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Abstract
The immense growth of MEDLINE coupled with the realization that a vast amount of biomedical knowledge is
recorded in free-text format, has led to the appearance of a large number of literature mining techniques aiming
to extract biomedical terms and their inter-relations from the scientific literature.Ontologies have been extensively
utilized in the biomedical domain either as controlled vocabularies or to provide the framework for mapping rela-
tions between concepts in biology and medicine. Literature-based approaches and ontologies have been used in the
past for the purpose of hypothesis generation in connection with drug discovery. Here, we review the application
of literature mining and ontology modeling and traversal to the area of drug repurposing (DR). In recent years, DR
has emerged as a noteworthy alternative to the traditional drug development process, in response to the decreased
productivity of the biopharmaceutical industry. Thus, systematic approaches to DR have been developed, involving
a variety of in silico, genomic and high-throughput screening technologies. Attempts to integrate literature mining
with other types of data arising from the use of these technologies as well as visualization tools assisting in the
discovery of novel associations between existing drugs and new indications will also be presented.
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INTRODUCTION
The enormous increases in research and develop-

ment (R&D) spending, the dearth of approvals of

New Chemical Entities (NCEs) and the competition

from generic drugs has driven biopharmaceutical

companies to evaluate new business paradigms, one

of them being Drug repurposing (DR). DR has trad-

itionally been part of the drug development process

as a strategy to preserve and extend the value of pa-

tents through reformulation strategies [1]. However,

the productivity challenges of traditional drug dis-

covery together with the exemplary success of

sildenafil, duloxetine and thalidomide [2] as repos-

itioned drugs, has sparked a renewed interest to DR,

this time as an alternative approach to traditional

drug discovery [3]. Several directed approaches to

DR have been appearing in the scientific literature

in past last 2 years [4–13], both from academia and

industry, many of them based on computational

techniques. These in silico efforts have often been

driven by the massive amounts of data generated

by high-throughput experiments and many times

stored in bioinformatics and cheminformatics

databases.
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Much of the knowledge covering modern biology

and medicine is often buried in various forms of

free-text documents. Literature mining techniques

are increasingly being developed to harness the in-

formation stored in scientific articles and to infer re-

lationships between biomedical concepts, even if

they are not mentioned in the same abstract.

Advances in literature mining have enabled the cre-

ation of networks of associations among many types

of biomedical entities, including genes, drugs and

diseases [14–20].

Bringing together information gathered from lit-

erature mining or from other high-throughput tech-

nologies, such as microarrays and proteomics, has

been a driving force behind the recent interest in

building and using biomedical ontologies [21, 22].

At the basic level, ontologies are created with the

purpose of describing a scientific domain; in other

words, they provide a means of describing concepts

and their inter-relations in the context of a know-

ledge domain of interest. Distant relations between

islands of knowledge that are seemingly unrelated to

each other, such as the association of an existing drug

to a novel medical condition [23] can be identified

by traversing an ontology.

Graphical visualization of biomedical networks

can be of great use when we are in a discovery

mode trying to reveal connections between distant

entities. Graphical layouts such as heat maps also help

us visualize patterns and trends hidden in data pro-

duced by high-throughput experiments of e.g. drug

interventions to gene expression or to disease

progression.

In this article, we will review various literature

mining approaches to drug discovery and drug

repurposing. Ontological resources as well as infor-

mation visualization methodologies suited to drug

repurposing will also be described.

TECHNOLOGICALOVERVIEW
Literature mining
PubMed, the most widely used repository of bio-

medical articles contains over 20 million abstracts

and is growing with a rate of over 850 000 abstracts

per year: the number of articles added each year

to PubMed has almost tripled in the last decade

(Figure 1). As research on a single topic may span

across many scientific disciplines and biomedical

journals, it is increasingly difficult for scientists

to follow all advances in their field of interest.

The diffusion of knowledge to many different jour-

nals and scientific disciplines has started gradually

creating ‘islands of knowledge’ and led to the devel-

opment of literature mining methodologies aiming

to link concepts and arguments that are not men-

tioned in the same article. The process of inferring

implicit knowledge from seemingly unrelated con-

cepts has been called literature-based discovery

(LBD).

