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Abstract | For the average biologist, hands-on literature mining currently means a keyword 
search in PubMed. However, methods for extracting biomedical facts from the scientific 
literature have improved considerably, and the associated tools will probably soon be used 
in many laboratories to automatically annotate and analyse the growing number of system-
wide experimental data sets. Owing to the increasing body of text and the open-access 
policies of many journals, literature mining is also becoming useful for both hypothesis 
generation and biological discovery. However, the latter will require the integration of 
literature and high-throughput data, which should encourage close collaborations between 
biologists and computational linguists.

The focus of biological research is rapidly shifting 
from individual genes and proteins to entire biological 
systems. To make sense of the large-scale data sets that 
are being generated as a result of this change, biolo-
gists must increasingly be able to connect with research 
fields outside their core competence. This requires the 
ability to systematically compare large data sets with all 
the knowledge that is dervied from the published data, 
which allows the biological relevance of the data set to 
be interpreted. The information, which is measured in 
terms of the numbers of articles and journals that are 
published, is increasing at a considerable rate, so that 
it is no longer possible for a researcher to keep up-to-
date with all the relevant literature manually, even on 
specialized topics (FIG. 1).

Because of these changes, literature-mining tools 
are becoming essential to researchers. They enable 
researchers to identify relevant papers — a process that 
is known as information retrieval (IR). They also allow 
entity recognition (ER), in which the biological entities 
that are mentioned in these papers (for example, genes 
and proteins) are recognized, and enable specific facts 
to be pulled out from papers in a process that is called 
information extraction (IE). IR tools such as PubMed 
have long been used on a regular basis by most biolo-
gists to find papers of interest. By contrast, automatic 
methods for extracting facts from text (such as IE) have 
only recently become sufficiently accurate to be useful 
in practice1. It is obvious how both IR and IE can be used 
for curation efforts; however, they are often dismissed 

as being useless for discovery purposes as they can only 
extract what has already been published.

More advanced tools that are based on these 
methods facilitate systematic searches of the scientific 
literature for overlooked connections. These so-called 
text-mining methods (not to be confused with the 
more general term literature mining) can be used to 
make novel hypotheses by combining information 
from multiple papers. However, we believe that the full 
discovery potential of such tools will only be realized 
with the advent of data-mining approaches that inte-
grate the literature with other large data sets such as 
genome sequences, microarray expression studies, or 
protein–protein interaction screens (FIG. 2).

Here we briefly describe the aim of each field out-
lined above, give an overview of the methods that are 
used (BOX 1) and discuss what can currently be achieved. 
Although our main focus is on text mining and data 
integration, we first briefly review the most important 
IR, ER and IE methodologies that are used for text and 
data mining (see REFS 2–5 for more details on these 
topics). Throughout, we use the following example 
sentence: “Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1 
homolog) directly phosphorylated Swe1 and this modi-
fication served as a priming step to promote subsequent 
Cdc5-dependent Swe1 hyperphosphorylation and 
degradation”6. Its context is the cell cycle of the yeast 
Saccharomyces cerevisiae and it allows us to demonstrate 
the powers and pitfalls of current literature-mining 
approaches.
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Machine learning
The ability of a machine to 
learn from experience or 
extract knowledge from 
examples in a database. 
Artificial neural networks and 
support-vector machines are 
two commonly used types of 
machine-learning method.

Gene Ontology
A set of controlled vocabularies 
that are used to describe the 
molecular functions of a gene 
product, the biological 
processes in which it 
participates and the cellular 
components in which it can 
be found.

Information retrieval: finding the papers
IR systems aim to identify the text segments (be it full 
articles, abstracts, paragraphs or sentences) that pertain 
to a certain topic — the example here is the yeast cell 
cycle. The topic might be either a user-provided query 
(ad hoc IR) or a pre-defined set of papers (text categoriza-
tion). Ideally, an IR system should recognize our example 
sentence as being related to the yeast cell cycle, although 
neither ‘yeast’ nor ‘cell cycle’ is explicitly mentioned.

The best-known biomedical IR system, PubMed, is 
an ad hoc system that uses two established IR method-
ologies — the Boolean model and the vector model. 
The Boolean model allows the user to retrieve all 
documents that contain certain combinations of terms 
by using a logical operation; for example, ‘yeast AND 
cell cycle’. By contrast, the vector model represents 
each document by a term vector, in which each term is 
assigned a value according to a frequency-based weight-
ing scheme. These document vectors can subsequently 
be compared to a query vector that specifies the relative 
importance of each query term7. Alternatively, they can 
be compared to each other to calculate document simi-
larity, which is used in PubMed by the ‘related articles’ 
function8 and other document-clustering methods9–11.

The vector representation is also used as input for 
machine-learning methods, which are trained to discrimi-
nate between known relevant (positive) and irrelevant 
(negative) papers on the basis of their word content12–18. 
Such methods are able to learn complex rules; for 
example, a method trained to identify sentences that are 

related to the yeast cell cycle would have learned that 
the word ‘Cdc28’ in our example sentence is a strong 
hint, whereas the words ‘Cdk1’ and ‘Clb2’ could also be 
related to the cell cycles of other organisms.

