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Abstract 

In this paper we give an efficient algorithm to find all minimal vertex 
separators of an undirected graph. The algorithm needs polynomial time 
per separat.or that. is found. 

1 Introduction 

Given a graph, one is often interested in finding subsets of vertices, or their car
dina.lit.y, or a certain partition of the vertices, which possess a certain property. 
For example the CLIQUE NUMBER of a graph G is the maximum cardinality of a 
subset S such that G[SJ is complete. Similar questions are the INDEPENDENCE 

NUMBER, the DOMINATION NUMBER or the CHROMATIC NUMBER. For many of 
these problems, it would be convenient if one could use a. decomposition of the 
graph by means of certain separators. 

This is perhaps best illustrated by the recent results for classes of graphs 
with bounded treewidth. For these classes, linear time algorithms exist for 
many NP-complete problems exactly because a decomposition can be made 
using separators of bounded size [1, 2, 3, 4, 10J. A decomposition of this type 
can be found in linear time [.5, 10], however the huge constants involved in these 
algorithms do not make them of much practical use. Our results show that for 
many classes of graphs efficient decomposition algorithms exist, i.e., the size of 
the separators has no effect on the running time. 

A closely related, but somewhat different approach was surveyed in [12J. In 
this paper (see also [7]) it is shown that for many classes of graphs (for example 
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chordal graphs, clique separable graphs and edge intersection graphs of paths 
in a tree or EPT-graphs) a decomposition by clique separators is possible, and 
it is illustrated that such a decomposition can also be used to solve efficiently 
many NP-complete problems like MINIMUM FILL-IN, MAXIMUM CLIQUE, GRAPH 

COLORING and MAXIMUM INDEPENDENT SET. In [13] an algorithm is given for 
finding clique separators efficiently (the algorithm uses O( nm) time to find one 
clique separator). Our results (combined with the result of [11]) generalize the 
above mentioned results in the sense that at least some of these NP-complete 
problems are solvable for much more graph classes, i.e., graph classes for which 
the number of minimal separators is polynomial bounded. 

In [9] an algorithm is given which finds all, what the author caUs minimum 
size separators. By this is meant that, given a graph which is k-connected, 
the algorithm finds aU separators with k vertices. Moreover, it is shown in 
this paper that the number of these separators is bounded by O(2k "k). The 
algorithm which lists all minimum size separators runs in time O(2kn3) time. 

We call a subset of vertices S a minimal separator if there are non adjacent 
vertices x and y such that the removal of S separates x and y into disjoint 
connected components in such a way that no proper subset of S also does 
this (see Definition 2.1). A closely related concept which we call inclusion 
minimal separators lies more or less between the mininlum size sepa.rators and 
the minimal sepa,rators, i.e., all minimum size separators are inclusion minimal 
and all inclusion minimal separators are minimal separators. 

The following example shows that the minimum size separators and the in
clusion minimal separators are only of limited use. Consider any graph G. Take 
a new vertex x and make this adjacent to all vertices of G. Take another new 
vertex y and make this adjacent to x. Call this new graph H. The only inclu
sion minimal separator of H, which is also the only minimum size separator, is 
{x}. However if S is some minimal separator of G, then 5 U {x} is a minimal 
separator in H. Hence H has at least as many minimal separators as G. 

In [6, 10, 11] it is shown that many important classes of graphs have a poly
nomial number of minimal vertex separators. These graph classes include per
mutation graphs, circular permutation graphs, trapezoid graphs, circle graphs, 
circular arc graphs, distance hereditary graphs, chordal bipartite graphs, co
comparability graphs of bounded dimension and weakly triangulated graphs. 
In [11] it is shown that if, for a certain class of graphs, all minimal separators 
can be COlllputed in polynomial titne, then the problems TREEWIDTH and MIN

IMUM FILL-IN can be solved in polynomial time for graphs in this class. In this 
paper we present an algorithm to compute all minimal vertex separators. 

2 Preliminaries 

If G = (V, E) is a graph and HI <;; V a subset of vertices then we use G[W] as 
a notation for the subgraph of G induced by the vertices of 11'. For a vertex 
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x E V we use N(x) to denote the neighborhood of x. 
The following definition can be found for instance in [8J. 

Definition 2.1 Given a graph G = (V, E) and two non adjacent vertices a and 
b, a subset 5 c V is an a, b·separator if the removal of 5 separates a and b 
in distinct connected components. If no proper subset of 5 is an a, b-separator 
then 5 is a minimal a, b-separator. A (minimal) separator is a set af vertices 5 
for which there exist non adjacent vertices a and b such that 5 is a (minimal) 
a, b-separatar. 