The foundations for this view of the biomedical

literature and its potential to be used for drug dis-

covery were originally laid by Don R. Swanson in

the mid-1980s [24]. Using an approach to literature

mining, referred to as the ABC model, Swanson

made several scientific hypotheses, including the

beneficial effects of fish oil to patients with

Raynaud’s disease [25], and the potential of magne-

sium to treat migraines [26]. The fish oil connection

to Raynaud’s disease was later validated in clinical

trials [27], whereas the prophylactic role of magne-

sium in migraines is now well established in the clin-

ical practice [28].

The premise of the ABC model (Figure 2A) is that

there are two concepts or bodies of knowledge that

do not communicate explicitly with each other.

However, part of the knowledge of one such

domain may complement the knowledge of the

other one. Suppose that one scientific community

knows that B is one of the characteristics of disease

C. Another scientific discipline has found that

Figure 1: PubMed has almost tripled its growth rate
in the past 10 years. The number of articles added to
PubMed each year is plotted against the year they
were added. The trend lines represent the rate
PubMed is growing over the years starting from 1980.
The arrow (‘S’) points to the year Swanson published
his fish oilçRaynaud’s disease paper (1986).
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substance A affects B. Discovery in this case is

making the implicit link AC through the

B-connection.

Swanson’s analogical reasoning approach was later

formalized by Weeber and coworkers, who pro-

posed a two step process for discovery based on the

ABC model. In the ‘closed discovery’ process, where

the two starting concepts A and C are already

known, the purpose of the discovery process is to

interpret the implicit relationship between A and C

(Figure 2A). This is the original conceptual model of

Swanson. The open discovery process (Figure 2B)

begins with a concept A, for example, a disease

and looks for arguments B related to concept A,

for example, the mechanism of the disease. At the

second step, concepts C are sought that share the B

arguments; for example drugs, the effects of which

are mediated by this mechanism [29, 30].

Both open and closed LBD modes have inspired

literature mining researchers to create tools attempt-

ing to (semi) automate the discovery process, taking

advantage of information extraction (IE) techniques

to efficiently extract relevant information from the

scientific literature and integrating additional data

types and sources to the discovery process on top

of the scientific literature. Almost all applications of

LBD described in the literature attempt to discover

treatments for diseases using known drugs and nutri-

tional supplements as their basis, demonstrating the

applicability and relevance of LBD to drug repurpos-

ing [13, 17–19, 35, 40, 42–46, 75, 82]. It is also of

interest that relationships between concepts have

almost exclusively been based on co-occurrence of

terms and facts in the same abstract.

Smalheiser and Swanson proceeded with the cre-

ation of a web tool called Arrowsmith, which builds

on the closed discovery mode of the original ABC

model, adding a level of automation to the interpret-

ation of the implicit connection between the A and

C concepts [31]. Gordon and Lindsay [32] employed

the open discovery mode and used lexical statistics

over titles and abstracts to recreate Swnason’s discov-

eries. Weeber et al. [29] pursued the same goal using

the Unified Medical Language System (UMLS) [33]

and lexical tools to map natural language text to

UMLS concepts. The tool they built, called DAD

was based on the MetaMap program [34] to map

words in the abstract to UMLS concepts. Weeber

et al. [35], following their elaboration of the ABC

model, made four novel therapeutic applications

for thalidomide: myasthenia gravis, chronic hepatitis

C, Helicobacter pylori-induced gastritis and acute pan-

creatitis. LitLinker [36] and Telemakus [37] are two

other systems taking advantage of the MetaMap pro-

gram and UMLS. LitLinker also used MeSH [38] for

term selection and reduction steps. Telemakus also

enables the visualization of the networks it creates, in

a conceptual graph. Van der Eijk et al. [39] extracted

information from abstracts and then built a

co-occurrence based Associative Concept Space

(ACS) algorithm to place all concepts in an n-dimen-

sional space. Concepts in close proximity are con-

sidered to be related and if these concepts do not

have a direct relationship, a potentially novel rela-

tionship has been discovered. Wren et al. [40]

constructed a co-occurrence based network of bio-

medical concepts extracted from MEDLINE and

then used the strength of the associations to infer

novel relationship between cardiac hypertrophy

and Chlorpromazine. The authors then went ahead

and validated this relationship in animal models.