Ad hoc IR systems such as PubMed generally have 
more difficulty than text-categorization systems in 
dealing with the many abbreviations, synonyms and 
ambiguities in biomedical terminology. However, blind 
assessments (BOX 2) have shown that most of the lessons 
that have been learned from IR in other research fields 
carry over to the biomedical sciences11,19,20. These include 
removing so-called stop words such as ‘the’ and ‘it’, 
which occur in almost every document, and truncating 
common word endings such as ‘-ing’ and ‘-s’ to allow 
different forms of the same word to be matched — for 
example, ‘yeast’ and ‘yeasts’13. PubMed and many other 
good biomedical IR systems also make use of thesauri 
to auto matically expand the query with other related 
terms13,19–21. For example, the Boolean query ‘yeast AND 
cell cycle’ might be expanded to ‘(yeast OR Saccharomyces 
cerevisiae) AND cell cycle’.

Many advanced IR methods, such as MedMiner22 and 
Textpresso23, also use ER methods to better identify doc-
uments that mention a certain gene or protein, and an 
approach known as part-of-speech tagging can be used 
to determine whether a word such as ‘wingless’ occurs as 
a noun or an adjective. Another advance that is expected 
in the future is tackling the way in which IR results are 
presented. As many documents might be retrieved by 
a single query, simply showing them as a long list gives 
a poor overview. Alternative ways to present and sum-
marize IR results are therefore being explored24–27.

Even with these improvements, current ad hoc IR sys-
tems are not able to retrieve our example sentence when 
they are given the query ‘yeast cell cycle’. Instead, this 
could be achieved by realizing that ‘yeast’ is a synonym 
for S. cerevisiae, that ‘cell cycle’ is a Gene Ontology term, 
that the word ‘Cdc28’ refers to an S. cerevisiae protein 
and finally, by looking up the Gene Ontology terms 
that relate to Cdc28 to connect it to the yeast cell cycle. 
Although this will not be easy, we see this form of query 
expansion as the next logical step for ad hoc IR.

Entity recognition: identifying the substance(s)
The seemingly modest goal of ER is to find the biological 
entities that are mentioned within a text; in particular, the 
names of genes and proteins. This task is often divided 
into two sub-tasks: first, the recognition of words that 
refer to entities and second, the unique identification 
of the entities in question. In our example sentence, the 
terms ‘Clb2’, ‘Cdc28’, ‘Cdk1’, ‘Swe1’ and ‘Cdc5’ should 
therefore all be recognized as gene or protein names 
and uniquely identified by, for example, their respective 
Saccharomyces Genome Database accession numbers.

Although ER might at first seem neither challenging 
nor particularly useful, it is possibly the most difficult 
task in biomedical text mining and is a prerequisite for 
both IE and advanced IR. The early ER methods relied 
on manually devised rules that look for typical features 
of names — such as letters that are followed by numbers, 
or the ending ‘-ase’ — as well as contextual information 

Figure 1 | Growth of Medline. The numbers of journals, 
papers (as represented by Medline abstracts), papers on 
the cell cycle and papers on Cdc28 that were published 
each year from 1950 to 2005 are shown. An average for 
3 years was calculated for the Cdc28 curve because of 
much lower numbers. The number of new papers that were 
published each year continues to increase, especially on 
certain topics such as the cell cycle, for which it is no longer 
possible to read all new papers that are published. By 
contrast, specific proteins that are ‘hot’ at one point in time 
tend to lose their popularity later, as exemplified by Cdc28.
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from nearby words such as ‘gene’ and ‘receptor’13,28,29. 
As literature collections (corpora) in which gene and 
protein names have been tagged are now available 
(BOX 1), most newer systems rely instead on machine-
learning algorithms to recognize names on the basis of 
their characteristic features29–34.

In contrast to these systems, several dictionary-
based methods rely instead on a comprehensive list 
of synonymous gene names that are matched against 
the documents using algorithms that allow variation 
in how the names are written — for example, ‘CDC28’, 
‘Cdc28’, ‘Cdc28p’ or ‘cdc-28’13,31,35–41. Dictionary-based 
approaches have one crucial advantage over feature-
based ones — they not only recognize names but also 
identify the accession numbers of the genes or proteins 
to which they refer. Many systems combine dictionary 
matching with either rule-based or statistical methods 
to reduce the number of false positives31,36–38. The best-
performing ER methods in blind assessments rely on 
careful curation of gene-name lists to remove aliases 
that cause many false positives40,41.

The main difficulty in ER arises from the lack of 
standardization of names. Each gene or protein typi-
cally has several names and abbreviations (for example, 
‘Cdc28’ is also known as ‘cyclin-dependent kinase 1’ or 
just ‘Cdk1’), some of which are also common English 
words (for example, ‘hairy’), biological terms (for exam-
ple, ‘SDS’) or names of other genes (for example, ‘Cdc2’ 
refers to two completely unrelated genes in budding and 
fission yeast)42. The recent development of methods for 
resolving ambiguity in gene or protein names is therefore 
an important advance for ER41,43,44.

Instead of focusing on this important problem, 
many methods have attempted to recognize whether 
a particular occurrence of a name refers to a gene or 
its protein product28,30,37. However, this distinction is 
not always clear. For example, ‘Cdc5-dependent Swe1 
hyperphosphorylation’ depends on both the Cdc5 
protein and also the gene that encodes it. Human 
annotators only agree with each other in 77% of cases 
when asked to distinguish between genes, RNAs 
and proteins that are mentioned in the literature45.
Fortunately, the ability to discriminate between genes 
and proteins is of little consequence for downstream 
IE applications.

Although ER is generally intended as a building block 
for IR and IE systems, it can also be useful on its own for 
crosslinking the literature that is related to certain genes. A 
good example of this is iHOP (Information Hyperlinked 
over Proteins)25, which is a web-based tool that allows 
the user to browse sentences from Medline abstracts on 
the basis of the biomedical entities that they mention.

