tighter as the number of diffusion steps 𝑁 grows large, obtain-
ing a stochastic differential equation (SDE) in the limit 𝑁 → ∞
[Song et al. 2021].
Sampling from a diffusion model starts from 𝒙𝑁 ∼ N(0, 𝑰 ) and

works backwards through the 𝑁 steps of the reverse process 𝑝 ,
which may be time-consuming. Accelerated sampling from trained
diffusion models is currently a focus of intense research, e.g., Dhari-
wal and Nichol [2021]; Lam et al. [2022]; Meng et al. [2022]; Nichol

and Dhariwal [2021]; Salimans and Ho [2022]. As our aim in this
paper is to advance the state of the art in audio-driven motion
generation, exploring faster synthesis is left as future work.

3.2 Model architecture
To generate motion conditioned on audio information, we build on
the DiffWave architecture [Kong et al. 2021] from conditional audio
synthesis. This model takes acoustic feature vectors as input (usually
sampled at 80 Hz) and uses a conditional diffusion model to generate
a scalar-valued audio waveform at 22.5 kHz as output. The model
generates all output in parallel, without autoregression or recurrent
connections. Internally, it uses a residual stack of dilated convolu-
tions with skip connections, similar to the trendsetting WaveNet
model [van den Oord et al. 2016] for audio synthesis, except that
the model (unlike WaveNet) is parallel rather than autoregressive
and therefore can use non-causal convolutions.
Denote the sequence of input acoustic feature vectors by 𝒂1:𝑇 ,

where 𝑇 is the number of frames. We adapt DiffWave to generate
output at the same frame rate as the input (i.e., remove the up-
sampling), and change to vector-valued rather than scalar output.
In other words, we learn a distribution of the form 𝑝 (𝒙1:𝑇 | 𝒂1:𝑇 ),
where 𝒙1:𝑇 = 𝒙1:𝑇, 0 is the output of a diffusion process (0 indicates
the last denoising step) and 𝒙𝑡 is a representation of the pose at
time 𝑡 . In the experiments of this paper, the acoustic features 𝒂 are
standard audio features such as mel-frequency cepstrum coefficients
(MFCCs) [Davis and Mermelstein 1980], while the output poses are
skeletal joint rotations parameterised using an exponential map rep-
resentation [Grassia 1998] relative to a T-pose like in Alexanderson
et al. [2020a], but this setup is not dictated by our model and other
design choices are likely to work similarly well.
The dilated convolutions and skip connections in the original

WaveNet together integrate information across many time scales
[Hua 2018] and allow for an exceptionally wide receptive field that
can reach several thousand samples [van den Oord et al. 2016]. In
DiffWave, dilated convolutions (one per residual block 𝑙 ) have kernel
size 3 and cycle between different dilations 𝑑 (𝑙) = 2𝑙 mod 𝑙 with
𝑙 = 9. Each block also uses a gating mechanism when integrating
the conditioning information 𝒄1:𝑇 (here the acoustics 𝒂1:𝑇 ) on the
output. This can be considered a generalisation of FiLM conditioning
[Perez et al. 2018].

Another highly successful mechanism for effectively integrating
information over long time scales is multi-head neural self-attention
(e.g., Cheng et al. [2016]), especially as used in Transformer archi-
tectures [Vaswani et al. 2017]. That said, convolutional networks
(CNNs) still retain an advantage over Transformers in comput-
ing kinematically important properties such as finite differences
between time frames to represent motion speed and acceleration
(force). Fortunately, the two approaches can be combined by repla-
cing the feedforward networks (convolutions with kernel size 1)
inside Transformers with CNNs with kernel sizes larger than one.
This architecture is known as a Conformer and outperforms both
Transformers and CNNs on tasks like speech recognition [Gulati
et al. 2020]. To harness these mechanisms, we replace the dilated
convolution in the residual blocks of DiffWave with a stack of Trans-
formers or Conformers. In our experiments, we stack 4 of these in
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Fig. 2. Architecture diagrams. Each subfigure illustrates a component of the prior subfigure. Rectangular boxes are vectors and scalars, rounded boxes are
neural networks or learnt operations, and ovals are fixed mathematical operations.

each residual block, all using the same dilation 𝑑 (𝑙) = 2(𝑙 mod 𝑙)−1

with 𝑙 = 3, where 𝑑 (𝑙) < 1 here means that the residual block uses
a Transformer (i.e., CNN kernel size 1) rather than a Conformer
(kernel size 3), and compare to a similar DiffWave architecture with
conventional dilated convolutions and no Transformer/Conformer
stack (henceforth just “Conformers”).
Conformers have no inherent concept of time 𝑡 , and require a

position-encoding mechanism to use time information in the com-
putations. Since we expect motion to be invariant to translation
in time, we decided to use a translation-invariant scheme [Raffel
et al. 2020; Wennberg and Henter 2021], specifically a version of
translation-invariant self-attention (TISA) [Wennberg and Henter
2021], to parameterise the impact of sequence position 𝑡 on the
self-attention activations. This ensures that invariance to temporal
translation does not need to be learnt.
Our final architecture is shown in Fig. 2, with the specific Con-

former architecture shown in Fig. 2b. Like DiffWave, we use sinus-
oidal embeddings [Vaswani et al. 2017] passed through a feedfor-
ward net to encode the diffusion step input 𝒆(𝑛) to the denoising
network. The Conformers in our experiments use ReLU nonlinear-
ities and a gating operation. While Kong et al. [2021] decided to use
an L1 loss to train the denoising model in the original DiffWave
paper, we only consider the L2 loss, since that is consistent with the
theory in Eq. (4) and seemed to give better results.
Beyond the fact that other recent diffusion models for motion

[Kim et al. 2022; Tevet et al. 2023; Zhang et al. 2022a] condition on
text rather than audio, and focus on generating motion correspond-
ing to simple actions rather than gestures or dancing that align with
the timing and rhythm of an audio signal, our proposal also differs

in the architecture of the denoising network. Specifically, the cited
works all use a stack of Transformers (with Zhang et al. [2022a]
adding cross-modal attention), but none use Conformers nor dila-
tions. Furthermore, none of the models use translation-invariant
schemes for incorporating positional information, with Kim et al.
[2022]; Tevet et al. [2023] both using sinusoidal position encodings
that are known to generalise poorly to sequences longer than those
used during training [Press et al. 2022].

3.3 Style control with guided diffusion
For many applications, it is not only important to obtain motion that
matches the context – here the audio that co-occurs with the motion
– but also to have control over the expression of the motion, e.g.,
generating motion in different styles. Conditional diffusion models
offer a compelling mechanism for controlling not only which style
to express (by conditioning �̂� on style), but independently also the
strength of stylistic expression. The latter is accomplished by a
technique called guided diffusion [Dhariwal and Nichol 2021], which
corresponds to tuning the temperature𝛾 > 0 of part of the denoising
process distribution as

𝑝𝛾 (𝒙𝑛−1 | 𝒙𝑛, 𝑐) ∝ 𝑝 (𝒙𝑛−1 | 𝒙𝑛) 𝑝 (𝑐 | 𝒙𝑛)𝛾 , (5)

so as to focus synthesis on the most distinctive examples of the
given class 𝑐 [Dhariwal and Nichol 2021; Dieleman 2022].