Narayanasamy et al. [41] also created an association

graph by mining MEDLINE for biomedical concepts

and then used this network to find transitive associ-

ations in a tool called TransMiner. In a study pursu-

ing the closed discovery mode of LBD, Ahlers

et al. [42] extracted semantic predications from

MEDLINE and then used this information to iden-

tify proteins that potentially provide a link between

cancer and anti-psychotic agents. Petric et al. [43] put

A B C

A

B1

B2

B3

C1

C2

C3

C4

A

B

Figure 2: (A) Graphical representation of Swanson’s
ABC model. Concepts A and C may have an implicit
connection to each other, if they share an explicit con-
nection with concept B. This is also called the closed
discovery model. (B) The open discovery model [29].
Concept A is linked to one or more concepts C
through intermediate concepts B.
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an emphasis on rare terms in the discovery process,

linking autism to calcineurin. Hristovski et al. [44]

produced a tool called BITOLA that computes asso-

ciation rules between concepts extracted from

MEDLINE. These rules are used to represent the

known relations between the concepts. Results are

ranked according to parameters that measure associ-

ation strength. In another study demonstrating the

discovery potential of the closed discovery mode,

Baker et al. [45] used MeSH terms to find drugs

and their effects in MEDLINE abstracts and con-

nected those to diseases using proteins as the inter-

mediary B concepts. Ha et al. [13] have built a

program employing cheminformatics and text

mining techniques to predict novel relations be-

tween existing drugs and drug targets. Finally, Zhu

et al. [18] created a data mining tool using aggregate

web services to characterize compounds and find

non-obvious relationships between them and

genes, diseases and biomedical articles.

The LBD approach may be pursued without re-

sorting to the use of free text for the extraction of

starting or ending concepts. Srinivasan and Libus [46]

employed MeSH terms and developed an algorithm

that used a weighting system to select B (intermedi-

ate) concepts finally producing ranked lists of C

concepts to explore the therapeutic potential of

turmeric/curcumin, a dietary supplement.

Information Extraction
Swanson’s original discoveries were based on manual

scanning of the biomedical literature. There were

approximately 7 million papers in PubMed in

1986, the year Swanson published his first discovery

(Figure 1), whereas in 2009 there were over 19 mil-

lion abstracts stored in this repository. Most practi-

tioners of the LBD approach in the last decade had to

resort to some form of text mining in order to iden-

tify and extract all relevant facts from free text. In

some cases, MeSH headings were used as a substitute

of text mining. Although, MeSH is a remarkable

resource for annotations, a significant amount of in-

formation is still present only in the abstract and is

missing from the MeSH headings [47].

An important first step toward the discovery of

novel links between seemingly unrelated concepts

is the extraction of these concepts and their relation-

ships from a single article or abstract, in a process

called Information Extraction (IE). IE usually

begins with Named Entity Recognition (NER),

which deals with the correct identification of

biomedical terms in free text. Terms might be iden-

tified using controlled vocabularies, such as UMLS,

MeSH for diseases, Uniprot [48] and NCBI Entrez

Gene [49] for genes and Reactome [50] for path-

ways, or through Natural Language Processing

(NLP) and machine learning techniques [51, 52].

The NER step is a prerequisite for any IE project;

however, it is a quite difficult task due to the lack of

standardization of names and the issues of synonymy

and polysemy [16, 53]. These problems are most

evident with genes/proteins. Genes/proteins are

described with a variety of descriptors, such the

gene symbol, the gene name, the gene product

name and various synonyms. However, in most

cases there are more than one gene symbols per

gene and scientists tend to refer to a gene with dif-

ferent names in the literature, many times not using

the ‘official’ symbol. A good example is the p38

MAP kinase (Entrez Gene ID: 1432). The official

gene symbol for that gene is MAPK14 and the offi-

cial full name is mitogen-activated protein kinase 14.

However, very few scientists refer to that gene with

the name MAPK14—at least in the abstract of the

article. To alleviate this issue, the Entrez Gene data-

base contains a variety of synonyms for MAPK14,

including p38. However, the issue of synonymy and

lack of standardization are not the only challenges for

determining the identity of a gene in free text. p38 is

a synonym for over 20 different genes from a variety

of organisms, including humans, flies and viruses.

This phenomenon is called polysemy and refers to

the capacity of a name to have multiple meanings

(i.e. functions). Recent methods, mostly based on

machine learning techniques have tackled the issue

of gene disambiguation with promising results. Most

of these approaches are based on the context or other

characteristic features surrounding the genes [54–58].

