
Liszt: A Domain Specific Language for Building Portable
Mesh-based PDE Solvers

Zachary DeVito∗ Niels Joubert∗ Francisco Palacios† Stephen Oakley‡
Montserrat Medina‡ Mike Barrientos∗ Erich Elsen‡ Frank Ham‡ Alex Aiken∗

Karthik Duraisamy† Eric Darve‡ Juan Alonso† Pat Hanrahan∗
∗ Department of Computer Science, Stanford University {zdevito,niels,mbarrien,aiken,hanrahan}@cs.stanford.edu
† Department of Aeronautics and Astronautics, Stanford University {fpalacios,dkarthik,jjalonso}@stanford.edu

‡ Department of Mechanical Engineering, Stanford University {sjoakley,mmmedina,eelsen,fham,darve}@stanford.edu

ABSTRACT
Heterogeneous computers with processors and accelerators
are becoming widespread in scientific computing. However,
it is difficult to program hybrid architectures and there is
no commonly accepted programming model. Ideally, ap-
plications should be written in a way that is portable to
many platforms, but providing this portability for general
programs is a hard problem.

By restricting the class of programs considered, we can
make this portability feasible. We present Liszt, a domain-
specific language for constructing mesh-based PDE solvers.
We introduce language statements for interacting with an
unstructured mesh, and storing data at its elements. Pro-
gram analysis of these statements enables our compiler to
expose the parallelism, locality, and synchronization of Liszt
programs. Using this analysis, we generate applications for
multiple platforms: a cluster, an SMP, and a GPU. This
approach allows Liszt applications to perform within 12% of
hand-written C++, scale to large clusters, and experience
order-of-magnitude speedups on GPUs.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Specialized application languages; D.3.4 [Programm-
ing Languages]: Processors—Compilers, Optimization,
Code Generation; J.2 [Physical sciences and engineer-
ing]: Aerospace, Engineering

General Terms
Languages, Design, Performance

Keywords
compiler analysis and program transformations, program-
ming and runtime environments for high performance and
high throughput computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11, November 12–18, 2011, Seattle, Oregon USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

1. INTRODUCTION
Modern heterogeneous architectures achieve efficiency thro-

ugh the use of specialized hardware, often optimized for
floating point throughput [16, 34]. Several of the world’s
top supercomputers, such as IBM-LANL Roadrunner [5] and
Tianhe-1A [28], already combine multi-core processors with
accelerators to achieve petaflop performance. To reach exas-
cale computing, we will need even more power-efficient plat-
forms, which are likely to use heterogenous architectures.

However, programming such systems has proven problem-
atic. A range of competing programming models exist, such
as MPI [15], OpenMP [30], and CUDA/OpenCL [22, 26].
These models are difficult to compose, and even though some
of these like OpenCL can run on multiple platforms, pro-
grams frequently require tuning for each platform. Applica-
tions should ideally be written in an environment that makes
it possible to target a variety of parallel hardware without re-
quiring significant program modifications. Current general-
purpose parallel programming languages are tackling these
problems, but it is unclear whether these languages will be
successful. Portability is challenging because of the vary-
ing parallel programming abstractions exposed by different
hardware and the difficulty of automatically analyzing and
compiling programs.

In order to perform well on modern hardware, one needs
to find parallelism, expose locality, and reason about syn-
chronization. It is difficult to extract this information from
general programs, but it is often feasible for restricted classes
of programs. For example, a compiler might be able to fully
analyze matrix computations in order to target heteroge-
neous hardware. Our approach is to specialize for a domain
by using a high-level language or framework. By embedding
domain knowledge in the compiler, we can automatically
map code to run on a range of parallel architectures.

We present a domain-specific language, Liszt, for solv-
ing partial differential equations (PDEs) on unstructured
meshes. These solvers are used in many fields such as com-
putational fluid dynamics or mechanics. Section 2 intro-
duces language statements that capture the data-parallelism
of the mesh, the locality of the PDE stencil, and the synchro-
nization of dependencies that occur between phases of an ap-
plication. In Section 3, we show how this domain knowledge
is exploited by program analyses that enable different par-
allel execution strategies: a partitioning approach based on
message passing and a scheduling approach based on graph
coloring. In Section 4, we present our implementation of the
Liszt compiler, which uses these execution strategies to tar-



edges(c) = 

cells(c) = {outside(f) 
                 s.t. f ∈ faces(c)} 

vertices(f) =      

edgesCCW(f) =     

f vertices(c) =

faces(c) = 

C
e

v0

v1

towards(e,v0)

v0

v1
towards(e,v1)

flip(e)

v0

v1

v0

v1

outside(f)
finside(f)  

Figure 1: Liszt’s major built-in topological relations. outside and inside (the duals of head and tail) extract the cells on either
side of the face. The other duals are also included (e.g. edges(v), the dual of faces(c)). flip and towards orient elements.

//Initialize data storage
val Position = FieldWithLabel[Vertex,Float3]("position")
val Temperature = FieldWithConst[Vertex,Float](0.f)
val Flux = FieldWithConst[Vertex,Float](0.f)

5 val JacobiStep = FieldWithConst[Vertex,Float](0.f)
//Set initial conditions
val Kq = 0.20f
for (v <- vertices(mesh)) {

if (ID(v) == 1)
10 Temperature(v) = 1000.0f

else
Temperature(v) = 0.0f

}
//Perform Jacobi iterative solve

15 var i = 0;
while (i < 1000) {

for (e <- edges(mesh)) {
val v1 = head(e)
val v2 = tail(e)

20 val dP = Position(v2) - Position(v1)
val dT = Temperature(v2) - Temperature(v1)
val step = 1.0f/(length(dP))
Flux(v1) += dT*step
Flux(v2) -= dT*step

25 JacobiStep(v1) += step
JacobiStep(v2) += step

}
for (p <- vertices(mesh)) {

Temperature(p) += 0.01f*Flux(p)/JacobiStep(p)
30 }

for (p <- vertices(mesh)) {
Flux(p) = 0.f; JacobiStep(p) = 0.f;

}
i += 1

35 }

Figure 2: This Liszt example calculates the temperature
equilibrium due to heat conduction on a grid using a Jacobi
iteration.

get runtimes for MPI, pthreads, and CUDA. In Section 5, we
present the results of porting a range of applications to Liszt,
using our runtimes to target three platforms: a distributed
memory cluster, an SMP, and a GPU. We demonstrate that
Liszt applications are portable across the wide range of ma-
chines and perform comparably to well-tuned hand-written
code.

2. LANGUAGE DESIGN
We first describe some strategies for solving PDEs, and

then describe the features in Liszt that address these tech-
niques. We assume that the governing PDEs are discretized
on a mesh over a region of space. The spatial extent is rep-
resented as an unstructured mesh that contains a number
of different elements. The PDE itself is discretized to create
operators that are used to iteratively compute new values
from existing ones. Since the same operators are applied to

each element of the mesh, PDE solvers typically expose a
large degree of data-parallelism.

Mesh elements are associated with their neighbors through
topological relationships. For example, a face separates two
cells. Operators derived from the discretization of the PDEs
are implemented using these topological relationships. In
most cases, the operators are local; that is, the computed
values depend only on a set of neighboring values called the
stencil. The extent of the stencil depends on the choice
of discretization of the governing PDE, but most existing
approaches to the numerical solution of PDEs use a local
stencil of the form described here [25]. Data locality of the
computation is thus captured by the bounded stencil.

