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Abstract
Comprehending the overall intent of an utterance helps a lis-
tener recognize the individual words spoken. Inspired by this
fact, we perform a novel study of the impact of explicitly in-
corporating intent representations as additional information to
improve a recurrent neural network-transducer (RNN-T) based
automatic speech recognition (ASR) system. An audio-to-intent
(A2I) model encodes the intent of the utterance in the form of
embeddings or posteriors, and these are used as auxiliary inputs
for RNN-T training and inference. Experimenting with a 50k-
hour far-field English speech corpus, this study shows that when
running the system in non-streaming mode, where intent repre-
sentation is extracted from the entire utterance and then used
to bias streaming RNN-T search from the start, it provides a
5.56% relative word error rate reduction (WERR). On the other
hand, a streaming system using per-frame intent posteriors as
extra inputs for the RNN-T ASR system yields a 3.33% rela-
tive WERR. A further detailed analysis of the streaming system
indicates that our proposed method brings especially good gain
on media-playing related intents (e.g. 9.12% relative WERR on
PlayMusicIntent).
Index Terms: End-to-end speech recognition, RNN-T, audio-
to-intent, spoken language understanding

1. Introduction
Spoken language understanding (SLU) systems are convention-
ally designed as a pipeline that includes an automatic speech
recognition (ASR) system that converts speech to text, followed
by a natural language understanding (NLU) system that extracts
structured data such as domain, intent and slots.

For the ASR system, end-to-end models have gained pop-
ularity in recent years as they combine separate components of
conventional DNN-HMM hybrid ASR systems [1] (acoustic,
pronunciation and language models) into a single neural net-
work. End-to-end models include connectionist temporal clas-
sification [2], recurrent neural network-transducer (RNN-T) [3],
and attention-based sequence-to-sequence models [4–6] also
known as LAS: Listen, Attend and Spell [7]. Among these three
methods, RNN-T is replacing the traditional hybrid ASR mod-
els [8, 9] since it has good streaming capability which is chal-
lenging to LAS and does not have CTC’s frame-independence
assumption. Various directions have been explored to enhance
RNN-T ASR performance. Depth-LSTM and layer normaliza-
tion was tried in [10]. Using LAS as a second-pass rescorer by
attending to both encoder features and n-best output from the
RNN-T has been explored in [9], and an inter encoder-decoder
attention mechanism was introduced in [11] to better align the
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encoder feature with the hypothesis. Other improvements in-
clude better initialization methods, training on TTS data, and
use of lookahead encoders [12]. All these improvements on
the RNN-T ASR system so far have focused on better acoustic
or language modeling and rescoring extensions without adding
any capability of understanding to the system.

When humans process speech signals, transcription and un-
derstanding happen simultaneously, and the capability of un-
derstanding enables human to usually provide better quality of
transcription than machines. Training an end-to-end SLU sys-
tem to predict intent and slot values directly from audio is there-
fore becoming a popular research area [13–19]. While such
system may not readily outperform or replace large-scale con-
ventional SLU systems with independently optimized ASR and
NLU modules, it is indicated that semantic information such
as intent and slots could potentially help improve an ASR sys-
tem [16,19]. However, these approaches were incorporating se-
mantic information implicitly by using training intent and slot
prediction as extra tasks. The technique to explicitly incor-
porate various contextual signals analogous to intent, such as
dialog state and music play state, into an RNN-T based ASR
system has been proposed in [20, 21], but most of these con-
textual signals are derived only after the first turn of the dialog
and would only benefit subsequent turns. Therefore, extra stud-
ies are needed to investigate the impact of using semantic em-
beddings produced on-the-fly directly with input audio features
on an ASR system. Focusing on intent-based semantic embed-
dings, our contributions in this study are as follows:

• We propose to incorporate intent embeddings of the audio
into the RNN-T ASR system to improve its recognition ac-
curacy through an auxiliary audio-to-intent (A2I) front-end.

• We run extensive experiments on a large corpus of 50k
hours of far-field US English speech to demonstrate effec-
tiveness of the proposed approach.

