
Lite-CNN: A High-Performance Architecture to
Execute CNNs in Low Density FPGAs

Mário Véstias
INESC-ID, ISEL,

Instituto Politécnico de Lisboa

mvestias@deetc.isel.pt

Rui Policarpo Duarte, José T. de Sousa, Horácio Neto
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa, Portugal

rui.duarte@tecnico.ulisboa.pt, jose.desousa@inesc-id.pt, hcn@inesc-id.pt

Abstract—Due to the computational complexity of Convolu-
tional Neural Networks (CNNs), high performance platforms
are generally considered for their execution. However, CNNs
are very useful in embedded systems and its execution right
next to the source of data has many advantages, like avoiding
the need for data communication. In this paper, we propose
an architecture for CNN inference (Lite-CNN) that can achieve
high performance in low density FPGAs. Lite-CNN adopts a
fixed-point representation for both neurons and weights, which
was already shown to be sufficient for most CNNs. Also, with
a simple and known dot product reorganization, the number
of multiplications is reduced to half. We show implementation
results for 8 bit fixed-point in a ZYNQ7020 and extrapolate
for other larger FPGAs. Lite-CNN achieves 410 GOPs in a
ZYNQ7020.

Index Terms—Embedded computing, Deep learning, Convolu-
tional Neural Network, Field-Programmable Gate Array.

I. INTRODUCTION

Deep Neural Networks (DNN) are at the core of many

artificial intelligence applications, like car driving assistance

[1], image classification [2], A Convolutional Neural Network

(CNN) is a DNN consisting of multiple convolutional layers. A

stack of 2D input feature maps (IFM) is convolved with a 3D

filter to generate an output feature map (OFM). Many filters

are applied to the same IFMs generating a stack of OFM.

In this paper, the focus is on a hardware architecture (Lite-

CNN) for running inference of large CNNs in low density

FPGAs (Field-Programmable Gate Arrays).

The results demonstrate that Lite-CNN can achieve high

performance in low density FPGAs. The architecture is scal-

able and with larger FPGAs several TOPs (Tera Operations

per second) of performance can be achieved.

The paper is organized as follows. In section II we describe

the state of art on FPGA implementations of CNNs. Section

III describes the proposed Lite-CNN architecture. Section IV

shows the results and how they compare to previous works.

Section V concludes the paper.

II. RELATED WORK

FPGA is a good platform to run CNNs since it offers good

performance at low energy and can be reconfigured to adapt

to each CNN model.

Recently, complete accelerators were implemented for large

CNN models [3], [4]. Both works consider a general hardware

core for convolution that can execute different convolutional

layers with different shapes.

Suda et al. [4] and Qiao [5] both adopt an accelerator for

matrix multiplication converting the IFM to a matrix.

Liu et al. [6] proposed a pipeline architecture with multiple

parallel processing elements (PEs). This solution requires large

amounts of on-chip memory and high memory bandwidth to

load weights.

Aydonat et al. [7] used an Intel’s Arria 10 FPGA to design

a CNN accelerator. They use a Winograd transformation to

reduce the number of multiplications in the convolutional

layers.

A few authors also considered the ZYNQ XC7Z020 as the

target device. In [8] small CNNs are implemented in a ZYNQ

XC7Z020 with a performance of 13 GOPs with 16 bit fixed-

point data. In [9] the same FPGA is used to implemented

bigger CNN models, like VGG16, with data represented with

8 bits achieving performances of 84 GOPs.

The most recent works have performances with several

hundred GOPs but using high performance FPGAs. Only a

few consider low-cost FPGAs, but performances of only a few

dozen GOPs. The Lite-CNN proposed in this work is able to

achieve several hundred GOPs in a low cost FPGA, like the

ZYNQ7020, with 8 bit data representations.

III. LITE-CNN ARCHITECTURE

In this section we describe the methods and architecture

used to design Lite-CNN. We start with the complexity reduc-

tion of the dot-product and then follow with the description

of the architecture.