At its simplest form, IE only attempts to find

co-occurring concepts within the same abstract or

sentence. Co-occurrence is based on the notion

that if two concepts are mentioned in the same

body of text, they are possibly related to each

other. Although, this method of association seems

very limited in terms of its granularity, it seems to

be well suited for situations where one is in explora-

tory mode by way of not filtering out ambiguous

relationships and by providing associations of

almost any type. Actually, co-occurrence has been

the dominant method of relationship employed in

the LBD articles that are described in the previous

section. The disadvantages of co-occurrence, i.e. its
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inability to provide any information regarding the

nature of the relationship and its potential high rate

of false positives have been the driving force behind

the development of NLP techniques which attempt

to identify concepts and their relationships in a uni-

fied way. In the typical NLP setup, text is first toke-

nized to identify word, and sometimes sentence

boundaries followed by tagging of the type of the

word (e.g. a noun) by specialized systems called

part-of-speech (POS) taggers. Entities (words) ex-

tracted are then semantically mapped to a biomedical

category (e.g. a gene or a disease) and a syntactic tree

is constructed representing the structure of the whole

sentence or phrase. NLP methodologies have been

improving in recent years [52, 59] and by providing

directionality in concept relationship might soon be

in position to offer better guidance for new discov-

eries than co-occurrence.

Semantic web technologies and
ontologies
Biology differs from other scientific disciplines, such

as Physics in that biological/biochemical processes

have not been completely modeled mathematically.

Relationships between domain entities must there-

fore be recorded in more subjective ways, as opposed

to mathematical formulas, while retaining the ability

to apply computational techniques. Ontological rep-

resentation has provided an answer to the issues pre-

sented by the incomplete understanding of biological

processes [60]. At the same time, ontologies have

been providing a means of standardization unifying

facts from various domains of knowledge that might

have originally been recorded in different formats.

Ontologies can be used to answer questions that

may be inferential in nature. It is this characteristic

that makes the use of Ontological resources signifi-

cant in drug repurposing. Despite some shortcomings

of popular semantic web languages to comprehen-

sively define the often incomplete nature of biomed-

ical data [61, 62], these languages have been used

extensively for representing relationships in the bio-

medical field.

Semantic web [63] technologies are widely used as

a means for formal description of concepts and their

relationships in any given knowledge domain and

they have been applied in the field of bioinformatics

as discussed above. Web Ontology Language (OWL)

[64], built on top of Resource Description

Framework (RDF) [65], is the standard currently

adopted by the W3C working group for authoring

ontologies. A large number of tools have been de-

veloped that allow easy manipulation and generation

of ontologies using OWL including PROTEGE

[66], FACTþþ [67] and HermiT [68].

Owing to the presence of a large number of small

yet useful ontological resources contributed by dif-

ferent domains of bioinformatics, in 2003 an initia-

tive called OBO was launched by Ashburn et al. [69].

The objective of the initiative was to define a stand-

ard around which biological ontologies could be

built so that they could be integrated or used with

computational approaches seamlessly. The initiative

later diversified into the OBO Foundry, a more elab-

orate attempt at establishing principles for onto-

logical development for representing biomedical

data. The availability of powerful tools for querying

an ontology in OWL format and the acceptance of

OWL as the de facto standard language has brought

about several efforts for converting data from OBO

to OWL format [70]. An increasing number of bio-

medical ontological resources such as Gene

Ontology (GO) are now available in OWL format

in addition to the original OBO format. Finally, with

the conversion of several ontologies to OWL and

RDF formats, similarity metrics have been developed

to combine biomedical ontologies for the purpose of

inferring unknown relationships. A detailed treat-

ment and broad classification of these techniques

can be found in [71].