Information extraction: formalizing the facts
In contrast to IR systems that identify texts concerning 
particular topics, IE systems aim to extract pre-defined 
types of fact — in particular, relationships between 
biological entities. From our example sequence, an IE 
system should deduce that Cdc28 binds Clb2, that Swe1 
is phosphorylated by the Cdc28–Clb2 complex and 
that Cdc5 is involved in Swe1 phosphorylation. These 

facts can subsequently be stored in a database, with the 
option of being verified by a curator reading the paper 
in question. Two fundamentally different approaches to 
extracting relationships from biological texts are cur-
rently being used extensively, namely co-occurrence and 
natural-language processing (NLP).

Co-occurrence. The simplest approach to IE is to identify 
entities that co-occur within abstracts or sentences. As 
two entities might be mentioned together without being 
in any way related, most systems use a frequency-based 
scoring scheme to rank the extracted relationships14,25,46–58. 
If two entities are repeatedly mentioned together, it is 
likely that they are somehow related, although the type 
of relationship is not known49,52. Co-occurrence methods 
tend to give better recall but worse precision than NLP 
methods56,59, and are well suited as parts of exploratory 
tools because of their ability to identify relationships of 
almost any type53,54.

Co-occurrence methods can also be used to extract 
relationships of a certain type only, such as physical 
protein–protein interactions, by combining them with 
a customized text-categorization system to identify 
the relevant abstracts or sentences14,46–50,60. This set-up 
is particularly attractive for database curation as the 
custom-made text-categorization system can also be 
used on its own and high coverage can be attained14,48. 
However, complex sentences that contain multiple 

Figure 2 | The current state of biomedical literature 
mining. Biomedical literature mining can be divided into 
several disciplines that have independent goals but use 
related tools. These disciplines range from information 
retrieval to the integration of text with other data sources. 
Whereas information retrieval, entity recognition and 
information extraction are established tasks in 
computational linguistics for which methods from other 
fields have been transferred to biomedicine, text mining 
and data integration are still in their infancy and few 
methods have been put forward. This is because of the 
extensive biological insight that is required to develop 
them. However, such tools are also the most rewarding for 
biologists to help develop as they have the greatest 
potential for leading to new biological discoveries.
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relationships give rise to additional, erroneous rela-
tionships — our example sentence might link Cdc5 
to Clb2. This approach is also unable to extract 
directional relationships (for example, whether Cdc5 
is involved in Swe1 phosphorylation or vice versa) 
and has difficulty distinguishing between direct and 

indirect relationships (for example, whether or not 
Swe1 is directly phosphorylated by Cdc5).

Natural-language processing. These issues can all be 
addressed by NLP methods that combine the analysis 
of syntax and semantics. The text is first ‘tokenized’ to 
identify sentence and word boundaries, and a part-of-
speech tag (for example, a noun or verb) is assigned to 
each word. A syntax tree is then derived for each sen-
tence to delineate noun phrases (for example, ‘Mitotic 
cyclin (Clb2)-bound Cdc28 (Cdk1 homologue)’) and 
represent their interrelationships. ER methods and sim-
ple dictionaries are subsequently used to semantically tag 
the relevant biological entities (for example, genes and 
proteins) and other keywords (for example, activation, 
repression or phosphorylation). Finally, a rule set is used 
to extract relationships on the basis of the syntax tree 
and the semantic labels. Few NLP systems attempt to 
resolve anaphoric relationships, so most systems are there-
fore unable to extract relationships that span multiple 
sentences61. This is not as big a limitation as it might 
seem because most relationships are mentioned within 
a single sentence47,59.

Several programs exist for tokenization and part-of-
speech tagging of English texts (BOX 1), most of which 
are easily adapted to biomedical texts by retraining 
them on a manually tagged corpus such as GENIA or 
PennBioIE38,62. Semantic tagging is more complicated, 
but it can be greatly simplified using existing ER methods. 
By contrast, the development of grammar and extraction 
rules that can correctly parse sentences and extract facts 
remains challenging.

The idealized work flow described above indicates 
that syntactic parsing of sentences, and their semantic 
interpretation are carried out as two separate steps63–66. 
However, most generic English parsers perform poorly if 
applied directly to biomedical texts because of the tech-
nical terminology that they contain and, particularly, the 
use of long, complex noun phrases. Better results can be 
obtained by first tagging the noun phrases65. However, 
many biomedical NLP systems have combined the syn-
tactic parser and the semantic extraction rules into a 
customized partial parser that specifically targets only 
the relevant parts of sentences and directly extracts the 
facts62,67–69. The main drawback of this approach is that 
a large number of extraction rules are needed to cover 
the many slightly different ways of expressing a certain 
relationship. These rules can either be developed manu-
ally62,67–69 or learned automatically from a corpus46,70. 
Both methods are labour-intensive, as the latter requires 
the prior manual tagging of a large training corpus.

Applications of information extraction. Most stud-
ies using IE have focused on extracting few types 
of relationship. These include physical protein–
protein interactions14,47–49,65–71 and interactions that 
involve unspecified molecular mechanisms between 
proteins25,49–55,64–68. Relationships have also been 
extracted for concepts such as disease names, Gene 
Ontology terms and nouns in general46,56–58,60,63. Recently, 
NLP methods have been developed for extracting 

Box 1 | Online tools and resources

There are numerous literature collections (corpora), software modules and web-based 
applications for biomedical literature mining. Here we list some applications that can be 
accessed through web interfaces and a small subset of resources that are useful for 
developers of new literature-mining systems.