A. Dot Product for Convolutions

Convolutional and FC layers consist of dot products be-

tween neurons and weights. To do a convolution between a

kernel of weights and an IFM, the kernel slides over the

whole feature map to produce a partial output neuron that

consists of the dot product between the kernel and a block of

input neurons. An output neuron is the accumulation of 2D

convolutions between a slice of the kernel and neurons of an

IFM, or a 3D convolution between the complete kernel and a

block of neurons of the stack of IFMs. The 3D convolution

is a dot product, DPWP , between n weights of a kernel, Wi

and n neurons Pi, that is

399

2018 International Conference on Field-Programmable Logic and Applications

978-1-5386-8517-4/18/$31.00 ©2018 IEEE
DOI 10.1109/FPL.2018.00075

Authorized licensed use limited to: b-on: Instituto Politecnico de Lisboa. Downloaded on July 14,2021 at 11:10:28 UTC from IEEE Xplore. Restrictions apply.

DPWP =

i=n−1∑

i=0

Wi × Pi (1)

In a dot product the number of multiplications can be

reduced to half. Lets consider two elements vector, weights

W = (W0,W1) and pixels P = (P0, P1). The dot product

can be calculated as:

DPWP = (W0 + P1)(W1 + P0)−W0W1 − P0P1 (2)

Equation 2 has more multiplications but W0W1 can be

precomputed and P0P1 can be computed only once and reused

many times for different kernels. One problem with the multi-

plication in equation 2 is that it could require a multiplication

with twice the size of the original multiplications, case one of

the operands has zero fractional bits and the other has all bits

in the fraction part. Since weights and activations in a CNN in

a specific layer have all the same fixed-point representation,

the operations can be done with numbers as integers and

correct the final value with a shift. Considering W0 = W
′
02

m,

W1 = W
′
12

m, P0 = P
′
02

k, P1 = P
′
12

k, where W
′
0, W

′
1, P

′
0,

P
′
1 are the integer parts of the fixed-point representation, we

have equation 4.

DPWP = 2m+k(W
′
0P

′
0 +W

′
1P

′
1) (3)

= 2m+k[(W
′
0 + P

′
1)(W

′
1 + P

′
0)−W

′
0W

′
1 − P

′
0P

′
1] (4)

In equation 4 the multiplication is only one bit larger than

those in 1. Equation 1 can now be calculated as

DPWP = 2m+k[

i=n
2
−1∑

i=0

(W
′
2i + P

′
2i+1)(W

′
2i+1 + P

′
2i)− (5)

−
i=n

2
−1∑

i=0

W
′
2iW

′
2i+1 −

i=n
2
−1∑

i=0

P
′
2iP

′
2i+1] (6)

The second sum depends only on the weights and therefore

can be calculated a priori for each kernel. The last sum can

be calculated one for each block of neurons and then reused

for each different kernel.

B. Execution of a CNN Model in Lite-CNN

Lite-CNN considers a configurable structure that imple-

ments one layer (convolutional or fully connected) at a time.

Most of the previous approaches use dedicated units to

calculate 2D convolutions. The problem is that the method

becomes inefficient when the same units have to run different

window sizes. We have taken a different approach. Lite-CNN

transforms 3D convolutions into a long dot product to become

independent of the window size. Pixels of the initial image,

neurons of feature maps and weights of kernels are stored in

order (z, x, y) (see Figure 1).

Input images are stored in this order. IFMs can be stored in

this order during the execution of the model and weights in

kernels can be also pre-stored in this order.