The following lemma appears for example as an exercise in [8J. It provides an 
easy test whether a given set 5 of vertices is a minimal separator or not. 

Lemma 2.1 Let 5 be a separator of the graph G = (V, E). Then 5 is a minimal 
separator if and only if there are two different connected components of G[lI - 5J 
such that every vertex of 5 has a neighbor in both of these components. 

Proof. Let 5 be a minimal a, b-separator and let Ca and C b be the connected 
components containing a and b respectively. Let:r E 5. Since 5 is a minimal 
a, b-separator, there is a path between a and b passing through x but using no 
other vertex in 5. Hence x must have a neighbor in Ca and in Cb. 

Now let 5 be a separator and let Ca and Cb be two connected components 
such that every vertex of 5 has a neighbor in Ca and in Cb. Let a E Ca and 
b E Cb. Then clearly 5 is a minimal a, b-separator, for if x E 5, then there is a 
path between a and b which uses no vertices of S \ {x}. Hence S \ {x} is not 
an a, b-separator. 0 

Notice that this also proves the following. Let S he a minimal separator and 
let C1 and C2 be two connected components of G[lI - SJ sllch that every vertex 
of S has a neighbor in both C1 and C 2 • If a is a vertex of C1 and b is a vertex 
of C2 then 5 is a minimal a, b·separator. 

It may be a bit surprising at first sight that it is very well possible for one 
minimal separator to be contained in another one. An example of this can be 
found in [8J. However, for minimal a, b-separators things are different, since by 
definition one minimal a, b-separator cannot be properly contained in another 
one. 

We now show that at least some of the minimal separators are easy to find. 

Definition 2.2 Let a and b be non adjacent vertices. If S is a minimal a, b
separator such that S <;; N (a) then S is called close to a. 

Lemma 2.2 If a and b are non adjacent then there exists exactly one minimal 
a, b-separatar close to u. 

Proof. Let S be a minimal a, b-separator close to u. We show that S is exactly 
the set of neighbors of u for which there is a path to b using no other neighbors 
of a. 
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For every vertex in S there is a path to b which does not use any other 
vertex of N (a), since S is minimal. On the other h;l.Ild, if x is a neighbor of a 
such that there is a path to b without any other vertex of N(a), then x must be 
an element of S, otherwise there is a path between x and b which avoids Sand 
this is a contradiction since x is in the component of G[V - S] that contains a. 

o 

Notice that a minimal separator close to a can easily be computed as follows. 
Start with S = N(a). Clearly, since a and b are non adjacent S separates a and 
b. Let Cb be the connected component of G[V - S] containing b. Let S' ~ S 
be the set of those vertices of S which have at least one neighbor in Cb. S' is 
a minimal a, b-separator by Lemma 2.1, and since it only contains neighbors of 
a, it is close to a. 

Lemma 2.3 Let S be the minimal a, b-separator close to a and let Ca and Cb 
be the connected components containin!J a and b respective/yo Let S· 01 S be 
another minimal a, b-separator. Then S' c S U Cb. 

Proof. First assume S' has a vertex x if. S U Ca U Cb. Then there is a path 
P from a to b passing through x but using no other vertices of S·. But then 
P has to pass through S at least twice. Clearly P can be shortened since S 
contains only neighbors of a. 

Now assume S' has a vertex x E Ca. S' \ {x} does not separate a and b 
hence there is a path P between a and busing .. , but no other vertex of S*. 
Since S is a minimal separator, P goes through a vertex yES. Since S is close 
to a, y is adjacent to a. Hence there is a path P' C P between a and b that 
does not contain x. Then P' contains no vertex of S*. 0 

In the next two sections we show how to obtain new minimal (t, b-separators 
from a given one using so called Ininimal pairs. A minimal pair is in SOlne sense 
the smallest step to go from one minimal a., b-separator to the next one. The 
main difficulty is to prove that we indeed obtain all minimal separators by using 
small steps only. 

In section 5 we describe an algorithm that computes, for a given pair of non 
adjacent vertices (t and b, all minimal a., b-separators in a breadth-first-search 
manner (Figure 1, page 9), we prove that it is correct and we analyse its time 
complexity. vVe end with some concluding remarks and some open problems. 

