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�is paper presents a literature survey on existing disparitymap algorithms. It focuses on fourmain stages of processing as proposed
by Scharstein and Szeliski in a taxonomy and evaluation of dense two-frame stereo correspondence algorithms performed in 2002.
To assist future researchers in developing their own stereomatching algorithms, a summary of the existing algorithms developed for
every stage of processing is also provided.�e survey also notes the implementation of previous so�ware-based and hardware-based
algorithms. Generally, the main processing module for a so�ware-based implementation uses only a central processing unit. By
contrast, a hardware-based implementation requires one or more additional processors for its processingmodule, such as graphical
processing unit or a 	eld programmable gate array. �is literature survey also presents a method of qualitative measurement that
is widely used by researchers in the area of stereo vision disparity mappings.

1. Introduction

Computer vision is currently an important 	eld of research.
It includes methods such as image acquisition, processing,
analysis, and understanding [1]. Computer vision techniques
attempt tomodel a complex visual environment using various
mathematical methods. One of the purposes of computer
vision is to de	ne the world that we see based on one or
more images and to restructure its properties, such as its
illumination, shape, and color distributions. Stereo vision is
an area within the 	eld of computer vision that addresses an
important research problem: which is the reconstruction of
the three-dimensional coordinates of points for depth esti-
mation. A system of stereo vision system consists of a stereo
camera, namely, two cameras placed horizontally (i.e., one on
the le� and the other on the right). �e two images captured
simultaneously by these cameras are then processed for the
recovery of visual depth information [2]. �e challenge is to
determine the best method of approximating the di
erences
between the views shown in the two images to map (i.e.,
plot) the correspondence (i.e., disparity) of the environment.

Intuitively, a disparity map represents corresponding pixels
that are horizontally shi�ed between the le� image and
right image. New methods and techniques for solving this
problem are developed every year and exhibit a trend toward
improvement in accuracy and time consumption.

Another device that is used to acquire depth information
is a time-of-�ight (ToF) or structured light sensor. Such a
device is a type of active sensor, unlike a classic stereo vision
camera. Devices of this type such as the Microso� Kinect
are cheap and have led to increased interest in computer
vision applications. However, these active sensors su
er from
certain characteristic problems [3]. First, they are subject to
systematic errors such as noise and ambiguity, which are
related to the particular sensor that is used. Second, they
are subject to nonsystematic errors such as scattering and
motion blur. According to the comparative analyses per-
formed by Foix et al. [4], Kim et al. [5], and Zhang et al.
[6], ToF devices perform satisfactorily only up to amaximum
distance of approximately 5–7 meters and are too sensitive to
be used in outdoor environments, especially in very bright
areas. Because of these limitations of ToF sensors, stereo
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Figure 1: �e yearly distributions of the number of papers published from 2005 to 2014 in the area of stereo vision from the database of (a)
ScienceDirect and (b) IEEE Xplore.

vision sensors (i.e., passive sensors) are more reliable and
robust; they are able to produce high-resolution disparity
maps and are suitable for both indoor and outdoor environ-
ments [7].

In stereo vision disparity map processing, the num-
ber of calculations required increases with an increasing
number of pixels per image. �is phenomenon causes the
matching problem to be computationally complex [8]. �e
improvements to and reduction in computational complexity
that have been achieved with recent advances in hardware
technology have been bene	cial for the advancement of
research in the stereo vision 	eld. �us, the main motivation
for hardware-based implementation is to achieve real time
processing [9]. In real time stereo vision applications, such
as autonomous driving, 3D gaming, and autonomous robotic
navigation, fast but accurate depth estimations are required
[10]. Additional processing hardware is therefore necessary
to improve the processing speed.

An updated survey on stereo vision disparity map algo-
rithms would be valuable to those who are interested in this
research area. Figures 1(a) and 1(b) illustrate the quantity
of original contributions published in this area over the
past ten years (i.e., 2005–2014) from the databases of Sci-
enceDirect and IEEE Xplore. �e keywords used were stereo
vision/stereo vision algorithm, and the components that were
searchedwere the title, abstract, and keywords/index terms of
the papers in the databases. All of these papers may represent
contributions to fundamental algorithm development, analy-
sis, or application of stereo vision algorithms. In both 	gures,
the trendlines are increasing indicating that the 	eld of
stereo vision remains active in research and development and
has become an interesting and challenging area of research.
�is paper provides a brief introduction to the state-of-
the-art developments accomplished in the context of such
algorithms. �is work reviews the latest published stereo
vision algorithms and categorizes them into di
erent stages
of processing, which are based on the taxonomy proposed
by Scharstein and Szeliski [11]. �is paper also discusses

two types of implementation platforms for these algorithms
(i.e., so�ware-based and hardware-based). In so�ware-based
platforms, the techniques are implemented only on a standard
CPU, without any other additional processing hardware. In
contrast to hardware-based platforms, the algorithms are
executed on a CPU, with a GPU or FPGA as a standalone
system.

�e remainder of the paper is organized as follows.
Previous review papers related to stereo vision disparity map
algorithms are discussed in Section 2.�en, the taxonomy for
the stages of processing performed in stereo vision disparity
map algorithms is presented in Section 3. It consists of four
subsections (i.e., matching cost computation, cost aggre-
gation, disparity selection and optimization, and disparity
re	nement). Section 4 presents a review of algorithms imple-
mented through so�ware-based platforms, and Section 5
discusses real time stereo vision disparity map algorithms
based on additional hardware (i.e., FPGAs and GPUs). A
method ofmeasuring the accuracy of stereo vision algorithms
is explained in Section 6, and the conclusion is presented in
Section 7.

2. Previous Reviews of Stereo Vision
Disparity Map Algorithms

Numerous methods of implementation for stereo vision
disparity mapping have been established in the past few
years. �is can be observed from the review papers listed
in Table 1. �e contents of these review papers are also
summarized in this table. Among these review papers, the
main focus was to summarize and compare the accuracy
level and execution time of each cited algorithm. However,
none of these reviews provided a detailed discussion of the
stages of implementation based on the taxonomy proposed
by Scharstein and Szeliski [11], as does the survey presented
in this paper. Furthermore, this paper also reviews the
latest algorithms implemented using two di
erent types of
platforms (i.e., so�ware-based and hardware-based).
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Table 1: Previous review papers on stereo vision disparity map algorithms.