Web-based applications
Information retrieval
E-BioSci . . . . . . . . . . . . . . . . . . . .http://www.e-biosci.org
EBIMed  . . . . . . . . . . . . . . . . . . . .http://www.ebi.ac.uk/Rebholz-srv/ebimed
Google Scholar . . . . . . . . . . . . .http://scholar.google.com
GoPubMed . . . . . . . . . . . . . . . . .http://www.gopubmed.org
MedMiner . . . . . . . . . . . . . . . . . .http://discover.nci.nih.gov/textmining
PubFinder . . . . . . . . . . . . . . . . . .http://www.glycosciences.de/tools/PubFinder
PubMed . . . . . . . . . . . . . . . . . . . .http://www.pubmed.org
Textpresso  . . . . . . . . . . . . . . . . .http://www.textpresso.org
XplorMed . . . . . . . . . . . . . . . . . .http://www.ogic.ca/projects/xplormed

Entity recognition 
iHOP . . . . . . . . . . . . . . . . . . . . . . .http://www.pdg.cnb.uam.es/UniPub/iHOP

Information extraction
iProLINK  . . . . . . . . . . . . . . . . . . .http://pir.georgetown.edu/iprolink
JournalMine . . . . . . . . . . . . . . . .http://textmine.cu-genome.org
PreBIND . . . . . . . . . . . . . . . . . . . .http://prebind.bind.ca
PubGene . . . . . . . . . . . . . . . . . . .http://www.pubgene.org

Text mining
Arrowsmith  . . . . . . . . . . . . . . . .http://arrowsmith.psych.uic.edu

Integration 
BITOLA . . . . . . . . . . . . . . . . . . . . .http://www.mf.uni-lj.si/bitola
G2D . . . . . . . . . . . . . . . . . . . . . . . .http://www.ogic.ca/projects/g2d_2
ProLinks . . . . . . . . . . . . . . . . . . . .http://dip.doe-mbi.ucla.edu/pronav
STRING  . . . . . . . . . . . . . . . . . . . .http://string.embl.de

Text collections
Full text corpora
HighWire Press . . . . . . . . . . . . .http://highwire.stanford.edu
PubMed Central . . . . . . . . . . . .http://www.pubmedcentral.org

Tagged corpora
FetchProt  . . . . . . . . . . . . . . . . . .http://fetchprot.sics.se
GENETAG . . . . . . . . . . . . . . . . . .ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe
GENIA  . . . . . . . . . . . . . . . . . . . . .http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA
PennBioIE . . . . . . . . . . . . . . . . . .http://bioie.ldc.upenn.edu
Yapex . . . . . . . . . . . . . . . . . . . . . .http://www.sics.se/humle/projects/prothalt

Information-extraction modules
Entity taggers
ABNER . . . . . . . . . . . . . . . . . . . . .http://www.cs.wisc.edu/~bsettles/abner
GAPSCORE . . . . . . . . . . . . . . . .http://bionlp.stanford.edu/gapscore

Part-of-speech taggers
Brill Tagger . . . . . . . . . . . . . . . . .http://www.cs.jhu.edu/~brill
TNT Tagger . . . . . . . . . . . . . . . . .http://www.coli.uni-saarland.de/~thorsten/tnt
TreeTagger . . . . . . . . . . . . . . . . .http://www.ims.uni-stuttgart.de/~schmid

Parsers
CASS  . . . . . . . . . . . . . . . . . . . . . .http://www.vinartus.net/spa
Collins Parser . . . . . . . . . . . . . . .http://people.csail.mit.edu/mcollins
Stanford Parser . . . . . . . . . . . . .http://nlp.stanford.edu/software
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Syntax
The orderly manner in which 
words are put together to form 
phrases and sentences.

Semantics
The meaning that is implied by 
words and sentences. If an 
information-extraction method 
extracts the right facts from a 
sentence, it has interpreted the 
semantics correctly.

Anaphoric relationships
Back-references to previously 
mentioned entities. A protein 
that is mentioned in an earlier 
sentence might, for example, 
be subsequently be referred 
to as ‘it’.

Corpus
A collection of texts. A corpus 
might consist of either the raw 
text only (for example, 
Medline) or be tagged so that, 
for example, gene and protein 
names are labelled (for 
example, GENIA).

information on gene regulation62, protein phosphor-
ylation61,62,67,68 and tissue specificity of alternative tran-
scripts17. Probably because of the inherent complexity of 
the task, only a few systems have been designed that are 
able to extract multiple types of relationship62,66–68.

Using an NLP-based system that is able to provide 
information on multiple types of interaction, all the rela-
tionships that are mentioned in our example sentence 
can be correctly extracted62. To demonstrate how IE can 
be used at a larger scale, we have applied this method to 
all Medline abstracts, extracting more than 5,000 binary 
relationships (which might each be mentioned multiple 
times). Of these, 370 interactions are between yeast pro-
teins, and are shown in FIG. 3a as a network together with 
the interactions that were identified by co-occurrence54 
(see also supplementary information S1 (figure)). 
This identifies almost 3,000 interactions between these 
proteins, but only 150 of these are of comparable reliabil-
ity to those that were obtained by NLP. With the growing 
interest in systems biology, IE will probably become a 
mainstream tool for biologists in the near future, as it is 
one of the only ways to identify diverse types of relation-
ship on a large scale.