Among the multitude of ontologies capturing bio-

medical information GO and UMLS are among the

most referenced ontologies in drug repurposing ap-

plications [29, 37]. Originally started as collaboration

between three model organism databases in 1998,

GO [72] has grown to include several major reposi-

tories from different organisms. GO defines terms

and relations for three domains: cellular components,

biological processes and molecular function. The

ontology can be downloaded in several formats

including OBO, RDF, OWL and MySQL. While

not a unification standard for biological information,

GO is one of the most significant steps in the direc-

tion of providing a common terminology for

describing genes and their relationships. Unified

Medical Language System (UMLS) (http://www

.nlm.nih.gov/research/umls/) is a compendium of

data gathered from over 100 knowledge sources,

including some of the most important thesauri and

vocabularies such as MeSH, MedDRA, OMIM and

GO. At the heart of UMLS lies the meta-thesaurus

which contains over 1 million concepts and over
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4.0 million concept names and describes relationships

between these concepts based on information ex-

tracted from several controlled vocabularies

(English language sources only). UMLS provides a

single standardized format for accessing information

which otherwise is represented in different con-

trolled vocabularies in varying formats.

Finding inferences through
visualization techniques
Ontological approaches to finding novel connections

are commonly associated with visualization technol-

ogies aiming to help scientists recognize non-obvious

patterns and connections, e.g. for gene–gene rela-

tions in the context of a signaling pathway. For

this reason, most semantic tools (that manipulate

ontologies in OWL/RDF formats) also include

comprehensive visualization options to enable

knowledge discovery. Graphical representations

enable the human brain to take advantage of spatial

relationships that might not be immediately evident

and to form hypotheses by recognizing patterns and

other visual clues [73]. Three types of visualization

techniques are commonly found in drug repurposing

articles: network graph representations [74],

heat-maps connecting sets of experiments with

panels of drugs, genes, etc. [75] and tools enabling

the visualization of docking experiments [76].

Luckily there is a multitude of graphics languages

(SBML, GML, SIF) and tools (Cytoscape,

Graphviz, etc.) that can be used to visualize complex

data with minimum effort.

Many other types of structured data visualization

techniques have been reviewed by Katifori et al. [77].

3D visualizations such as hyperbolic trees may be an

even better fit for the currently advancing 3D hard-

ware accelerated landscape. The main problem of

any 2D visualization is the cluttered image produced

when massive information is passed to the visualiza-

tion system. Since the primary aim of visualization is

to provide overview and allow exploration in the

future a lot of work will be concentrated in how

we can use more effectively 3D technologies.

DRUGREPURPOSING
APPLICATIONS
In the past 2 years directed efforts toward finding

new uses for existing drugs have emerged, both

from academia and companies. These attempts

have used text mining with or without other sources

of data (e.g. protein interaction, genetic data and

cheminformatics) to perform novel discoveries.

Frijters et al. [17] constructed a literature mining

tool called CoPub Discovery with the purpose of

finding novel connections between drugs, genes

and diseases. CoPub Discovery is based on

Swanson’s ABC model. Gene names and other bio-

medical concepts were extracted from Medline ab-

stracts and related to each other using co-occurrence.

The authors used a mutual information-based metric

to assess the strength of co-citations and presented a

series of case studies with novel open and closed

model discoveries, including disease–gene, drug–dis-

ease, drug–biological process and biological process–

drug relationships. The latter scenario led to the

identification of dephostatin, a tyrosine phosphatase

inhibitor and damnacanthal, a tyrosine kinase inhibi-

tor, being relevant to cell proliferation. In vitro cell

proliferation experiments validated the influence of

these two compounds in the process of cell prolifer-

ation at low micro molar concentrations.

Li et al. [75] integrated protein interaction data

with literature mining to devise a computational

framework that can be used to build disease-specific

drug–protein connectivity maps. The authors used

Alzheimer’s disease (AD) as a case study. They started

with a list of disease-related proteins taken from

OMIM [78], which contains manually curated dis-

ease gene lists, and amended that with interacting

proteins from OPHID [79] and their own

nearest-neighbor protein interaction expansion

method. Using this list of AD-relevant proteins

they retrieved a set of abstracts from PubMed and

then extracted all known drugs from these articles

with the purpose of identifying new drugs associated

with AD. Using this approach, they selected diltia-

zem, an antihypertensive agent and quinidine, an

antiarrhythmia agent as candidate treatments for AD.

The intimate relationship between text mining

tasks such as information retrieval and information

extraction with ontologies has been described previ-

ously [80, 81]. These examples demonstrate the use

of ontologies both as controlled vocabularies and as a

means of storing the extracted information with the

purpose of augmenting the knowledge captured by

the ontology. Finally, they also provide evidence for

the application of semantic technologies for higher

order inference from ontologies.