To the best of our knowledge, this is the first study to en-
hance RNN-T ASR performance using intent representations
produced on-the-fly from an auxiliary intent prediction model.

2. Method
2.1. RNN-T ASR using intent representations

We train a new RNN-T ASR system where the input features
for the encoder contain frames of original audio feature vectors
along with intent representations obtained by feeding the au-
dio frames into a pre-trained audio-to-intent (A2I) model which
will be described with more details in Section 2.2. For results
described in this paper, we incorporate intent representations
only into the encoder portion of the RNN-T, since our prelimi-
nary experiments showed that feeding extra embeddings to the



prediction network is less effective. (This aligns with the find-
ings in [22] that RNN-T encoder makes better use of contextual
information than the prediction network).

Specifically, we concatenate each frame of input audio fea-
tures (xt) with its intent embeddings (et) (as illustrated in Figure
1) to train the proposed RNN-T ASR model. The A2I model is
pre-trained from a much smaller intent-annotated corpus, and its
parameters are not updated during RNN-T ASR model training.
For a streaming ASR system, per-frame intent embeddings (et)
are required to be concatenated with each frame of input audio
features (xt). In addition, we conduct an experiment where the
whole-utterance intent embeddings from the final frame (eT )
are repeatedly concatenated with all the acoustic feature frames.
This serves as an upper bound to the performance of a streaming
RNN-T system using an auxiliary A2I model.
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Figure 1: Incorporate intent embeddings into RNN-T ASR in a
streaming fashion. Audio features at each frame (xt) are con-
catenated with per-frame intent embeddings (et) inferred from
a pretrained A2I model.

2.2. Audio-to-intent model

Using a separate intent-annotated corpus where each utterance
is manually annotated with an intent label, an audio-to-intent
(A2I) model can be pre-trained in a supervised manner to clas-
sify intent directly from audio input. We explored two A2I mod-
els in this work, architectures of which are illustrated in Figure
2. In model 2a, frames of audio features (xt) are first encoded
into frames of acoustic embeddings (et) using an LSTM en-
coder. They are subsequently passed to a dense layer, and intent
prediction for the entire utterance is optimized based on poste-
riors at the last frame. The final-frame intent embeddings eT
can then be concatenated repeatedly with all acoustic feature
frames as a non-streaming solution to incorporate intent repre-
sentation for ASR model building. Model 2b is similar to 2a,
except that intent prediction is optimized for each audio frame.
The per-frame intent label is the same as the whole-utterance
intent label when training model 2b. Per-frame intent embed-
dings et from this model can then be concatenated with each
frame of input audio features in a streaming fashion to train our
proposed RNN-T ASR model.

3. Data and experimental setup
3.1. Datasets

We use two far-field US English speech datasets in this work
to train the A2I and ASR models respectively. The speech data
used for training and evaluation are de-identified and based on
queries to smart speakers.

x1, x2, ….., xT ENCODER DNN
INTENT LABELS 

(IT)

EMBEDDINGS
(e1, e2, …. , eT)
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(z1, z2, …. , zT)

optimize on 
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(a) Optimize intent prediction at only the last frame
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(z1, z2, …. , zT)
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(b) Optimize intent prediction at every frame; per-frame in-
tent label is the same as the whole-utterance intent label.

Figure 2: Architectures of A2I models

1. 16k-hour SLU dataset: Human annotations of NLU in-
tent are available for all utterances. In addition, a devel-
opment set of 96 hours of data is available. We use this
dataset to train the A2I model.

2. 50k-hour ASR dataset: Human transcriptions are avail-
able for all utterances. In addition, a test set of approx-
imately 200 hours is available. We use this dataset to
train both the baseline and the proposed RNN-T ASR
system. Note that 64% of this dataset contains human
intent annotations, which we will use for the partial ora-
cle experiment in Section 4.2.1.