Text mining: finding nuggets in the literature
Often used as a catch-all term for computational text 
analysis, text mining is more strictly defined as “the 
discovery by computer of new, previously unknown 
information, by automatically extracting information 
from different written resources” (M. Hearst, personal 
communication; see also REF. 72). IE methods do not 
therefore qualify as text-mining tools themselves, as 

they can only extract what has already been published. 
Rather, they form the basis for text mining in the same 
way that ER forms the basis for IE72.

Inferring indirect relationships. It might at first seem 
impossible for a computer to make discoveries on the 
basis of literature alone; after all, IE is only able to extract 
the facts that have already been published. The trick is 
to use facts that have been extracted from several differ-
ent publications (A leads to B and B leads to C) to infer 
new, indirect relationships (A leads to C). As the litera-
ture is so vast that each researcher can only read a small 
subset, it might be that no person is aware of all the facts 
that are required to make this logical inference. This is 
plausible especially if the facts were published within two 
disconnected research areas72,73 or if an overwhelming 
number of papers are published on a single topic74.

For almost two decades, Don Swanson has argued 
along these lines and he used a simple semi-automated 
method — Arrowsmith — to infer the following 
new relationships: fish oil can help patients suffering 
from Raynaud disease73; magnesium deficiency has a 
role in migraine headache75; arginine intake has an effect 
on levels of somatomedin C in the blood76; and oestro-
gen protects against Alzheimer disease77. The first two 
have subsequently been confirmed experimentally78,79. 
However, these early predictions were all made using 
a ‘closed’ framework in which the user provides the 
hypothesis (A is related to C), which is then tested by a 
computational search for shared, related words (B) that 
could support the hypothesis. It can therefore be argued 
that the computer did not actually make the discovery.

Box 2 | The jungle of quality estimates

As text mining has been pursued mainly by computational linguists, and biologists are just beginning to explore the 
methods, the classic scenario arises of two research communities that need to communicate in order to learn from each 
other. This starts with developing a common language and common evaluation standards.

To evaluate a literature-mining method, its output is either compared to a gold standard or is manually inspected by an 
expert. This yields three important values: correct retrievals/extractions (true positives, TP), type I errors (false positives, 
FP), and type II errors (false negatives, FN). From these, several other measures can be derived. Within literature mining, 
the most common are:
• Recall: The fraction of relevant documents that were retrieved (TP/(TP + FN)); also known as sensitivity.

• Precision: The fraction of retrieved documents that were relevant (TP/(TP + FP)); also known as specificity.

• F-score: The most commonly used measure for ranking information-retrieval, entity-recognition and information-
extraction methods. It is defined as the harmonic mean of the recall and the precision 
(2 × recall × precision/(recall + precision)). Because the relative importance of recall and precision varies between tasks, 
the method with the best F-score is not necessarily the best for a given task.

One of the biggest problems with these quality estimates has been largely ignored in the literature-mining community. That 
is, precision and F-score are not inherent properties of the methods but also depend on the frequency of positive examples 
in the evaluation corpus109. Imagine that an information-extraction method has 90% precision and recall when applied to an 
evaluation corpus in which 50% of the sentences contain relations that are to be extracted. If this method were applied to 
another corpus in which only 1% of the sentences contain relevant relations, the precision would drop to 15%.

Evaluation on a non-representative subset of Medline can also affect recall. If a method for extracting protein 
interactions is tested only on sentences that contain the verb ‘to bind’, the recall might be overestimated. For example, 
methods would not be penalized for failing to extract nominalized phrases (phrases without a verb) such as ‘Mitotic cyclin 
(Clb2)-bound Cdc28’.

Even if these pitfalls are avoided, it is hard to compare the merits of different approaches, as they have not been 
benchmarked against a common reference. This issue has been addressed through several blind assessments and their 
associated conferences, namely the Text Retrieval Conference (TREC)19,20, the KDD-Cup110, and BioCreAtIvE111. These 
efforts have been important in accelerating the development of information-retrieval and entity-recognition methods 
but have been less successful for information extraction.
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The corresponding ‘open’ discovery problem is 
more challenging, but also potentially more reward-
ing, as it starts from only a single entity (A; for 
example, a disease) and attempts to find indirect, 
undiscovered relationships to other entities (C; for 
example, chemicals or genes). Several methods exist 
that rely on the same strategy: first, identify the terms 
B that co-occur with A, and second, identify the 

terms C that co-occur with B but not with A80–83. The 
main problem with this approach is that inferences 
are made from undirected relationships of unknown 
types, so that causality cannot be taken for granted. 
For example, Cdc28 co-occurs with many of its sub-
strates in Medline abstracts, which would cause most 
existing methods to propose novel but incorrect rela-
tionships between unrelated Cdc28 substrates.

To our knowledge, no published studies have made 
use of NLP-based IE for text mining, although this could 
ensure that the novel relationships are inferred from 
causal chains of relationships. A probable reason is that 
few NLP systems are able to accurately extract a suffi-
ciently large number of directed relationships to allow 
this approach.