Year Author Focus

2002 Scharstein and Szeliski [11]

Proposed a taxonomy for vision algorithms and provided a quality metric to compare and
evaluate multiple blocks of algorithms as shown in Figure 1. �ey have also provided a test bed for
measurable evaluation of stereo depth map algorithms. �e test bed or benchmarking dataset
consists of four images (Tsukuba, Venus, Teddy, and Cones) which are available at
http://www.middlebury.edu/stereo.

2003 Brown et al. [19]
Reviewed advances in stereo vision disparity map algorithms regarding correspondence methods
and occlusion handling methods for real time implementations.

2008 Tombari et al. [77]
Presented a survey and compared the di
erent methods of cost aggregation for stereo
correspondence through accuracy and computational requirements.

2008 Lazaros et al. [12]

Reviewed developments in stereo vision algorithms implemented via so�ware and hardware
categorized in terms of their major attributes. �e comparison of local and global methods
provided by previously developed algorithms implemented on so�ware and hardware based
platforms was presented in this work.

2011 Tombari et al. [101]
Contributed an evaluation of stereo vision depth map algorithms in terms of their 3D object
recognition ability.

2013 Tippetts et al. [8]
Reviewed stereo vision algorithms and their suitability for resource-limited systems. �ey have
compiled and presented an accuracy and runtime performance data for all stereo vision disparity
map algorithms in the past decade with an emphasis on real time performance.

Input
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Figure 2: A framework for the development of a stereo vision algorithm.

3. A Taxonomy for the Processing Stages of
Stereo Vision Disparity Map Algorithms

Most stereo vision disparitymap algorithms have been imple-
mented using multistage techniques. �ese techniques, as
codi	ed by Scharstein and Szeliski, consist of four main steps
as shown in Figure 2 [11]. In this 	gure, the input images are
obtained from stereo vision sensors (i.e., from at least two
cameras). Commonly, these cameras are arranged horizon-
tally and set up which produce two or more corresponding
images. For the explanation or the process as described by
adopted taxonomy, these input images are assumed to be
recti	ed images. Next, the image pair to be analysed will pass
through all of the blocks, in sequence, beginning with Step
1 and ending with Step 4. �e output of this process should
be a smooth disparity map. In essence, each block represents
one ormore algorithms whose performance can bemeasured
based on the expected output.�is taxonomyhas beenwidely
used by many current developers of stereo vision disparity
map algorithms [8, 12].

In general, stereo vision disparity map algorithms can be
classi	ed into local or global approaches. A local approach
is also known as area based or window based approach.
�is is because the disparity computation at a given point
(or pixel) depends only on the intensity values within a
prede	ned support window. �us, such method considers
only local information and therefore has a low computational
complexity and a short run time. Local methods include all

four steps of the taxonomy. Examples of implementation of
such methods are provided by the work of Mattoccia et al.
[13], Arranz et al. [14], and Xu et al. [15]. �e disparity map
value assignment is achieved through winner take all (WTA)
optimization. For each pixel, the corresponding disparity
value with the minimum cost is assigned to that pixel. �e
matching cost is aggregated via a sum or an average over the
support window.

By contrast, a global method treats disparity assignment
as a problem of minimizing a global energy function for
all disparity values. Such a method is formulated as an
energy minimization process with two terms in the objective
function (i.e., a data term, which penalizes solutions that
are inconsistent with the target data and a smoothness term,
which enforces the piecewise smoothing assumption with
neighboring pixels). �e smoothness term is designed to
retain smoothness in disparity among pixels in the same
region. �e disparity map is produced by assigning similar
depth values to neighboring pixels. Global methods produce
good results but are computationally expensive. �erefore,
they are impractical for use in real time systems. Global
methods typically skip Step 2 of the taxonomy depicted in
Figure 2 (i.e., they do not perform cost aggregation and
therefore contain only three steps) [16–18]. Markov random
	eld (MRF) modelling is the approach that is most common
approach used in globalmethods.�is type ofmodelling uses
an iterative framework to ensure smooth disparity maps and
high similarity between matching pixels.
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Figure 3: Epipolar geometry. �e 3D image of target scene at point
�.

3.1. Matching Cost Computation. All stereo matching algo-
rithms require a cost criterion tomeasure the extent ofmatch-
ing between two pixels.�ematching cost computation is the
stage in which whether the values of two pixels correspond to
the same point in a scene is determined.�erefore, the stereo
matching cost computation can be de	ned as a method of
determining the parallax values of each point between the le�
and right images [19]. �e matching cost is computed at each
pixel for all pixels under consideration.�e di
erence in pixel
intensity between a pair of the matching pixels in two images
is called the disparity and can be associated with depth values
through three-dimensional (3D) projection.

�e matching points must lie on epipolar lines �, as
shown in Figure 3. �is matching can be performed via a
one-dimensional horizontal search if the stereo pairs are
accurately calibrated [20]. A target point � is viewed from
the optical centers �� and �� of the two cameras. It produces
one le� image plane �� and one corresponding right image
plane �� one from each of the two cameras. �e points ��
and �� represent the matching pixel intensities in the le� and
right image planes, respectively, for the same scene at point
�.�erefore, the targeted le� and right matching points must
be located at the same coordinates on the horizontal line �.
In a stereo vision system, this requirement is imposed in the
form of an epipolar constraint [21]. �is epipolar constraint
plays a signi	cant role in stereo matching.�is is because the
search for correspondences can be limited to a line instead
of the entire image space, thereby reducing the required time
and search range. Early stereo vision disparity map algorithm
for the matching cost computation task uses pixel based
technique [12]. �ese algorithms are the methods of absolute
di
erences (AD), squared di
erences (SD); adaptations of
the former include the methods of sampling-insensitive
absolute di
erences and truncated absolute di
erences.�ese
algorithms can be applied to grayscale or color images.

Area based or window based techniques are capable
of o
ering richer data than matching techniques based
on individual pixels or features. Such techniques can be

more accurate because the matching process considers the
entire set of pixels associated with image regions. Common
algorithms for window based techniques include the sum of
absolute di
erences (SAD), the sum of squared di
erences
(SSD), normalized cross correlation (NCC), rank transforms
(RT), and census transforms (CT) [12]. �e matching cost is
calculated over a support region. �is support region, which
is commonly referred to as support or aggregating window,
may be square or rectangular and may be 	xed or adaptive
in size.�emajor shortcoming of window based technique is
that these approaches commonly assume that all pixels within
a support window have similar disparity values. �is is not
necessarily true for pixels near depth discontinuities or edges.
Hence, an improper selection of the size and shape of the
matching window can lead to poor depth estimations.