Interestingly, the above effect can be achieved by combining the
predictions of a conditional and an unconditional diffusion model,
which is called classifier-free guidance [Ho and Salimans 2021]. This
has been used to great effect in models such as GLIDE [Nichol et al.
2022], DALL·E 2 [Ramesh et al. 2022], and Imagen [Saharia et al.
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2022]. If we let 𝒔1:𝑇 be a vector representing the style input through-
out the pose sequence, and define the style-added conditioning
𝒄1:𝑇 with 𝒄𝑡 = [𝒂⊺𝑡 , 𝒔

⊺
𝑡 ]⊺ , then classifier-free guidance for stylistic

expression can be achieved by combining the prediction of a style-
conditional model �̂� (𝒙1:𝑇 , 𝒄1:𝑇 , 𝑛) and that of a style-unconditional
model �̂� (𝒙1:𝑇 , 𝒂1:𝑇 , 𝑛) during the reverse diffusion process as

�̂�𝛾 (𝒙1:𝑇 , 𝒄1:𝑇 , 𝑛) = �̂� (𝒙1:𝑇 , 𝒂1:𝑇 , 𝑛)
+ 𝛾 (̂𝜺 (𝒙1:𝑇 , 𝒄1:𝑇 , 𝑛) − �̂� (𝒙1:𝑇 , 𝒂1:𝑇 , 𝑛)). (6)

This de-emphasises the effect of the style input 𝒔 for 0 ≤ 𝛾 < 1 and
exaggerates the effect for 𝛾 > 1. 𝛾 = 0 recovers the unconditional
model. Our experiments study style control both with and without
guidance, where 𝒔 is a one-hot vector that encodes discrete style
labels from the data, which do not change with the time 𝑡 in a
sequence. It is possible to train one single network to describe both
the style-conditional and style-unconditional models, by randomly
dropping out the style information 𝒔1:𝑇 from some sequences during
training, in order to represent the unconditional case, but this is not
necessary to apply the method. In our experiments, we instead used
separate style-conditional and style-unconditional models, since
that led to better-looking results in preliminary tests.

4 EXPERIMENTS
We conducted a number of experiments to demonstrate the capabil-
ities of our proposed approach. After describing the data processing
and modelling approach (in Sec. 4.1) and the general evaluation
framework (in Sec. 4.2), we begin by comparing our proposal to
the best available alternatives on two gesture-generation datasets
(Sec. 4.3). We thereafter describe an additional user study that com-
pared our approach to the state of the art in music-driven dance
synthesis (Sec. 4.4). Objective metrics are reported in Sec. 4.5 whilst
Sec. 4.6 shows that the approach generalises to path-driven loco-
motion generation. Sec. 4.7 summarises the findings. Please see
speech.kth.se/research/listen-denoise-action/ for video clips of gen-
erated motion. Demonstrations of our proposal to create product-
of-expert diffusion models are reserved for Sec. 5.

4.1 Data and modelling
Our experiments used five different datasets from high-quality 3D
motion capture. An overview of these datasets is provided in Table 1,
with additional information provided in the section where each
dataset is used.

All experiments considered full-body motion only. This is a more
challenging problem than only generating upper-body motion (cf.
Yoon et al. [2022]), both due to the increased dimensionality of the
output space and due to the visual prominence of artefacts such as
foot-sliding and ground penetration if highly nonlinear constrains
due to foot-ground interactions are not accurately modelled.

All datasets were initially 60 frames per second or more, but were
converted to 30 fps for the modelling. We used skeletal joint rota-
tions to represent poses, and parameterised these rotations using
an exponential map representation [Grassia 1998] relative to a T-
pose. All models except for path-driven locomotion generated three
additional outputs (namely instantaneous rotation and forwards
and lateral translation, similar to Habibie et al. [2017]; Holden et al.

Table 1. Overview of datasets and hyperparameters. Numbers after a slash
are for style-unconditional models.

Dataset TSG Zero- Motorica 100STYLE
EGGS Dance MMA

Motion Gestures Gestures Dancing Fighting Locomotion
Duration 244 min 135 min 373 min 60 min 1125 min
Performers 1 male 1 female 3 F, 2 M 1 male 1
No. styles 1 19 8 1 100

𝒄𝑡 dim. 20 35/16 11/3 8 103
Audio 20 16/16 3/3 0 0
Other 0 19/ 0 8/0 8 103

𝒙𝑡 dim. 70 70 61 61 58
Pose 67 67 58 58 58
Root offset 3 3 3 3 0

Steps 𝑁 100 100 150 150 150
No. updates 112k 67k 180k 52k 292k

[2016]) that describe the motion of the root node along the ground
plane, to enable the model to move the character around. Because
root-node rotation is parameterised using change of heading relative
to the previous frame it is not subject to phase-wrapping discon-
tinuities, simplifying the learning task. For path driven locomotion,
the root-node motion was used as an input to the synthesis, rather
than an output, and was then smoothed across 10 frames to emulate
the smooth paths typically used in animation systems.

Audio conditioning inputs differed between models and were de-
pendent on domain (speech vs. music). We used one hot-encodings
for all style inputs, since we only considered discrete style labels.
The fighting model in Sec. 5.3 took binary flags for a set of fight-
ing moves as input. See Table 1 for an overview of the input and
output feature dimensionalities of different models. For most sys-
tems with style control, we also trained one identical model but
without the style input, to enable adjusting the stylistic expres-
sion via classifier-free guidance as described in Sec. 3.3. Values for
these style-unconditional systems are shown on the right side of the
slashes (‘/’) in the table. Additional details on the data processing
are provided in the appendix.

Initial hyperparameter tuningwas performed on the dance dataset
in Sec. 4.4 using the Optuna framework. We found that the most
important aspect to tune was the noise scheduling (the 𝛽𝑛-values),
where we could achieve significantly improvedmotion by increasing
the end-value of the linear schedule. This leads to more time spent
using high-noise data in the diffusion process.
The proposed models were trained on a single GPU with 80 5-

second motion sequences per batch. The number of training updates
for each dataset is specified in Table 1. Additional details on model
training and hyperparameters are provided in the appendix.

4.2 Evaluation methodology
The gold standard in evaluating motion naturalness, style expres-
sion, etc. is to perform subjective evaluation (i.e., user studies), and
careful subjective studies are hence the core of the evaluations in this
paper. The reason for this is that these fields (unlike core machine
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Fig. 3. Screenshot of the user interface used for subjective evaluations.

learning) lack common benchmark datasets and have no widely val-
idated objective metrics. Although we compute and report objective
metrics in Sec. 4.5, the core of our evaluation is our user studies,
since these directly measure how gestures appear to humans.

For the task of gesture generation, the most successful instances
of common benchmarking are the GENEA challenges [Kucherenko
et al. 2021b; Yoon et al. 2022], which compared a large number of
contemporary gesture-generation methods under a common setup
in several best-practices user studies that are the largest in the field
as of yet. These challenges have been held twice thus far, once
(in 2020) using data from the Trinity speech-gesture (TSG) dataset
[Ferstl and McDonnell 2018], and once (in 2022) using data from
Talking With Hands 16.2M [Lee et al. 2019a]. We compared our
proposed method to the deep generative model with the highest
output quality in each instance of the challenge, as described in
Sec. 4.3.1 and Sec. 4.3.2.
Concretely, we performed a total of four user studies to assess

both motion quality and the distinctiveness of stylistic expression.
Three of the studies considered gesture generation and one con-
sidered dance, but all shared the same setup and analysis method.
Each study was based on pairwise comparisons, where two 10-
second video clips were played consecutively side by side. A number
of 20-second long comparison videos were assembled, first show-
ing an animation on the left side, with a black frame on the right,
followed by an animation on the right and a black frame on the
left (see Fig. 3). The audio driving the animation was always the
same for the left and the right clip, and all clips within a study used
the same avatar, but each of the two videos in a comparison was
from a different system (condition). The main experimental screen
consisted of a video with a text question and five response buttons
underneath, where the full video had to be played for the response
buttons to become active. Participants for the user studies were
recruited using the Prolific crowdsourcing platform1 and filtered
using attention checks prior to analysis. Please see the appendix for
more details, e.g., regarding the attention checks.