However, the following example demonstrates the 
feasibility of using NLP-based text mining to discover 
novel relationships. We used the yeast network of phos-
phorylation and gene expression that we derived using 
IE (FIG. 3a) to indirectly link 64 pairs of proteins, in 
which the two members of each pair do not co-occur 
in Medline abstracts. Manual inspection of the lit-
erature indicates that more than 90% of the inferred 
relationships are correct. For example, the network 
indicates that the cyclin-dependent kinase Ssn3 (also 
known as Srb10) influences expression of the stress-
response protein Hsp104 through phosphorylation of 
Msn2 (FIG. 3b). It is known that Hsp104 expression is 
activated by Msn2 (REF. 84) and that Msn2 is phospho-
rylated by Ssn3 (REF. 85). In addition, Ssn3 was recently 
shown to be a repressor of the general stress response, 
although whether and how this is mediated by Msn2 
phosphorylation remains controversial86,87. Therefore, 
it is plausible that Ssn3 regulates Hsp104 expression but 
this has not been experimentally verified.

In a second example, it is known that Rim11 phos-
phorylates Ume6 (REF. 88), which regulates the expression 
of another transcription factor, Ino2 (REF. 89), and that 
Ino2 in turn regulates Erg9 expression90. It can therefore 
be inferred that Ume6 is likely to regulate Erg9 expres-
sion, and that Rim11 regulates the expression of both of 
the other two proteins. Remarkably, however, neither of 
these relationships seem to have been described in the 
published literature, although they can be inferred using 
our NLP-based method (FIG. 3c).

Although most are correct, the vast majority of the 
inferred relationships in our study of yeast interactions 
also turn out to be well known, despite the proteins 
never having been mentioned together in any abstract. 
Without full-text access to all published papers, it is 
unfortunately impossible to rule out that an inferred 
relationship has already been published. In addition, 
some relationships are probably considered to be so triv-
ial that no one has ever published them. To avoid over-
whelming the user with trivial hypotheses, text-mining 
methods need to integrate data sources other than the 
scientific literature itself — in particular, databases 
of curated information.

Searching for global trends. An alternative text-mining 
strategy is to search for global trends within the literature. 

Figure 3 | A literature-derived network for yeast. a | A yeast protein network was 
derived that applied information-extraction approaches to all abstracts that are stored
 in Medline, using both a statistical co-occurence method54 and a natural-language-
processing (NLP)-based one62. Functional associations that were derived from 
co-occurrence are shown in shades of grey according to the level of confidence that 
was achieved. The NLP method extracts four types of relationship: stable physical 
interactions (green), regulation of expression (red), phosphorylation (dark blue) and 
dephosphorylation (light blue). The proteins (circles) are coloured according to their 
functional annotation: (co-)regulators of expression (red), kinases and cyclins (dark blue), 
phosphatases (light blue) and other proteins (grey). A version of this figure that includes 
all protein names is available in the supplementary information S1 (figure). b,c | Examples 
of unpublished relationships that can be inferred from the network. From the network we 
can infer that Ssn3 probably influences Hsp104 expression through phosphorylation of 
Msn2 (b). In addition, Ume6 probably regulates Erg9 expression and Rim11 is predicted 
to regulate the expression of both Ino2 and Erg9 (c). None of these hypotheses has been 
tested experimentally.
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Study bias
Study biases arise because 
some proteins (or other 
molecules) are more studied 
than others. For example, if a 
protein is known to be 
phosphorylated, it is also more 
likely to have been studied in 
other respects, and is therefore 
more likely to be known to be 
regulated by expression, for 
example.

Temporal trends can be revealed by simply counting how 
many times a given term was mentioned each year, and 
this has been used to analyse changes in which genes 
are ‘hot’91 (FIG. 1), and can also find emerging buzzwords 
(BOX 3). Such methods could also be used, for example, 
to predict future ‘hot’ proteins, which are commercially 
attractive targets for the development of antibodies and 
inhibitors.

An established data-mining method that has not 
previously been used in text mining is a search for cor-
related events, as exemplified by Amazon’s “Customers 
who bought this item also bought…” function. In 
biology, this could be used to discover fundamental 
properties of regulatory networks. As an example, 
to test the feasibility of this approach, we compared 
the lists of yeast proteins shown in FIG. 3 that are described 
in the literature as being regulated through expression 
and phosphorylation. The overlap between the two sets 
is more than fourfold larger than expected by chance 
(P < 5 × 10–4), indicating that phosphorylation and 
regulation of expression target the same proteins, as 
was recently proposed by de Lichtenberg et al. from 

the integration of several large-scale experimental 
data sets92.

Similarly, analysis of the relationships in FIG. 3 also 
reveals that protein kinases preferentially phosphorylate 
each other (P < 9 × 10–9) and that transcription factors 
tend to regulate the expression of other transcription 
factors (P < 2 × 10–7), reflecting the existence of signal-
ling cascades and transcriptional networks, respectively. 
The individual pieces of information that are required 
for making other such discoveries are likely to be 
present in the literature and could be combined using a 
similar systematic, computational method. A drawback 
of this methodology is that statistically significant cor-
relations can arise because of study bias; for example, 
many cell-cycle proteins will have been examined 
for both phosphorylation and changes in expression. 
However, this can be overcome by combining IE results 
with genome-wide experimental data sets, as discussed 
below, because such data sets are unbiased with respect 
to how well the proteins have been studied. For example, 
the correlation between phosphorylation and regulation 
of expression is confirmed by comparing the IE results 

Box 3 | Buzzword hunting

Medline is a rich resource for mining various facts of social or economical nature112–115. Here we present another application 
that highlights a predictive aspect of text mining that has not yet been exploited: the prediction of research fields that are 
about to become popular. Beyond its usefulness for science managers and/or grant writers, it demonstrates the power of 
text mining in discovering global trends.

