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Abstract
The drug discovery enterprise provides strong drivers for data integration.While attention in this arena has tended
to focus on integration of primary data from omics and other large platform technologies contributing to drug
discovery and development, the scientific literature remains a major source of information valuable to pharmaceu-
tical enterprises, and therefore tools for mining such data and integrating it with other sources are of vital interest
and economic impact.This review provides a brief overview of approaches to literature mining as they relate to drug
discovery, and offers an illustrative case study of a ‘lightweight’ approach we have implemented within an industrial
context.
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INTRODUCTION
Despite the fact that the pharmaceutical and biotech

industries have invested heavily in the identification

of potential new targets for drug discovery by means

of novel platform technologies and large-scale

screens such as genetic association studies, it is

probably the case that the majority of new targets

still derive from novel biological discoveries first

appearing in the scientific literature from academic

sources. In fact, the importance to drug discovery

of ‘one-off’ biological insights arising from basic

research was a reality even before the sequencing of

the human genome [1]. Today, a novel target is

seldom ‘discovered’ de novo but rather functionally

characterized in some new way or associated with

a disease process. Beyond target identification, new

discoveries about a target already in a pharmaceutical

pipeline can have immediate relevance and business

impact, the more so as the target and associated

compounds progress up to and through full devel-

opment. In addition, the identification of biomarkers

that may prove useful in signaling compound action

or disease progression has become an important

adjunct to drug discovery [2]. For these reasons,

literature awareness has traditionally been a constant

preoccupation among therapeutic area experts

within pharmaceutical companies and other such

enterprises. Major scientific journals and in particular

therapeutic area specialty journals are avidly followed

within industry, and various approaches to ‘literature

mining’ have attracted great interest.

With the reliably exponential growth in the

scientific literature over many decades, keeping

current is increasingly challenging for any scientist

[3]. In the pharmaceutical and biotech industries,

there are additional pressures that early recognition

of a target opportunity may provide a business

advantage, and more significantly, that new informa-

tion about the target of a late-stage asset may have

huge economic impact. Thus, it is not surprising

that searches of biomedical journals were the most

frequent queries arising in a mid-size pharma-

ceutical company in a recent study, although what

might be less typical of academia is that these

were followed closely by searches of competitive

intelligence resources and patents [4]. The leading

subjects of queries were drugs, diseases and genes

(including proteins), with similar frequencies, again

perhaps reflecting a different emphasis from

academia.
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However, the sheer volume of publications is not

the end of the challenges involved in adequately

following the literature. It is increasingly understood

that narrowly focusing on a pharmaceutical target in

isolation can lead to problems, and that it is necessary

to consider the action of drugs and their targets in an

overall pathway and systems context, beginning with

the direct interactors of the target but extending to

all manner of relations, direct and indirect [5]. This

opens up the scope of literature mining considerably,

since biological networks are notoriously densely

connected and exhibit ‘small world’ properties that

suggest the need for encyclopedic coverage far

beyond the capabilities of individual scientists to

manage with realistic investment of time [6].

In the past, such networks have been of interest in

drug discovery primarily from the perspective of

well-characterized biological pathways, for instance

in performing what is termed ‘pathway expansion’—a

process by which a putative target that is implicated

in disease but is found not to be tractable to inter-

vention (‘druggable,’ in the current terminology)

leads to the consideration of its upstream or

downstream interactors as candidate targets. Wider

networks of interaction are increasingly of interest,

however, for insights they may offer into mecha-

nisms of action and target-related side effects of

drugs [7], and even the possibility of developing

multi-target drugs [8, 9].

More generally, literature-derived networks of

interactions, both direct and indirect, are a major

component of many approaches to systems biology,

with all its associated complexities [10–13]. In this

way, knowledge from the scientific literature

promises to contribute to drug discovery in new,

indirect and perhaps unforeseen ways [13, 14]. For

example, the use of indirect interactions to establish

disease relevance may be especially important for

target identification [15], while the extraction of

both qualitative and quantitative information may

support mathematical modeling efforts that in turn

relate to drug discovery [16, 17]. Text mining has

been a key contributor to the reconstruction of many

global connectivity maps, for instance that of human

metabolism [18]. Interaction data are available not

only in the public domain [19–21], but also

in extensively curated form from vendors such as

Ingenuity (Redwood City, CA, USA) and GeneGo

(St Joseph, MI, USA).