Our main method of analysis for each user study relied on merit
scores [Parizet et al. 2005]. In this methodology, responses with a
slight preference for a system were encoded numerically as a score
of 1, and clear preferences were assigned a 2, whereas ties or a
preference for the other system in the comparison gave a score of 0.
The data was then analysed by means of a one-way ANOVA and

1https://www.prolific.co/

Table 2. Overview of the design of the different user studies. “No. ordered
pairs” is the number of possible pairwise comparisons of distinct conditions,
taking presentation order into account. “Ordered pairs seen” refers to how
many times each participant was exposed to each ordered condition pair.

Dataset TSG ZeroEGGS Dance
Evaluation Pref. Pref. Style Pref.

No. conditions 4 3 3 4
No. ordered pairs 12 6 6 12
Styles evaluated 1 4 4 6
Videos per condition 36 36 36 36
. . . and style 36 9 9 6

Total video stimuli 432 216 216 432
Audio included? ✓ ✓ ✗ ✓

Participants recruited 131 40 40 40
Participants included 129 38 38 40
Ordered pairs seen 3 6 6 3

a post-hoc Tukey multiple-comparisons test for statistical signific-
ance. In addition to reporting the merit scores with 95% confidence
intervals for each condition, we also report the win rate (excluding
ties) of our main proposed system in every study.

4.3 Gesture-generation experiments
4.3.1 Experiment on the Trinity speech-gesture dataset. In the first
experiment, we compared ourselves to StyleGestures2 [Alexander-
son 2020], an autoregressive normalising-flow model for speech-
conditioned gesture synthesis that achieved the best motion quality
in the GENEA Challenge 2020 [Alexanderson et al. 2020a; Kucher-
enko et al. 2021b]. For this evaluation, we used the TSG dataset (also
used as the basis for the GENEA Challenge 2020), which contains
around four hours of full-body motion capture and speech audio
from a male actor delivering spontaneous monologues. We used the
same train/test split as the 2020 GENEA Challenge and evaluated
only on data from the test set. Motion was visualised using the
GENEA 2022 avatar seen in Fig. 3. The avatar design lacks mouth
and gaze, to instead draw attention to the rest of the body.

The TSG data did not deliberately elicit different styles and does
not contain any style labels. Although StyleGestures described the
optional capability to control the motion style, this was demon-
strated using kinematically derived style correlates such as hand
height, hand speed, and gesticulation radius [Alexanderson 2020]. As
StyleGestures has not been validated on the discrete style control we
consider in this paper, we therefore only compare to StyleGestures
in terms of motion quality, using only speech audio conditioning for
all models in the experiment. To represent the speech acoustics, we
used 20-dimensional mel-frequency cepstrum coefficients (MFCCs)
[Davis and Mermelstein 1980] for each frame.
For our experiment on the TSG data we performed a preference

test to evaluate the quality of the gesture motion. Four conditions
were compared: ground-truth motion capture (labelled GT), the
proposed system (LDA), an ablation that used the original DiffWave
architecture instead of our proposed Conformers (LDA-DW), and a
StyleGestures system without style input (SG). 36 audio segments
2https://github.com/simonalexanderson/StyleGestures

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://www.prolific.co/
https://github.com/simonalexanderson/StyleGestures


8 • Simon Alexanderson, Rajmund Nagy, Jonas Beskow, and Gustav Eje Henter

Table 3. Results from user studies. Studies include a proposed system (LDA), a dataset-dependent variant thereof, a baseline, and (where indicated) ground
truth (GT). We report merit scores [Parizet et al. 2005] with 95% confidence intervals and the win rate excluding ties of every condition versus LDA.

Dataset TSG ZeroEGGS Dance
Evaluation Preference test Preference test Style control Preference test
Measure Merit score Win rate Merit score Win rate Merit score Win rate Merit score Win rate

GT 0.95±0.04 67.3% - - - - 0.87±0.06 61.1%
LDA 0.59±0.03 - 0.64±0.08 - 0.36±0.04 - 0.71±0.06 -

Va
ria

nt
s LDA-DW 0.50±0.03 42.5% - - - - - -

LDA-G - - 0.41±0.07 37.2% 0.61±0.05 62.2% - -
LDA-U - - - - - - 0.51±0.05 36.7%

Ba
se
lin

. SG 0.31±0.03 28.0% - - - - - -
ZE - - 0.43±0.07 34.7% 0.50±0.04 56.5% - -
BL - - - - - - 0.24±0.06 23.5%

of 10 s from the TSG test set were used to generate animation
with each of the three models (LDA, LDA-DW, SG) plus ground
truth (GT). These animations were then evaluated in a user study,
as described in Sec. 4.2. For each comparison video in the study,
participants were asked “Which character’s motion do you prefer,
taking into account both how natural-looking the motion is and how
well it matches the speech rhythm and intonation?”. Answers were
given using a 5-point Likert-style preference response scale, with the
response alternatives “clear preference for left”, “slight preference
for left”, “no preference”, “slight preference for right”, and “clear
preference for right”; see Fig. 3. Additional information about the
user study is provided in Table 2.
Table 3 summarises the results of the user study on the TSG

dataset. The ground-truth motion capture (GT) achieved the best
merit score, followed by LDA, LDA-DW, and SG, in that order. Our
statistical analysis found all differences to be significant, with 𝑝 <

0.01 for LDA vs. LDA-DW and 𝑝 < 0.001 for all other differences.
Whilst not reaching the same level as human motion capture, our
proposed diffusion model thus outperformed StyleGestures. We also
found that the proposed architecture with Conformers contributed
to this. The difference between LDA and LDA-DW was furthermore
larger in pilot studieswe performed using different hyperparameters,
including a different noise schedule, suggesting that the Conformers
also are less sensitive to hyperparameter settings. Since LDA-DW
performed less well, it is not considered in subsequent studies.

4.3.2 Experiments on the ZeroEGGS dataset. In the second and
third experiments, we compared ourselves to the best-performing
deep generative submission to the 2022 GENEA Challenge [Yoon
et al. 2022], namely a model [Ghorbani et al. 2022] later released as
ZeroEGGS [Ghorbani et al. 2023]. ZeroEGGS is an autoregressive
model consisting of a feedforward speech encoder, a probabilistic
style encoder (using a Transformer) with a standard Gaussian prior,
and a recurrent gesture-generation module (using gated recurrent
units, GRUs).
ZeroEGGS was released alongside a new gesture dataset of the

same name [Ghorbani et al. 2023] with two hours of speech and
full-body motion capture of a female actor delivering monologues
in 19 diverse styles. This data allows us to demonstrate control
over a range of style expressions. (The GENEA 2022 data has no

such styles.) We selected four styles for our evaluation, spanning
emotional states (happy and angry), speaking styles (public speaking
a.k.a. oration), and age (old). This experiment used 16-dimensional
MFCCs as input, instead of 20 dimensions as used for TSG. This is
because the Madmom audio-processing library3 used for feature
extraction defaults to a different number ofMFCCs depending on the
sampling rate of the audio, which differs between the two datasets.

To prevent the style of the speech audio from interfering with the
effect of style control in our evaluations (either by biasing the gen-
erated styles or raters’ perceptions of these styles), we held out two
speech recordings in the neutral style (specifically 004_Neutral_3
and 005_Neutral_4), so as to have sufficient neutral speech mater-
ial for our evaluation, and used the remaining data for training.

We trained and compared three conditions on this data: our pro-
posed model (labelled LDA), the same model using classifier-free
guidance of the style control during synthesis (LDA-G), and Zero-
EGGS (ZE). The latter used the original model hyperparameters and
code from the official codebase and data repository.4 For LDA-G, we
used a guidance factor 𝛾 = 1.5, to study the impact of exaggerated
stylistic expression obtained through classifier-free guidance.

Nine 10-second audio segments from the neutral-style test set of
ZeroEGGS were used to generate animation in four different styles
(happy, angry, old, and public speaking), yielding 36 segment-style
combinations. Motion was visualised using the female avatar that
was released together with the ZeroEGGS dataset.