Finally, the iterative application of operators implies that
computation occurs in stages. Values of a field are normally
read or written, but not both within the same stage; this
state of computation we call a phase. Data-dependencies oc-
cur between coarse-grained phases, but not within the data-
parallel implementation of a particular phase. This limits
the synchronization necessary for a parallel implementation.

Liszt is designed with this problem formulation in mind.
The Liszt programming environment is based on Scala [29]
and has support for standard arithmetic types, control flow
(if- and while-statements), and statically-typed non-recursive
functions. We extend Scala with types and statements to
support the implementation of PDE solvers, while also en-
suring that the compiler can reason about parallelization,
locality, and synchronization. More specifically, we have
added the following capabilities to the language:

Mesh elements Topological entities are first-class abstract
data types that describe a discretized 3D manifold of
arbitrary polyhedra. We provide a single mesh con-
sisting of vertex, edge, face, and cell elements:

Vertex Edge Face Cell

Sets Mesh elements can be grouped into sets. Expressions
like cells(mesh) refer to all the cells in a mesh, and
vertices(cell) refer to all the vertices in a cell.

Topological Relationships Given a mesh element, neigh-
boring elements can be accessed only through a suite
of built-in topological functions on 3D polyhedra, sum-
marized in Figure 1. For instance, head(e) and tail(e)

return the two vertices on either side of edge e. We
construct our topological relations from the operators
of Laszlo and Dobkin [11].



Fields Data can be stored on an element using a field. A
field is an associative array that maps all mesh ele-
ments of a particular type to a value. They are similar
in spirit to the fields in Sandia’s Sierra framework [35].
Fields can be initialized as constants or from external
data.

Parallelism A parallel for-comprehension expresses com-
putation for all the mesh elements in a set. We use
the term for-comprehension rather than for-loop since
Liszt’s for-comprehension does not contain any loop-
carried dependencies.

Figure 2 shows a simple heat conduction application writ-
ten in Liszt that calculates the equilibrium temperature dis-
tribution on an unstructured grid of rods using a Jacobi
iteration. Lines 2–5 construct fields to store the solution.
Lines 8–13 use a for-comprehension to set up an initial con-
dition with temperature concentrated at one point. Lines
16–35 perform 1000 Jacobi iterations to solve for the steady-
state temperature distribution. Each iteration operates on
all edges in the mesh, reading the Position and Temperature

fields at the head and tail of the edge. Reduction operators
are used to calculate new values for the Flux and JacobiStep

at each iteration.
In addition to having useful types for solving PDEs, the

language has also been carefully designed so that it can be
analyzed and mapped to modern hardware.

2.1 Parallelism
Liszt’s for-comprehensions expose the data-parallelism in

the mesh. The calculations in the body of the statement
are independent. We make no assumptions about how the
statement is parallelized, so Liszt has the freedom to choose
different implementation strategies on different hardware.
for-comprehensions can appear inline in code, can be nested
to arbitrary depth, and match the style of programming
typical of our users.

2.2 Locality
The stencil of the PDE captures the pattern of memory

accesses of the computation at each element. While there
are many different ways to express the stencil, our approach
is to approximate it from the use of topological relationships
and field accesses using static analysis. To ensure this anal-
ysis is precise, Liszt has the following restrictions, which our
compiler enforces:

• The topology of the mesh is fixed during execution.

• Mesh elements are accessed only through the use of
built-in topological functions. They cannot be arbi-
trarily constructed using, for instance, integer indices.

• Variable assignments to topological elements and fields
are immutable (i.e. any such variable has a single static
assignment to a value). This restriction ensures pro-
gram analysis can accurally bound the set of mesh el-
ements referenced by a variable. In particular, it pre-
vents a program from performing a mesh traversal of
unbounded depth which would produce an imprecise
stencil.

• Data in fields can only be accessed through the corre-
sponding mesh element.

In Section 3.2, we describe how we automatically deter-
mine the stencil from the program using these restrictions.

2.3 Synchronization
Computation occurs in phases: data produced in one phase

is used only in subsequent phases. Data-dependencies be-
tween phases imply the need for synchronization. Cluster
implementations in particular may need to transfer data
from the halo of one partition to another between two phases
of computation. Liszt codifies these dependencies in the se-
mantics of its field objects.

All fields have a current state, referred to as their field
phase. At any point in the program, a field is in a single
phase: read-only, write-only, or reduce-using-operator [op]

(only reductions of the form field(v) [op] = e are allowed).
The compiler enforces that a field may not change phase in-
side the dynamic scope of a for-comprehension. Outside of
a for-comprehension a field can change phase at any time.
Limiting fields to a single phase inside a for-comprehension
restricts intra-phase dependencies while enabling dependen-
cies between coarse-grained phases.

There is one common exception where element-wise cal-
culations have intra-phase dependencies. When calculating
the flux in a cell-centered PDE solver, the value in a cell
results from the summation of the fluxes calculated at each
face. Since flux calculations are expensive operations, it is
common to calculate the flux at a face and scatter it to cells
that share the face. The scatter operation introduces a de-
pendency among all faces writing to the cell. To address
this common case, Liszt also provides commutative and as-
sociative reductions (eg. *=, +=) that run atomically. Since
the properties of the reduction allow them to be reordered,
and since we use the stencil to determine when reductions
interfere, we can produce efficient atomic implementations
of reductions.

3. PROGRAM ANALYSIS
The domain-specific statements in the Liszt language en-

able program analyses that determine the stencil and track
field phases. We use this analysis to implement two paral-
lel execution strategies for Liszt code: a partitioning-based
approach and a coloring-based approach. We first give an
overview of these two strategies. We then show how we use
the program analyses to implement each strategy.

3.1 Parallel Execution Strategies
The first strategy is suited to distributed memory sys-

tems, while the second is suited to architectures with shared
memory and a high degree of parallelism.

3.1.1 Partitioning
PDE solvers need to run on large distributed memory ma-

chines. Since communication between nodes is significantly
more expensive than local operations, synchronization be-
tween nodes should be minimized. Applications for these
clusters typically use a mesh partitioning approach that min-
imizes the size of the boundary between partitions [31, 35].
The stencil of elements along the boundary of a partition
may require data from non-local elements. These ghost el-
ements are duplicated locally. When their values become
stale (if, for instance, another node updates the value of its
ghost using a reduction), messages are exchanged between
nodes to send the updated values. These updates are per-
formed between the computational phases of solvers.



3.1.2 Coloring
Liszt also targets architectures with multiple computa-

tional units that access data in a single memory space, such
as a GPU. Modern GPUs are multi-core, multi-threaded
vector machines that emphasize throughput rather than la-
tency. As an example, the NVIDIA GF100 architecture con-
sists of 15 cores with 48 execution contexts each, where a
context consists of a 32-wide vector lane [27]. This design
enables 23,040 individual work items to exist simultaneously.

Each piece of work can run independently. However, writes
to the same memory location, like those that occur in Liszt’s
reductions, cause data races.1 We can schedule work items
such that no two items in flight at the same time will perform
writes to the same memory location. We employ a graph-
coloring approach: an interference-graph is built, where two
items share an edge if they write to the same value. Coloring
this graph such that no two adjacent nodes share the same
color ensures that items with the same color can run inde-
pendently [1, 19]. Work is launched in batches of a single
color, separated by barriers. Unlike partitioning, this ap-
proach does not require data duplication or communication
phases.