3 Good pairs 

Let G = (V, E) be a graph and let a and b be non adjacent vertices in G. Let 
S be a minimal a., b-separator and let Ca and Cb be the connected components 
containing a a.nd b respectively. 
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Definition 3.1 Let .6. <;:; Ca \ {a} and let C~ be the connected component of 
G[Ca -.6.J that contains a. Let N <;:; S be the set of vertices in S that do not 
have a neighbor in C~. The pair (.6., N) is called good for S if the following 
conditions are satisfied. 

1. N i- 0. 

2. Each b E .6. has at least one neighbor in C~. 

3. Each b E .6. either has a neighbor in N or there exists a vertex x E N 
and a connected component D of G[Ca - .6.J such that both x and b have 
at least one neighbor in D. 

Lemma 3.1 If S is close to a then there is no good pair. 

Proof. Assume (.6.,N) is a good pair. Hence.6. <;:; Ca \ {a}. Let C~ be the 
connected component of G[Ca - .6.J that contains a. The set N is defined as 
the subset of S that does not contain any neighbor in C~. Then N = 0 since S 
contains only neighbors of a. But by definition N i- 0. 0 

In Theorem 3.1 we show that. a good pair defines a new separat.or. In 
Theorem 3.2 we show that each minimal a, b-separator can be obtained by a 
good pair for t.he separator that is close to b. In section 4 we show that. only a 
restricted type of good pairs, called minimal pairs, have to be considered. 

Theorem 3.1 Let (.6., N) be a good pair. Define S* = (S U.6.) \ N. Then S' 
is a minimal a, b-separator. 

Proof. Let C~ be the connected component of G[Ca - .6.J that contains a. 
Clearly, S' separates a and b, since vertices of N do not have neighbors in C~. 
Let C; be the connected component of GW - S*J that cont.ains b. Notice that 
Cb C C;, and since each vertex of N has a neighbor in Cb, N C C;. 

Each vertex of S' has at least one neighbor in C~ by definition of a good 
pair, and each vertex of S' \ .6. has at least one neighbor in C; since it has at 
least one neighbor in Cb. The only thing left t.o show is that each vertex of .6. 
has a neighbor in C;. Let b E .6.. By definition, either /j has a neighbor in N 
(and hence in Cbl or there is a vertex x E N and a connected component D of 
G[Ca - .6.J such that both /j and x have a neighbor in D. D is also connected 
in GW - S'J and since x ha.s a neighbor in D, DeC;. 0 

Theorem 3.2 Assume S is close to b. Let S' i- S be a minimal a, b-separator. 
There exists a good pair (.6., N) such that S' = (S U.6.) \ N. 

Proof. Let C; and C; be the connected components of GW - S'J containing a 
and b respectively. 
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Since 5 is close to b, by Lemma 2.3, S* C 5 U Ca. Let .tJ. = S* n Co and 
N = 5 \ 5*. We show that (.tJ., N) is a good pair. 

Since 5' fc 5 and both are minimal (t, b-sepa.rators: N fc 0. 
Let C~ be the connected component of C[Ca - .tJ.] containing a. We show 

that N is exactly the set of vertices in 5 which do not have a neighbor in C~. 
In order to do this we claim that C~ = C~. Since C~ is a connected component 
of G[V - (.tJ. U 5)] and since 5* c .tJ. U 5, C~ <;; C~. Now assume there is a vertex 
x E N which has a neighbor y E C~. Since 5 is close to b, x is a neighbor of 
b. This is a contradiction since there would be a path between a and b which 
does not use any vertex of 5*. This shows that C~ = C~. Since S* is minimal, 
N is exactly the set of vertices in S that do not have a neighbor in C~. It now 
also follows that every vertex of .tJ. U (5 \ N) has at least one neighbor in C~. 

To prove the last item first notice that N C Ci: and that Ci: contains exactly 
those connected components D of C[Ca -.tJ.] for which there is a vertex yEN 
which has a neighbor in D. NolV let 6 E .tJ.. Since S* is minimal, 6 has a 
neighbor x in Ci:. Since 6 only has neighbors in Ca U 5, x must be an element 
of N or of some component D of C[Ca - .tJ.]. In this second case, there must 
also be a vertex yEN which has a neighbor in D. 0 

4 Minimal pairs 

Again let C = (V, E) be a graph and let a and b be non adjacent vertices 
in C. Let 5 be a minimal a, b-separator and let Ca and Cb be the connected 
components of C[V - 5j containing a and b respectively. In this section we 
show how to find some good pairs. 