3.1.1. Absolute Di	erences (AD). �e AD algorithm aggre-
gates the di
erences in luminance (or intensity values)
between the pixel in the le� image �� and the corresponding
pixels in the right image �� as given by

AD (�, 	, 
) = ������ (�, 	) − �� (� − 
, 	)���� . (1)

In this equation, (�, 	, 
) represents the disparitymap coordi-
nates, where (�, 	) are the coordinates of the pixel of interest
and 
 is the disparity (or depth) value. Typically, in the
matching process, �� is used as the reference image and the
right image �� represents the target (or candidate) image.
�e AD algorithm is the simplest among matching cost algo-
rithms. Because of its low complexity, Wang et al. [22] used
this algorithm for real time stereo matching using graphics
hardware (GPU). �e AD algorithm functions satisfactorily
in regions with little texture, but, for highly textured images,
this algorithm is not capable of producing a smooth disparity
map. To overcome this di�culty, the truncated version of
the AD algorithm was developed. �e truncated absolute
di
erence (TAD) algorithm, as implemented by Min et al.
[23] and Pham and Jeon [24], is able to minimize the errors
in disparity maps. Furthermore, the TAD algorithm uses
the colors and gradients at matching pixels to improve its
robustness against variations in illumination.

3.1.2. Squared Di	erences (SD). �e SD algorithm aggregates
the squared di
erences between the reference pixels in �� and
the candidate pixels in �� as described in

SD (�, 	, 
) = ������ (�, 	) − �� (� − 
, 	)����2 . (2)

Yang et al. [25] implemented the SD algorithm for their
matching cost computation in a subpixel estimation method
for disparity mapping. Considerable noise was generated at
the boundaries in their initial disparity maps. However, Yang
et al. applied a bilateral 	lter (i.e., a type of edge preserving
	lter) to improve the �attening of edges and to smooth areas
near depth discontinuities. Recently, Miron et al. [26] tested
various matching cost functions in their stereo disparity
map algorithms for intelligent vehicle applications. �ey
concluded that the SD algorithm produced the largest error.
�e errors that occur due to the SD algorithm are highly
sensitive to brightness and noise, especially in real time
environment.
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3.1.3. Feature Based Techniques. �e matching cost func-
tion can also be constructed using feature based tech-
niques. �is approach attempts to establish correspondences
only for similar feature points that can be unambiguously
matched. Common methods of feature extraction include
those based on visual features (e.g., edges, shapes, textures,
segmentation, and gradient peaks), statistical characteristics
(e.g., minima, medians, and histograms), and transformation
features (e.g., Hough transforms, wavelet transforms, and
Gabor transforms) [27]. As an example, Sharma et al. [28]
developed a new disparity map algorithm using features
derived from the scale invariant feature transform (SIFT)
for autonomous vehicle navigation. In their implementation,
they modi	ed the SIFT algorithm to use self-organizing map
to achieve more e�cient performance in feature matching
process. �eir results indicate that the computation time of
their method is reduced compared with the conventional
SIFT algorithm. Because only feature points are correlated,
although the computational cost is signi	cantly reduced,
the complete disparity map cannot be obtained. �e feature
matching accuracy is still low. Sparse disparity maps are
produced because only matching points derived from the
targeted object features are used [29]. Furthermore, feature
based matching techniques exhibit low accuracy and are
rather insensitive to occlusion and textureless areas. Liu
et al. [30] used a combination of image segmentation and
edge detection for the matching cost function. �e time
implementation was fast but the accuracy level also remained
low in regions of discontinuity. Ekstrand et al. [31] used a
segmentation process that created one-dimensional segments
containing information on color and edge coordinates. A
segment correspondence estimation was performed for every
row of the image to reduce the possibility of mismatched
segments. However, errors still occurred as a result of using
limited vertical support segments during the matching pro-
cess. �us, feature based techniques are not preferred, and
their usage by researchers for the development of disparity
map algorithms remains low.

3.1.4. Sum of Absolute Di	erences (SAD). �eSADalgorithm,
de	ned in (3), considers the absolute di
erence between the
intensity of each pixel in the reference block and that of the
corresponding pixel in the target block

SAD (�, 	, 
) = ∑
(�,�)∈�

������ (�, 	) − �� (� − 
, 	)���� . (3)

�edi
erences are summed over the aggregated support win-
dow � to generate a simple metric of block similarity known
as a disparity map. �e SAD algorithm is a well-known algo-
rithm for matching cost computation. �e SAD algorithm is
able to function in real time implementation because of its
low computational complexity. �is was proven by Tippetts
et al. [32], who calculated and evaluated SAD performances
for real time human pose images in a resource limited system.
Lee and Sharma [33] implemented real time disparity map
algorithm estimations using the sliding window technique
to calculate matching costs using the SAD algorithm. �eir
algorithm uses parallel processing via a graphical processing

unit (GPU). By virtue of applying this new technique at the
matching cost stage, the accuracy of stereo vision process-
ing can be increased while simultaneously improving the
speed.

Gupta and Cho [34] implemented a new technique
using two di
erent sizes of correlation windows in the SAD
algorithm. At the 	rst level, the initial cost aggregation is
determined, and, at the second level, the object boundaries
are improved using a smaller window size compared with
the 	rst-level implementation.�e results produced aremore
accurate in terms of pixel matching but still require the
implementation of multiple loops at di
erent window sizes.
�e SAD algorithm is fast, but the quality of the initial
disparity map that is produced is low because of the noise at
object boundaries and in textureless regions.

3.1.5. Sum of Squared Di	erences (SSD). Equation (4) pre-
sents the SSD algorithm, in which the summation is per-
formed over the squared di
erences in pixel intensity values
between two corresponding pixels in the aggregated support
window �

SSD (�, 	, 
) = ∑
(�,�)∈�

������ (�, 	) − �� (� − 
, 	)����2 . (4)

An early implementation of the SSD algorithm for the
matching cost calculation stage was achieved by Fusiello
et al. [36]. �ey tested the SSD algorithm on multiple 	xed
window blocks to reduce the incidence of occlusion errors.
�e purpose of using multiple blocks of windows is to
search for the smallest error, to select an appropriate pixel
of interest in the disparity map. Yang and Pollefeys [37]
used technique similar to that presented in [36], but their
algorithm was implemented on platform with a GPU. �ey
achieved good results in terms of speed compared with
Fusiello’s work. Currently, there is still relatively little research
on the use of the SSD algorithm in for stereo vision disparity
map algorithms compared with that on other matching cost
algorithms. �is is evident from the previous review papers
[8, 12] on stereo vision disparity map algorithms and is also
shown in Table 2.