3.2 Inferring Stencils and Phases
Both the partitioning and coloring approaches require knowl-

edge of the application’s stencil and the locations in the
program where fields can change phase. Liszt extracts the
stencil and tracks field phases using two domain-specific pro-
gram analyses.

3.2.1 Stencil
For a given Liszt expression, the stencil specifies which

field entries are read and written. To calculate a stencil for
a Liszt expression el, we use static analysis to create a new
expression e′l that, when run on a particular mesh, gener-
ates the reads and writes for the original expression. The
expression e′l has two important properties. First, it over-
approximates the set of locations that el reads and writes.
That is, if el reads (resp. writes) a location, e′l is also guar-
anteed to read (resp. to write) that same location. Second,
e′l is guaranteed to terminate, even if the original expression
el does not. We first present a definition of the stencil as
used in Liszt, and the program transformation that allows
Liszt to evaluate it. Section 3.3 then shows how we use the
information in the stencil to calculate the ghost elements
(for partitioning) and the interference-graph (for coloring).

We represent the stencil as a function, S, that takes a
Liszt expression el, and an environment E mapping the free
variables in el to their values. It computes (R,W ), where R
is a set of field entries that the program will read, and W
is the set of field entries that it will write (or reduce) if we
execute el in the context E:

S(el, E) = (R,W )

We express the field entry for element v in field f as the pair
(f, v).

As an example, consider the result of evaluating the stencil
for the flux calculation in the previously mentioned heat

1NVIDIA’s Fermi architecture has hardware support for
some fast atomic operations, like floating point addition [27],
but the lack of double-precision addition limits their usabil-
ity for physical simulations.

conduction example. For a single edge e0 = (A,B) in the
mesh, we find:

S(heat_transfer:18-26, E{e← e0}) = (R,W )

where

R = {(Position, A), (Position, B), (Temperature, A), (Temperature, B)}
W = {(Flux, A), (Flux, B), (JacobiStep, A), (JacobiStep, B)}

Since the stencil depends on the execution of a general
program, we cannot guarantee that it has some desirable
properties, such as always terminating. For this reason, we
instead define a conservative approximation, S, of the stencil
such that for all el and E:

S(el, E) ⊆ S(el, E)

where ⊆ is defined point-wise on the pair (R,W ).
To implement the approximate stencil, we create an ex-

pression e′l based on el such that S(e′l, E) = S(el, E) ⊇
S(el, E), and such that e′l is guaranteed to terminate. To
evaluate S(el, E), we can execute the expression e′l for the
environment E, and record the field entries and topological
elements it accesses as they occur.

We define an operator T from Liszt program el to e′l as
follows:

T ( if(ep) et else ee ) ≡ T (ep); T (et); T (ee);

T ( while(ep) eb ) ≡ T (ep); T (eb);

T ( f(e0,...,en) ) ≡ f ′(T (e0),...,T (en))

where functions f and f ′ are defined as

def f(a0,...,an) = eb and

def f ′(a0,...,an) = T (eb)

For each remaining kind of expression e, the transform T is
defined by recursively distributing T to the subexpressions
of e.

Note that if-statements are transformed such that both
branches of the statement execute, which causes strictly
more field accesses. Since executing extra code can only
add to R′ and W ′ this guarantees that e′l conservatively
approximates el, regardless of the path the program takes.
Also, while-loops are transformed such that the predicate
and body of the loop execute exactly once. Since the assign-
ments to mesh variables cannot change from one iteration to
the next, it is sufficient to execute the body of the loop once
to capture all mesh-access patterns it will perform. Each
function call to f is replaced with a call to the function f ′

that is the result of applying T to the body of f .
Since Liszt has no looping statements except while(ep) eb

and since for-comprehensions iterate over finite sets, the
transformed code must terminate when executed. Since
each change only increases the size of the resulting sets,
S(el, E) ⊆ S(e′l, E). We optimize our implementation of S
by eliminating unnecessary mathematical operations that do
not affect the stencil. Furthermore, we use for-comprehension
fusion and common subexpression elimination on e′l to im-
prove the efficiency of executing e′l on a large mesh.

Figure 3 shows the result of applying T to the heat con-
duction example. Since T removes all conditionals, loops,



val Position = FieldWithLabel[Vertex,Float3]("position")
val Temperature = FieldWithConst[Vertex,Float](_)
val Flux = FieldWithConst[Vertex,Float](_)
val JacobiStep = FieldWithConst[Vertex,Float](_)

5 for (v <- vertices(mesh)) {
Temperature(v) = _
Temperature(v) = _

}
for (e <- edges(mesh)) {

10 val v1 = head(e)
val v2 = tail(e)
Position(v1) - Position(v2)
Temperature(v1) - Temperature(v2)
Flux(v1) += _

15 Flux(v2) -= _
JacobiStep(v1) += _
JacobiStep(v2) += _

}
for (p <- vertices(mesh))

20 Temperature(p) += Flux(p)/JacobiStep(p)
for (p <- vertices(mesh)) {

Flux(p) = _
JacobiStep(p) = _

}

Figure 3: The result of applying T to the heat conduction
example and removing unnecessary arithmetic operations.

and arithmetic, the code simply performs mesh operations
and field accesses. We have found the approximate stencil to
be nearly exact in the programs we examined since solvers
rarely have control-flow dependent field accesses.

3.2.2 Field Phase Changes
When the phase of a field changes, a runtime may need to

perform an action such as cluster communication. During
analysis, Liszt inserts enterPhase(pf ,f) statements into the
program that make explicit where field f enters phase pf .
The compiler transforms the program as follows:

• the statement a = f(v) is replaced with
enterPhase(READ,f); a = f(v).

• the statement f(v) [op]= a is replaced with
enterPhase([op],f); f(v) [op]= a.

• In each for-comprehension for(vi <- es) eb, we find the
set C of all enterPhase statements in eb (and all func-
tions that eb calls), and replace the for-comprehension
with C; for(vi <- es) eb. If C contains two statements,
enterPhase(p1,f) and enterPhase(p2,f), such that
p1 6= p2, then f may change phase within the for-
comprehension, and Liszt reports a compiler error.

Since, by construction, fields cannot change phase inside
a for-comprehension, we run a second pass over the pro-
gram that removes all enterPhase statements from any nested
code.2 We perform redundancy elimination on enterPhase

statements as a dataflow pass over the program. Since this
analysis occurs statically, it is conservative. To prevent ex-
tra phase changes from invoking cluster communication, we
track the phase of a field at runtime and only perform com-
munication when the field undergoes a phase change.

3.3 Implementing Partitioning and Coloring
Given a stencil for a Liszt program, and the program anno-

tated with enterPhase statements, we can parallelize it using
either the partitioning or coloring strategy from Section 3.1.

2We refer to code that runs outside the dynamic context of
a for-comprehension as un-nested code, and code that runs
inside a for-comprehension as nested code.

for(e<-edges(mesh)){
 field(head(e))+= _
 field(tail(e))+= _
}

H

F

C

B

D G
1

5
8

10

11 7
3 

0
2

4
69

A

E

(a) input

n0 n1

H

F

D G

8
10

11
7

69

E

B
1

5

3 
0
2

4

A

C

(b) partition

H

F

D G

8
10

11
7

69

E

B
1

5

3 
0
2

4

A

C

E

D

(c) ghosts G0 = {E} G1 = {D}

(n0 7→ n1) = {(field, E)}
(n1 7→ n0) = {(field, D)}

(d) message pattern

Figure 4: The result of applying the partitioning strategy
to (a). We generate an initial partition (b) and then detect
ghosts (c), which determines the communication pattern (d).

for(e<-edges(mesh)){
 field(head(e))+= _
 field(tail(e))+= _
}

H

F

C

B

D G
1

5
8

10

11 7
3 

0
2

4
69

A

E

(a) input

1 5 8 10 11730 2 4 6 9

A C E F HGDB

edges

field write entries
(b) field writes

1 5 8 10

11730

2 4 6 9

threads

(c) interference graph

H
F

E

C

B

D G
1

5
8

10

11 7
3 

0

2
469

A
(d) colored mesh

Figure 5: The result of applying the coloring strategy to
(a). We use the inferred stencil to generate the set of field
writes (b) that are performed for each edge. We construct
and color an interference-graph (c); each edge of the same
color can be evaluated in parallel, as shown in (d).

