

Finding all minimal separators of a graph

Citation for published version (APA):
Kloks, A. J. J., & Kratsch, D. (1993). Finding all minimal separators of a graph. (Computing science notes; Vol.
9327). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/ddec991a-e48c-43e4-979b-a9cc0d269cbf

Eindhoven University of Technology

Department of Mathematics and Computing Science

Finding all minimal separators of a graph

by

T. Kloks and D. Kratsch

Computing Science Note 93/27
Eindhoven, August 1993

93127

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Finding all minimal separators of a graph

T. lOoks'
Department of Mathematics and Computing Science

Eindhoven University of Technology
P.O.Box 513

5600 MB Eindhoven, The Netherlands

D. Kratsch
Fakultiit fiir Mathematik und Informatik

Friedrich-Schiller-U niversitiit
Universitiitshochhaus, 07740 Jena, Germany

Abstract

In this paper we give an efficient algorithm to find all minimal vertex
separators of an undirected graph. The algorithm needs polynomial time
per separat.or that. is found.

1 Introduction

Given a graph, one is often interested in finding subsets of vertices, or their car
dina.lit.y, or a certain partition of the vertices, which possess a certain property.
For example the CLIQUE NUMBER of a graph G is the maximum cardinality of a
subset S such that G[SJ is complete. Similar questions are the INDEPENDENCE

NUMBER, the DOMINATION NUMBER or the CHROMATIC NUMBER. For many of
these problems, it would be convenient if one could use a. decomposition of the
graph by means of certain separators.

This is perhaps best illustrated by the recent results for classes of graphs
with bounded treewidth. For these classes, linear time algorithms exist for
many NP-complete problems exactly because a decomposition can be made
using separators of bounded size [1, 2, 3, 4, 10J. A decomposition of this type
can be found in linear time [.5, 10], however the huge constants involved in these
algorithms do not make them of much practical use. Our results show that for
many classes of graphs efficient decomposition algorithms exist, i.e., the size of
the separators has no effect on the running time.

A closely related, but somewhat different approach was surveyed in [12J. In
this paper (see also [7]) it is shown that for many classes of graphs (for example

·Email: ton@)win.tue.nl.

1

chordal graphs, clique separable graphs and edge intersection graphs of paths
in a tree or EPT-graphs) a decomposition by clique separators is possible, and
it is illustrated that such a decomposition can also be used to solve efficiently
many NP-complete problems like MINIMUM FILL-IN, MAXIMUM CLIQUE, GRAPH

COLORING and MAXIMUM INDEPENDENT SET. In [13] an algorithm is given for
finding clique separators efficiently (the algorithm uses O(nm) time to find one
clique separator). Our results (combined with the result of [11]) generalize the
above mentioned results in the sense that at least some of these NP-complete
problems are solvable for much more graph classes, i.e., graph classes for which
the number of minimal separators is polynomial bounded.

In [9] an algorithm is given which finds all, what the author caUs minimum
size separators. By this is meant that, given a graph which is k-connected,
the algorithm finds aU separators with k vertices. Moreover, it is shown in
this paper that the number of these separators is bounded by O(2k "k). The
algorithm which lists all minimum size separators runs in time O(2kn3) time.

We call a subset of vertices S a minimal separator if there are non adjacent
vertices x and y such that the removal of S separates x and y into disjoint
connected components in such a way that no proper subset of S also does
this (see Definition 2.1). A closely related concept which we call inclusion
minimal separators lies more or less between the mininlum size sepa.rators and
the minimal sepa,rators, i.e., all minimum size separators are inclusion minimal
and all inclusion minimal separators are minimal separators.

The following example shows that the minimum size separators and the in
clusion minimal separators are only of limited use. Consider any graph G. Take
a new vertex x and make this adjacent to all vertices of G. Take another new
vertex y and make this adjacent to x. Call this new graph H. The only inclu
sion minimal separator of H, which is also the only minimum size separator, is
{x}. However if S is some minimal separator of G, then 5 U {x} is a minimal
separator in H. Hence H has at least as many minimal separators as G.

In [6, 10, 11] it is shown that many important classes of graphs have a poly
nomial number of minimal vertex separators. These graph classes include per
mutation graphs, circular permutation graphs, trapezoid graphs, circle graphs,
circular arc graphs, distance hereditary graphs, chordal bipartite graphs, co
comparability graphs of bounded dimension and weakly triangulated graphs.
In [11] it is shown that if, for a certain class of graphs, all minimal separators
can be COlllputed in polynomial titne, then the problems TREEWIDTH and MIN

IMUM FILL-IN can be solved in polynomial time for graphs in this class. In this
paper we present an algorithm to compute all minimal vertex separators.