Motion preference evaluation. We conducted the same type of
preference test as in the first experiment, with the same question
and response alternatives, but for the three systems trained on the
ZeroEGGS data. Additional information about the user study is
provided in Table 2, whilst Table 3 shows the results. The best per-
former was LDA, with ZE and LDA-G being statistically tied in
terms of merit scores. In addition to SG earlier, the proposed model
thus also outperforms ZeroEGGS in terms of preference (𝑝 < 0.001).
That difference disappears when using guided diffusion to exag-
gerate style expression, but it is not surprising to find exaggerated
motion less natural and less preferred.

3https://github.com/CPJKU/madmom
4https://github.com/ubisoft/ubisoft-laforge-ZeroEGGS
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Fig. 4. Dance synthesised from our trained diffusion model in the Locking
and Krumping styles. See Fig. 1 for the Jazz style. Avatar ©Motorica AB.

Style-control evaluation. To measure the distinctiveness of styl-
istic expression, we conducted a another experiment, where we
displayed the same motion clips as in the previous experiment, but
instead of asking for user preference we asked “Based on the body
movements alone (disregarding the face), which of the two clips looks
most like STYLE?”, where STYLEwas one of the following: {“the per-
son is happy”, “the person is angry”, “an old person”, “a person
giving a speech to the public”}, using bold font to highlight key
parts of the instructions as shown. The five response alternatives
were “clearly the left one”, “probably the left one”, “I can not tell”,
“probably the right one”, and “clearly the right one”. The instruction
to disregard the facial expression was added since the ZeroEGGS
avatar has a quite stern facial expression, which might contradict,
e.g., the happy gesturing style.
In this experiment, the videos were silent in order to prevent

speech content from affecting the judgement of gesturing style.
(That one modality can affect the perception of the other has been
confirmed in multiple studies, e.g., Bosker and Peeters [2021]; Jonell
et al. [2020]; Kucherenko et al. [2021b].) Presentationwas grouped by
style, meaning that all nine happy-style comparisons were presented
first, followed by the angry, old, and public speaking comparisons in
that order. Before each new style, an interstitial screen was presen-
ted, informing the participant that the subsequent stimuli were
going to be judged according to the style in question. The order of
comparisons within a style was randomised for each participant.

An overview of the style-control user study is provided in Table 2,
with the results shown in Table 3. LDA-G received the highest
style-matching score, ahead of ZE (𝑝 < 0.01), which was ahead of
LDA (𝑝 < 0.001). This confirms that we were able to successfully
moderate style strength by using guided diffusion, to an extent that
can surpass ZeroEGGS in distinctiveness.

4.4 Music-driven dance synthesis
As a second application of audio-driven motion generation, we
also train and evaluate a music-driven dance model based on our
approach. For this, we used a new dataset that combines new and
existing high-quality motion-capture data. Specifically, we extracted
a subset of the highest-quality recordings from the PSMD dataset
from Valle-Pérez et al. [2021], using only material recorded using

Fig. 5. 3D stick-figure skeleton visualisation excerpted from dance-
evaluation video.

optical motion capture. The selected material contained the Casual
style and three street dance styles (Hip-Hop, Popping, and Krump-
ing). These were combined with an additional dataset of approxim-
ately 3.5 hours of high-quality recordings from three accomplished
dancers in the genres Jazz, Charleston, Tap dancing, and Locking,
yielding the 373 minutes of parallel music audio and dance motion-
capture described in Table 1. We intend to release this dataset upon
paper acceptance.
Compared to the most commonly used recent dance dataset,

AIST++ from Li et al. [2021], our dataset is larger, captures entire
songs, and adds a completely new set of styles. AIST++ was also
not captured using marker-based mocap, leading to data artefacts
such as floating and jittery motion, that may be reproduced by (or
otherwise degrade) generative models trained on such data. This
may explain why Tseng et al. [2023], a concurrent work on diffusion
models for dance generation that was trained on AIST++, incor-
porated additional loss terms relating to, e.g., foot contacts, during
training. Our models used only vanilla diffusion model loss terms
and no foot stabilisation, smoothing, or other post-processing.
We trained both style-conditional and style-unconditional pro-

posed models on this data (labelled LDA and LDA-U, respectively).
These models were conditioned on a minimalist set of three audio
features from music information retrieval, specifically spectral flux
(1 feature), chroma [Müller et al. 2005] (1 feature), and the activa-
tion of the RNNDownBeat-processor [Böck et al. 2016] (1 feature),
all obtained using the Madmom audio signal processing library, as
before. This parsimonious feature set was chosen with the goal of
reflecting the structure of the music whilst being sufficiently non-
specific generalisable across music genres, so as to enable dancing in
any style to any music. It also likely reduces the risk of overfitting,
and we found that versions of our model that used much larger
music-feature sets gave worse results in an informal comparison.

We also trained a Bailando [Siyao et al. 2022] model on the same
dataset, as a representative of the state of the art in the field. Siyao
et al. [2022] report strong results in subjective evaluations, being
rated as better than other recent baseline systems at least 80% of
the time, and even beating the ground truth in 40% of comparisons.
Bailando is an autoregressive probabilistic model with Trans-

formers that operates on a discretised version of the pose sequence
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using ideas from language modelling. Compared to the other models
in this paper, it has a quite involved training procedure with four
distinct steps that have to be performed in order. We used the offi-
cial codebase5 and the original hyperparameters for training. The
implementation uses 438-dimensional music features, but does not
include any explicit style input, so the dance style is instead tightly
coupled to what the music sounds like. In that sense, Bailando is
more similar to our style-unconditional model (LDA-U) than our
main proposed system (LDA).

We trained Bailando (BL) on 3D Cartesian joint positions follow-
ing the training procedure of Siyao et al.. This restricts possible
visualisations for the user studies, therefore we visualised the dance
motion for these using videos with stick-figure animations of the
skeleton motion, similar what the Bailando paper did [Siyao et al.
2022]. A screenshot of our 3D model is shown in Fig. 5. The absence
of a ground plane and shadow in our visualisation is to level the
playing field for Bailando, which often generates ground penetration
or floating motion, since it parameterises the root motion in terms
of vertical delta values, meaning that the height of the character
in absolute coordinates easily may drift over time. Our proposed
approach does not have this issue.

The two proposed model variants (LDA and LDA-U) were trained
on joint rotations, as before, to be able to directly apply model
output motion to skinned characters. However, for the user-study
visualisation, the outputs of the proposed models were converted
into 3D joint positions. An example of a skinned avatar driven by our
style-conditional dance-generation model is provided in Fig. 4. Even
in a still image the displayed styles are visually distinctive. Dance
videos are provided on our project page. Our demonstrations include
long dance sequences of over a thousand frames all generated in one
single go. These show that our models, despite only being trained
on sequences 150 frames in length, are able to generalise well to
much longer sequence lengths. This is likely attributable to the use
of translation-invariant self-attention in our architecture, cf. Press
et al. [2022]; Wennberg and Henter [2021].
For our subjective evaluation, we compared the trained models

(LDA, LDA-U, and BL) to each other and to the ground truth (GT)
using held-out motion and songs. As in Sec. 4.3.2, we selected a
subset of distinctive styles for the subjective comparison, namely
Jazz, Charleston, Hip-Hop, Locking, Krumping, and Casual. We then
generated dance motion for 36 10-second audio segments, 6 for
each style of dance, using each of the models. Although each style
used different musical accompaniment, there is no guarantee that
style-unconditional models like LDA-U or BL will generate dance
motion in the style of the music, especially for styles of dance that
are performed to similar music. In contrast, our style-conditioned
model can dance to a given piece of music in any style we request,
as shown in our presentation video.
We ran a subjective preference test with the overall design and

numbers resported in Table 2. For each comparison video in the
study, participants were asked “Which character’s dancing motion do
you prefer, taking into account both how natural-looking the motion
is and how well it matches the music?”, with the same response
alternatives as in previous preference tests.