A good example of the utility of semantic queries

being successfully applied to drug–disease relation

identification is the work done by Qu et al. [82].
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A semantic web of ontologies called the disease drug

correlation ontology (DDCO) was constructed by

combining ontologies taken from DrugBank,

Entrez Gene, GO, OMIM, KEGG, BioCarta,

Reactome, UMLS and GEO (the Gene Expression

Omnibus). An association network was constructed

using the combination of information captured by

the semantic web and SPARQL, the query language

for ontologies was then employed to deduce drug–

disease associations and verified by finding drugs for

the disease Systemic Lupus Erythematosus. Cockell

et al. [7] also present a graph based approach for

inferring novel drug–disease relationship. A graph

of 120 000 concepts with 570 000 relationships be-

tween drugs, proteins and diseases is constructed by

combining data from DrugBank, UniProt, HRPD,

KEGG, Pfam, SynAtlas, G-sesame, OpenBabel and

BLAST. The Ondex platform [83] was applied for

collating data from these diverse sources into one

large data set and the visualization of the data set.

Inference of drug repurposing possibilities is then

performed using the interconnection graph and se-

mantic web query techniques.

Choi et al. [84] described a methodology for

constructing a Small Molecule Ontology (SMO),

combining data freely available from three

sources—DrugBank, PubChem and UniProt—

using the Protege tool. The ontology is developed

on OWL-DL using RDF triples. The finished ontol-

ogy is queried using SPARQL in order to dem-

onstrate the applicability of semantic web

technologies to inferring novel relations for drug

repurposing. The ontology schema and the specific

instance created for the work performed are publicly

available.

Cure and Giroud [85] present a workflow for im-

proving the quality of data stored in drug databases.

The first step is the conversion of existing terminol-

ogies into semantic web compatible format. This is

followed by manual curation and refining of the

concepts and associations of the resulting ontologies.

New concepts are associated with the ontologies by

applying inductive reasoning to the drug database.

The ontologies can then be used to find and repair

data quality violations in drug databases. These

checks for violations may then also be performed

each time the database updates, ensuring the data

remain consistent.

The visualization techniques in articles relevant to

drug repurposing are either used to conceptualize an

automatic algorithm that seeks associations of interest

or simply act as an exploration tool to manually per-

form the detection.

The application of graph-theoretic analysis for the

discovery of novel gene–disease associations is exem-

plified by the work of Cerami et al. [86].The authors

used the Newman–Girvan module detection algo-

rithm to find candidate ‘drivers’, i.e. genes respon-

sible for Glioblastoma, such as the AGAP2 gene and

three signaling modules, including one involved in

microtubule organization. Keiser et al. [74] demon-

strated the ability to predict new targets for existing

drugs by comparing the similarity of the ligands

binding to these targets. In a similar fashion,

Campillos et al. [87] predicted novel targets for exist-

ing drugs by looking at the side effect similarity of

otherwise unrelated drugs. A more comprehensive

effort was done by Hu and Agarwal [9] by combin-

ing multiple interaction networks.

Pujol et al. [8] argues that diseases are complex and

involve multiple pathways, more than the current,

high target specificity drugs, can address. To that

end, they suggest employing network statistics and

topological techniques such as node centrality,

modularity, between-ness, shortest path, clustering

and more to decipher the complex biological

networks.

In this context and in an attempt to build an all

inclusive global database, Paolini et al. [88] merged

structure–activity relationships (SAR) from several

sources in one system. In order to visualize the asso-

ciations between various classes of drug targets, they

used networks to display the connectivity of the tar-

gets according to the drugs binding to them, fol-

lowed by heat maps to compare the promiscuity

among all known drug target families. The above

methods require prior knowledge of the drugs or

the targets involved and are already stored in a data-

base from where the knowledge can be mined. Iorio

et al. [4] suggested a similar approach based on

gene signatures from transcriptional data generated

by high-throughput experiments so no prior

knowledge is required for the drug under

consideration. The drug–drug network that they

built is based on the drug distance which is a

metric of the drug profile similarity. Literature

mining data are also used in TransMiner by

Narayanasamy et al. [41] in order to build a network

and find transitive connections.