3.1.6. Normalized Cross Correlation (NCC). �e NCC algo-
rithm is another method of determining the correspondence
between two windows around a pixel of interest. �e nor-
malization within the window compensates for di
erences in
gain and bias [38]. Equation (5) speci	es the formula for the
NCC technique:

NCC (�, 	, 
)

= ∑(�,�)∈� �� (�, 	) ⋅ �� (� − 
, 	)
√∑(�,�)∈� �2� (�, 	) ⋅ ∑(�,�)∈� �2� (� − 
, 	)

. (5)

However, the NCC algorithm tends to blur regions of dis-
continuity more than other matching cost algorithms [38].
�is is because any outliers lead to large errors in the NCC
calculations. A new method for low-dimensional image fea-
tures matching using NCC has been proposed by Satoh [39].
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�e NCC algorithm was chosen because of its robustness to
intensity o
sets and changes in contrast.�e results achieved
in Satoh’s work exhibit high accuracy, but considerable
computational resources are required. Additionally, Cheng
et al. [40] implemented their matching cost calculation using
a zero mean normalized cross correlation (ZNCC) in which
the pixels at which edges are located are manipulated via a
multiple-window strategy. �is method relies on a neutral
network model. Furthermore, the least-mean-square delta
rule is used for training and for the determination of the
proper window shape and size for each support region.�ese
techniques o
er improved accuracy, but their computational
requirements are still high.

3.1.7. Rank Transform (RT). �ematching cost for RT is given
by (6) and is calculated based on the absolute di
erence
between two ranks (i.e., Rankref from the reference image and
Ranktar from the target image):

RT (�, 	, 
)

= ∑
(�,�)∈�

����Rankref (�, 	) − Ranktar (� − 
, 	)���� .
(6)

In this equation, Rankref and Ranktar are calculated as shown
in

Rank (�, 	) = ∑
(�,	)(�,�)
� (�, �) (7)

with �(�, �) as de	ned in

� (�, �) = {{
{

0: � (�, �) < � (�, 	)
1: otherwise,

(8)

where (�, �) are the coordinates of a neighboring pixel and
(�, 	) are the coordinates of the pixel of interest. Equation
(8) computes the number of neighboring pixels �(�, �) that
have values larger than that of the central pixel �(�, 	). A
new model of a disparity map algorithm that uses the RT
algorithm to achieve improved accuracy has been proposed
by Gac et al. [41]. �rough careful selection of the window
sizes, a reliable initial disparity map is e�ciently obtained.
At the time of its publication, this method demonstrated the
highest correct initial matching rate of any matching cost
algorithm in date. �e RT algorithm is typically e
ective
for coping with brightness di
erences and image distortions.
Sometimes when the RT algorithm is used, a matching pixel
may look extremely similar to a neighboring pixel, leading
to matching ambiguity. In [42], a new extension of the RT
approach was developed to reduce this matching ambiguity
using a Bayesian model. �is model considers not only the
similarities between the le� and right image pixels similarities
but also the level of ambiguity within each image inde-
pendently. �e results of experiments on images exhibiting
variations in intensity and brightness di
erences, as reported
by authors of that study, indicate a reduction in matching
ambiguities.

3.1.8. Census Transform (CT). �e CT algorithm translates
the results of comparisons between a center pixel and its
neighboring pixels within a window into a bit string as shown

Census (�, 	) = Bitstring(�,	)∈� (� (�, �) ≥ � (�, 	)) . (9)

�is algorithm is calculated using the Hamming distances
between the census bit strings of on the correspondingmatch
candidates, as given by

CT (�, 	, 
) = ∑
(�,�)∈�

Hamming (Censusref (�, 	)

− Censustar (� − 
, 	)) ,
(10)

where Censusref represents the census bit string from the
reference image andCensustar represents the census bit string
from the target image. �e CT algorithm is rather robust
to the disparity discontinuities because of its good outlier
tolerance, as described byHumenberger et al. [43].�is claim
was proven by performance comparisons between the CT
algorithm and the SAD algorithm. �e disparity maps pro-
duced by the CT algorithm exhibited highermatching quality
at object borders than those produced by the SAD algorithm.
�e disadvantage of the CT algorithm is its tendency to pro-
duce incorrect matches in regions with repetitive structures.
�is shortcoming was mitigated by Ma et al. [44] through
their modi	cations to the CT algorithm. �ey implemented
additional bits to represent the di
erences between the pixel
of interest and the neighborhood pixels. According to their
results, the accuracy of the disparity map was improved and
the incorrect matching problem was alleviated by this mod-
i	cation. In addition, the proposed algorithm demonstrated
greater robustness when applied to a noisy image compared
with the conventional CT algorithm.

Several researchers have also developed matching cost
methods based on a combination of two algorithms. A com-
bination of the AD and CT algorithms as shown by Mei et al.
[45] successfully reduces the occurrence of errors.�e reason
for combining these two methods is to compensate for their
respective limitations. �e CT algorithm tends to produce
incorrect matches in regions with repetitive local structures,
whereas the AD algorithm does not performance well on
large, textureless regions. Similarly, a combination of the SAD
and CT algorithms will also lead to higher performance but
will incur an increase in computational complexity [46]. �e
SAD and CT cost measures are obtained individually, and the
	nal cost function is constructed as a linear combination of
both cost measures based on a weighting factor.�e accuracy
improvement achieved by Zhang et al. [47] was accomplished
bymeans of a costmeasure combining the SAD approach and
arm length di
erences (ALD). �e use of ALD was inspired
by the similarity of the matching pixels support regions in
the vertical direction as a result of the pixels being located
on the same horizontal line. �is combination is able to
reduce errors in most regions, especially those containing
repeated color and shapes. Lee et al. [48] combined the CT
and gradient di
erence approaches to achieve a higher
matching cost quality. However, according to them,matching
ambiguities can occur in certain regions as a result of similar
or repetitive texture patterns.
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Figure 4: Cost aggregation windows. (a) 5× 5 pixel square window,
(b) adaptive window, (c) windowwith adaptive support weights, and
(d) all six possible resulting shapes of adaptive windows.