Definition 4.1 Let x E 5 be non adjacent to a. Let Calx) be the subgraph 
induced by Ca U {:z:}. Let.tJ. be the minimal x, a-separator in Cal x) close to 
x, and let C~ be the connected component containing a in Calx) when .tJ. is 
removed. Now let N be the set of vertices of 5 which do not have a neighbor in 
C~. The pair (.tJ., N) is called the minimal pair for Sand x. 

Lemma 4.1 A minimal pair is good. 

Proof. Notice that x EN, hence N f 0. 
Now, .tJ. is a minimal x,(t-separator in Calx) and hence every vertex of.tJ. 

has a neighbor in C~. 
Finally, if 6 E .tJ. then 6 is adjacent to x since .tJ. is close to x. Hence each 

vertex of .tJ. has a neighbor in N. 0 

We want to prove that we can find every minimal a, b-separator by start
ing with the minimal a, b-separator that is close to b and by recnrsively using 
minimal pairs. The following rather technical lemma proves this. 
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Lemma 4.2 Let (t!.,N) be a good pair for S. Let x E N and let (t!.*,N*) be 
the minimal pair for S and x. Let S' = (S u t!. *) \ N*. Define t!. = t!. \ t!. * and 
N = (N \ N*) U (t!.* \ t!.). Then: 

1. if N = 0 then (S u t!.) \ N = S*, and if 

2. N i 0 then (t!.,N) is a good pair for S* and (S U t!.) \ N = (S* U t!.) \ N. 

Proof. We start with some easy observations. Let C~ be the connected compo
nent of G[Ca - t!.] that contains a and let C~ be the connected component of 
G[Ca - t!.*] that contains a. Let t!.' = N(x) n t!.. 

• C~ ~ C~ since ~* contains no vertices of C~. 

• t!.' <;; t!. * since every vertex of t!.' has a neighbor in C~. 

• t!. \ t!.' <;; C~ since every vertex of t!. has a neighbor in C~. 

• N* ~ N, since C~ ~ C:. 

• C~ is exactly the connected component of G[C~ - (t!. \ t!.')] containing a 
since C~ - (t!. \ t!.') contains all vertices of C~ but no vertex of t!.. 

• The set of vertices in S* without a neighbor in C~ is exactly N, which is 
easy to check. 

Assume N = 0. Then t!. * <;; t!. and N = N* (since N* <;; N). Now clearly, 
t!. * = t!. holds, otherwise S* and (S U t!.) \ N are two minimal a, v-separators of 
which one is properly contained in the other which is impossible by definition. 
Hence S* = (S U t!.) \ N. 

Now assume N i 0. We show that (t!., N) is good for So. Notice that every 
vertex of t!. has a neighbor in C~, since this holds for every vertex of t!.. 

Let 6 E t!. and assume that 6 has no neighbors in N. Since 6 E C~, 6 has 
no neighbor in N*. Hence 6 has no neighbor in N. Now (t!., N) is a good pair, 
hence there is a vertex zEN and a connected component D of G[Ca - t!.] such 
that 6 and z have a neighbor in D. 

Suppose that for no vertex of N there is a connected component in G[C; -t!.] 
such that this vertex and 6 both have a neighbor in this component. The 
following observations lead to a contradiction. 

• N (6) n D <;; C~. Otherwise, since t!. * \ t!.' C N, b has a neighbor in N. 

• G[D \ Ll. *] is connected. Since otherwise every connected component has 
a vertex with a neighbor in t!. * \ t!., and hence there is a connected com
ponent and some vertex in N such that this vertex and 6 both have a 
neighbor in this component. 

• D contains no vertices of Ll. *, by the same argument. 
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This shows that D C C~. If z E N* then z can have no neighbors in D, since z 
has no neighbors in C~. Hence zEN \ N*. This is a contradiction, since now 
there is a connected component D in G[C~ - L'l.J and a vertex z E N such that 
z and b both have a neighbor in D. 

The fact that (S U L'l.) \ N = (S* U L'l.) \ N is obvious. 0 

This lemma shows that if S is a minimal separator and S* is another minimal 
separator defined by a good pair for S, then we can get closer to S* by choosing a 
suitable minimal pair. By Lemma 4.2 and Theorem 3.2 we obtain the following 
result. 