5https://github.com/lisiyao21/Bailando

Table 4. Objective metrics. The Fréchet distances (FGD, FID𝑘 , FID𝑔) are
computed with respect to the full dataset. Low values are better. GT is a
top-line condition based on the recorded motion capture in the test set.
Higher beat-alignment scores (BAS) mean a closer match to the beats.

Dataset TSG ZeroEGGS Dance
Evaluation Quality Quality Quality Diversity Rhythm
Measure FGD FGD FIDk FIDg Divk Divg BAS

GT 9.94 31.84 3.00 5.22 9.55 7.12 0.2662
LDA 25.77 59.07 6.62 7.41 9.78 5.77 0.2559

Va
ria

nt
s LDA-DW 126.92 - - - - - -

LDA-G - 47.68 - - - - -
LDA-U - - 7.69 8.98 9.13 6.13 0.2600

Ba
se
lin

. SG 118.61 - - - - - -
ZE - 52.99 - - - - -
BL - - 28.15 12.70 5.22 4.35 0.2311

Table 3 summarises the results the from dance preference eval-
uation. The ground-truth motion capture (GT) achieved the best
scores, followed by LDA, LDA-U, and BL. Our statistical analysis
found all differences to be significant (𝑝 < 0.001). We can conclude
that our proposed diffusion model can generate dancing motion
with a quality that surpasses the state of the art in the field, as rep-
resented by Bailando. Whilst not reaching the same level as human
motion capture, LDA still exhibited almost 40% win rate against GT.
The lower rating of LDA-U compared to LDA may be explained by
the relatively small number of input music features, which might
not be sufficient to provoke genre-appropriate dancing for LDA-U,
whereas LDA has more information about what dancing would be
appropriate owing to the style control we supplied.

It is our opinion that dances generated by our Bailando baseline
BL actually have a better subjective motion quality than the dance
examples presented with the original Bailando paper. We believe
this difference is due to the consistently high quality of the motion
capture in the new database we have assembled, suggesting that
our data release will be of value to the community.

4.5 Objective metrics
Although our main evaluation directly quantified how human ob-
servers rate the different motion-generation approaches, we also
computed a selection of objective metrics for the various conditions
in our experiments. The majority of these metrics are based on the
Fréchet Inception Distance (FID) [Heusel et al. 2017], which is the
most accepted objective metric for evaluating generative models.
The FID between a dataset D and a set of synthetic samples S is
defined as the 2-Wasserstein distance between two multivariate
Gaussian distributions, whose means and variances are estimated
from features extracted from the individual samples in D and S
using a domain-specific feature extractor. The FID thus quantifies
how much the real and synthetic data distributions differ from each
other, providing a proxy for perceived synthesis quality or convin-
cingness. It cannot, however, capture whether or not synthesised
examples accurately reflect the associated control input – for ex-
ample whether motion accurately reflects a desired style, or how
appropriate the motion is for the rhythm and content of the audio.
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For the gesture-synthesis models, we used the pre-trained au-
toencoder network provided by Yoon et al. [2020] as the feature
extractor.6 The resulting metric is known as the Fréchet Gesture
Distance (FGD), and has been found to have moderate but nonzero
correlation with gesture human-likeness ratings [Kucherenko et al.
2023]. For each gesture dataset in our experiments, we divided the
test set into evenly spaced, non-overlapping 10-second sequences,
leaving gaps for past- or future input context windows that the
baseline models required. (For example, SG requires access to fu-
ture speech audio during generation, and also needs an initial past
context due to its use of autoregression.) After that we randomly
generated three 10-second motion clips with each model for all
of these test sequences, and used these to compute the FGD with
respect to the full dataset.
For the dance-synthesis models, we also divided the test dataset

into non-overlapping 10-second windows, generated motion clips
with each model for each window, and computed the same met-
rics as Siyao et al. [2022]: an FID score using kinematic features
[Onuma et al. 2008], denoted FID𝑘 ; an FID score using geometric fea-
tures [Müller et al. 2005], denoted FID𝑔 ; the corresponding diversity
scores, Div𝑘 and Div𝑔 , computed as the average Euclidean distance
between the features of each possible pair of motion clips; and a
beat-alignment score (“BAS”) based on the inverse of the average
time between each music beat and its closest dance beat.

Table 4 summarises the objective results. We see that the best FGD
and FID scores come from comparing the test-set motion capture
to the natural motion capture in the database (row “GT”), which
can be considered a kind of top line. Although the objective scores
mostly align with human perception in our main experiments, there
are a few outliers, e.g., LDA-DW has an FGD on par with the SG
baseline, even though it significantly outperformed that baseline
in the user study (Table 3). Similar outlying scores were observed
in experiments to validate the FGD metric on large amounts of
human judgements, as reported in Kucherenko et al. [2023]. This
can possibly be related to the fact that motion-capture datasets
are relatively small, with the low amount of test-set data available
limiting the statistical accuracy of objective metrics, compared to
what we are used to in large-data tasks such as image generation.

From the table, we can further see that our method producedmore
diverse dancing than the BL baseline, with the kinematic diversity
on par with the natural dance. Our method also exhibited greater
beat alignment that the baseline, coming close to that of the recorded
professional dance motion, but we caution that good dancing is not
a beat-matching task [Valle-Pérez et al. 2021] and natural dance and
multimodal communication often contain a wide diversity of nested
rhythms [Miller et al. 2013; Pouw et al. 2021].

4.6 Path-driven locomotion synthesis
To highlight the generality of our modelling approach, we also
trained our diffusion model to perform path-driven locomotion gen-
eration. In this scenario, the root-node motion was constrained to
follow along a path defined on the ground plane, which was para-
meterised similar to Habibie et al. [2017]; Holden et al. [2016], i.e.,
root-node rotation and forwards and sideways translation, a total

6https://github.com/ai4r/Gesture-Generation-from-Trimodal-Context

Fig. 6. Locomotion generated by our model, conditioned on a circular path
and a style that always holds the left arm out. Avatar © Motorica AB.

of three numbers per frame. We trained these models on the recent
100STYLE dataset [Mason et al. 2022], which contains high-quality
3D motion capture in 100 diverse styles of locomotion. In addition
to style information, the three numbers per frame that describe the
root-node path were provided as conditioning information to the
model.

The motion in Fig. 6 was generated from a circular path (constant
forward and rotational velocity) in the style RaisedLeftArm. The
motion is clearly consistent with both the style and the path control.
Video examples are on the project page. The videos show that the
model is able to generate motion without noticeable foot-skating
(no foot stabilisation was applied to any motion in our paper), and
that the model also is able to generate transitions between different
root-node speeds, even whilst turning.

Path-driven locomotion was previously generated using diffusion
models by Findlay et al. [2022], but only for stick figures. It is our
personal opinion that our motion is noticeable steadier and better
quality than what they demonstrated.

4.7 Summary
To conclude, our subjective evaluations find that our proposed audio-
driven motion-generation models are significantly preferred over
a number of strong baseline methods, on three different datasets
covering both gesture generation and dance. We have also shown
that classifier-free guidance can successfully moderate the stylistic
expression strength of our models.

5 PRODUCTS OF EXPERT DIFFUSION MODELS
In this section, we extend the ideas behind classifier-free guidance
in Sec. 3.3 to describe general product-of-expert ensembles from
combining the predictions of several diffusion models. We first
describe the theory, then compare the ideas to prior work, and
finally present an experimental investigation.