3.3.1 Partitioning
To compute a partitioning of Liszt code over n nodes, we

first compute an n-way partition of all of the mesh elements.
For 3D meshes, we build a graph with edges between two
cells that share a face, and use ParMETIS to compute a
partitioning of cells [21]. Any lower-dimensional element
is heuristically assigned to a partition that contains one of
its neighboring cells. While we could use a stencil-derived
graph, we have found that this cell-based construction works
best when using a heuristic-driven partitioner.

Given an initial partitioning, we then calculate the ghost
elements for a partition. Let Dn be the set of mesh elements
assigned to node n. If E is an environment mapping from
the set of global mesh variables to their values, then let

En(v) = E(v) ∩ Dn

Intuitively, this operation partitions the global topological
values across all nodes, assigning a mesh element to a node
only if that node is its owner. Elements that appear in the
stencil but are not owned by n are the ghost elements, Gn,
for the expression e:

Gn = {v | (f, v) ∈ R′n ∪W ′n} − Dn

where (R′n,W
′
n) = S(el, En)



We can compute Gn by traversing the mesh using the stencil,
adding to the set of ghost elements whenever we find an
element that is not in Dn.

When using a partitioning-based approach, each node stores
the set of locally-accessed topological relationships, and al-
locates space in each field f for all elements in Dn and Gn
of the appropriate type.

Figure 4 shows the result of applying this ghost detec-
tion to the flux calculation of the heat conduction example.
Since the mesh topology does not change, it is sufficient to
calculate the ghost elements for the entire program during
program initialization.

Since reductions can be reordered within a field phase,
Liszt can accumulate intermediates locally rather than im-
mediately sending updates to the owner of the element when
performing a reduction on ghosts. When a field f changes
from a reduction state to a read state, it is necessary to en-
sure the most recent values for (f, v) are present on node n
if (f, v) ∈ R′n.

The stencil allows us to precompute the pattern of this
communication for each field to eliminate extra buffering.
We accomplish this in two steps. First, all deltas for (f, v)
are sent to the owner of v, and the owner calculates the
updated value of the entry. Second, the new value is sent to
all nodes n for which (f, v) ∈ R′n. Using the mesh-stencil,
we can pre-compute the pattern of this communication:

• In the first phase, node n1 sends n2 the delta for (f, v)
if (f, v) ∈W ′n1

, and v ∈ Dn2 .

• In the second phase, n1 sends n2 the new value for
(f, v) if (f, v) ∈ R′n2

, and v ∈ Dn1 .

We perform several optimizations to this process to minimize
memory usage and communication:

• If for a particular field f : ∀(f, v) ∈W ′n, v ∈ Dn

then we do not allocate memory to store the deltas of
f since no operation on n will write to a ghost in f .

• If for a particular field f : ∀(f, v) ∈ R′n, v ∈ Dn

then we do not allocate memory to store the value for
ghosts in field f on node n since no operation on n will
read from a ghost in f .

• If the message from n1 to n2 in either step is found to
be empty, then that message is not sent.

The optimizations ensure that fields that are only used lo-
cally do not result in any communication, and communica-
tion only occurs between nodes that actually share values.

3.3.2 Coloring
When using the coloring approach, a Liszt runtime paral-

lelizes an un-nested for-comprehension, for(vi <- es) eb, by
finding a non-interfering schedule to run each instance of eb.
We do this by assigning each instance of the for-body to a
color, such that no two instances in the same color write or
reduce to the same field entry. For an instance of a for-body,
eb, where vi = c we can compute the set of field writes for
this instance, W ′v, as:

(R′v,W
′
v) = S(eb, E{vi ← c})

We can then create an interference-graph over mesh ele-
ments, where the nodes are the set of mesh elements in
es, and there exists an edge between any two mesh ele-
ments (v1, v2) if there exists some field entry (f, v) such that

.scala

scala frontend
platform-

independent 
analysis

mpicxx nvccc++

.liszt

Liszt code

scala compiler

liszt cross-compiler

native 
compiler

liszt plugin

runtime-specific 
code gen

MPI CUDA pthreads 

.cpp .cpp .cpp

cluster SMP GPU.mesh

platform

MPI
app

partitioning

runtime pthreads
app

coloring

CUDA 
app
coloringstrategy

Figure 6: System diagram for Liszt. Application code is
translated to an intermediate representation using a plugin
in the Scala compiler. The Liszt compiler then generates
native code for multiple runtimes.

(f, v) ∈ W ′v1 and (f, v) ∈ W ′v2 . We compute a heuristically
minimal coloring of this interference-graph using Chaitin et
al.’s register coloring algorithm [9]. Figure 5 shows the result
of applying this coloring algorithm to the flux calculation in
the heat conduction example. Since the assignment of values
to mesh variables cannot change, this coloring is computed
once per static for-comprehension at the start of a Liszt pro-
gram, and reused on subsequent iterations. In our examples,
many for-comprehensions are trivially independent, as they
only write to field entries for element vi. To reduce initial-
ization time spent in the coloring algorithm, we detect these
statements, and assign the entire set to a single color.

4. PLATFORM
Our implementation of Liszt applies these analyses to tar-

get three programming models: MPI, CUDA, and pthreads.
Figure 6 gives an overview of Liszt’s architecture. Liszt runs
in three phases. A frontend parses and type-checks Liszt
code, and emits an intermediate representation (IR). The
Liszt cross-compiler translates this IR into C++ or CUDA
code that is designed to compile against one of three run-
times. Finally, a native compiler compiles the C++ and
links the runtime code, producing the final executable.

The frontend of Liszt is implemented as a subset of the
Scala programming language. We chose Scala as our fron-
tend since its rich implicit type-system and high-level lan-
guage features like abstract for-comprehensions make it a
good choice for embedding domain-specific languages [8, 33].
A compiler plugin inserted into the Scala compiler takes an
IR of type-checked Scala code, and translates it to a Liszt-
specific IR.



The Liszt cross-compiler then performs a series of pro-
gram transformations before generating code for a specific
runtime. We apply the presented static analysis to generate
an executable version of S, and insert enterPhase statements
into the code. A second pass then generates code for one of
three runtimes based on MPI, CUDA, or pthreads.

During initialization, a Liszt application performs the anal-
yses that require the concrete topology of the mesh: the
MPI runtime detects ghost cells and sets up communication
patterns for the partitioning strategy, while the CUDA and
pthreads runtimes perform coloring.