Biomedical text mining has been extensively

reviewed [22–24], and this article will not attempt

to cover the broad topic in any detail. Rather, we

will briefly review technical approaches and special-

ized tools that relate especially to concerns arising in

drug discovery (which are broad enough, to be sure).

While a number of text-mining tools are available

both in the public domain and as commercial pro-

ducts, we will not offer an exhaustive review of these

either, though several will be mentioned for specific

features. For the most complete understanding of the

issues, a hands-on approach to text mining has been

advocated [25]. In that spirit, we will finish by

describing a particular implementation of our own

that embodies many of the techniques found in

various other systems, as a demonstration of how

to create tools within an industrial context that are

suited to particular domains or purposes related to

drug discovery.

TECHNOLOGYOVERVIEW
The basic tools of text search and retrieval have

been available for decades and are familiar to

researchers in a variety of domain-specific imple-

mentations. Through various keyword mechanisms

and other forms of indexing or document classifica-

tion, as well as straightforward text search, sets

of documents (generally, literature citations and

abstracts) can be retrieved with these tools, generally

with such additional refinements as Boolean combi-

nations of search terms, iterative refinement of

searches, etc. For most biologists, use of the

PubMed resource sponsored by the National

Center for Biotechnology Information (NCBI), at

the National Library of Medicine of the US National

Institutes of Health, is second nature. Commercial

alternatives include Scopus (Elsevier, Amsterdam, the

Netherlands) and Web of Science (Thomson

Scientific, Philadelphia, PA, USA), while a notable

and novel approach is offered by Google Scholar,

which deploys advanced algorithms for enhanced

text retrieval from less structured sources on the

Worldwide Web, constituting a useful complement

to PubMed searches [26, 27]. The computer science

involved in creating such algorithms, for example

through more sophisticated indexing methods and

ordering of results for relevance, is a well-established

field of study. The standard metrics for the field assess

the relative quality of sets of documents returned in

terms of their relevance to the user’s intended search

criteria, and comprise recall, the fraction of relevant

documents returned, and precision, the fraction of

documents returned that are relevant.
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Effective use of keywords is an invaluable aid in

text retrieval, but these are compromised by incon-

sistent use across sources and especially by ambiguity

due to differing naming conventions. These issues

can be addressed by enforcement of standardized or

controlled vocabularies in a domain (such as SNOMED

in medicine [28]) or by the compilation of synonym
lists that allow for on-the-fly disambiguation in

search. As will be seen, the latter are especially

important in recognizing gene names in text.

At the other end of the spectrum from text

retrieval methods are those of natural language

processing (NLP), a branch of artificial intelligence

that goes further than simple lexical (word) recogni-
tion to interpret text through an understanding of

syntax (grammar), semantics (meaning) and still other

layers of analysis [29]. Again this is an established field

of computational research, especially with regard to

applications in the biomedical arena. Tagging of text
entities such as gene names (sometimes called entity
recognition [30–32]) has been aided by NLP technol-

ogies [33], as well as the recognition of higher order

concepts expressed in a variety of ways, although

searches that involve NLP parsing of text are

generally more computationally intensive than text

retrieval methods. NLP methods may recognize not

only entities but relations, such as protein–protein

or gene–disease, and at its most sophisticated these

extend to semantic role labeling, which delves still

further into linguistic constructs of biological pro-

cesses to extract information on location, manner,

timing and the like [34, 35]. Vendors in this

technically challenging arena are legion, and range

from tool sets such as Linguamatics (Cambridge,

UK), ClearForest (Reuters, Waltham, MA, USA)

and AeroText (Lockheed Martin, Gaithersburg,

MD, USA), to integrated text analytics and data

packages such as VantagePoint (Norcross, GA, USA)

and Thompson Data Analyzer (Thompson Reuters,

Philadelphia, PA and London, UK).