5.1 Theory
Mathematically, classifier-free guidance in Eq. (6) comprises a bary-
centric combination of two diffusion-model predictions guiding the
process expression to be more or less similar to – i.e., towards or
away from – one of the models, namely the predictions of an un-
conditional model. This suggests a generalisation instead using a
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barycentric combination of two conditional models

�̂� (1−𝛾 )𝒔1+𝛾𝒔2 (𝒙1:𝑇 , 𝒂1:𝑇 , 𝑛)
= (1 − 𝛾 )̂𝜺 (𝒙1:𝑇 , [𝒂⊺1:𝑇 , 𝒔

⊺
1 1:𝑇 ]

⊺, 𝑛)
+ 𝛾 �̂� (𝒙1:𝑇 , [𝒂⊺1:𝑇 , 𝒔

⊺
2 1:𝑇 ]

⊺, 𝑛), (7)

to blend (i.e., interpolate) between two different styles 𝒔1 and 𝒔2
during the diffusion steps. We call this setup guided interpolation.
We can furthermore extrapolate by choosing 𝛾 ∉ [0, 1], leading to
style expressions that exaggerate one style in a manner that makes
it even more distinctive from the other style.
We emphasise that guided interpolation is not the same as in-

painting. Inpainting is a common use case of diffusion models, with
Tevet et al. [2023] and Zhang et al. [2022a] both demonstrating
the use of diffusion models for inpainting in the motion domain
(i.e., motion editing or inbetweening), by filling in missing poses or
joint data at different time frames. Guided interpolation, in contrast,
interpolates between different probability distributions described
by diffusion models, such as different motion styles.

The idea behind guided interpolation readily generalises to more
than two models. Consider 𝑀 diffusion models �̂�𝑚 with different
conditioning information 𝒄𝑚, 1:𝑇 . These can be combined as

�̂�𝜸 (𝒙1:𝑇 , {𝒄𝑚, 1:𝑇 }𝑚, 𝑛) =
𝑀∑︁

𝑚=1
𝛾𝑚 �̂�𝑚 (𝒙1:𝑇 , 𝒄𝑚, 1:𝑇 , 𝑛), (8)

where
∑𝑀
𝑚=1 𝛾𝑚 = 1, as required for a barycentric combination. (We

do not require 𝛾𝑚 ∈ [0, 1], to permit extrapolation and not only
interpolation.) Note that �̂�𝑚 can be different models, or instances
of the same model with different conditioning input 𝒄𝑚, 1:𝑇 (e.g.,
different style input, as in Eq. (7)). It is not required that �̂�𝑚 is always
the same model nor that they were trained on the same data. They
do not even have to accept the same conditioning information, and
instead the dimensionality and content of 𝒄𝑚, 1:𝑇 can depend on𝑚.
All that is needed is that the output spaces match. This construc-
tion is highly general and allows combining an arbitrary number
of potentially heterogeneous diffusion models into an ensemble,
interpolating between their predictions at will during denoising.
The score-matching objective used for training diffusion mod-

els means that the diffusion models at every step approximate
∇𝒙𝑛−1 ln𝑝 (𝒙𝑛−1 | 𝒙𝑛, 𝒄) [Dieleman 2022; Song and Ermon 2019]. By
working backwards through the steps in Dieleman [2022], reverting
the gradient operation and taking the exponent7, we can see that
the proposed ensemble corresponds to performing denoising steps
based on a product of multiple different denoising distributions,

𝑝𝜸
(
𝒙1:𝑇,𝑛−1

�� 𝒙1:𝑇,𝑛, {𝒄𝑚, 1:𝑇 }𝑚
)

∝
𝑀∏

𝑚=1
𝑝𝑚

(
𝒙1:𝑇,𝑛−1

�� 𝒙1:𝑇,𝑛, 𝒄𝑚, 1:𝑇
)𝛾𝑚 . (9)

This is a product of several probability density functions, i.e., a
product of experts [Hinton 2002]. The fact that the exponents sum

7This derivation is not completely rigorous, e.g., one needs to assume that the network
predictions �̂� (𝒙𝑛−1 | 𝒙𝑛, 𝒄, 𝑛) form a divergence-free vector field on 𝒙𝑛−1 , which
happens if score matching is optimal, but need not be exactly true in practice, but the
result is nonetheless elucidating.

to one avoids the probability-concentration issues seen with naïve
product-of-experts models discussed in Shannon et al. [2011].
We note that guided interpolation through products of experts

is different from conventional mechanisms for creating interme-
diate conditioning information in deep-learning models, such as
averaging two inputs (which may lead to previously unseen input
and undefined behaviour, especially if style labels are discrete) or
averaging two latent-space embeddings (whose average similarly
may fall into regions of latent space with poor coverage during
training; cf. Tomczak and Welling [2018]). Instead of interpolating
between two conditional inputs, our proposal effectively interpol-
ates between the behaviour of several conditional diffusion pro-
cesses, each of which is well defined. This is less likely to produce
unnatural output, since both diffusion processes in isolation are
good at driving noisy 𝒙𝑛-values towards regions of outcome space
perceived as natural.
Products of experts are a compelling paradigm for ensembling

synthesis models. The combination of multiple experts restricts
output away from regions that any single expert considers to be
unnatural or otherwise inappropriate, i.e., that have low probability.
(This happens because the experts in Eq. (8) steer the denoising
process towards values that have high probability according to each
the expert. Specifically, since the largest updates in the combination
come from experts that find 𝒙1:𝑇 to be improbable, the process will
converge toward a point where all experts make small updates, and
thus all agree that the probability of 𝒙1:𝑇 is high.) An inductive bias
that favours output that no component model considers unnatural is
appealing for synthesis applications [Henter and Kleijn 2016; Theis
et al. 2016], since it is easier for human observers to notice the
presence of something undesirable than to notice the absence of
something desirable (e.g., reduced output diversity). (This same prin-
ciple also explains why GANs can yield high-quality samples even
in the presence of high degrees of mode collapse.) This inductive
bias contrasts against conventional additive mixtures like Gaussian
mixture models (GMMs) and mixture density networks (MDNs)
more generally [Bishop 1994], where each expert adds rather than
takes away behaviours/outcomes, which can be problematic if the
individual experts do not all maintain high output quality.

Despite their advantages, products of experts have hitherto seen
little use for synthesis, as they have been considered difficult to
sample from [MacKay 2003], especially in high dimensions. Diffu-
sion models can sample from unnormalised models and give good
results with few steps [Dhariwal and Nichol 2021; Nichol and Dhari-
wal 2021], removing this stumbling block andmaking highly general
probabilistic product-of-experts models feasible for synthesis ap-
plications.

5.2 Related work on mixtures of experts
Mixtures of experts in general have been used before in motion
generation using deep learning. Aside from conventional additive
mixtures like the GMM mixture density networks in Fragkiadaki
et al. [2015], mixtures of experts have have notably been used in
mode-adaptive neural networks and their extensions, e.g., Ling et al.
[2020]; Starke et al. [2022, 2020]; Xie et al. [2022]; Zhang et al. [2018].
Those experts correspond to different weight matrices, allowing the
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Fig. 7. Snapshot of old (left) to angry (right) interpolation for 𝛾 = −0.25
to 𝛾 = 1.25. Poses on the far left and right constitute extrapolation. All
examples were generated using the same random seed. Avatar © Ubisoft.