4.1 MPI
Our distributed memory runtime is built on top of the

MPI standard. At initialization, we use the partitioning
strategy to calculate a partitioning of the mesh across nodes
and discover ghost elements on each node. The cluster run-
time is designed to work at large scales, so the mesh is
loaded and the stencil is calculated in parallel across all
nodes. Since each node loads only part of the mesh topol-
ogy, we may need to use topological relationships that are
not local when discovering ghost elements. To load non-local
topology, we apply the stencil to the partition in breadth-
first order. At each depth we request the topological rela-
tions needed to traverse the next depth from the appropriate
nodes in the cluster. This breadth-first process enables the
cluster runtime to load meshes that are larger than those
that would fit on one node, and it ensures that only the
mesh relations used on a node are present there. Each node
further improves memory performance by reordering its data
into locally contiguous arrays.

Once this setup is complete, the MPI runtime executes
using the single-process multiple-data (SPMD) paradigm,
with each node performing the same un-nested actions, and
performing nested actions on its own partition. Commu-
nication between nodes occurs in the enterPhase statements
when a field changes phase. A straightforward extension to
our current implementation would allow this communication
to overlap with local computation.

4.2 CUDA
Our CUDA runtime transforms Liszt code into a series of

kernel calls. Un-nested code is executed on the host CPU
while all nested code is run on the GPU. Each un-nested
for-comprehension is expressed as a CUDA kernel and ker-
nel invocations. Each free variable in the body is passed
as an argument to the kernel. We apply coloring to the
for-comprehension to determine a valid schedule for each el-
ement. The CUDA runtime then launches one kernel per
discovered color to execute the for-comprehension. Since
fields entries can only be accessed from a nested context,
we only store them on the GPU, eliminating costly copies.
Though our implementation assumes that the entire prob-
lem can fit in the GPU’s memory, the information provided
by the stencil and field phases should allow an implementa-
tion to stream data to and from the GPU as necessary.

4.3 pthreads
Our pthreads implementation uses a slight variation of the

CUDA runtime: instead of launching kernels, the coloring-
based pthreads runtime launches a fixed number of worker
threads, which execute un-nested code. for-comprehensions
are scheduled using coloring, as in the GPU, but rather than

compute the interference-graph for single instances of the
for-body, we compute interference for batches of elements.
Grouping elements into batches improves cache coherence
since groups of neighboring elements can be executed by the
same thread. Each color is then run separated by global bar-
riers. Batches within a color are initially distributed evenly
across all worker threads. To prevent work imbalances, a
thread will attempt to steal batches from other threads when
it finishes its allocation of work.

5. RESULTS
To evaluate the portability and performance of Liszt, we

ported four example applications to Liszt and ran these ap-
plications on three platforms: a GPU, an SMP, and a clus-
ter. We evaluate the MPI-based runtime on both the cluster
and the SMP since it can run on either platform. We further
compare the performance of these Liszt applications to their
reference implementations. All our runtimes use double pre-
cision floating point numbers.

5.1 Example Applications
Our main test applications are solvers for the compress-

ible Euler and Navier-Stokes flow dynamics equations. To
show that Liszt can support a broader class of applications,
we also implemented a shallow water solver and a finite ele-
ment code. All four applications have different stencils and
arithmetic intensities to test Liszt’s ability to produce effi-
cient code for different patterns of data access.

5.1.1 Euler and Navier-Stokes (NS) Solvers
Liszt is developed in cooperation with Stanford Univer-

sity’s DOE PSAAP project that aims to quantify the uncer-
tainties in the unstart phenomena in a scramjet engine [31].
The core applications are an Euler and a Navier-Stokes fluid
dynamics solver, similar to those widely used in industry.
These applications are written in C++ and use MPI to run
on large clusters with thousands of nodes.

These solvers calculate the flow through hypersonic propul-
sion systems (scramjets). Joe is used with mesh sizes in the
tens of millions of elements in order to resolve compress-
ibility, turbulence, heat transfer, and combustion physics.
Runtimes for typical simulations using approximately 512
cores range from 4–5 hours for a steady-state computation
to 2–3 days for unsteady simulations spanning multiple flow-
through times. Our cluster-based Liszt experiments were
designed to use real-world problem sizes.

The two applications allow testing of different sized work-
ing sets, since they use the same stencil but perform different
amounts of computation and data accesses. Both applica-
tions use cell-centered schemes that store the density, pres-
sure and velocity at each cell centroid of a mesh and solve
for these values by performing a face-based flux calculation
and a forward Euler time-stepping method. The Euler simu-
lation has a first-order accurate stencil, considering only the
values at the two neighboring cells of a face to solve for in-
viscid flow. The Navier-Stokes solver additionally considers
the gradient of values at these cells to calculate both inviscid
and viscous flow.

5.1.2 Shallow Water (SW)
This application simulates the height and velocity of the

free-surface of the ocean over the spherical earth using an
algorithm described by Drake et al [12]. Unstructured tri-



angular mesh elements are used to represent the surface of
the sphere. The algorithm uses a staggered formulation with
the height of the free-surface being stored at the face-centers
and the velocity being stored at the center of the edges. Spa-
tial discretization is performed using a second-order accurate
upwind scheme, the stencil of which accesses all edges of the
faces on either side of an edge.

5.1.3 Finite Element Method (FEM)
Lastly we show results from a finite element code that

computes the solution of the three-dimensional Laplace equa-
tion over a mesh of hexahedral elements arranged in a cu-
bic grid using trilinear basis functions. The finite element
method leads to a sparse linear system in which the sten-
cil accesses all vertices of an element. The linear system is
solved using the conjugate gradient method, with the matrix
represented as a field over vertices.

5.2 Scalar Performance
We want to demonstrate that the performance of code

written in Liszt is comparable to native C++ code. Liszt
code can compile to a canonical serial implementation. Fig-
ure 7 presents the results of running the reference scalar
code for each application and comparing it to its canonical
implementation in Liszt. Each application is iterative and
long running, so we measure performance as the average du-
ration of a single iteration. All four examples were executed
on a single core of an Intel Nehalem E5520, and we find that
the Liszt program performs as well as the equivalent C++.

Euler NS FEM SW
Mesh 367k cells 668k cells 216k cells 327k faces
Liszt 0.37 s 1.31 s 0.22 s 3.30 s
C++ 0.39 s 1.55 s 0.19 s 3.34 s

Figure 7: Scalar Liszt runs compared to reference C++.

5.3 Cluster Scaling
For large-scale simulation, Liszt applications must run on

large clusters. We use our MPI runtime for this purpose.
In this section, we report scaling results for all four appli-
cations. In the case of the Euler and Navier-Stokes applica-
tions, we also have MPI implementations that run on clus-
ters. We measure speedup compared to the reference code
running on 32 cores since the problem is too large to fit on
a single node of the cluster.

The cluster used for these experiments consists of 256
nodes, with each node containing two 2.66GHz Intel Ne-
halem X5650 processors with 16GB of RAM. Scaling tests
were performed by varying the number of nodes from 8
through 256 using 4 cores per node for a total of 32 to 2048
cores. The Euler and Navier-Stokes simulations use a 23
million and 21 million cell mesh respectively. In the config-
urations we present, mesh partitioning runs in less than one
minute and only occurs once during program initialization.

Figure 8 shows the scaling results for all four applica-
tions. The Liszt implementations all scale linearly to 1024
cores. For the two applications with hand-written MPI C++
implementations, Liszt performs within 12% of the refer-
ence implementation. For the Euler simulation, Liszt scales
slightly better than the reference C++ code because the ref-
erence application’s framework hard-coded communication
of two fields that were never used. Liszt discovered only the
fields necessary for the algorithm and communicated less

data. The shallow water application has a knee in the scal-
ing graph at 64 cores, where the specific partitioning caused
an increase in the number of ghost cells. The FEM applica-
tion experiences super-linear scaling from 256 to 512 cores,
as the working set of the algorithm becomes small enough
to fit entirely into L3 cache.