Input Feature Maps

z
x

y Kernel1Kernel1

zk

a) b)

Fig. 1. Reading mode of images, feature maps and weights

Algorithm 1 Convolution with a 3D kernel

Require: 3D input feature map and one kernel of weights
Ensure: A single output feature map result of the convolution of the feature

maps with the kernel
for r = 1 to yp/m do

for m = 1 to xp/m do
poolV ar ⇐ 0
for l = 1 to xpool do

for k = 1 to ypool do
dp =

∑i=yk−1
i=0

∑j=xkzk−1
j=0 Wixkzk+j ×

PstartAddr(r,m,l,k,i,j)+ixpzp+j

poolV ar ⇐ poolFunction(poolV ar, dp)
end for

end for
neuron(m,r) ⇐ poolV ar

end for
end for

Each neuron of an OFM is calculated as a dot product be-

tween the 3D kernel of size xk×yk×zk and the correspondent

neurons of the IFM of size xp × yp × zp (see figure 1b),

where zp is the number of IFMs. The weights of kernel are all

read sequentially from memory since they are already ordered.

The neurons are also read in sequence from memory but after

xk×zk neurons it has to jump to the next yk adding an offset

to the address of the input feature memory being read. For

a layer without stride nor followed by pooling, the offset is

xp × zp.

Let’s consider the 3D input feature map of size xp × yp ×
zp, a kernel of size xk × yk × zk, a pooling window of size

xpool×ypool and a stride of size m, the convolution of a kernel

with the 3D input feature map is given in Algorithm 1.

poolFunction is the function to be used in the pooling

operation, like maximum or average. The startAddr function

adds the correct offset to the address pointer of the feature

map memory, depending on the next neuron to be calculated.

C. Lite-CNN architecture

The Lite-CNN architecture consists of a cluster of pro-

cessing elements (PE) to calculate dot-products as explained

before, a memory buffer to store on-chip the initial image and

the OFMs and two modules to send neurons and to receive

weights to/from the PEs (see Figure 2).

The architecture works as follows:

• The blocks are configured for a specific layer: convolu-

tional or fully connected. The configuration also specifies

400

Authorized licensed use limited to: b-on: Instituto Politecnico de Lisboa. Downloaded on July 14,2021 at 11:10:28 UTC from IEEE Xplore. Restrictions apply.

DDR Send Weights PE Cluster

Bias Memory

Memory Buffer
Send

Neurons

Receive
Neurons
Address

Generator

Address
Generator

Fig. 2. Block diagram of the Lite-CNN architecture

if there is a pooling and/or a normalization layer at the

output of the feature maps being calculated;

• The input image is sent to the memory buffer. At the same

time, kernels are read from external memory and sent to

the PEs. Besides the weights, the kernel includes a word

with the bias value and the sum
∑i=n

2−1
i=0 W2iW2i+1.

These values are stored in the bias memory to be used

later. Each PE receives one kernel. So, each PE calculates

the pixels associated with an OFM;

• Neurons in the memory buffer are broadcasted to all PEs,

following the method described in section III-B. While

reading neurons, the sum
∑i=n

2−1
i=0 P2iP2i+1 is calculated

and stored in a register to be used latter by the receive

neurons module, according to equation 6;

• After each calculation of a complete dot product associ-

ated with a kernel, all PEs send the output neurons back to

the receive neurons module that subtracts the bias and the

sum of weights and store the result in the memory buffer

to be used by the next layer. If the layer has pooling, this

module saves the neurons in a local memory and wait for

the other members of the pooling window. Normalization

is also implemented in this block;

• The process repeats until finishing the convolution be-

tween the image and the kernels. After that, the next

kernels are loaded from memory and the process repeats

until running all kernels.

The PE cluster contains a set of PEs (see Figure 3). All PEs

receive kernels weights from one or more ports from external

memory. Pixels and neurons are broadcasted to all PEs from

the on-chip feature memory.