2 Preliminaries

If G = (V, E) is a graph and HI <;; V a subset of vertices then we use G[W] as
a notation for the subgraph of G induced by the vertices of 11'. For a vertex

2

x E V we use N(x) to denote the neighborhood of x.
The following definition can be found for instance in [8J.

Definition 2.1 Given a graph G = (V, E) and two non adjacent vertices a and
b, a subset 5 c V is an a, b·separator if the removal of 5 separates a and b
in distinct connected components. If no proper subset of 5 is an a, b-separator
then 5 is a minimal a, b-separator. A (minimal) separator is a set af vertices 5
for which there exist non adjacent vertices a and b such that 5 is a (minimal)
a, b-separatar.

The following lemma appears for example as an exercise in [8J. It provides an
easy test whether a given set 5 of vertices is a minimal separator or not.

Lemma 2.1 Let 5 be a separator of the graph G = (V, E). Then 5 is a minimal
separator if and only if there are two different connected components of G[lI - 5J
such that every vertex of 5 has a neighbor in both of these components.

Proof. Let 5 be a minimal a, b-separator and let Ca and C b be the connected
components containing a and b respectively. Let:r E 5. Since 5 is a minimal
a, b-separator, there is a path between a and b passing through x but using no
other vertex in 5. Hence x must have a neighbor in Ca and in Cb.

Now let 5 be a separator and let Ca and Cb be two connected components
such that every vertex of 5 has a neighbor in Ca and in Cb. Let a E Ca and
b E Cb. Then clearly 5 is a minimal a, b-separator, for if x E 5, then there is a
path between a and b which uses no vertices of S \ {x}. Hence S \ {x} is not
an a, b-separator. 0

Notice that this also proves the following. Let S he a minimal separator and
let C1 and C2 be two connected components of G[lI - SJ sllch that every vertex
of S has a neighbor in both C1 and C 2 • If a is a vertex of C1 and b is a vertex
of C2 then 5 is a minimal a, b·separator.

It may be a bit surprising at first sight that it is very well possible for one
minimal separator to be contained in another one. An example of this can be
found in [8J. However, for minimal a, b-separators things are different, since by
definition one minimal a, b-separator cannot be properly contained in another
one.

We now show that at least some of the minimal separators are easy to find.

Definition 2.2 Let a and b be non adjacent vertices. If S is a minimal a, b
separator such that S <;; N (a) then S is called close to a.

Lemma 2.2 If a and b are non adjacent then there exists exactly one minimal
a, b-separatar close to u.

Proof. Let S be a minimal a, b-separator close to u. We show that S is exactly
the set of neighbors of u for which there is a path to b using no other neighbors
of a.

3

For every vertex in S there is a path to b which does not use any other
vertex of N (a), since S is minimal. On the other h;l.Ild, if x is a neighbor of a
such that there is a path to b without any other vertex of N(a), then x must be
an element of S, otherwise there is a path between x and b which avoids Sand
this is a contradiction since x is in the component of G[V - S] that contains a.

o

Notice that a minimal separator close to a can easily be computed as follows.
Start with S = N(a). Clearly, since a and b are non adjacent S separates a and
b. Let Cb be the connected component of G[V - S] containing b. Let S' ~ S
be the set of those vertices of S which have at least one neighbor in Cb. S' is
a minimal a, b-separator by Lemma 2.1, and since it only contains neighbors of
a, it is close to a.

Lemma 2.3 Let S be the minimal a, b-separator close to a and let Ca and Cb
be the connected components containin!J a and b respective/yo Let S· 01 S be
another minimal a, b-separator. Then S' c S U Cb.

Proof. First assume S' has a vertex x if. S U Ca U Cb. Then there is a path
P from a to b passing through x but using no other vertices of S·. But then
P has to pass through S at least twice. Clearly P can be shortened since S
contains only neighbors of a.