Another contribution from artificial intelligence is

a current emphasis on the use of ontologies, essentially
to organize indexed terms into meaningful hierar-

chies that capture domain knowledge. Ontologies

can be seen as establishing relationships between

terms (such as part–whole or generalization–special-

ization) that might not otherwise be recognized as

related at a lexical level, and in this sense they can be

thought of as a higher order of synonym list, though

more sophisticated features may include capacities

for establishing defaults, handling exceptions and

description logics that support automated reasoning on

the ontology [36, 37]. PubMed employs the MeSH

(Medical Subject Headings) hierarchy to aid in search

through disambiguation of topics [38], and newer

integration tools have made heavy use of the GO

(Gene Ontology) hierarchies to classify genes and

gene products [39]. The US National Library of

Medicine’s Unified Medical Language System

(UMLS), which provides an ontology in a form

called a semantic network that references its extensive

compilation of biomedical controlled vocabularies,

is oriented to support of NLP applications [40]. By

extending the semantics of queries, ontologies can

greatly enhance (and speed) text search when a

corpus of text is marked up with concepts from that

ontology, as is done in systems such as GoPubMed

[41] and Textpresso [42, 43].

Text analysis has also made heavy use of disci-

plines such as signal processing and machine learning.

In these approaches, documents are generally repre-

sented as sparse vectors indicating how often given

terms occur in those documents, for example, gene

names found in Medline abstracts [44]. In a tech-

nique called latent semantic indexing (LSI), these vectors
are arranged in a matrix, so that columns comprise

documents and rows list terms [45]. LSI uses a

standard linear algebra technique called singular value
decomposition on such matrices, to establish a joint

‘concept space’ that can readily be queried to deter-

mine the similarities of terms or documents to each

other, or to find terms and/or documents related to

an arbitrary textual string. Recently, LSI has been

used to associate PubMed abstracts to GO ontology

terms, in the SEGOPubmed system [46].

Machine learning provides other tools for text

mining, especially in the area of clustering of docu-

ments into similar groups based on term content.

Na|̈ve Bayes classifiers, which are most notably used

to filter e-mail spam, have also been applied to

searching Medline for articles most relevant to a

given set of articles, as in the MScanner system [47],

as well as in more domain-specific applications like

the Immune Epitope Database [48]. Support vector
machines (SVMs), another popular machine-learning

methodology, have found wide use in biomedical

document classification [43, 49, 50]. SVMs find

hyperplanes that provide the widest separation

between sets of vectors of high dimension, in a

manner well suited to the sparse vectors of terms that

represent documents; they have also proven useful

in tackling the NLP problems of named entity
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recognition [51], word sense disambiguation [52, 53]

and semantic role labeling [54].

Thus, combinations of these basic methods and

many related ones too numerous to mention are

often used to create systems that are well-suited to

supporting the biomedical researcher, and in some

cases the drug discovery enterprise specifically

[4, 55, 56]. Such systems may allow for individual

queries of bibliographic databases in some enhanced

way [57, 58], or they may allow for clustering,

categorizing and summarizing sets of documents

[59], which may be particularly helpful in maintain-

ing a knowledge base in a particular therapeutic area.

DRUGDISCOVERYAPPLICATIONS
While generic literature-mining techniques have

often been used to derive drug-related annotation

from literature as just one of a variety of applications,

some workers have focused on domain-specific

problems in greater depth. Kolarik et al. [60] utilized
NLP techniques to extract likely annotation terms

related to drugs from textual descriptions in

DrugBank, and by applying these lexico-semantic

patterns to sources such as Medline they find that

they are able to automatically extend and update

such resources with novel descriptions of pharma-

cologic effects of drugs. Similar but more specific

text-extraction methods have also been applied to

such tasks as deriving information about drug–drug

interactions [61] and interactions of compounds with

drug metabolizing enzymes [62], while other NLP

efforts have focused on exploiting taxonomic organ-

ization of chemicals and drugs in text mining [63].

Less attention has been paid to extraction of

chemical annotation from literature than that related

to genes and gene products of late, perhaps because

the IUPAC nomenclature and resources such as

Index Chemicus and Chemical Abstracts Service

(CAS) were well-established at an early date [64],

and the lexico-syntactic issues are more clear-cut in

the case of chemistry. For instance, it was recognized

nearly a half-century ago that a systematic chemical

name could be algorithmically converted to a

molecular formula and structure [65], a capability

for which molecular geneticists might well long.