3.2. Models

3.2.1. RNN-T ASR

The baseline RNN-T ASR model is trained on the 50k-hour
ASR dataset. The encoder consists of 5 LSTM layers of 1024
hidden units, with a final layer output dimension of 4001. The
prediction network has an input embedding layer of 512 units,
2 LSTM layers of 1024 units, and a final output dimension of
4001. The joint network adds the outputs from the encoder and
prediction networks as in [3]. These outputs of size 4001 are
softmax normalized and correspond to subword tokens of the
same vocabulary size. The subword vocabulary was generated
using the byte pair encoding algorithm [23].

3.2.2. A2I models

A2I models are trained on the 16k-hour SLU dataset with
human-annotated intent labels. The model is trained to pre-
dict 64 intents, including the 63 most frequent intents and an
“Other” class that covers all remaining intents. Our A2I models,
illustrated in Figure 2, use an encoder of 2 LSTM layers with
512 units. The second LSTM layer has a projection layer gen-
erating an embedded representation of dimension 64. The pro-
jected representation then goes through an extra feed-forward
layer of 64 units followed by softmax normalization for the fi-
nal intent prediction.

3.2.3. RNN-T ASR using intent representations

In general, we concatenate every original frame of audio fea-
tures with an intent representation as illustrated in Figure 1 to
train our proposed RNN-T ASR model on the 50k-hour ASR
dataset. The intent representations are inferred from the pre-
trained A2I model, and we freeze weights in the A2I model
during the ASR model training. Note that we do not need NLU
annotations for ASR training at this stage as we already have



a pretrained A2I model. Thus, our proposed method does not
impose any restriction on RNN-T ASR training data.

Since 64% of the ASR dataset has human-annotated in-
tent labels, we also conduct a partial oracle experiment (Sec-
tion 4.2.1) by concatenating either a one-hot representation or
an all-zero vector with each frame of input audio features, de-
pending on whether human-annotated intent label for that audio
is available.

The audio features used by both A2I and ASR models are
64-dimensional log filter bank energy features computed over a
25ms window with 10ms shift. Each feature vector is stacked
with 2 frames to the left and downsampled to a 30ms frame
rate [24]. We use SpecAugment [25] during RNN-T training
to improve model robustness. All models are trained using the
Adam optimizer [26], with a learning rate schedule including
an initial linear warm-up phase, a constant phase, and an expo-
nential decay phase following [27]. These hyper-parameters are
not specifically tuned for this work.

4. Results and discussion
4.1. Audio-to-intent accuracy

Table 1: Audio to intent prediction accuracy on 150k samples.

A2I model intent prediction accuracy (%)

optimized on train dev
per-frame per-utt per-frame per-utt

last frame 47.97 88.92 47.37 87.70
every frame 60.47 87.16 59.81 86.98
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(b) Mean and standard deviation of convergence ratio for selected
intents. The convergence ratio is defined as the normalized time
when 80% of the final-frame intent posterior is achieved.

Figure 3: Per-intent posterior analysis for the A2I model opti-
mized on every frame.

Table 1 shows the intent prediction accuracy of the two A2I
models we have trained. Per-utterance accuracy is calculated
based on prediction at the last frame comparing with the whole-
utterance NLU intent label from human annotator. Per-frame

accuracy is computed based on prediction at every frame and
uses the same NLU intent label for all frames. Per-frame pre-
diction accuracy is relatively low because intent cannot be pre-
dicted reliably in the initial portion of an utterance, but integrat-
ing frame-wise intent representation into an ASR system makes
the solution streamable.

With the A2I model optimized on every frame, Figure 3a
shows mean and standard deviation of the posterior over the
normalized time value (i.e., frame index to total length of utter-
ance). For all utterances with the same predicted final intent, we
compute mean and standard deviation of the posteriors at dif-
ferent normalized time stamps. Figure 3b shows the mean and
standard deviation of the convergence ratio. This convergence
ratio is defined as the ratio of the selected frame index to the
total length of utterance, where the selected frame index is the
first frame that achieves 80% of the final-frame intent posterior.
These statistics are computed over all utterances with correct
intent label prediction. The posterior values over time for all
utterances are smoothed using a convolution filter with window
size 4. These figures show that the confidence of the A2I model
increases with more frames and the A2I model can generally
predict the true intent from the initial 70% of the utterance.