Fig. 8. 10 s overlay of still (left) to public speaking (right) interpolation for
𝛾 = −0.25 to 𝛾 = 1.25. Extrapolation is seen on the far left and right. All
examples were generated using the same random seed. Avatar © Ubisoft.

network weights to change, e.g., during a walking cycle. However,
these ideas are not a product of experts and have not yet been
demonstrated for diffusion models.
An ensemble of diffusion model experts was presented in Balaji

et al. [2022], but the experts have disjunct domains (they correspond
to different steps 𝑛 in the denoising process), so unlike a product
of experts only one expert is used at any given point (denoising
step). The most relevant prior works we have found [Liu et al. 2022a;
Zhao et al. 2022] are based on treating diffusion models as energy-
based models. Of these, Zhao et al. [2022] combine a single diffusion
model with several non-diffusion energy-based models obtained
by removing the last layer of two classifiers. Liu et al. [2022a], in
contrast, combine multiple diffusion-model predictions at synthesis
time, leading to a similar formalism as presented here, although not
stated in terms of a product of experts. All of these works consider
image generation rather than motion synthesis.
Concurrent work by Ma et al. [2022] also considers using mul-

tiple diffusion models to create intermediate behaviours, but by
randomly choosing the prediction of only a single model at any
given denoising step 𝑛. They dub this approach alternating control.
By making the probability of choosing one of their two different
models depend on 𝑛, the resulting synthesis process can be made to
favour one type of motion for the coarse outline of the motion, but
with details more closely based on another motion type.

5.3 Experiments
Interpolating between gesture styles. To demonstrate the effects of
product-of-expert diffusion models for motion, we performed exper-
iments with guided interpolation between different gesturing styles,
by mixing predictions from the style-conditional model in Sec. 4.3.2
under two different style inputs. We note that stylistic interpolation
should both affect shape aspects, such as the overall posture of the
character, and temporal aspects, such as the gesture frequency and
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Fig. 9. Violin plot of wrist-speed distributions during guided interpolation
between the still style and four other speaking styles (happy, angry, old, and
public speaking/oration).

speed. To investigate the shape aspects, we interpolated between
the old (hunched over) and angry (upright) styles using the same
speech and random seed. Results are visualised in Fig. 7. We see a
definite progression in overall character posture as we interpolate
from the hunched-over style to the upright one.

To demonstrate how guided interpolation affects temporal aspects
of gesticulation, we interpolated between the still and public speak-
ing styles, where the latter is very animated whereas the former has
almost no motion. The results of 10 s of animation are shown over-
laid in Fig. 8, and display a clear and steady increase in the range of
body movement throughout the interpolation. To see interpolations
in motion, please refer to the project page.
To lend additional substance to the above observations, we per-

formed an objective evaluation of the behaviour of guided inter-
polation between gesturing styles, specifically when interpolating
from the still style to the four styles used in our user study. We
considered both endpoints, three intermediate steps, and one step of
extrapolation on either side (𝛾 = {−0.25, 0, . . . , 1.25}). To generate
data for the evaluation we randomly sampled 5 motions for each
10-second audio clip covering the test data, resulting in 125 clips for
each 𝛾-value and style. We then computed the instantaneous speed
(magnitude of the displacement vector from the previous frame) in
3D space of the two wrists averaged together for each frame. Hand
and arm motion is central to co-speech gestures [Nyatsanga et al.
2023], and this wrist-speed distribution has been used as the basis
of objective gesture evaluation before [Kucherenko et al. 2021a].
The speed distributions of the wrists are graphed in Fig. 9. As

expected, we see that model behaviour (motion statistics) change
monotonically from one distribution to the other along the spectrum
of 𝛾-values in the guided interpolation. The transition is not linear,
however, since we are not interpolating in Euclidean space, but
instead trading off between relatively high-probability regions of
the two model distributions, to find and sample from the set of
motions where the combined (weighted) probability is the greatest.

Interpolating between locomotion styles. Aside from gestures, we
also performed guided interpolation with other models from Sec. 4.
Video examples are presented on the project page. Of note is the
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demonstration of interpolation between theAeroplane andHighKnees
locomotion styles, where the exaggeratedHighKnees style also holds
the arms even closer to the body than before, in clear contrast against
the outstretched arms of theAeroplane style that has negative weight
in the exaggerated barycentric combination.

Dynamically transitioning between styles. In addition to static
style interpolation, we also demonstrate that guided interpolation
can be used to dynamically transition between styles in longer
motion sequences. This is done by letting the weights 𝛾𝑚 in Eq. (8)
depend on 𝑡 , so that the motion distribution gradually transitions
between different models for different points in time. This is an
important control mechanism formany graphics applications, where
state transitions between different motion types are frequent. Videos
of dynamic style transitions can be found on the project page.

Combining highly different models. As a final demonstration, we
present results from ensembling two models trained on two very
different datasets and with different conditional inputs. Specifically,
we combine our style-conditional dance model from Sec. 4.4 with a
model trained to perform mixed martial arts (MMA) motion. The
latter model was trained on a motion-capture dataset we recorded
of a championship-level MMA athlete moving around in a fighting
stance whilst punching, kicking, elbowing, and kneeing a focus mitt
held by a sparring partner. We trained models on this data using
a similar recipe as for the dance and locomotion data, but in this
case the only conditioning information was eight binary values.
These were always zero except whilst executing one of the four
aforementioned combat moves using the extremities on either the
left or the right side (a total of eight possible moves). This yielded
a model that could throw punches, kick, etc., on command, using
the arm or leg of one’s choice. To combine this with the dancing
model, we created a small choreography with a sequence of kicks
and punches, whose timings were determined by the beat of a piece
of music (by using the beat onset feature), enabling us to generate
fighting moves in time with the music.
The results of a 50-50 dance-fighting combination of the two

models highlight the nature of the product of experts to seek the
intersection of two distributions: the character moves naturally and
in time with the beat, but few clear dance moves or fighting moves
are present, since these have low probability under at least one
of the models, making them improbable also under the combined
distribution. We can see that the character generally holds their
arms and hands at a level appropriate for MMA, which is a subset
of the hand heights exhibited during dancing, again consistent with
expectations. To see interpolation videos for this model combination,
please consult the project page.

6 LIMITATIONS
The most obvious and talked-about limitation of diffusion models is
their slow generation speed, a consequence to the many denoising
steps required to sample from the learnt models. The architectures
in our paper take around a second to generate each motion example.
Since our goal has been to advance the quality of audio-driven
motion generation using diffusion, with a focus on offline generation,
we have not spent any effort on optimising for synthesis speed. We

expect that synthesis time can be sped up considerably using recent
innovations for diffusion models [Dhariwal and Nichol 2021; Lam
et al. 2022; Meng et al. 2022; Nichol and Dhariwal 2021; Salimans
and Ho 2022], and that additional approaches for accomplishing this
goal also will be published in the near future. As it stands, however,
synthesis speed is clearly an area that can be improved. Our use of
a parallel architecture, whilst appealing for GPU-based generation,
is also not suitable for real-time interaction or integration into
game engines. There, autoregressive models like Alexanderson et al.
[2020a]; Ghorbani et al. [2023]; Siyao et al. [2022] might be a better
fit.

Another important limitation of the models trained in this paper
is that, whilst being visually strong, they do not learn to capture
all aspects that go into purposeful gesturing and dancing, such as
semantics for speech or the global structure of music for a dance
choreography. There are many reasons for this, but both of these
limitations can be related to the set of input features used. Whilst
speech audio in principle contains everything a human needs to
make sense of a spoken message, and thus to put meaning into
associated co-speech gestures, it is not possible for models to learn
to make sense of language (let alone its grounding in the real world)
from our acoustic features and the small amount of material seen
during training. As a consequence, one cannot expect the presented
systems to generate gestures that serve a communicative function. A
starting point for improving this situation would be to follow Ahuja
et al. [2020a]; Ao et al. [2022]; Kucherenko et al. [2020]; Yoon et al.
[2020] and provide information derived from text transcriptions,
such as semantic word embeddings trained on large written corpora,
e.g., BERT [Devlin et al. 2019].
For dancing, it is similarly true that the information currently

provided to the proposed models does not allow higher-level struc-
ture in the input to become apparent, as the feature set we used in
our demonstrations is both low-dimensional and limited to musical
characteristics that change rapidly over time. These features do not
have any explicit indicator of measures, verse or refrain, or the start
and end of a performance, to name a few examples. In addition, the
model also only sees a few seconds of dance at a time during train-
ing, complicating the task of learning to recreate longer correlations
that represent overall choreography. A path towards enabling our
models to generate more cohesive dance performance would be to
consider a hierarchical modelling approach with explicit structure
information, like in Aristidou et al. [2022].