Now assume S' has a vertex x E Ca. S' \ {x} does not separate a and b
hence there is a path P between a and busing .. , but no other vertex of S*.
Since S is a minimal separator, P goes through a vertex yES. Since S is close
to a, y is adjacent to a. Hence there is a path P' C P between a and b that
does not contain x. Then P' contains no vertex of S*. 0

In the next two sections we show how to obtain new minimal (t, b-separators
from a given one using so called Ininimal pairs. A minimal pair is in SOlne sense
the smallest step to go from one minimal a., b-separator to the next one. The
main difficulty is to prove that we indeed obtain all minimal separators by using
small steps only.

In section 5 we describe an algorithm that computes, for a given pair of non
adjacent vertices (t and b, all minimal a., b-separators in a breadth-first-search
manner (Figure 1, page 9), we prove that it is correct and we analyse its time
complexity. vVe end with some concluding remarks and some open problems.

3 Good pairs

Let G = (V, E) be a graph and let a and b be non adjacent vertices in G. Let
S be a minimal a., b-separator and let Ca and Cb be the connected components
containing a a.nd b respectively.

4

Definition 3.1 Let .6. <;:; Ca \ {a} and let C~ be the connected component of
G[Ca -.6.J that contains a. Let N <;:; S be the set of vertices in S that do not
have a neighbor in C~. The pair (.6., N) is called good for S if the following
conditions are satisfied.

1. N i- 0.

2. Each b E .6. has at least one neighbor in C~.

3. Each b E .6. either has a neighbor in N or there exists a vertex x E N
and a connected component D of G[Ca - .6.J such that both x and b have
at least one neighbor in D.

Lemma 3.1 If S is close to a then there is no good pair.

Proof. Assume (.6.,N) is a good pair. Hence.6. <;:; Ca \ {a}. Let C~ be the
connected component of G[Ca - .6.J that contains a. The set N is defined as
the subset of S that does not contain any neighbor in C~. Then N = 0 since S
contains only neighbors of a. But by definition N i- 0. 0

In Theorem 3.1 we show that. a good pair defines a new separat.or. In
Theorem 3.2 we show that each minimal a, b-separator can be obtained by a
good pair for t.he separator that is close to b. In section 4 we show that. only a
restricted type of good pairs, called minimal pairs, have to be considered.

Theorem 3.1 Let (.6., N) be a good pair. Define S* = (S U.6.) \ N. Then S'
is a minimal a, b-separator.

Proof. Let C~ be the connected component of G[Ca - .6.J that contains a.
Clearly, S' separates a and b, since vertices of N do not have neighbors in C~.
Let C; be the connected component of GW - S*J that cont.ains b. Notice that
Cb C C;, and since each vertex of N has a neighbor in Cb, N C C;.

Each vertex of S' has at least one neighbor in C~ by definition of a good
pair, and each vertex of S' \ .6. has at least one neighbor in C; since it has at
least one neighbor in Cb. The only thing left t.o show is that each vertex of .6.
has a neighbor in C;. Let b E .6.. By definition, either /j has a neighbor in N
(and hence in Cbl or there is a vertex x E N and a connected component D of
G[Ca - .6.J such that both /j and x have a neighbor in D. D is also connected
in GW - S'J and since x ha.s a neighbor in D, DeC;. 0

Theorem 3.2 Assume S is close to b. Let S' i- S be a minimal a, b-separator.
There exists a good pair (.6., N) such that S' = (S U.6.) \ N.

Proof. Let C; and C; be the connected components of GW - S'J containing a
and b respectively.

5

Since 5 is close to b, by Lemma 2.3, S* C 5 U Ca. Let .tJ. = S* n Co and
N = 5 \ 5*. We show that (.tJ., N) is a good pair.

Since 5' fc 5 and both are minimal (t, b-sepa.rators: N fc 0.
Let C~ be the connected component of C[Ca - .tJ.] containing a. We show

that N is exactly the set of vertices in 5 which do not have a neighbor in C~.
In order to do this we claim that C~ = C~. Since C~ is a connected component
of G[V - (.tJ. U 5)] and since 5* c .tJ. U 5, C~ <;; C~. Now assume there is a vertex
x E N which has a neighbor y E C~. Since 5 is close to b, x is a neighbor of
b. This is a contradiction since there would be a path between a and b which
does not use any vertex of 5*. This shows that C~ = C~. Since S* is minimal,
N is exactly the set of vertices in S that do not have a neighbor in C~. It now
also follows that every vertex of .tJ. U (5 \ N) has at least one neighbor in C~.