We notice that both the Liszt and C++ Euler and Navier-
Stokes applications stop scaling after 1024 cores. Scaling
performance on a cluster is limited by the amount of data
per node, since the communication across boundaries limits
performance if too little computation occurs in the interior
of the partition. The typical inflection point for the PSAAP
solvers occur at 20,000 cells per node. The 20 million cell
meshes used for these runs causes this inflection point to
occur at 1024 cores, which explains the scaling limitations
of this experiment. Given a larger mesh we expect these
applications to continue scaling.

5.4 GPU Performance
The price-performance ratio of modern GPUs make them

attractive to computational scientists. Unfortunately, appli-
cations need to be rewritten to target GPUs. Liszt applica-
tions can run on this platform using our CUDA runtime.

All four applications were executed using CUDA 3.2 on an
NVIDIA Tesla C2050, using the same meshes as for scalar
testing. Figure 9 shows that all four applications experi-
enced order-of-magnitude performance gains over scalar im-
plementations, with the Euler solver showing 26.1x and the
Navier-Stokes solver 19.5x compared to scalar code on the
Nehalem machine. Coloring during program initialization
took no more than 16 seconds and required no more than 6
colors using an untuned coloring implementation. For faster
startup, a more efficient coloring implementation like that
of Giles et al. [14] could be used.

To place this performance into context, we compare the
performance of the Navier-Stokes implementation in Liszt to
work done on GPUs by other groups. Corrigan et al. report
7.4x over scalar [10], while Kampolis et al. [20] show a 19.6x
speedup for their Navier-Stokes solver. Asouti et al. imple-
ment a vertex-based method that mixes single and double
precision arithmetic to achieve 46x over a scalar implemen-
tation [3]. The OP2 project compares their Navier-Stokes
solver to an 8-core SMP, achieving a 3.5x speedup [14]. For
comparison, we show a 3.1x speedup over our 8-core results
in Section 5.5. All these results use various modern GPUs.
Since these results were run on different experimental se-
tups, and Navier-Stokes solvers vary, direct comparisons are
difficult. Nevertheless, Liszt performance results are within
the range of results reported in the literature. The flexibility
of Liszt should allow us to adopt GPU execution techniques
as they are developed.

To get a sense of the efficiency of our GPU runtime, we
investigated how it uses the resources of the GPU. We stud-
ied in detail the inviscid flux calculation, which takes the
majority of the Euler application’s runtime. This loop uses
the full 63 registers per thread on the GPU to support the
relatively large working set of 17 doubles (the viscous ker-
nel found in the Navier-Stokes simulation uses even more,
at 32 doubles). The high register usage limits the warp oc-
cupancy on each core. Hardware profiling reveals that the
current occupancy reduces our main memory bandwidth to
95GB/s, 66% of peak. Attempts to decrease register usage
to increase occupancy reduces performance due to spilling.



32

256

512

1024

32 256 512 1024 2048

Sp
ee

du
p

Cores

Euler
23M cell mesh

Liszt
C++

32

256

512

1024

32 256 512 1024 2048

Cores

Navier-Stokes

21M cell mesh

Liszt

C++

32

256

512

1024

32 256 512 1024 2048

Cores

Shallow Water

20M face mesh

Liszt

32
256
512

1024

2048

32256 512 1024 2048
Cores

FEM
16M cell mesh

Liszt

Figure 8: Scaling four Liszt applications on a 2048-core cluster. Speedup is measured relative to a reference implementation
run on 32 cores. The Euler and Navier-Stokes applications are compared to hand-tuned reference implementations. The
Shallow-Water and FEM implementations are compared to Liszt-based references since no hand-tuned MPI code exists.

Furthermore, coloring scatters memory access. Since consec-
utive memory locations are not necessarily spatially or tem-
porally accessed, overfetch causes the effective bandwidth of
this kernel to be 38GB/s. Liszt does as well as other work in
the field, even though the memory-bound nature of this ker-
nel limits our overall performance. We conclude that more
research is needed to produce an optimal GPU runtime.

We will briefly compare the GPU performance results to
our multicore runtime in the next section.

Euler Navier-Stokes FEM SW
Runtime 0.0141s 0.0673s 0.0076s 0.0842s
Speedup 26.1x 19.5x 28.6x 39.0x

Figure 9: GPU performance against scalar, using the same
meshes as our scalar comparison runs.

5.5 SMP Performance
8-core 32-core

Euler NS Euler NS
C++ MPI 0.062 s 0.239 s 0.014 s 0.061 s
Liszt MPI 0.060 s 0.206 s 0.014 s 0.058 s

Liszt pthreads 0.059 s 0.218 s 0.053 s 0.168 s

Figure 10: Single-machine performance, comparing the
time-per-iteration of Liszt and reference C++.

Intel and AMD have aggressively increased the parallelism
of their SMP offerings. These multicore machines with shared
memory and large caches are attractive, since they support
multiple programming models and are viewed as more flexi-
ble than GPUs. There is no consensus yet on the ideal way
to execute scientific code on these machines. We show that
Liszt can target SMPs using either our pthreads or MPI
runtime by running all our example applications using both
these runtimes, measuring speedup over our scalar runtime.

We use two different SMPs for these runs. We use an 8-
core Intel Nehalem E5520-based machine as a reasonable
approximation of machines currently in use by scientists
writing solvers. We also use a 4-processor 32-core Intel
Nehalem-EX X7560 machine, which is representative of the
latest server offerings from Intel. SMP results use the same
meshes as the scalar result.

First we consider the performance of the Liszt MPI run-
time on this platform in comparison to the hand-written
MPI implementations we have for the Euler and Navier-
Stokes application. We show in Figure 10 that Liszt per-
forms as well as hand-written code on both the 8-core and
32-core machine.

Next we compare the pthreads and MPI runtimes across
all four applications. We find that both runtimes show near

0

5

10

15

20

25

30

35

40

Euler
367k cells

NS
668k cells

FEM
216K cells

SW
327k faces

Sp
ee

du
p 

ov
er

 S
ca

la
r (

x)

Applications

Comparison between Liszt runtimes
pthreads on 8-core

mpi on 8-core
pthreads on 32-core

mpi on 32-core
cuda on tesla c2050

Figure 11: Performance comparison of 3 Liszt runtimes.
Speedup is measured relative to the reference code run on a
single core of the machine’s CPU.

linear speedups on an 8-core Nehalem. Figure 11 shows
the pthreads runtime outperforming the MPI runtime for
our Shallow Water and FEM examples on this machine.
Profiling the FEM example, we found that the partition-
ing approach spent 15% of its runtime waiting for messages
from other partitions due to load imbalance, with similar
figures for Shallow Water. The pthreads runtime performs
better, since its work-stealing approach can balance the load
amongst the cores.

On the 32-core Nehalem-EX, the MPI runtime scales lin-
early to 32 cores while the pthreads runtime peaks at 16
cores. Cache profiling indicates that the careful partitioning
used by the MPI runtime achieves a 15% L2 miss rate, while
the coloring approach of the pthreads runtime experiences
almost three times more L2 misses with a 40% L2 miss rate,
explaining the performance differences. We conclude that an
ideal way of running on an SMP would combine the careful
partitioning of the MPI runtime with the load-balancing as-
pects of the pthreads runtime. This remains as future work.