Mining of chemical entities from the literature has

been extended with the collection of related

attributes, as well as the use of NLP techniques

to tackle more sophisticated tasks such as build-

ing databases of reactions and structure–activity

relationships; both the academic foundations and

commercial implementations in this arena have been

well reviewed by Banville [64].

Medicinal chemists may be challenged by the

need to search the literature not only for chemical

compounds but also for text related to biological

systems. One particularly imaginative approach to this

has been the extension of LSI to chemical structures,

by creating a matrix of molecules versus chemical

descriptors [66]. This not only allows for LSI-style

query of a molecule/descriptor concept space, but it

can also be conjoined with conventional textual LSI

to jointly search the literature with compounds,

descriptors and text terms, in a technique called Text

Influenced Molecular Indexing [67]. The fact that

machine-learning methodologies such as SVMs have

been used extensively for classification based on

physicochemical properties of both small molecules

[68, 69] and proteins (including proteins of particular

relevance to drug discovery, such as common target

classes and enzymes related to drug absorption and

metabolism [70–72]) suggests the likely fruitfulness of

further such approaches to text mining conjoined

with molecular search and classification.

The interaction of chemical compounds and gene

products is, of course, at the heart of the drug

discovery enterprise. Many efforts have concentrated

on the co-occurrence in text of gene identifiers; Zhu

et al. [73], on the other hand, used co-occurrence

to discover implicit ‘chemical compound–gene’

relations in the literature. An earlier experimental

system, EDGAR, used a more sophisticated NLP

approach to extract both genes and drugs, as well as

relations between them [74]. In one example of a

useful classification application, a statistical approach

was used to identify articles describing gene–drug

interactions from MedLine abstracts, identifying

nearly 5000 articles deemed relevant to pharmaco-

genetics with high precision [75]. Co-occurrences

of drugs and diseases in the literature as well as in

clinical notes have been used to validate semantic

interpretations of MedLine abstracts [76] and to assess

the strengths of such associations [77]. Overall,

however, work in this area has not progressed

remarkably considering the importance of the task to

the drug discovery enterprise.

On the other hand, network approaches that

consolidate relationships among different object

types (gene, disease, etc.) are increasingly including

drugs among the multi-way interactions depicted

[78]. As a rule, these varieties of interaction mining
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should not be expected to perform any better than

the best-studied of the binary text-mining tasks,

those of gene-gene interactions, and specifically

physical protein–protein interactions; while such

technology has shown improvement [79–83], it still

falls short of what can be obtained by manual

curation, which however may itself benefit by a

computational assist from such systems [84]. What

is likely to be of greatest utility with regard to

integrating chemical and biological knowledge is the

PubChem resource at NCBI, which links many

millions of compounds and substances to data from

high-throughput screening as well as to PubMed

literature and Entrez gene data [85]. Such multi-way

networks not only comprise a form of data

integration in themselves, qua data structure, but

also constitute a useful visualization and browsing

modality, as an adjunct to query [24].

Beyond the foundational activities of entity

recognition and relationship extraction from litera-

ture, hypothesis generation has been rightly identi-

fied as a literature-based activity of importance in

biomedicine and in particular drug discovery [23]. It

is interesting that the early work of D. R. Swanson is

often held up as the prototype of inferential analysis

from multiple sources, for instance transitive closure

of relations such as ‘influences’ (X influences Y from

one source, Y influences Z from another, and it

is therefore inferred that X influences Z) [86].

Swanson’s seminal paper used analogical reasoning

across sources to hypothesize that fish oil might be

therapeutic in Raynaud’s syndrome [87], and a

follow-up study suggested a relationship between

migraines and magnesium [88], both of which were

later supported by clinical and experimental findings.

Such computational hypothesis generation is likely

to be of increasing interest in the pharmaceutical

industry, for example in drug repositioning (by

which new applications for existing compounds are

identified), as has been demonstrated in the identi-

fication of novel indications for thalidomide [89]

and curcumin [90]. Among a variety of platform

approaches to identifying repositioning opportuni-

ties, the IDMap system is notable for combining text

mining with chemical structure information [91].