To prove the last item first notice that N C Ci: and that Ci: contains exactly
those connected components D of C[Ca -.tJ.] for which there is a vertex yEN
which has a neighbor in D. NolV let 6 E .tJ.. Since S* is minimal, 6 has a
neighbor x in Ci:. Since 6 only has neighbors in Ca U 5, x must be an element
of N or of some component D of C[Ca - .tJ.]. In this second case, there must
also be a vertex yEN which has a neighbor in D. 0

4 Minimal pairs

Again let C = (V, E) be a graph and let a and b be non adjacent vertices
in C. Let 5 be a minimal a, b-separator and let Ca and Cb be the connected
components of C[V - 5j containing a and b respectively. In this section we
show how to find some good pairs.

Definition 4.1 Let x E 5 be non adjacent to a. Let Calx) be the subgraph
induced by Ca U {:z:}. Let.tJ. be the minimal x, a-separator in Cal x) close to
x, and let C~ be the connected component containing a in Calx) when .tJ. is
removed. Now let N be the set of vertices of 5 which do not have a neighbor in
C~. The pair (.tJ., N) is called the minimal pair for Sand x.

Lemma 4.1 A minimal pair is good.

Proof. Notice that x EN, hence N f 0.
Now, .tJ. is a minimal x,(t-separator in Calx) and hence every vertex of.tJ.

has a neighbor in C~.
Finally, if 6 E .tJ. then 6 is adjacent to x since .tJ. is close to x. Hence each

vertex of .tJ. has a neighbor in N. 0

We want to prove that we can find every minimal a, b-separator by start
ing with the minimal a, b-separator that is close to b and by recnrsively using
minimal pairs. The following rather technical lemma proves this.

6

Lemma 4.2 Let (t!.,N) be a good pair for S. Let x E N and let (t!.*,N*) be
the minimal pair for S and x. Let S' = (S u t!. *) \ N*. Define t!. = t!. \ t!. * and
N = (N \ N*) U (t!.* \ t!.). Then:

1. if N = 0 then (S u t!.) \ N = S*, and if

2. N i 0 then (t!.,N) is a good pair for S* and (S U t!.) \ N = (S* U t!.) \ N.

Proof. We start with some easy observations. Let C~ be the connected compo
nent of G[Ca - t!.] that contains a and let C~ be the connected component of
G[Ca - t!.*] that contains a. Let t!.' = N(x) n t!..

• C~ ~ C~ since ~* contains no vertices of C~.

• t!.' <;; t!. * since every vertex of t!.' has a neighbor in C~.

• t!. \ t!.' <;; C~ since every vertex of t!. has a neighbor in C~.

• N* ~ N, since C~ ~ C:.

• C~ is exactly the connected component of G[C~ - (t!. \ t!.')] containing a
since C~ - (t!. \ t!.') contains all vertices of C~ but no vertex of t!..

• The set of vertices in S* without a neighbor in C~ is exactly N, which is
easy to check.

Assume N = 0. Then t!. * <;; t!. and N = N* (since N* <;; N). Now clearly,
t!. * = t!. holds, otherwise S* and (S U t!.) \ N are two minimal a, v-separators of
which one is properly contained in the other which is impossible by definition.
Hence S* = (S U t!.) \ N.

Now assume N i 0. We show that (t!., N) is good for So. Notice that every
vertex of t!. has a neighbor in C~, since this holds for every vertex of t!..

Let 6 E t!. and assume that 6 has no neighbors in N. Since 6 E C~, 6 has
no neighbor in N*. Hence 6 has no neighbor in N. Now (t!., N) is a good pair,
hence there is a vertex zEN and a connected component D of G[Ca - t!.] such
that 6 and z have a neighbor in D.

Suppose that for no vertex of N there is a connected component in G[C; -t!.]
such that this vertex and 6 both have a neighbor in this component. The
following observations lead to a contradiction.

• N (6) n D <;; C~. Otherwise, since t!. * \ t!.' C N, b has a neighbor in N.

• G[D \ Ll. *] is connected. Since otherwise every connected component has
a vertex with a neighbor in t!. * \ t!., and hence there is a connected com
ponent and some vertex in N such that this vertex and 6 both have a
neighbor in this component.

• D contains no vertices of Ll. *, by the same argument.

7

This shows that D C C~. If z E N* then z can have no neighbors in D, since z
has no neighbors in C~. Hence zEN \ N*. This is a contradiction, since now
there is a connected component D in G[C~ - L'l.J and a vertex z E N such that
z and b both have a neighbor in D.