Each PE has a local memory to store kernels and arithmetic

units to calculate the dot product

DPWP =

i=n
2
−1∑

i=0

(W2i + P2i+1)(W2i+1 + P2i) (7)

Each PE stores a different kernel and so is responsible for

calculating the neurons of the output feature map associated

with the kernel. This way multiple output feature maps are

calculated in parallel. Also, the same kernel is applied to

different blocks of input neurons and produce different neurons

Processing Elements

pixelDataIn

PE0 PEx PEyPE1

Fig. 3. PE cluster of the Lite-CNN architecture

of its OFM. The number of output neurons to be processed in

parallel in each PE is configurable. For example, to calculate

two neurons in parallel it receives two input neurons from the

feature memory in parallel. This mechanism permits to explore

the intra-output parallelism. Finally, weights and neurons are

stored in groups, that is, multiple weights and neurons are

read in parallel in a single memory access (e.g., with 8-bit

data, a 64 memory word contains eight neurons or weights)

permitting to explore dot-product parallelism.

The block sendWeights is configured to send kernels to the

PE cluster. The block receives data from direct memory access

(DMA) units that retrieve data from external memory and send

it to the PEs in order. It includes a bias memory to store

the bias associated with each kernel and the correction factor∑i=n
2−1

i=0 W2iW2i+1 in equation 6.

The sendNeurons and receiveNeurons blocks are responsible

for broadcasting neurons from the feature memory to the PEs

and receive dot products from the PEs, respectively. The send

neurons module includes a configurable address generator that

implements the startAddr function mentioned in algorithm

1. Also, while reading the neurons, it determines the factor
∑i=n

2−1
i=0 P2iP2i+1 in equation 6 and saves it in a register

to be used by the receiveNeurons block to correct the dot-

products coming from the PEs. The receive neurons module

implements the pooling, the normalization and activation func-

tions (ReLU).

The memory buffer is a dual port memory with one write

port and one read port. It permits to read neurons while saving

the previous output pixels.

IV. RESULTS

Lite-CNN was implemented with Vivado 2017.3 in the

ZedBoard with a ZYNQ XC7Z020 at 200 MHz.

From among the many possible configurations of Lite-

CNN, we implemented an architecture with with 64 PEs, two

pNeurons, four nMACC and a batch of 2 with a total peak

performance of 410 GOPs.

We have mapped AlexNet in Lite-CNN for 8 fixed-point

and compared the performance and area with other implemen-

tations on the same FPGA and on higher density FPGAs. The

overall results are shown in table I.

Compared to previous works implemented in the ZYNQ

xc7z020, Lite-CNN8 has about 5× the peak performance of

[9]

401

Authorized licensed use limited to: b-on: Instituto Politecnico de Lisboa. Downloaded on July 14,2021 at 11:10:28 UTC from IEEE Xplore. Restrictions apply.

TABLE I
PERFORMANCE COMPARISON OF LITE-CNN WITH OTHER WORKS

Ref. FPGA Format LUTs DSPs BRAMs MHz CNN GOP/s BW GB/s image/s
[4] Stratix-V GSD8 fixed-16 120000 720 1500 120 AlexNet 118 — 50

[3] ZYNQ XC7Z045 fixed-16 182616 780 486 150 VGG16 137 4.2 45

[6] Virtex-7 VX690T fixed 8,16 206821 2872 1021 100 AlexNet 446 14.9 153

[7] Arria10 GX1150 float-16 246000 1476 2487 303 AlexNet 1382 17 1020

[8] ZYNQ xc7z020 fixed-16 35644 208 9 100 LeNet 12.7 3.3 —

[9] ZYNQ xc7z020 fixed-8 29867 190 86 214 VGG16 84 4.2 2.7

Lite-CNN8 ZYNQ xc7z020 fixed-8 45781 220 132 200 AlexNet 410 4.2 92

3

53

103

153

203

253

303

4,2 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

)

Memory Bandwidth (GB/s)

Lite-CNN8 - BW/Throughput

(PE=64,pNeuron=2,batch=2) (PE=32,pNeuron=4,batch=4) (PE=16,pNeuron=8,batch=8)

Fig. 4. Bandwidth vs. throughput for different configurations of Lite-CNN8

From the execution of AlexNet, we observed that half of

the time is spent loading the weights of the fully connected

layers. It means that even if we increase the number of PEs,

the memory bandwidth will be the limiting factor. With the

memory bandwidth of our system (4.2 GB/s) and increasing

the number of PEs, the best throughput it can achieve is around

10 ms per image. The only way to reduce this value is to

increase the memory bandwidth or increase the batch size.