3.2. Cost Aggregation. Cost aggregation is the most impor-
tant stage for determining the general performance of a
stereo vision disparity map algorithm, especially for local
methods. �e purpose of cost aggregation is to minimize
matching uncertainties. Cost aggregation is needed because
the information obtained for a single pixel upon calculating
the matching cost is not su�cient for precise matching. Local
methods aggregate the matching cost by summing them
over a support region [11]. �is support region is typically
de	ned by a square window centered on the current pixel of
interest, as shown in Figure 4(a). �e most straightforward
aggregation method is to apply a simple low-pass 	lter in
the square support window. �e 	xed-size window (FW)
technique (e.g., binomial or Gaussian, uniform (box 	lters))
su
ers an increased error rate when the size of the support
window is increased over a certain threshold. Moreover, this
method requires the parameters to be set to values suitable
for the particular input dataset. Otherwise, it tends to blur
object boundaries [49]. To avoid fattening artifacts near depth
discontinuities, methods using shi�ing window or multiple
windows (MW) as well as methods using adaptive windows
(AW), windows with adaptive sizes, or adaptive support
weights (ASW) have been developed.

In the MW technique, multiple windows are selected
from among a number of candidates based on the support
windows that produce smaller matching costs. �is method
was implemented by Hirschmüller et al. [50] and Veksler [51]
in their previous studies of real time stereo vision disparity
map algorithms. However, their experimental results reveal
di�culties in preserving dedicated pixel arrangements in
disparity maps, especially at object boundaries. �is occurs
because of the shape of the support windows. �is approach
is imperfect for a small number of candidates. To resolve
this problem, the AW technique was developed to reduce the
errors in the disparity map caused by boundary problems. In
this method, the support regions are constructed as approx-
imations to the local image structures. Figure 4(b) illustrates

the application of this method with 	ve subwindows with
dimensions of 3 × 3. �ese subwindows must be located near
the target pixel as shown in Figure 4. �e cost aggregation
with the minimum matching cost value for this pixel is
calculated. For example, the cost can be calculated as the sum-
mation over the target pixel subwindow and any two other
adjacent subwindows.�e chosen shape of the validmatching
windows for aggregation can therefore be any of the shapes
shown in Figure 4(d). In practice, the shape of the adaptive
window is adaptively varied to re�ect the local image content,
such as corners and edges.

�eAW technique was implemented by Lu et al. [52] who
achieved high quality results both near depth discontinuities
and in homogenous regions. Lu’s work was improved upon
by Zhang et al. [53] through a modi	cation to the concept
of adaptive support regions. �ey developed support regions
with arbitrarily adaptive shapes and implemented the algo-
rithmon aGPU for real time applications.�e shapes of these
support regions are more �exible and are not restricted to be
rectangles. �ese authors achieved high matching accuracy
with real time implementation. In this AW technique, the
algorithm attempts to 	nd support windows that 	t the shape
or size of each region, while preventing them from crossing
object boundaries. Furthermore, this technique is able to
reduce computational costs as discussed by Chen and Su
[54]. �ese authors proposed a shape adaptive low com-
plexity technique for eliminating computational redundancy
between stereo image pairs for pixelsmatching.�ey grouped
pixels with the same depth value to reduce the number of
computations.

A comparative study of the use of di
erent support region
techniques in the cost aggregation stage was performed by
Fang et al. [55]. �is study addressed the FW, AW, and ASW
approaches. �e authors concluded that the most advanta-
geous technique for cost aggregation is the ASW approach.
In this technique, each pixel in the support region is assigned
a support weight, which depends on its intensity dissimilarity
and spatial distance from the anchor pixel as shown in
Figure 4(c). �e target pixel which is located at the center is
assigned di
erent weight depending on distance as indicated
by the di
erent tone of colors. Generally, for typical ASW
techniques, (11) is used to aggregate the matching costs
�
(�, 
) at pixel � and disparity 


�
 (�, 
) = ∑
�∈��
�(�, �) � (�, 
) , (11)

where �� is a square support window centered on pixel �.
�e window size is a user de	ned parameter. �e value of
the�(�, �) function represents the possibility that a pixel �
will possess a disparity value similar to that of the window’s
center pixel �. �(�, 
) represents a target pixel � with a
disparity value 
. Ideally,�(�, �) should return a value of “1”
if pixels� and �have equal disparity values and “0” otherwise.
Chen et al. [56] developed a trilateral 	lter based on the
ASW approach with using a bilateral 	lter. �ey also added a
new weighted term to increase the robustness against object
boundaries.
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Essentially, in ASW application, a higher weight will be
allocated to a pixel if its intensity is more similar to that
of the anchor pixel and if it is located at a smaller distance
from the anchor pixel, as implemented by Zhang et al. [57].
�is method is able to produce a disparity map in which the
object boundaries are well preserved and the accuracy is very
high compared with the previous methods reported in their
literature. Hosni et al. [58] presented an extensive evaluation
of ASW regions. �ey performed their test on a GPU to
evaluate whether the speed and computational e�ciency
were su�cient for real time responses.�eir evaluations indi-
cated that the ASW approach produces outstanding results
in terms of both computational e�ciency and the quality
of the generated disparity maps. Nalpantidis and Gasteratos
[59] developed a new approach based on the ASW technique.
�ey combined it with the quanti	ed gestalt law to calculate
a weighting factor. In general, a correlation weight re�ects
the proximity, similarity, and continuity between both input
images (i.e., le� and right images).

3.3. Disparity Computation and Optimization. Generally, a
stereo matching algorithm represents one of the two major
optimizations approaches: the local approach or the global
approach. In the local approach, when the 	nal disparities are
computed, the disparity for each pixel is essentially selected
using a local winner takes all (WTA) strategy as de	ne by


� = arg min
∈�
�
 (�, 
) . (12)

�e disparity associated with the minimum aggregated cost

� at each pixel is chosen. �
(�, 
) represents the aggregate
cost obtained a�er the matching cost calculation, and �
denotes the set of all allowed discrete disparities. �e WTA
strategy is utilized in this stage in local algorithms such as
those implemented by Cigla and Alatan [46], Zhang et al.
[53], and Lee et al. [60]. According to their 	ndings, the
disparity maps obtained at this stage still contain errors in
the form of unmatched pixels or occluded regions. Because
the aggregation in local methods is performed through
summation or averaging over support regions, their accu-
racy is sensitive to noise and unclear regions. �is occurs
because only local information from a small number of pixels
surrounding the pixel of interest is utilized to make each
decision. �erefore, the accuracy of a local method at this
stage depends on the matching cost computation and cost
aggregation stages. Subsequently, in the disparity re	nement
stage, the errors will be reduced using several 	ltering
techniques.