The fact that (S U L'l.) \ N = (S* U L'l.) \ N is obvious. 0

This lemma shows that if S is a minimal separator and S* is another minimal
separator defined by a good pair for S, then we can get closer to S* by choosing a
suitable minimal pair. By Lemma 4.2 and Theorem 3.2 we obtain the following
result.

Corollary 4.1 Let S be a minimal a, b-separator and let S, be the minimal
a,b-separator close to b. There exists a sequence (L'l.l,N,), ... ,(L'l.t,Nt) such
that

1. (L'l." N,J is a minimal pair for S, and some vertex x, E N , .

2. For i = 2, ... , t, (L'l.i, N;J is a minimal pair for Si = (8i-1 U L'l.i-1) \ Ni_1

and some vertex Xi E Ni.

3. 8 = (8t U L'l.,) \ Nt.

5 An algorithm finding minimal separators

In this section we give an algorithm that, given a graph G and two non adjacent
vertices a and b finds all minimal a, b-sepa.rators. This algorithm is displayed
in figure 1 on page 9.

Theorem 5.1 Let 8 be the minimal a, b-separator that is close to b and let
T = {8} and Q = {S}. Then a call separal,ors(G,a,b, T, Q) determines a set
Q containing all minimal a, b-separators.

Proof. By Corollary 4.1 the set Q contains all minimal a, b-separators. By
Lemma 4.1 and Theorem 3.1 all sets in Q are minimal separators. 0

Remark 5.1 If we let T = {{b}} and Q = 0 then a call separators(G, a, b, T, Q)
has the same result.

Theorem 5.2 Let R be the number of minimal a, b-separators (for non adja
cent vertices a and b). The algorithm to determine all minimal a, b-separators
can be implemented to run in time O(11.

4 R).

Proof. Assume that the graph is given with an adjacency matrix. The minimal
separator 8 that is close to b can easily be found in 0(n2) time as follows.
Initialize S = N(b). Determine the connected component Ca of G[V - 8].
Remove vertices from S that do not have a neighbor in Ca.

8

procedure separators(C,a,b, T, Q)
input: Graph C and non adjacent vertices a and band

sets T and S of minimal a, b-separators.
output: Set Q of all minimal a, b-separators in C.
begin

end.

T':= 0;
for each SET do
begin

Determine Co;
{Co is the connected component of C[V - S] that contains a}
for each xES which is not adjacent to a do
begin

Determine ~;
{~is the minimal x, a-separator in Co(x) that is close to x}
Determine C~;
{C~ is the connected component of C[Co -~] that contains a}
Determine N;
{N is the set of vertices in S that do not have a neighbor in C~}
S*:=(SU~)\N;
T':= T' U {S*}
{Add S' to T' only if not yet present!}

end for
end for;
Q:= Qu T';
separators(C, a, b, T', Q)

Figure 1: Algorithm finding minimal a, b-separators

9

First we show that the outermost loop of the procedure separators is exe
cuted at most n times. If the outer loop is executed for the ith time, for each
separator 5 in the set 7, the connected component of G[JI - 5] that contains
a has at most n - i vertices.

Since the set 7 contains only different minimal separators, the second loop
is executed at most R time. Clearly, each separator has at most O(n) elements.

Determining tl. takes at most O(n2) time. Also computing C~ and 11' can
clearly be done in O(n2

) time. \Ne have to make sure that the new set 7'
contains no duplicate separators. We can do this by keeping it in a suitable
data structure, allowing an update in O(n log R) = O(n2) time.

This shows that the algorithm can be implemented to run in O(n4 R) time.
D

Corollary 5.1 The set of all minimal separators of a graph can be found in
O(n6 R) time, where n is the number of vertices in the graph and R is the total
number of minimal separators.

6 Conclusions

In this paper we have presented an algorithm to determine a list of all minimal
vertex separators of a graph. The algorithm needs only polynomial time per
separator that is found. We like to mention some open problems.

First of all, we feel that it should be possible to improve the running time
of the algorithm presented here.

A related concept is that of an inclusion Ilzinimal separator. This is a
minimal separator with the additional constraint that no proper subset is also
a minimal separator. The following lemma shows that our algorithm can be
used to find all inclusion minimal separators. However, the example given in
the introduction illustrates that this may not be the most efficient way to do
this.