As most buzzwords are names of research areas or technologies, we limited the analysis to terms with endings such as 
‘-ics’ or ‘-ology’. The characteristic behaviour of a buzzword is that it suddenly starts being mentioned frequently, after 
being mentioned at most a couple of times in earlier years. To formalize this, we define a heuristic buzzword index (BWI) for 
a term:

where n is the number of times a term was mentioned in the past year and n* is the number of times the word was 
mentioned in the previous 10 years. N and N* are similarly calculated on the basis of the number of occurrences of the word 
‘biology’; this normalizes the score with respect to the general growth in biology-related papers.

By running this method on all Medline abstracts that were published up to a certain year and inspecting the terms with 
BWI > 25 and 5 ≤ n < 50, we tested which buzzwords we would have suggested if running the methods at the end of each 
year and obtained the results shown in the figure.

Most buzzwords of the past that we are aware of would have been detected at the time that they became popular. The 
predictive power of the method could be improved by including other text sources or taking into account the fact that 
many new buzzwords are derived from former ones; for example, proteomics later gave rise to functional proteomics, 
structural proteomics and clinical proteomics.
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on phosphorylation with a set of cell-cycle-regulated 
genes that has been derived from microarray expression 
studies92 (P < 4 × 10–4).

Integration: combining text and biological data
Although text mining can be used to uncover overlooked 
relationships, data-mining approaches that integrate lit-
erature with other data types have greater potential for 
making biological discoveries. As an example of how this 
could be achieved, relationships that apply to a particular 
protein of interest could be extracted from the literature, 
followed by sequence-similarity searches to transfer 
these relationships to orthologous proteins4. In this way, 
text-mining methods could be used to make inferences 
that are based on relationships from multiple species, 
and therefore connect communities of researchers who 
work on different model organisms.

To test this approach, we combined the Drosophila 
melanogaster and mouse equivalents of the yeast network 

shown in FIG. 3 (REF. 62) using sequence-based orthology 
assignments from the STRING database54. Using this 
method, we uncovered the following indirect relation-
ship: in D. melanogaster, Suppressor of Hairless (Su(H)) 
has been shown to be a direct transcriptional repressor of 
single-minded93. As the mouse Single-minded 1 protein is 
a transcriptional activator of erythropoietin (Epo)94, we 
make the hypothesis that one or more of the mural Su(H) 
orthologues downregulate Epo expression, although 
none of them co-occurs with Epo in Medline abstracts. 
The power of such approaches will improve only with 
both the growth of the literature and an increase in the 
availability of large-scale data sets.

However, most attempts so far to integrate the lit-
erature with biological data have been directed towards 
the annotation of data that has been obtained from 
functional-genomics studies, as manual in-depth analy-
sis is not feasible in these studies because of the amount 
of data that is generated52,95–101. Most approaches first use 

Figure 4 | Correlating phenotypes with genotypes. The approach that was used involved the integration of gene 
occurrence in genomes with keywords that are overrepresented in the literature associated with certain species105. Species 
distributions of keywords that were derived from Medline were compared with the species distributions of genes to 
calculate how strongly they are associated. The resulting association scores are shown as a heat map. The two trees show 
the individual clustering of species profiles for genes and keywords. The insert shows a cluster that contains 11 groups of 
orthologous genes with unknown function (referred to by their clusters-of-orthologous-groups-of-proteins (COG) or non-
supervised-orthologous-group (NOG) accession numbers) that are only present in Staphylococci species and certain other 
hospital bacteria. All these genes are strongly associated with words that occur more frequently in abstracts that relate to 
those species, such as osteomyelitis (a disease that is related to Staphylococci), cornea (a part of the eye that can be infected 
by Staphylococci), cefazolin (an antibiotic that is often used against Staphylococci) and chlorhexidine (a disinfectant against 
which Staphylococci are resistant). As both genes and words seem to be associated with this species subset, the genes are 
probably directly or indirectly associated with the corresponding phenotypes. The genes might be directly involved in 
disease phenotypes or might only be indirectly involved by contributing to the lifestyle. In either case, the specificity of 
these genes to a limited set of infectious bacteria makes them candidates for drug targets. Figure modified from REF. 105. 
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MeSH terms
A controlled vocabulary that is 
used for annotating Medline 
abstracts. Several classes of 
MeSH term exist, the most 
relevant for literature mining 
being ‘Chemicals and Drugs’ 
(MeSH-D) and ‘Diseases’ 
(MeSH-C).

Linkage mapping
A method for localizing 
genes that is based on the 
co-inheritance of genetic 
markers and phenotypes in 
families over several 
generations.

ER methods or database cross-referencing to retrieve the 
Medline abstracts that are associated with one or more 
genes — for example, a protein family or a cluster of 
genes that are co-expressed in a microarray experiment. 
Then, these abstracts can be used to identify significant 
overrepresentation of keywords within the text95,96 or of 
annotated MeSH terms (medical subject heading terms), 
both of which can contribute to characterizing the genes 
in question97,98. Alternatively, the abstracts can be used 
to evaluate the cluster coherence (a measure of func-
tional similarity for a group of genes)99–101 or construct a 
functional association network of the genes from their 
co-occurrence in abstracts52,55.

Through their ability to bring together many types of 
data, networks have the potential to form the basis for 
text and data integration. There are several web-based 
tools that provide access to protein networks that are 
based on both IE and high-throughput experiments25,53,54. 
These have proved valuable as exploratory tools that 
allow researchers to browse many types of informa-
tion for a set of proteins of interest. In addition, they 
are useful for providing a structured overview of other 
types of high-throughput data. For example, expression 
data can be mapped onto protein-interaction networks 
to visualize how the synthesis of protein complexes is 
regulated at the transcript level92. Such networks can also 
be combined with other types of data to provide insights 
into the molecular basis of a disease. For example, 
literature-based protein networks have been integrated 
with linkage-mapping studies to identify candidate genes 
for Alzheimer disease within a genomic region on the 
basis of their interactions with genes that are already 
known to have a causal role in the disease102.