CASE STUDY: GLAXOSMITHKLINE
We present a case study in the use (and reuse) of

various tools and technologies for literature mining at

GlaxoSmithKline (GSK). These are presented not

because they are unique or particularly sophisticated

approaches, but rather because they are typical of

many such systems that have been deployed to the

web or implemented locally. The main point here is

to demonstrate how generic methods and resources

can be used to meet the needs of any given enterprise

with as much customization as is deemed necessary.

At GSK, we make heavy use of PubMed and

Entrez Programming Utilities (eUtils) from NCBI

(http://www.ncbi.nlm.nih.gov/entrez/query/static/

eutils_help.html). Given that drug discovery primar-

ily draws on genes with established nomenclature,

we rely on known gene synonyms and descriptions

to tag human, mouse and rat genes in article

abstracts. Although NCBI maintains a much-used

web-based query service, we find it desirable to

download and maintain a local corpus of Medline.

For each article, we extract the MeSH terms,

including substance names that have been indexed

for the article. We prefer to use the manually curated

MeSH terms rather than parsing text based on

synonyms from Unified Medical Language System

(UMLS) [92] or other ontologies simply because

manual curation, when comprehensive and systema-

tic, remains the gold standard.

Each article’s title and abstract is also scanned for

all high-quality gene names. The Gene name list is

built by integrating names and descriptions from

multiple fields within EntrezGene, HUGO, and

UniProt. The EntrezGene data was downloaded

from ftp://ftp.ncbi.nih.gov/gene/DATA/. All gene

names and descriptions were extracted from the

gene_info.gz file. The file gene2accession.gz was

used to map UniProt accessions to EntrezGene.

HUGO approved gene names and symbols were

extracted from the ‘All Data text’ downloaded from

http://www.genenames.org/data/gdlw_index.html.

All the gene names and descriptions in the fields:

GN, ID, andDEwere extracted fromUniProt down-

loaded from ftp://ftp.uniprot.org/pub/databases/

uniprot/current_release/knowledgebase/complete/

uniprot_sprot.dat.gz.

All human, mouse, and rat gene synonyms are

mapped onto the orthologous human EntrezGene.

This yields a total of 313K synonyms (from a

December 2007 gene synonym build), though only

�74K of the synonyms were found in PubMed

abstracts. In addition, we also add identifiers and

other internal names that aid in the query interface.

Gene synonyms that are ambiguous (i.e., refer

to multiple human EntrezGenes) are flagged.
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Gene names that correspond to common English

words or those that are likely to be other medical

terms or abbreviations (for example, most three-

letter names) are assigned a downgraded quality and

not used with default parameter settings. This eli-

minates about 8K synonyms with non-zero count.

Moreover, we also have a process for downgrading

gene names that are manually identified as being not

useful. This helps improve specificity over time.

From each PubMed article, the following features

are extracted: PubMed identifier, year of publication,

title, author list, affiliation, MeSH terms (with flag

indicating if major) and substance names. This yields

�200 million article-to-MeSH term or substance-

name mappings. In addition, gene names are flagged

by scanning title and abstract. Moreover, two data

files are used from EntrezGene to augment Gene to

PubMed mappings (Table 1): Gene2pubmed (from

ftp://ftp.ncbi.nih.gov/gene/DATA/gene2pubmed.

gz) and GeneRIF (from ftp://ftp.ncbi.nih.gov/gene/

GeneRIF/generifs_basic.gz). GeneRIF (Gene

Reference into Function) provides a quality func-

tional annotation that may extend beyond the genes

mentioned in the abstract [93].

A number of excellent and well-validated entity

recognition systems have been suggested from

PubGene [94] to iHoP [95]. We chose to implement

our own for reasons of flexibility, availability and

history; however, if initiating a new one careful

attention should be paid to the best systems from

evaluations such as BioCreAtIvE [96]. The GeneRIF

data may be used as an extensive gold standard to

compute the recall for our scheme for matching

a PubMed article with an EntrezGene. GeneRIF

contained 259 739 unique gene to PubMed map-

pings. This is based on the human gene mappings,

plus, the human ortholog of the mouse and rat genes

mappings as of 5 June 2008. Orthology was

determined using Homologene [97]. Of the 260K

mappings, 217 020 (84%) were also found indepen-

dently by our system. (For this comparison, we

ignored both GeneRIF and Pubmed2Gene map-

pings in our system.) In total, the system contains

�7.1 million PubMed-to-human-gene mappings

covering �3.3M articles and �17K human genes.