By contrast, in a global approach, certain assumptions
are made about the depth of 	eld of the scene, which are
usually expressed in an energyminimization framework.�e
bulk of the e
ort in a global method is expended during the
disparity computation phase, and the aggregation step is o�en
skipped [11].�emost commonly adopted assumption is that
the scene is locally smooth except for object boundaries, and
thus neighboring pixels should have very similar disparities.
�is constraint is referred to as a smoothness constraint
in the stereo vision literature. In the typical global stereo

vision formulation, the objective is to 	nd an optimal energy
disparity assignment function 
 = 
(�, 	) that minimizes

� (
) = �data (
) + ��smooth (
) , (13)

where �data(
) represents the matching costs at the coordi-
nates (�, 	); the smoothness energy �smooth(
) encourages
neighboring pixels to have similar disparities based on the
previous stated assumptions and � is a weighting factor.

A global method such as the belief propagation (BP)
approach requires large amounts of computational resources
and memory for the storage of the image data and the
execution of the algorithm. For the improvement to the
BP technique achieved implemented by Liang et al. [61]
which was implemented on the GPU, the time required for
processing is still large compared with that required by the
local method strategy. Wang et al. [62] implemented global
approach using a graph cut (GC) algorithm to optimize the
energy function.�eir method selects disparity values with a
lower energy value. Another well-known global technique is
a dynamic programming (DP). DP is executed for each scan
line (row) independently, resulting in polynomial complexity.
�e assumption adopted DP is that of an ordering constraint
between neighboring pixels of the same row. Recently, the
multiresolution energy minimization framework introduced
by Arranz et al. [14] achieved real time performance while
maintaining the resolution of producing disparity maps. �e
advantage of this framework is the reduction in computa-
tional complexity that is achieved through the multiresolu-
tion technique. However, for images of higher resolution and
with many more di
erent levels of disparity, the framework
is unable to perform at a real time frame rate (30 frames per
second).

3.4. Disparity Map Re�nement. �e purpose of the disparity
re	nement stage is to reduce noise and improve the disparity
maps. Typically, the re	nement step consists of regularization
and occlusion 	lling or interpolation. �e regularization
process will reduce the overall noise through the 	ltering
of inconsistent pixels and small variations among pixels on
disparitymap.�eocclusion 	lling or interpolation process is
responsible for approximating the disparity values in areas in
which the disparity is unclear. Typically, occluded regions are
	lled with disparities similar to those of the background or
textureless areas. Usually, the occlusion regions are detected
by using le�-right consistency check, such as those imple-
mented by Yang et al. [63] andHeo et al. [64]. If the matching
algorithm rejects disparities with low con	dence, then the
interpolation algorithm will estimate approximations to the
correct disparities based on the local neighborhoods.�e dis-
parity re	nement step normally combines local information
from the local neighborhood near each measurement with a
con	dence metric.

Two classic and common techniques for local disparity
re	nement are Gaussian convolution and the median 	lter.
In Gaussian convolution, disparities are estimated in com-
bination with those of neighboring pixels in accordance
with weights de	ned by a Gaussian distribution. �e pri-
mary purpose of this method is to reduce the noise in
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Figure 5: Block diagrams of the implementation of stereo vision disparity map algorithms. (a) So�ware-based one (e.g., only a computer or
a laptop), (b) hardware-based onewith a GPU implementation (e.g., a computer or a laptop built with a GPU unit), and (c) hardware-based
one with FPGA implementation connected to a computer to burn-in the codes and become a standalone system.

the disparity map, but the Gaussian 	lter also reduces the
amount of 	ne detail present in the 	nal disparity map.
A technique developed by Vijayanagar et al. [65] uses the
weights de	ned by aGaussian 	lter to improve disparitymaps
by approximating missing disparity values based nearby high
con	dence disparity pixels as a guide to prevent 	ltering
across object boundaries. Meanwhile, themedian 	lter is able
to remove small, isolated mismatches in disparity by virtue
of its edge preserving property and it is suitable for real time
implementation because of its low computational complexity.
�is 	lter selects the median value within window of pixels
as the 	nal result for the central pixel. In a study by Michael
et al. [66], a disparitymap re	nement approach usingmedian
	lteringwas developed for a real time stereo vision algorithm.
Furthermore, the median 	lter was modi	ed by Ma et al.
[67] using the constant time weighted technique. �eir
modi	cation achieves high accuracy in removing noise and
error while maintaining the edges in disparity maps.

�e di
usion technique performs a function similar to
that of Gaussian convolution.Moreover, there exists an adap-
tation of this approach called anisotropic di
usion. Unlike
Gaussian convolution, which destroys edges and 	ne details,
anisotropic di
usion applies smoothing without crossing any
edges as implemented by Banno and Ikeuchi [68] in the dis-
parity map re	nement stage of their disparity map algorithm.
�eir approach was improved upon by Vijayanagar et al. [65],
yielding a method called multiresolution anisotropic di
u-
sion. In thismethod, the disparitymap is downsampled using
three di
erent resolution factors. At each resolution, 35 itera-
tions of the anisotropic di
usion process are performed. �e
result of the proposed algorithm is free of occlusion errors
and the edges in the disparitymap have been re	ned. Another
approach, which was developed by Zhang et al. [6], employs
a two-step process to further re	ne the estimated disparity
map.�e authors presented the results they achieved through
a color image guided depth matting process in a framework
based on Bayesian matting and 2D polynomial regression
smoothing techniques. �is technique was found to be used
to be e
ectively preserving the discontinuities at object
boundaries while achieving smoothing in �at regions.