Corollary 4.1 Let S be a minimal a, b-separator and let S, be the minimal 
a,b-separator close to b. There exists a sequence (L'l.l,N,), ... ,(L'l.t,Nt ) such 
that 

1. (L'l." N,J is a minimal pair for S, and some vertex x, E N , . 

2. For i = 2, ... , t, (L'l.i, N;J is a minimal pair for Si = (8i-1 U L'l.i-1) \ Ni_1 

and some vertex Xi E Ni. 

3. 8 = (8t U L'l.,) \ Nt. 

5 An algorithm finding minimal separators 

In this section we give an algorithm that, given a graph G and two non adjacent 
vertices a and b finds all minimal a, b-sepa.rators. This algorithm is displayed 
in figure 1 on page 9. 

Theorem 5.1 Let 8 be the minimal a, b-separator that is close to b and let 
T = {8} and Q = {S}. Then a call separal,ors(G,a,b, T, Q) determines a set 
Q containing all minimal a, b-separators. 

Proof. By Corollary 4.1 the set Q contains all minimal a, b-separators. By 
Lemma 4.1 and Theorem 3.1 all sets in Q are minimal separators. 0 

Remark 5.1 If we let T = {{b}} and Q = 0 then a call separators( G, a, b, T, Q) 
has the same result. 

Theorem 5.2 Let R be the number of minimal a, b-separators (for non adja
cent vertices a and b). The algorithm to determine all minimal a, b-separators 
can be implemented to run in time O( 11.

4 R). 

Proof. Assume that the graph is given with an adjacency matrix. The minimal 
separator 8 that is close to b can easily be found in 0(n2 ) time as follows. 
Initialize S = N(b). Determine the connected component Ca of G[V - 8]. 
Remove vertices from S that do not have a neighbor in Ca. 
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procedure separators(C,a,b, T, Q) 
input: Graph C and non adjacent vertices a and band 

sets T and S of minimal a, b-separators. 
output: Set Q of all minimal a, b-separators in C. 
begin 

end. 

T':= 0; 
for each SET do 
begin 

Determine Co; 
{Co is the connected component of C[V - S] that contains a} 
for each xES which is not adjacent to a do 
begin 

Determine ~; 
{~is the minimal x, a-separator in Co(x) that is close to x} 
Determine C~; 
{C~ is the connected component of C[Co -~] that contains a} 
Determine N; 
{N is the set of vertices in S that do not have a neighbor in C~} 
S*:=(SU~)\N; 
T':= T' U {S*} 
{Add S' to T' only if not yet present!} 

end for 
end for; 
Q:= Qu T'; 
separators( C, a, b, T', Q) 

Figure 1: Algorithm finding minimal a, b-separators 
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First we show that the outermost loop of the procedure separators is exe
cuted at most n times. If the outer loop is executed for the ith time, for each 
separator 5 in the set 7, the connected component of G[JI - 5] that contains 
a has at most n - i vertices. 

Since the set 7 contains only different minimal separators, the second loop 
is executed at most R time. Clearly, each separator has at most O(n) elements. 

Determining tl. takes at most O( n2 ) time. Also computing C~ and 11' can 
clearly be done in O( n2

) time. \Ne have to make sure that the new set 7' 
contains no duplicate separators. We can do this by keeping it in a suitable 
data structure, allowing an update in O( n log R) = O( n2 ) time. 

This shows that the algorithm can be implemented to run in O( n4 R) time. 
D 

Corollary 5.1 The set of all minimal separators of a graph can be found in 
O( n6 R) time, where n is the number of vertices in the graph and R is the total 
number of minimal separators. 

6 Conclusions 

In this paper we have presented an algorithm to determine a list of all minimal 
vertex separators of a graph. The algorithm needs only polynomial time per 
separator that is found. We like to mention some open problems. 

First of all, we feel that it should be possible to improve the running time 
of the algorithm presented here. 

A related concept is that of an inclusion Ilzinimal separator. This is a 
minimal separator with the additional constraint that no proper subset is also 
a minimal separator. The following lemma shows that our algorithm can be 
used to find all inclusion minimal separators. However, the example given in 
the introduction illustrates that this may not be the most efficient way to do 
this. 

Lemma 6.1 A separator 5 of a graph G = (JI, E) is inc/usion minimal if 
and only if every vertex of 5 has a neighbor in every connected component of 
G[V - 5]. 

It follows that a list of all inclusion minimal separators can easily be obtained 
from the list of all minimal separators. Until now, we have not been able to 
find an efficient algorithm which finds aU inclusion minimal sepa.rators. 
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