Lemma 6.1 A separator 5 of a graph G = (JI, E) is inc/usion minimal if
and only if every vertex of 5 has a neighbor in every connected component of
G[V - 5].

It follows that a list of all inclusion minimal separators can easily be obtained
from the list of all minimal separators. Until now, we have not been able to
find an efficient algorithm which finds aU inclusion minimal sepa.rators.

7 Acknowledgement

We thank B. Monien for drawing our attention to this important problem and
A. Kaldewaij for his careful reading of the manuscript.

10

References

[1] Arnborg, S., Efficient algorithms for combinatorial problems on graphs
with bounded decomposability - A survey, BIT 25, (1985), pp. 2-23.

[2] Arnborg, S., J. Lagergren and D. Seese, Easy problems for tree·
decomposable graphs, J.Algorithms 12, (1991), pp. 308-340.

[3] Arnborg, S. and A. Proskurowski, Linear time algorithms for NP-hard
problems restricted to partial k-trees, Disc. Appl. Math. 23, (1989), pp.
305-314.

[4] Bodlaender, R., A tourist guide through treewidth, Technical report RUU
CS-92-12, Department of Computer Science, Utrecht University, Utrecht,
The Netherlands, (1992).

[5] Bodlaender, R., A linear time algorithm for finding tree-decompositions
of small treewidth, Proceedings of the 25th Annual ACM Symposium on
Theory of Computing, (1993), pp. 226-234.

[6] Bodlaender, R., T. Kloks and D. Kratsch, Treewidth and pathwidth of

permutation graphs, Proceedings of the 20th International Colloquium on
Automata, Languages and Programming, Springer-Verlag, Lecture Notes
in Computer Science 700, (1993), Pl'. 114-125.

[7] Gavril, F., Algorithms on clique separable graphs, DiscI·ete Math. 19
(1977), pp. 159-16.5.

[8J Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Aca
demic Press, New York, 1980.

[9] Kanevsky, A., On the number of minimum size separating vertex sets in a
graph and how to find all of them, Proceedings of the First Annual ACM
SIAM Symposium On Discrete Algorithms, pp. 411-421, (1990).

[10] Kloks, T., Treewidth, Ph.D. Thesis, Utrecht University, The Netherlands,
1993.

[11] lOoks, T., R. Bodlaender, H. Miiller and D. Kratsch, Computing treewidth
and lninimum fill-in: all YOH Heed a.rc the l11inimal separators. To appear
in Proceedings of the First Annual European Symposium on Algorithms,
(1993).

[12] Tarjan, R. E., Decomposition by clique separators, Discrete Mathematics
55 (1985), pp. 221-232.

[13] Whitesides, S. H., An Algorithm for finding clique cut-sets, Information
Processing Letters 12 (1981), Pl'. 31-32.

11

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

9l/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 RC.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if... ,then ... " , p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
LJ. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
GJ. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J. C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palarnidessi

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A composi tional proof system for real-time systems based
on explicit clock temporal logiC: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

92/01 1. Coenen
1. Zwiers
W.-P. de Roever

92/02 1. Coenen
1. Hooman

92/03 I.C.M. Baeten
I.A. Bergstra

92/04 I.P.H.W.v.d.Eijnde

92/05 I.P.H.W.v.d.Eijnde

92/06 I.C.M. Baeten
I.A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpclt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 R.c. Backhouse
1 .S.C.P. v .d. Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 I.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 I.C.M.Baeten
1.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamareddine

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Sct theory and nominalisation, Part J, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A. C. Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.J. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. IS.

A modelling method using MOVIE and SimCon/ExSpect,
p. IS.

A taxonomy of keyword pattern matching algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in MUltiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
WJ.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
PJ. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

93/14 J.C.M. Baeten
J.A. Bergstra

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p.33.

A Programming Logic for Fro, p. IS.

A modelling method using MOVIE and SimCon/ExSpect,
p. IS.

A taxonomy of keyword pattern matching algoritbms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic SCheduling Model for Hard Real
Time Executions in DEDaS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part IIJ: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

93/15 l.C.M. Baeten
l.A. Bergstra
R.N. Bol

93/16 H. Schepers
l. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-l. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions.

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

	Abstracts
	1. Introduction
	2. Preliminaries
	3. Good pairs
	4. Minimal pairs
	5. An algorithm finding minimal separators
	6. Conclusions
	7. Acknowledgement
	References