4.2. RNNT-ASR using intent representations

4.2.1. Using human-annotated intent labels

We conduct a partial oracle experiment by training an RNN-
T ASR model with the partially available human-annotated in-
tents in the 50k-hour ASR training dataset. The one-hot intent
representation for each frame is concatenated with the origi-
nal LFBE features as new input to the encoder. We use all-
zero vectors when human intent annotation is not available for
a given utterance. We believe this acts as a regularizer helping
the model to not depend entirely on intent information. How-
ever, results reported from this experiment will not reflect the
lowest achievable WER since only 64% of the training dataset
contains human intent annotation. Rather, they serve to verify
the hypothesis that injecting intent information explicitly into an
ASR system can help achieve lower WER. Column 3 of Table 2
reports relative word error rate reduction (WERR) for different
intents by using human-annotated intent labels as extra input
features. Note that, there is a “None” entry since not all utter-
ances have human annotation in the training and test sets, and
its relative WERR reduction is relatively small (1.46% in the
table). This is because all-zero vectors are provided as auxiliary
inputs for these utterances, which does not provide additional
intent-based information for the ASR model to constrain the
search space. For test utterances with human-annotated intents,
we observe good relative WERRs, especially for those that have
limited word choices in utterances (e.g. YesIntent, NoIntent,
StopIntent).

4.2.2. Using Intent Representations from the A2I Model

For the real use case, we need an A2I model that infers intent
representations from audio to help train the ASR model and run
the inference, since human-annotated intent labels are not avail-
able when decoding input audio after model deployment.

Given the A2I model optimized with last-frame prediction
(Figure 2a), we concatenate repeated final frame embeddings
(eT ) with the original frames of acoustic features (xt) as new
inputs for the encoder of the proposed RNN-T ASR model (row
3 in Table 3). Since per-frame embeddings (et) are also avail-
able from this A2I model, we concatenate them with the origi-
nal frames of acoustic features as an extra experiment (row 4 in



Table 2: Per-intent relative WERR (%) by using different intent representations (compared to RNN-T ASR baseline).

Intent # utt RNN-T + human annotation RNN-T + A2I RNN-T + A2I
(most frequent from test set) (one-hot) (repeated final embeddings) (per-frame posteriors)

None (human annotation not available) 100.2k 1.46 4.88 3.61
PlayMusicIntent 14.0k 4.89 9.34 9.12
StopIntent 8.9k 23.69 4.85 2.52
ContentOnlyIntent 5.4k 14.85 6.94 3.45
YesIntent 3.6k 29.31 11.50 -4.63
SetNotificationIntent 3.5k 8.31 4.00 -3.69
PlayVideoIntent 3.1k 8.38 7.77 7.93
GetWeatherForecastIntent 2.8k 5.95 8.63 4.17
PlayStationIntent 2.7k 4.67 7.65 9.21
NoIntent 2.6k 36.88 13.66 3.26
GetContentIntent 2.4k 1.52 -0.25 -5.32
MusicControlIntent 2.2k 24.68 3.34 -7.97

Table 3: Relative WERR (%) by using different intent representations (compared to RNN-T ASR baseline).

No. Exp. A2I model optimized on Intent representation Streamable relative WERR(%) #params

1 RNN-T (baseline) - - yes - 63.5M
2 RNN-T (larger) - - yes 1.91 67.3M
3 RNN-T + A2I last frame (Fig. 2a) repeated final-frame embeddings (eT ) no 5.56 67.1M
4 RNN-T + A2I last frame (Fig. 2a) per-frame embeddings (et) yes 2.78 67.1M

5 RNN-T + A2I every frame (Fig. 2b) per-frame embeddings (et) yes 2.89 67.1M
6 RNN-T + A2I every frame (Fig. 2b) per-frame posteriors (zt) yes 3.33 67.1M

Table 3). Given the A2I model optimized with frame-wise pre-
diction (Figure 2b), we concatenate frame-wise embeddings or
posteriors (et or zt) with the original frames of acoustic features
(xt) as inputs for the encoder of the RNN-T ASR model (rows
5,6 in Table 3). Using per-frame embeddings along with the au-
dio feature vectors makes the resulting system fully streamable,
while using repeated final embeddings indicates the largest gain
achievable by using intent representation as auxiliary input.