Figure 11 summarizes the results presented for all four
applications running on the SMP using both runtimes and
running on a GPU. The GPU is a clear winner in comparison
to the smaller 8-core Nehalem, while the 32-core Nehalem-
EX machine managed to outperform the GPU for the Euler
and Navier-Stokes simulation. These two codes depend on
a large working set per thread, and at 32 cores the larger
caches of the Nehalem architecture equalized the differences
in memory bandwidth between these platforms.



6. RELATED WORK
Many libraries and frameworks for writing mesh-based

PDE solvers are similar to Liszt. However, each addresses
the parallelism, locality, and communication of applications
in different ways.

To address parallelism, frameworks such as PETSc [4] or
Sandia’s Sierra framework [35] use a SPMD model where
the unstructured mesh is partitioned across discrete mem-
ory spaces. This approach enables the programmer to write
an application where the majority of the code resembles a
single-threaded implementation, and parallelism is only con-
sidered when data crosses partitions.

A second approach, taken by OP2 [14] and SBLOCK [6],
expresses element-wise computations as kernels applied to a
set of data. This design gives the library freedom to choose
how to parallelize the operation, but requires reformulating
code into explicit kernels and kernel invocations.

Like kernel-based approaches, Liszt’s for-comprehension
provide the freedom to choose a parallel implementation, but
like the SPMD-style approaches, Liszt’s for-comprehensions
follow the more familiar style of serial code.

To expose locality, other frameworks also reason about
the PDE’s stencil. SBLOCK, which implements structured
grids on clusters or GPUs, allows the user to declare the
stencil as constant-valued offsets, and uses it to schedule
kernels [6]. The Overture library for structured grids and
ParFUM allow declaring the depth of ghost cells necessary,
and automate their setup [7, 23]. In OP2, the stencil is
explicitly built as sets of inputs and outputs [14].

Other approaches infer the stencil from the specification
of the problem, which reduces the effort of the developer. In
structured solvers, the indices of the accessed data are typ-
ically affine transformations of the index of the element. In
these cases, automatic techniques using affine and polyhe-
dral analysis can detect the stencil and parallelize loops [24].
The PIPS compiler follows this approach [2]. Liszt takes a
similar approach in spirit to affine partitioning, but uses the
logic of mesh-topology rather than affine transformations to
automate the analysis. This approach allows Liszt to work
on unstructured meshes, where mesh neighborhoods cannot
be expressed with affine indices.

To address synchronization, frameworks that use the SPMD-
style approach frequently require explicitly invoked commu-
nication to update values in the ghost cells [4, 35]. Forget-
ting these update statements leads to subtle numerical er-
rors. Kernel-style approaches such as OP2 [14] or SBLOCK [6]
can perform this communication implicitly at the beginning
or end of kernel invocations.

Another approach is to express the PDEs at the math-
ematical level. OpenFOAM [36], Sandia’s Sundance [17],
FreeFEM [32] and FEniCS [13] use a top level of abstrac-
tion that expresses the problem in terms of actual differ-
ential equations, leaving the details of the parallel imple-
mentation to a lower-level library. While this declarative
abstraction can be convenient for well-established methods,
developing new methods often requires more direct control
over the solver algorithm.

7. CONCLUSION
We have presented the Liszt language for writing PDE

solvers. Liszt programs are written using high-level opera-
tions on mesh elements and fields. The language has been

carefully designed so that our compiler can infer the PDE’s
stencil and the data-dependencies between fields. With this
information, we can automatically target different paral-
lel programming models, in particular, MPI, pthreads, and
CUDA; and therefore run on different architectures (clus-
ters, SMPs and GPUs). Programs written in Liszt are port-
able, yet run as efficiently as hand-written code.

We believe that writing code at a higher level increases
the productivity of programmers. Programmer productiv-
ity is difficult to measure without user studies. However,
we have compared the Liszt implementation of the Navier-
Stokes fluid flow solver to our reference implementation. The
original application consists of 40k lines of code, of which
only 2k lines (5%) were needed to implement the algorithm
in Liszt. Over 95% of the code is reusable libraries and
platform-specific code; refactoring the code to use a higher-
level language or framework would eliminate duplicated in-
frastructure. Also, since Liszt infers stencils and dependen-
cies automatically, we can guarantee the correctness of the
parallel implementation, making programs easier to debug.

Our results suggest several future research areas. We are
developing the ability to compose our runtimes using an ap-
proach similar to that of Houston et al. [18]. Composable
runtimes would allow Liszt to run on a cluster of GPU-
accelerated machines.

Currently Liszt supports only a small subset of applica-
tions. We plan to support more applications in two ways.
First, we plan to add additional features to the language.
We have designed an extension to the language to support
implicit methods and linear solvers. We have also designed
more general ways to represent fields; these enhancements
to fields are needed to support certain finite-element formu-
lations, such as discontinuous Galerkin. Secondly, we plan
to make it possible to embed Liszt code in general-purpose
languages. A application can implement a portion of the
program in Liszt, and use a general-purpose language for
portions of the program that Liszt does not support.

The emergence of heterogenous parallel architectures with
different hardware abstractions will make it even more chal-
lenging in the future to write portable programs. We have
shown that a domain-specific programming environment may
be a viable approach for achieving portability and perfor-
mance. However, multiple DSLs many be required to cover
the range of possible applications that need to be run on
future machines. For this approach to be successful, in ad-
dition to building specific high-level frameworks, we envision
new tools that will allow domain experts to build DSLs for
their problems much like they build libraries today.

8. ACKNOWLEDGMENTS
The authors wish to thank Jeffrey Fike, Patrice Castonguay,

and Steve Jones for providing meshes and technical support.
This work was supported by grants from the DoE’s Pre-
dictive Science Academic Alliance Program; Stanford Per-
vasive Parallelism Laboratory affiliates program supported
by NVIDIA, Oracle, AMD, and NEC; and hardware dona-
tions from NVIDIA and Intel. Niels Joubert is supported
by a Reed-Hodgson Stanford Graduate Fellowship. The
NSF MRI-R2 grant—Acquisition of a Hybrid CPU/GPU
and Visualization Cluster for Multidisciplinary Studies in
Transport Physics with Uncertainty Quantification, funded
under the American Recovery and Reinvestment Act of 2009
(Public Law 111-5)—provided resources for computation.



9. REFERENCES
[1] J. R. Allwright, R. Bordawekar, P. D. Coddington,

K. Dincer, and C. L. Martin. A comparison of parallel
graph coloring algorithms. Technical report,
SCCS-666, Northeast Parallel Architectures Center at
Syracuse University, 1995.

[2] C. Ancourt, F. Coelho, and R. Keryell. How to add a
new phase in PIPS: the case of dead code elimination.
In In Sixth International Workshop on Compilers for
Parallel Computers, 1996.

[3] V. G. Asouti, X. S. Trompoukis, I. C. Kampolis, and
K. C. Giannakoglou. Unsteady CFD computations
using vertex-centered finite volumes for unstructured
grids on graphics processing units. International
Journal for Numerical Methods in Fluids, 2010.

[4] S. Balay, W. D. Gropp, L. C. McInnes, and B. F.
Smith. Efficient management of parallelism in object
oriented numerical software libraries. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors, Modern
Software Tools in Scientific Computing, pages
163–202. Birkhäuser Press, 1997.