A major advantage of integrating PubMed with

gene names is that for any particular disease it enables

us to generate a set of associated genes. We use eUtils

(from NCBI) to retrieve the PubMed identifiers

corresponding to a particular disease. Given these

PubMed identifiers, we can then locally generate lists

of all genes mentioned in those articles. This list is

then prioritized based on Fisher Exact P-values for
the association of this gene with the disease [98]. This

P-value computation takes into account both the

specificity of the gene name and the disease in

PubMed. It would be useful to have objective

estimates for this precision at the disease–gene asso-

ciation level, the numbers for which are both superior

and more relevant than the precision for each gene-

to-PubMed association. In other words, the Fisher

exact test can help with prioritizing the gene–disease

level associations, and in our experience associations

with a P<0.05 have fairly high precision.

In a drug discovery context, the value of categori-

zing literature by gene, disease or compound is mani-

fold. We can immediately get a ranked list of genes

associated with a disease, see Figure 1 for results based

on the PubMed query ‘Asthma [majr]’ [The suffix

[majr] indicates that the MeSH term should be a

major topic of the article. The suffix [mh] includes any
article that is indexed with that MeSH term (not

necessarily a major topic). See PubMed help (http://

www.ncbi.nlm.nih.gov/books/bv.fcgi?rid¼helppub

med.section.pubmedhelp.Search_Field_Descrip) for

a complete description]. This list can then be followed

up in a top-down fashion until one finds the first

Table 1: Number of unique gene to PubMed mappings
for each species extracted from the GeneRIF and the
Gene2pubmed files provided by Entrezgene

GeneRIF Pubmed2Gene Entity
recognition (M)

Human 183 405 420 467 5.5
Mouse 65 039 538339 5.0
Rat 26781 61880 3.8
Human ortholog 259739 810735 7.1

The Entity recognition column has the number of gene to PubMed
mappings found across all PubMed using the species-specific subset of
the �300K gene synonyms. The human orthologs numbers are from
combining human genes with mouse and rat genes mapped to the
human ortholog fromHomologene [97].

Figure 1: Simplified workflow of the literature mining
system at GlaxoSmithKline. See text for a description.
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‘novel’ association, which can then be further

evaluated, and possibly rejected (if due to an error

in gene name mapping, or due to the use of the gene

name in a different context than the disease within the

abstract or full-text). The P-value is computed

independently for each gene name. This makes the

system transparent and also helps account for gene

names that may be ambiguous. However, a case could

also be made for combining the synonyms to enhance

statistical power.

The list of genes with associated P-values
(as in Figure 2) can be used to generate a network

Figure 2: List of genes associated with the most recent 20 000 articles from PubMed based on the query
‘Asthma[majr]’ (only top few genes with the best Fisher P-values shown). All the gene names found in the text are
shown.Daggers indicate that the gene association is due to a GeneRIF or a gene2pubmed entry.
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Figure 4: Partial list of small molecule tractable targets mentioned in recent literature associated with the PubMed
query ‘Asthma[majr]’.

Figure 3: A protein interaction network enriched in genes associated with the query: ‘Asthma[majr]’. The subnet-
work edges are based on direct interactions between proteins that were extractedmanually from literature.This is a
maximally scoring subgraph enriched for genes with the best P-values [99].
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view of the disease (Figure 3) by integrating it with

protein–protein interaction data derived from either

public databases or commercial vendors, as we have

described previously [99]. This can help focus

attention on the key genes associated with the disease.

A potential list of small molecule drug targets is

obtained (Figure 4) by intersecting the resulting gene

list by a druggable genome list of proteins that are

considered tractable for small molecule compounds.

(The druggable genome list used is based on Russ

and Lampel [100]; however, other proprietary lists

may be easily substituted.) In addition, we can get a

list of potential biomarkers for any disease by refining

the query to ‘Asthma [majr] Biological Marker [mh]’

(Figure 5). These results can then be evaluated by

scanning the papers that suggest the connection, as

there are likely to be a few false positives based on

publications that discuss some aspect of a biomarker,

but the gene name may be mentioned in a different

context. (Of course, an advantage of eUtils is that we

can readily process any PubMed query by letting

NCBI resolve it.)