We have generated different configurations of Lite-CNN8 and

estimated the throughput with different memory bandwidths

and batch sizes (see figure 4).

As we can see, the throughput converges to a specific value

with the increase of the bandwidth. These are the optimal

points where the memory bandwidth produces a communi-

cation delay equal to the processing delay in which case

increasing the bandwidth is useless. Reducing the number of

PEs and increasing the intra-output parallelism leaves more

memory available.

Finding the best architecture for a specific delay or power

consumption is the objective in the design of a CNN architec-

ture for embedded computing. Lite-CNN have shown that it

is possible to process complex CNN models with low density

FPGAs with high performance.

V. CONCLUSIONS

Lite-CNN is an architecture to run CNN models in low cost

FPGAs. Lite-CNN was used to implement AlexNet in a low

cost FPGA (ZYNQ xc7z020) and the results show that it is

possible to run the inference of the model with small FPGAs

in about 11 ms.

We are now planing to improve the configurability of the

architecture to support other types of layers and other types

of data representations, like 16-bit floating point and 16-bit

dynamic fixed-point.

ACKNOWLEDGMENT

This work was supported by national funds through

Fundação para a Ciência e a Tecnologia (FCT) with reference

UID/CEC/50021/2013.

REFERENCES

[1] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the 2015 IEEE International Conference on Computer Vision (ICCV),
ser. ICCV ’15. Washington, DC, USA: IEEE Computer Society, 2015,
pp. 2722–2730.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“Imagenet large scale visual recognition challenge,” International Journal
of Computer Vision, vol. 115, no. 3, pp. 211–252, Dec 2015.

[3] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song, Y. Wang, and H. Yang, “Going deeper with embedded
fpga platform for convolutional neural network,” in Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’16. New York, NY, USA: ACM, 2016, pp.
26–35.

[4] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s.
Seo, and Y. Cao, “Throughput-optimized opencl-based fpga accelerator
for large-scale convolutional neural networks,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, ser. FPGA ’16. New York, NY, USA: ACM, 2016, pp. 16–25.

[5] Y. Qiao, J. Shen, T. Xiao, Q. Yang, M. Wen, and C. Zhang, “Fpga-
accelerated deep convolutional neural networks for high throughput
and energy efficiency,” Concurrency and Computation: Practice and
Experience, vol. 29, no. 20, pp. e3850–n/a, 2017, e3850 cpe.3850.

[6] Z. Liu, Y. Dou, J. Jiang, J. Xu, S. Li, Y. Zhou, and Y. Xu, “Throughput-
optimized fpga accelerator for deep convolutional neural networks,” ACM
Trans. Reconfigurable Technol. Syst., vol. 10, no. 3, pp. 17:1–17:23, Jul.
2017.

[7] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
“An openclTMdeep learning accelerator on arria 10,” in Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’17. New York, NY, USA: ACM, 2017, pp.
55–64.

[8] S. I. Venieris and C. S. Bouganis, “fpgaconvnet: A framework for map-
ping convolutional neural networks on fpgas,” in 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), May 2016, pp. 40–47.

[9] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang,
and H. Yang, “Angel-eye: A complete design flow for mapping cnn
onto embedded fpga,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 1, pp. 35–47, Jan 2018.

402

Authorized licensed use limited to: b-on: Instituto Politecnico de Lisboa. Downloaded on July 14,2021 at 11:10:28 UTC from IEEE Xplore. Restrictions apply.