The types of network that are described above only 
include relations at the molecular level; however, the 
possibility of making discoveries is improved by inte-
grating relationships at multiple levels. This is exem-
plified by several literature-mining tools that are used 
to prioritize candidate genes with potential roles in 
inherited diseases for further study. The first such 
system, G2D, was published in 2002 (REF. 103). It 
combines the MeSH annotation in Medline with the 
Gene Ontology annotation of entries in the NCBI 
RefSeq database to infer logical chains of connections 
from disease names, through chemicals and drugs, to 
molecular functions. Combined with functional anno-
tations that are inferred from sequence similarity, this 
allows the genes within a mapped region to be ranked 
on the basis of a score that represents their likelihood of 
being associated with the disease in question. A second 
system, BITOLA, relies instead on pure text mining to 
find candidate genes that are indirectly connected to 
a given disease, and subsequently filters these on the 
basis of chromosomal-mapping data about the dis-
ease83. A third approach identifies co-occurring disease 
and tissue names in Medline and combines these with 
tissue-expression annotations from Ensembl to link 
the tissues to candidate disease genes58. Although the 
original G2D method was limited to Mendelian dis-
eases, these approaches have recently been shown to 
work for complex genetic diseases58,104.

Even broader in scope is a recent study that cor-
relates text mining for phenotypic information with 
gene occurrences across species (genotype informa-
tion) to infer phenotypic roles for genes of unknown 
function105. Medline was systematically searched for 
keywords that were associated with each prokaryote for 
which the genome has been sequenced. The resulting 
species distributions of keywords were then matched 
against the species distributions of genes to associ-
ate keywords with genes (FIG. 4). The set of keywords 
that is associated with a group of genes can reveal the 
phenotypic characteristics that are caused by 
these genes. For example, genes that are unique to 
Staphylococci species and other hospital bacteria 
cluster together with descriptive keywords such as ‘osteo-
myelitis’ (a disease that is related to Staphylococci) and 
less obvious ones such as ‘chlorhexidine’ (a disinfectant 
against which Staphylococci are resistant) (FIG. 4). This 
indicates putative roles for these genes of unknown func-
tion and highlights them as possible drug targets. When 
it was applied globally, the approach recaptured many 
known genotype–phenotype relationships and also 
predicted several new ones, such as genes that encode 
enzymes that are involved in degradation of plant tissues, 
and genomic determinants for food poisoning105.

Outlook 
The peer-reviewed scientific literature will continue to 
be a prime resource for accessing worldwide scientific 
knowledge, and the continuing growth and diversifica-
tion of that literature will require tremendous systematic 
and automated efforts to utilize the information that it 
contains. In the near future, tools for mining this knowl-
edge base will probably have a pivotal role in systems 
biology. So far, more than 90% of all biomedical litera-
ture mining has been based on Medline, mainly because 
it is freely availably in a convenient format. To realize 
the full potential of these approaches, future methods 
should be able to extract information from the full text 
of papers, including citation information, which could 
then be cross-referenced between papers. This will 
require some methodological improvements as not all 
sections of a paper are equally relevant106,107 and because 
some information must be extracted from figures and 
tables, which current methods are not designed to deal 
with. However, it is the restricted access to the full text 
of papers and to citation information, rather than the 
technology, that is currently the greatest limitation, 
despite some encouraging open-access initiatives such 
as PubMed Central and Highwire Press4,108.

Bridging the gap between biologists and com-
putational linguists will be crucial to the success of 
biomedical literature mining in general, and to its 
integration with high-throughput experimental data 
in particular. The field is currently dominated by 
researchers who have computational backgrounds; 
however, only biologists possess the knowledge that 
is required to properly evaluate methods (BOX 2), to 
identify specific tasks for which tools are needed 
and to point out other data sources that it would be 
valuable to integrate with the literature. To bring more 
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biologists into the field, tool developers need to focus 
more on designing user interfaces that make the tools 
accessible to non-specialists. Finally, both sides need to 
contribute to diversity and novelty within this field, as 
too many researchers currently use the same few methods 

to solve the same few tasks. We hope that this review will 
make more biologists aware of the importance of litera-
ture mining, and that it will inspire the development of 
new tools for making the most of the growing bodies of 
both scientific literature and experimental data.
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The following terms in this article are linked online to:
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http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
Epo | single-minded
OMIM: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM
Alzheimer disease | Raynaud disease
UniProtKB: http://www.expasy.org/uniprot
Cdc5 | Cdc28 | Clb2 | Erg9 | Hsp104 | Ino2 | Msn2 | Rim11 | 
somatomedin C | Ssn3 | Su(H) | Swe1 | Ume6
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An extended bibliography of biological literature-mining 
papers: http://www.bork.embl.de/Docu/literature_mining/
Arrowsmith: http://arrowsmith.psych.uic.edu
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G2D: http://www.ogic.ca/projects/g2d_2
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PubMed: http://www.pubmed.org
PubMed Central: http://www.pubmedcentral.org
STRING: http://string.embl.de
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http://www.yeastgenome.org
Textpresso: http://www.textpresso.org
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