Overall, incorporating repeated final-frame embeddings
yields a 5.56% relative WERR while feeding per-frame poste-
riors in a streaming fashion provides a 3.33% relative WERR
compared to the RNN-T ASR baseline (row 1 in Table 3).
When comparing different intent representations, we see that
using per-frame posteriors gives a slightly better relative WERR
(3.33%) compared to using per-frame embeddings (2.89%). We
have also trained a larger RNN-T ASR baseline (row 2 in Table
3) with its number of parameters comparable to our proposed
RNN-T ASR system using an auxiliary A2I model. This larger
baseline only yields a 1.91% relative WERR, which demon-
strates that the gain of our proposed method by using the auxil-
iary A2I model does not come only from the enlarged parameter
space.

For the case of using repeated final frame embeddings and
per-frame posteriors, we also break down the relative WERR
under different intents as shown in Table 2. Overall, we see
gains on various intents. For the streaming system using per-
frame posteriors, which could be applied in a real-time recogni-
tion system, we see good relative WERRs in media-playing re-
lated intents (9.12% relative WERR on PlayMusicIntent, 7.93%
relative WERR on PlayVideoIntent and 9.21% relative WERR
on PlayStationIntent). For the unannotated partition (intent
“None”), we see that the RNN-T with A2I model outperforms
the system using one-hot representations based on human anno-
tation, which indicates that the A2I model can learn reasonable
representations for these data while the one-hot model just treats
this case as out-of-domain. This establishes the advantage of us-
ing the auxiliary A2I model since it does not need human intent
annotation during ASR training and inference. Compared with
the non-streamable RNN-T ASR system using repeated final-
frame intent embeddings, it seems the streamable RNN-T ASR

system using frame-wise posteriors preserves recognition accu-
racy on intents with longer utterances, such as PlayVideoIntent
(3.13k ms on average) and PlayMusicIntent (3.07k ms on aver-
age), while its performance degrades on intents with relatively
shorter utterances, such as YesIntent (1.37k ms on average) and
StopIntent (1.30k ms on average).

Considering the WER gap between the non-streaming sys-
tem and the streaming system, we perform a diagnostic exper-
iment which feeds per-frame embeddings et for a certain per-
centage of frames in the utterance at the beginning and uses the
final-frame embeddings eT repeatedly afterwards. As shown in
Table 4, feeding the final-frame intent embeddings after 70% of
the audio only results in slight degradation compared to feeding
final-frame intent embeddings from the start of an utterance.
This indicates that intent information tends to improve the ASR
system more towards the end of the utterance.

Table 4: Relative WERR (%) by feeding per-frame embeddings
et for a certain percentage of frames in the utterance at the
beginning and using the final-frame embeddings eT repeatedly
afterwards.

percent (%) of frames in the utterance relative WERR (%)after which eT is fed

0 5.56
50 5.44
70 5.00
100 2.78

5. Conclusions
We have demonstrated the benefit of incorporating intent repre-
sentations for improving end-to-end ASR system with RNN-T.
We showed that an audio-to-intent (A2I) auxiliary model is ca-
pable of predicting intent representations that substantially help
lower ASR WER. Over all intent classes, incorporating repeated
whole-utterance intent representation in a non-streaming fash-
ion gives a 5.56% relative WERR, while feeding per-frame in-
tent posteriors in a streaming fashion brings a 3.33% relative
WERR. In the future, we hope to investigate the effectiveness
of our approach as a function of NLU and ASR data size, as
well as incorporating other types of auxiliary information.
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