4. Software-Based Stereo Vision
Disparity Map Algorithms

�is section reviews several so�ware-based implementation
processes of global and local methods for the generation of
disparity maps. �ese algorithms were developed and tested
using only a CPU as the processing hardware as shown in
Figure 5. A so�ware-based implementation is designed to use
the CPU to interface with API so�ware. �e API so�ware
provides a set of libraries, such as Open Computer Vision
(OpenCV), Open Computing Language (OpenCL) libraries,
and Open Graphic Language (OpenGL). A previous sum-
mary of so�ware-based stereo vision disparitymap algorithm
and their performances was presented by Brown et al. [19].
�e discussion also addressed the corresponding methods
and occlusion handling techniques. In essence, the di
er-
ences in these algorithms lie in the cost aggregation stage and
in the optimization of the building blocks which determine
the main characteristics of the developed algorithms. Several
researchers, such as Park et al. [69] and Cigla et al. [70], have
developed new algorithms by taking advantages of local and
global methods for handling occlusions, object boundaries,
and untextured regions. �ese techniques follow an iterative
process for allocating disparities that spread into certain seg-
ments by applying pixel similarity, constraints, considering
overlapping regions, enforcing smoothness between similarly
colored neighboring segments, and penalizing occlusions.
Several other researchers have applied other global tech-
niques with various modi	cations, resulting in a semiglobal
approach.�ismethod involves dynamic programming opti-
mization, such as that implemented by Hirschmüller [71]
and Salmen et al. [16]. �e results reported by these authors
indicate low computational complexity.

4.1. Global Approaches. �e best known approaches among
the global methods are belief propagation (BP) and graph
cut (GC) algorithms. Pérez and Sánchez [17] used the BP
approach to develop a real time, high-de	nition algorithm
that outperformed classical BP by implementing two BP algo-
rithms in their 3D telepresence systems. �e 	rst instance of
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BP performs a classi	cation of the pixels into areas designated
as reliable, containing occlusion errors and textureless to
reduce the numbers of memory accesses required for these
three groups of pixels. �e second BP process is used to
decreasememory tra�c by generating the 	nal disparity map
with a reduced number of iterations due to information from
previous BP iterations. �e experimental results demon-
strated improved performance. �e authors compared this
approach with classical BP and observed a 90% improvement
in e�ciency. Wang and Yang [72] implemented ground
control points (GCP) in�uenced by the MRF model. In
their method, GCP-based regularization for the optimization
framework is performed using a Bayesian rule. Meanwhile,
the energy minimization technique for 	nding an optimal
solution to the inference problem is implemented using the
GC approach. Evaluations of this method demonstrated its
e
ectiveness at improving the disparity map reconstruction
to regularize problems of incorrect stereo matching. �e
approaches developed by Pérez and Sánchez [17] and Wang
andYang [72] both produce accurate disparitymaps, but their
computational costs remain high. However, Wang et al. [18]
proposed a hierarchical bilateral disparity structure (HBDS)
algorithm based on a GC technique to reduce computa-
tional complexity and improve the accuracy of the generated
disparity maps. �ese authors divide all disparity levels
hierarchically into a series of bilateral disparity structures
to increase the 	neness of the disparity map. During the
re	nement stage, any fattened regions are recalibrated based
on the disparity values of all nearby pixels. �e evaluation
results indicated good performance with reduced processing
time and improved disparity map accuracy.

A new technique was proposed by Chen and Lai [73]
based on augmenting paths and the adoption of a push-
relabelling scheme. �e augmenting path algorithm func-
tions by using multiple threads to calculate each block indi-
vidually and to select another completed nearby block with
which to merge. �e proposed method identi	es the inde-
pendent processing loops in theGC approach and isolates the
computation of each loop. Each image is sliced into smaller
image segments, which will then be processed in parallel.
�e proposed method enables a remarkable decrease in exe-
cution time by a factor of 4.7 compared with the original
GC approach, but considerable computational programming
e
orts are required. Kolmogorov et al. [74] developed four
di
erent smoothness terms (i.e., data, smoothness, occlusion.
and uniqueness) to improve the accuracy of their results.�e
objectives of theirmethod are to reduce the errors in occluded
areas and increase the e�ciency during postprocessing.Wang
et al. [75] developed an algorithm using the MRF framework
to eliminate holes and misaligned pixels. �eir work pro-
duced high quality disparity maps but also required complex
computational programming. Ploumpis et al. [76] developed
a new stereo matching approach based on particle 	lters and
scattered control landmarks. �e proposed method consists
of three steps. First multiple disparity maps are used to
acquire a set of features or landmarks and then segment the
images. A�erward, to estimate the best disparity values, scan
line particle 	ltering is applied. In the last step, a Markov
chain model is employed to reduce the computational

redundancy of the particle 	ltering process. Using this
method, high quality disparity maps can be produced.

4.2. Local Approaches. In local methods, pixel correspon-
dences are generated by measuring the correspondence
and similarity between image regions and very e
ective
implementation can be produced using this approach [77].
�e assignment of disparity values is achieved by applying
WTA strategy a�er calculating each candidate disparity value
individually. �e matching cost function is aggregated via
a summation or an averaging over a support region. �e
disparity value with the minimum cost for each pixel is
assigned to that pixel. An algorithm based on an e�cient cost
aggregation strategy was proposed by Mattoccia et al. [13].
�ese authors used joint bilateral 	ltering and expanded the
calculation structures that allow for the e�cient and accurate
generation of disparity maps. �e idea behind adopting
the selected bilateral 	ltering approach in the developed
algorithm is to combine a geometric constraint (i.e., a spatial
	lter) with color proximity constraint (i.e., a range 	lter).
�e performance of the proposed approach was tested for
noise and accuracy using the Middlebury dataset. Another
re	nement technique was proposed by Psota et al. [78] which
does not use image segmentation or plane 	tting. Instead,
the algorithm performs iterative re	nement of the results
of adaptive weight stereo matching. In each iteration of
disparity re	nement, the algorithm uses the ASW approach
to penalize disparity di
erences in local windows. A total of
eight iterations on the Middlebury dataset were performed
by Psota et al. and the correspondence error percentage was
observed to decrease from 1.46% to 0.83%. A new technique
for local cost aggregation for stereo matching was proposed
by Yang [79]. In this technique, the matching cost values are
aggregated adaptively based on a tree structure. �e nodes
of this tree consist of all of the image pixels and the tree
contains all edges between nearest neighboring pixels. A
spanning tree can be computed by removing unwanted edges.
Edge with high weights will be removed during spanning
tree construction. �en, the minimum spanning tree MST
approach is applied to obtain the sum of the minimum
values of all spanning trees. Yang’s method o
ers a low
computational complexity and high accuracy but has not
been tested for use in real time implementation.