For the proposed products of experts, their strong ability to focus
on the intersection of a set of probability distributions can be both a
strength and a weakness. Although perfectly consistent with what
the mathematics tell us, it can nonetheless sometimes be counterin-
tuitive to see interpolation give rise to less distinctive motion, or
less motion overall, than the models on either side of an interpola-
tion spectrum. Whilst focussing on the intersection is sometimes
desirable (for instance when using a strong prior model trained on
a lot of motion data to stabilise the output of a model trained on a
small amount of material), that is not always the case. An example
of the latter is our mix of dancing and fighting, which most of the
time engages in neither activity and appears less exciting as a result.
If one explicitly wants to generate output that alternates between
different motion types in an interpolation, a conventional additive
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mixture model might be a better choice, for example by using a
hidden Markov state to switch between different autoregressive
motion models. The individual models in such a construction may
still be strong generative models such as normalising flows [Ghosh
et al. 2020, 2021b] or diffusion models. A more continuously ad-
justable version of the same effect may be achieved by changing the
mixing coefficients 𝛾𝑚 between the different experts in the guided
interpolation framework for different points in time.

7 CONCLUSIONS AND FUTURE WORK
We have introduced diffusion models for audio-driven probabilistic
modelling problems in 3D motion generation. As part of this, we
describe a new diffusion-model architecture with Conformers. Our
experiments consider several applications of audio-driven motion
generation, and also path-driven locomotion, and present an ex-
tensive gold-standard evaluation of the advantages of the method
against leading deep generative model baselines on several data-
sets. The experimental results validate that the model outperforms
previous state-of-the-art models in terms of motion quality and
also enable controlling the strength of stylistic expression. We addi-
tionally describe how to create product-of-expert ensembles with
diffusion models, and show how they, for example, enable a novel
type of interpolation and combining diverse diffusion models with
different control parameters.
Future work includes accelerated output generation [Dhariwal

and Nichol 2021; Lam et al. 2022; Meng et al. 2022; Nichol and Dhari-
wal 2021; Salimans and Ho 2022]; conditioningmotion on both audio
and text, for example to enable generating semantic and communic-
ative gestures that synchronise with speech (cf. Ahuja et al. [2020a];
Ao et al. [2022]; Kucherenko et al. [2020]; Yoon et al. [2020]); and
even synthesising multiple modalities such as speech and gesture
together [Alexanderson et al. 2020b; Wang et al. 2021]. Separately,
the community should leverage these powerful models to make a
difference in applications of audio-driven motion generation, both
in research, e.g., in human-agent interaction, and outside academia.
The ideas of guided interpolation and their mathematical for-

mulation, meanwhile, open the door to a vast array of product-
of-diffusion models, in ensembling, interpolation, and beyond. For
example, it also seems compelling to use pre-trained diffusion mod-
els as strong prior distributions in both supervised tasks and re-
inforcement learning, as a possible alternative to using ideas like
MotionBERT [Zhu et al. 2022] or fine-tuning a strong, pre-trained
“foundation model” [Bommasani et al. 2021]; cf. Holmquist and
Wandt [2022]. Unlike conventional fine-tuning, there is no need to
train or modify a potentially large existing model. Because the prior
model is used without modification, prior information is further-
more never lost, removing the risk of catastrophic forgetting that
may occur if conventional fine-tuning is run for too long.
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A EXPERIMENTAL DETAILS

A.1 Data processing and model training
Each and every input and output feature was standardised to mean
zero and standard deviation one, save for binary features on {0, 1}.
For the gesture datasets we used the original skeletons in the cor-
responding database, while the other datasets were retargeted to all
use a shared skeleton. The data was augmented by lateral mirroring,
and by time stretching the sequences by a random factor chosen uni-
formly on [0.9, 1.1] for 20% of the training updates on the dancing
and MMA data, and 10% of the updates on other datasets. Lateral
mirroring was not applied to the data from the specific locomotion
styles that distinguish between left and right.

Finger data, if present, were not included in the modelling, since
finger motion capture is difficult and often suffers from quality
issues. We instead used a fixed hand pose in all experiments. This is
quite standard even for gestures, with all submissions to the 2020
GENEA gesture-generation challenge [Kucherenko et al. 2021b]
and a majority of submissions to the 2022 GENEA challenge [Yoon
et al. 2022] (including the best-performing deep generative model
[Ghorbani et al. 2022]) using a fixed hand pose in their generated
gestures.

During hyperparameter tuning, we also noticed a subtle trade-off
between the number of residual blocks and the number of Conform-
ers stacked within each block, when keeping the total number of
parameters approximately fixed. When using 𝐿 = 10 blocks with 4
Conformer layers in each, motion was more deliberate. When in-
stead using 𝐿 = 20 blocks with 2 Conformer layers each, the overall
amount of motion increased. Subjectively, we found more deliberate
motion to be appropriate in most scenarios (where we thus used the
former hyperparameter setting), whereas dance instead benefited
from an increased amount of motion overall (where we thus used
the latter hyperparameter setting). However, the actual difference
is quite subtle, and both settings give similar-looking results and
similar motion quality on both data types.

Our final models after hyperparameter tuning used a 𝛽𝑛 range of
0.0074 to 0.78 with linear noise schedule across 𝑁 = 100 diffusion
steps on the gesture datasets and a range of 0.01 to 0.7 and 𝑁 = 150
steps on the other datasets. Except for on the MMA data, our pro-
posed models used 8 heads, 256 attention channels, 512-dimensional
embeddings, and 1024 channels in the feedforward and Conformer

networks, and a dilation cycle of length 𝑙 = 3. (The one model we
trained using the original DiffWave architecture, and thus without
Conformers, used a dilation cycle of length 10 instead.) The model
trained on the MMA data used 512 channels in the feedforward
and Conformer networks and a reduced embedding dimension, as
an adaptation to the smaller dataset size. Training used the Adam
optimiser [Kingma and Ba 2015] with lrmax = 6e−4, 3k warm-up
steps and a learning rate decay factor of 0.5e−5 per 10 iterations,
meaning that the learning rate was multiplied by (1 − 0.5 · 10−5)
every ten model updates.

Unlike the proposed systems, the ZE baseline in the evaluation on
the ZeroEGGS data does not use one-hot encoding for style input,
but instead requires a motion clip as its style-conditioning input.
This clip is then translated into a latent vector by the encoder. To
best match the ZE training procedure, we derived these style inputs
from randomly sampled sequences of lengths 256–512 taken from a
training video of the given style.

A.2 User studies
User study participants were recruited from the US, Canada, UK,
Ireland, Australia, and New Zealand using Prolific. Participants were
required to be fluent in English. They were asked to use headphones
unless the videos in the experiment were silent. All experiments ran
in a web browser and presented 36 20-second comparison videos
to each participant, unless stated otherwise. The user studies were
run in a web browser via the jsPsych package8.

Except where stated otherwise, each participant was exposed to
motion from each audio clip once, with the order of these clips and
of the two videos in each pair being randomised for each participant.
The median completion time for the experiments was 15 minutes.
The median hourly compensation was approximately 12 GBP.

Attention checks occurred at two random points in each experi-
ment, consisting of the spoken message “Attention: please select the
rightmost option”, but for experiments where audio was omitted
from the stimuli the same message was instead displayed as text
in the lower part of the video during the second half of the clip.
Subjects that failed both attention checks were disqualified and their
data not used. (Prolific’s policies do not permit disqualifying subjects
based on a single failed attention check in these tests.) Responses
given to attention-check stimuli were not included in the analyses.
8https://jspsych.org
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