Li et al. [75] used a heat map to compare similarity

of protein–compound association profiles, as ex-

tracted from the literature, in combination with

Literature mining for drug repurposing 363
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/12/4/357/240836 by guest on 20 August 2022



hierarchical clustering. A more ambitious ap-

proach using heat maps is the attempt by Korbel

et al. [89] to link phenotypes with genomic

data through literature and comparative genome

analysis. One more encompassing attempt to grasp

and visualize the target drug from conception to

production, was done by Campbell et al. [73] also

by using heat maps in the initial stages of drug

development.

A number of companies providing software and

services in the field of Literature mining have also

engaged in computational drug repurposing provid-

ing services and using their technology to pursue

their own discovery pipelines. Ariadne Genomics

(Rockville, MD, USA) have recently published the

repurposing of Fulvestrant, an estrogen receptor an-

tagonist originally used in breast cancer, to glioblast-

oma using publicly available microarray data

combined with their own suite of pathway analysis

tools [90]. GeneGo (St Joseph, MI, USA) combines

chemical structural analysis tools with molecular

interaction and pathway analysis data to produce a

list of putative new indications.

Biovista (Charlottesville, VA, USA) also makes use

of literature mining techniques to infer new uses for

existing drugs. The workflow for discovery is based

on systems literature analysis (SLA) [91] which treats

large sets of scientific literature as a vast system of

interconnections between research parameters.

SLA-based discovery combines IE tools, a database

of relations among biomedical entities and inferential

algorithms rooted in the LBD approach, to arrive at

previously unknown relationships between drugs,

genes, diseases and adverse drug reactions. The over-

all platform, called Clinical Outcome Search

SpaceTM (COSS), also incorporates other data

types, such as cheminformatic and pathway analysis

data and also data derived from clinical pharmacol-

ogy sources (e.g. PK/PD data). Central to the COSS

platform is a proprietary storage and retrieval engine

which utilizes custom technological solutions to

achieve high-performance access to the underlying

data. Fast retrieval is a very important component of

the workflow as it allows multiple iterations and ex-

perimentation cycles needed in a typical discovery

scenario, at a production environment.

This technology has enabled Biovista to repurpose

Dimebon, an anti-histamine drug and Pirlindol, an

anti-depressant drug, to Multiple Sclerosis [92, 93].

In addition, Biovista’s technology is being used by

the FDA’s Office of Clinical Pharmacology (OCP)

in its assessment of the adverse event profiles of major

drug classes and drugs being evaluated by FDA.

Figure 3 depicts two ways of visualizing literature-

based relationships between genes and diseases, used

at Biovista.

CONCLUDING REMARKS
Drug repurposing relies heavily on prior knowledge

surrounding a drug and a putative novel indication.

The more one knows about the molecular basis of a

disease or the mechanism of action of a drug (its

target and signaling pathways affected), the

more ‘educated’ a guess will be concerning the se-

lection of the right indication and avoiding signaling

pathways that may lead to adverse drug reactions.

Some of the known facts related to drugs, genes/

proteins and diseases are stored in various bioinfor-

matic and clinical databases. However, most of these

facts are still recorded in free-text form in biblio-

graphic repositories. As evidenced from the various

examples given in this review, biomedical literature

mining, especially the combination of efficient IE

with LBD seems to be well suited as a strategy to

generate scientific hypotheses related to finding new

uses for existing drugs. A novel hypothesis can be

made more solid by the structure conferred to

knowledge by ontologies. In addition, the ability

to gain an overview of the existing knowledge by

Information Visualization techniques, combined

with the various clustering algorithms that bring

similar concepts close in the space of a graph, may

provide additional guidance to drug repurposing

exercises.

Tools assisting in efficient scanning of the biomed-

ical literature are increasingly becoming more access-

ible to scientists engaged in drug discovery. PubMed

now offers powerful Boolean-type search capabilities

and online tools assisting in information extraction

and retrieval are increasingly becoming more access-

ible. It is obvious that a wider deployment of online

hypothesis generation tools would be equally valu-

able; however, any such tool should incorporate a

solid IE step that would maximize the number of

concepts (and their relationships) being utilized and

also be updated on a regular basis. At the same time,

it is clear that the value of these tools will increase as

other data types get integrated into the hypothesis

generation workflow.

An important point regarding any computation-

ally based drug repurposing program is that all
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hypotheses formed should always be followed by

manual curation by the respective domain experts.