We can also retrieve and categorize the results of

any query based on a gene. We perform this task by

generating all the aliases of that gene and querying

eUtils with a composite ‘OR’ query involving all the

Figure 5: Partial list of genes mentioned significantly often in abstracts that result from the query ‘Asthma[majr]
Biological Marker[mh]’.
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gene names. The resulting PubMed identifiers can

then be categorized by the diseases mentioned as

major MeSH terms in those articles (Figure 6). Thus,

the literature on any gene can be summarized by the

diseases associated with that gene. The results output

is ordered by the ‘unexpectedness’ of a disease asso-

ciation, which is computed using a Fisher’s exact

test [98]. Instead of diseases, we can also generate

‘Anatomical terms’, ‘Biological terms’ or ‘Chemical

substances’ associated with a query. This takes

advantage of the MeSH tree organization, sub-

stance name, and the semantic network from the

UMLS [92].

A gene-based query can be combined with a set of

terms (such as, IC50 OR XC50 OR pKi OR pKd

OR agonist OR antagonist) that suggest that the

abstract may mention a tool compound (for

example, see Figure 7). The resulting abstracts are

then categorized by the MeSH terms corresponding

to chemical substances and other supplementary

substance names mentioned in those articles. This is

often an initial step in identifying known compounds

that may be used as tool compounds for target

validation.

Queries can also be combined using both gene

and disease terms. Thus, one can query using both

‘insulin’ and ‘Diabetes Mellitus [majr]’ to find other

genes associated with insulin in the context of

diabetes. This simple framework enables fairly

powerful queries that handle genes correctly, based

on extensive practical experience.

CONCLUSIONS
Scientists engaged in drug discovery who wish to

perform effective literature search might first do well

to ensure that they are fully exploiting the powerful

search capabilities offered online by PubMed. While

the basic service is well-known and heavily used,

in our experience it is rare to see the average scientist

making the most effective use of Boolean combina-

tions, filters of various kinds and in particular the rich

set of MeSH headings by which articles are indexed.

Such searches are often usefully complemented

by Google Scholar, which draws on a wider

variety of sources and rank-order results based on

citations.

Figure 6: Diseasesmentioned asmajor MeSH terms in articles thatmention the gene: INSR (insulin receptor) or an
alias.
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At the other extreme, bioinformatics or informa-

tion sciences professionals in a pharmaceutical

context may make effective use of new NLP

technologies, either downloaded from the public

domain or obtained from vendors, to perform highly

sophisticated and fit-for-purpose queries, classifica-

tions, etc. These will no doubt produce superior

results (albeit at an obvious cost), particularly in

domains that have not been as effectively indexed or

which have other peculiarities calling for syntactic or

semantic analysis in the course of search. However,

with regard to increasingly important interaction

and pathway data, even the most sophisticated NLP

approaches are not yet competitive with manual

curation, where the onus again reverts to the expert

scientist, perhaps aided by the tools above.

A cost-effective alternative that lies between the

two extremes, and which will often suffice for special-

ized searches such as may arise in a pharmaceutical

context, is to utilize PubMed and adapt NCBI eUtils

as described in the previous section. By downloading

the PubMed abstracts (or major subsets), local scripts

may be run that perform any necessary compute-

intensive operations as well as application-specific

operations, while still relying on the NCBI apparatus

for intermittent search and ancillary data retrieval.

This has the advantage that it is possible to maintain

updated databases with relative ease and avoid

supporting an extensive code base. This ‘lightweight’

approach to text mining has proven robust and

sustainable in our hands, and is an attractive alternative

to ‘IT-heavy’ solutions with a much greater degree of

integration with platform data and other resources.

While we typically combine the results from this

system with other bibliographic, patent and compe-

titive intelligence sources (not described in this

review), such activities are done in a modular way,

often with the appropriate vendor tools in standalone

fashion, and sometimes by other groups entirely.

This approach may not attain the ideal of

comprehensive data integration across all sources

for all purposes, but the tools described have proven

effective as a first step toward exploiting current

literature with a relatively small infrastructure

investment. It may be closer in spirit to what has

been called a ‘Google for bioinformatics,’ not so

much an authoritative integrated database but rather

an enriched literature search with an effort at

meaningful rank-ordering of results.
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