[5] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson,
M. Lang, S. Pakin, and J. C. Sancho. Entering the
petaflop era: the architecture and performance of
Roadrunner. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, SC ’08, Piscataway,
NJ, USA, 2008. IEEE Press.

[6] T. Brandvik and G. Pullan. SBLOCK: A framework
for efficient stencil-based PDE solvers on multi-core
platforms. In Computer and Information Technology
(CIT), 2010 IEEE 10th International Conference on,
pages 1181 –1188, July 2010.

[7] D. L. Brown, G. S. Chesshire, W. D. Henshaw, and
D. J. Quinlan. OVERTURE: An object-oriented
software system for solving partial differential
equations in serial and parallel environments. In
PPSC’97, 1997.

[8] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K.
Sujeeth, P. Hanrahan, M. Odersky, and K. Olukotun.
Language virtualization for heterogeneous parallel
computing. In Proceedings of the ACM international
conference on Object oriented programming systems
languages and applications, OOPSLA ’10, pages
835–847, New York, NY, USA, 2010. ACM.

[9] G. J. Chaitin, M. A. Auslander, A. K. Chandra,
J. Cocke, M. E. Hopkins, and P. W. Markstein.
Register allocation via coloring. Comput. Lang., pages
47–57, 1981.

[10] A. Corrigan, F. Camelli, R. Löhner, and J. Wallin.
Running unstructured grid CFD solvers on modern
graphics hardware. In 19th AIAA Computational
Fluid Dynamics Conference, number AIAA 2009-4001,
June 2009.

[11] D. P. Dobkin and M. J. Laszlo. Primitives for the
manipulation of three-dimensional subdivisions. In
Proceedings of the third annual symposium on
Computational geometry, SCG ’87, pages 86–99, New
York, NY, USA, 1987. ACM.

[12] J. B. Drake, W. Putman, P. N. Swarztrauber, and
D. L. Williamson. High order cartesian method for the
shallow water equations on a sphere. Technical report,
TM-2001, Oakridge Nation Laboratory, 1999.

[13] T. Dupont, J. Hoffman, C. Johnson, R. Kirby,
M. Larson, A. Logg, and R. Scott. The FEniCS
project. Technical report, 2003.

[14] M. Giles, G. Mudalige, Z. Sharif, G. Markall, and
P. Kelly. Performance analysis of the OP2 framework
on many-core architecture. In ACM SIGMETRICS
Performance Evaluation Review (to appear), March
2011.

[15] W. Gropp, S. Huss-Ledermanand, A. Lumsdaine,
E. Lusk, B. Nitzberg, W. Saphir, and M. Snir. MPI -
The Complete Reference: Volume 2, The MPI-2
Extensions. MIT Press, Cambridge, MA, 1998.

[16] R. Hameed, W. Qadeer, M. Wachs, O. Azizi,
A. Solomatnikov, B. C. Lee, S. Richardson,
C. Kozyrakis, and M. Horowitz. Understanding
sources of inefficiency in general-purpose chips.
SIGARCH Comput. Archit. News, 38:37–47, June
2010.

[17] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J.
Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R.
Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger,
H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley. An overview of the
Trilinos project. ACM Trans. Math. Softw.,
31:397–423, September 2005.

[18] M. Houston, J.-Y. Park, M. Ren, T. Knight,
K. Fatahalian, A. Aiken, W. Dally, and P. Hanrahan.
A portable runtime interface for multi-level memory
hierarchies. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of
parallel programming, PPoPP ’08, pages 143–152, New
York, NY, USA, 2008. ACM.

[19] A. Jameson, T. Baker, and N. Weatherill.
Improvements to the aircraft Euler method. In AIAA
25th Aerospace Sciences Meeting, number 86 - 0103,
January 1986.

[20] I. Kampolis, X. Trompoukis, V. Asouti, and
K. Giannakoglou. CFD-based analysis and two-level
aerodynamic optimization on graphics processing
units. Computer Methods in Applied Mechanics and
Engineering, 199(9-12):712 – 722, 2010.

[21] G. Karypis, V. Kumar, and V. Kumar. A parallel
algorithm for multilevel graph partitioning and sparse
matrix ordering. Journal of Parallel and Distributed
Computing, 48:71–95, 1998.

[22] Khronos OpenCL Working Group. The OpenCL
Specification, version 1.0.29, 8 December 2008.

[23] O. Lawlor, S. Chakravorty, T. Wilmarth,
N. Choudhury, I. Dooley, G. Zheng, and L. Kale.
ParFUM: a parallel framework for unstructured
meshes for scalable dynamic physics applications.
Engineering with Computers, 22:215–235, 2006.

[24] A. W. Lim and M. S. Lam. Maximizing parallelism
and minimizing synchronization with affine partitions.
In Parallel Computing, pages 201–214. ACM Press,
1998.

[25] R. Löhner. Applied Computational Fluid Dynamics:
An Introduction Based on Finite Element Methods.
Wiley, Fairfax, Virginia, 2nd edition, 2008.

[26] J. Nickolls, I. Buck, M. Garland, and K. Skadron.
Scalable parallel programming with CUDA. Queue,
6:40–53, March 2008.



[27] NVIDIA Corporation. NVIDIA’s next generation
compute architecture: Fermi, November 2009.

[28] NVIDIA Corporation. NVIDIA Tesla GPUs power
world’s fastest supercomputer, 2010.

[29] M. Odersky, V. Cremet, I. Dragos, G. Dubochet,
B. Emir, S. Mcdirmid, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, L. Spoon, and M. Zenger. An
overview of the Scala programming language (second
edition. Technical report, LAMP-REPORT-2006-001,
École Polytechnique Fédérale de Lausanne, 2006.

[30] OpenMP Architecture Review Board. OpenMP:
Application Program Interface 3.1, July 2011.

[31] R. Pecnik, V. E. Terrapon, F. Ham, and G. Iaccarino.
Full system scramjet simulation. Annual Research
Briefs of the Center for Turbulence Research, Stanford
University, Stanford, CA, 2009.

[32] O. Pironneau, F. Hecht, A. L. Hyaric, and J. Morice.
FreeFEM, 2005. Universitè Pierre et Marie Curie
Laboratoire Jacques-Louis Lions,
http://www.freefem.org/.

[33] T. Rompf and M. Odersky. Lightweight modular
staging: a pragmatic approach to runtime code
generation and compiled DSLs. In Proceedings of the

ninth international conference on Generative
programming and component engineering, GPCE ’10,
pages 127–136, New York, NY, USA, 2010. ACM.

[34] D. E. Shaw, R. O. Dror, J. K. Salmon, J. P.
Grossman, K. M. Mackenzie, J. A. Bank, C. Young,
M. M. Deneroff, B. Batson, K. J. Bowers, E. Chow,
M. P. Eastwood, D. J. Ierardi, J. L. Klepeis, J. S.
Kuskin, R. H. Larson, K. Lindorff-Larsen,
P. Maragakis, M. A. Moraes, S. Piana, Y. Shan, and
B. Towles. Millisecond-scale molecular dynamics
simulations on Anton. In Proceedings of the
Conference on High Performance Computing
Networking, Storage and Analysis, SC ’09, pages
39:1–39:11, New York, NY, USA, 2009. ACM.

[35] J. R. Stewart and H. C. Edwards. A framework
approach for developing parallel adaptive multiphysics
applications. Finite Elem. Anal. Des., 40:1599–1617,
July 2004.

[36] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A
tensorial approach to computational continuum
mechanics using object-oriented techniques. Comput.
Phys., 12:620–631, November 1998.