Manual curation increases the value of a hypothesis

by removing uncertainties and taking into account

other parameters related to the novel association,

such as pharmacokinetic/pharmacodynamic data,

etc.

A final point regarding computational drug repur-

posing is the aspect of adverse drug reactions asso-

ciated with the novel use of a drug. Although, the

premise of drug repurposing is based on the utiliza-

tion of existing drugs, the potential of a drug to

generate an adverse reaction should not be assumed

non-existent when given to a patient under condi-

tions that are different from its original use, e.g. for

chronic use or in a different formulation or dosage.

This is especially true for drugs without extended

post-market experience, such as compounds that

have been discontinued during the late clinical

phases before entering the market. It would there-

fore be desirable for any drug repurposing system to

also be able to predict adverse drug reactions along-

side the novel use of the drug in a different

indication.

Figure 3: Screenshots from the analysis modules of Biovista’s COSS platform. First (A) and second (B) order cor-
relations between genes related to Melanoma and Glioblastoma Multiforme. The screenshot focuses on the stron-
gest correlations, as determined by literature mining alone.
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Key Points

� The productivity challenges of traditional drug discovery, has
sparked a renewed interest to Drug Repurposing, as an alterna-
tive approach to traditional drug discovery.

� Asresearch on a single topicmaybe spanning acrossmany scien-
tific disciplines and biomedical journals, it is increasingly difficult
for scientists to follow all advances in their field of interest.
Advances in literaturemining havemade it possible to infer rela-
tionships between biomedical concepts, even if they are not
mentioned in the same abstract.

� Biomedical literature mining, especially the combination of effi-
cient IEwith LBD seems to bewell suited as a strategy to gener-
ate scientific hypotheses related to finding new uses for existing
drugs.

� Ontologies capture domain knowledge, concepts and their rela-
tionships, and have been used to infer unknown relationships,
through automated reasoning, making them indispensable in
drug repurposing.

� Visualization techniques in articles relevant to drug repurposing
are either used to conceptualize an automatic algorithm for de-
tection of an association of interestor simply act as an anexplor-
ation tool to manually perform the detection.
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83. Köhler J, Baumbach J, Taubert J, et al. Graph-based analysis
and visualization of experimental results with ONDEX.
Bioinformatics 2006;22(11):1383–90.

84. Choi J, Davis MJ, Newman AF, etal. A semantic web ontol-
ogy for small molecules and their biological targets. JChem
InfModel 2010;50(5):732–41.

85. Cure O, Giroud J. Ontology-based Data Quality enhance-
ment for Drug Databases. WWW2007, May 8–12, 2007,
Banff, Canada.

86. Cerami E, Demir E, Schultz N, et al. Automated network
analysis identifies core pathways in glioblastoma. PLoSOne
2010;5(2):e8918.

87. Campillos M, Kuhn M, Gavin AC, et al. Drug target iden-
tification using side-effect similarity. Science 2008;321(5886):
263–6.

88. Paolini GV, Shapland RH, van Hoorn WP, et al. Global
mapping of pharmacological space. Nat Biotechnol 2006;
24(7):805–15.

89. Korbel JO, Doerks T, Jensen LJ, et al. Systematic association
of genes to phenotypes by genome and literature mining.
PLoS Biol 2005;3(5):e134.

90. Kotelnikova E, Yuryev A, Mazo I, et al. Computational
approaches for drug repositioning and combination therapy
design. J Bioinform Comput Biol 2010;8(3):593–606.

91. Persidis A, Deftereos S, Persidis A. Systems literature ana-
lysis. Pharmacogenomics 2004;5(7):943–7.

92. Deftereos SN, Andronis C, Virvillis V, et al. Dimebon
Ameliorates Disease Severity in the MOG-Induced
Experimental Allergic Encephalomyelitis Animal Model of
Progressive Multiple Sclerosis. American Neurological
Association 135th Annual Meeting, September 12–15
2010, San Francisco, CA, USA.

93. Deftereos SN, Andronis C, Sharma A, etal. Systematic Drug
Repurposing for CNS Indications: Account of Two
Successful Case Studies. A. American Neurological
Association 135th Annual Meeting, September 12–15
2010, San Francisco, CA, USA.

368 Andronis et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/12/4/357/240836 by guest on 20 August 2022