Xu et al. [80] proposed an algorithm that calculates the
aggregation cost via the join optimization of both the le�
and right matching costs. �e authors assign reasonable
weighting coe�cient and exclude occluded pixels, while
preserving su�cient support windows for accuratematching.
�e result is the ability to reduce unwanted pixels in the
foreground and increase accuracy in highly textured regions.
Furthermore, Lee et al. [60] developed an algorithm based
on local approach with no iteration using three-mode cross
CT with noise bu
ering to increase the robustness against
image noise in textureless areas. �is technique also provides
two bits of cross CTwithin threemodes of implementation to
increase the reliability of the census measure. Most disparity
methods encounter di�culties when confronted with fast-
moving objects, but Lee’s algorithm addresses this problem
by using the concept of optical �ow to support weight
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Table 3: Previous evaluation papers on CPU, FPGA, and GPU.

Year Author Focus

2008 Gac et al. [41]

Presented a performance evaluation of di
erent target architectures which are FPGA (Xilinx
Virtex 2 Pro), GPU (Nvidia Geforce 8880) and CPU (Xeon dual core 3GHz) performance based
on back projection technique with several ways to speed up. �ey have reduced the computational
time for these three di
erent architectures through memory parallelized architecture.

2010
Kalarot and Morris
[87]

Reviewed performance on FPGA (Altera Stratix III) and GPU (Nvidia Geforce GTX 280)
performance based on strengths and limitations. �e same DP algorithm has been applied to
FPGA and GPU.�e evaluations have been made on internal clocks, memory space, and disparity
range of 128 and 256.

2012 Pauwels et al. [88]
Reviewed performance on FPGA (Xilinx Virtex 4) and GPU (Nvidia Geforce GTX 7900)
performance based on optical �ow, stereo vision, and local image features including energy,
orientation, and phase.

2012 Russo et al. [90]
Presented performance comparison on FPGA (cyclone II) and GPU (Nvidia Geforce GTX 295)
for image convolution processing. �e performance is measured through clock cycle ratio and
execution time.

2013 Fowers et al. [91]

Presented performance comparison on FPGA (Altera Stratix III), GPU (Nvidia Geforce GTX 295)
and CPU (Xeon Quad Core W3520) for sliding window applications. �ey have used SAD
algorithm for all three architectures. �e performance comparison is based on energy e�ciency
and time consuming for image processing. Multiple windows sizes (4 × 4, 9 × 9, 16 × 16, 25 × 25,
and 45 × 45) have been used to evaluate the best performance architecture.

2014 Xu et al. [89]
Presented the speed performance of CPU (AMD Opteron processor 6366HE, Intel Xeon
processor E5-2620) and GPU (Nvidia GeForce GTX 770) on the pyramidal stereo algorithm.

computations within a localized window. Koo et al. [81]
used a gradient based matching technique to reduce the
radiometric errors and improve the matching cost function
by using a Gaussian-based weighting function.�e reference
image is divided into two di
erence images corresponding to
low and high frequencies. �en, the Di
erence of Gaussian
(DoG) function is employed to reduce the errors that arise
during the matching process. �e authors demonstrated a
reduction of errors on a sample set of images acquired in
an outdoor environment. Matsuo et al. [82] used a local
approach based on the AD algorithm and the Sobel operator
in the matching cost calculation stage and box 	ltering with
the WTA optimization in the cost aggregation stage. �ey
used a weighted joint bilateral 	lter (JBF) in the re	nement
stage. �ey produced accurate disparity maps using several
iterations and a 	xedwindow size for the JBF.Nalpantidis and
Gasteratos [83] developed a new stereo matching algorithm
that employs the AD algorithm and performs aggregation
by considering the gestalt laws of proximity, similarity, and
continuity within a psychophysically based weight assign-
ment framework. �eir proposed algorithm yielded accurate
results when applied to the Middlebury dataset.

5. Real Time Stereo Vision Disparity Map
Algorithms Using Additional Hardware

�e ability to implement stereo matching algorithms in real
time represents a new research area in the 	eld of computer
vision. �e results of the online Middlebury benchmarking
system established by Scharstein and Szeliski [35] indi-
cate that algorithms developed using a parallel processing
approach or additional hardware are able to deliver pro-
cessing times among the best ones achieved on a standard
benchmarking dataset. Real time stereo vision algorithms

are able to achieve rates of greater than 30 frames per
second in their disparity mapping output. In this section, the
discussion is limited to platforms that use FPGAs and GPUs
for real time implementation of stereo vision algorithms.
Figure 5 shows a basic block diagram for such hardware-
based implementation on FPGA or GPU.�e FPGA consists
of a CPU, a multi-input/output port and a large set of
con	gurable logic blocks (CLB) that can be con	gured
according to the developer’s preferred design. �e features
of FPGA include versatility and the �exibility to operate
either as standalone systems or as coprocessors on expansion
cards for computer. FPGAs are most o�en programmed
using hardware description language (HDL) [84] and Bacon
et al. [85]. By contrast, a GPU is a dedicated coprocessor
with a 	xed architecture that enables the acceleration of the
rendering of 2D and 3D graphics by o�oading the related
processes from the CPU. Recent GPU designs have evolved
from being dedicated graphics rendering processors to more
general parallel processors. A GPU consists of multiple
processors with more than hundred cores, depending on the
model. A GPU is able to operate in combination with CPU
and open-source libraries such as the OpenCL, OpenCV, and
ComputeUni	edDeviceArchitecture (CUDA) libraries [86].

5.1. Comparative Studies of FPGAs and GPUs. Several papers
related to performance evaluations of FPGAs, GPUs, and
CPUs were reviewed for this literature survey as speci	ed in
Table 3. An early comparison among the FPGA, GPU, and
CPU was conducted by Gac et al. [41]. �e results indicated
that the GPU achieved the highest absolute performance
in terms of reconstruction time. �e authors applied the
back projection technique in their global algorithm via 3D
tomography image reconstruction. Kalarot and Morris [87]
compared the performance of theDP algorithm implemented
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on the FPGA and GPU when applied to their own recti	ed
images for di
erent disparity range. �eir results indicated
that the FPGA o
ered faster processing than the GPU for a
disparity range below 128 but that the FPGA was unable to
handle a disparity range of greater than 256, unlike the GPU.
�is 	nding can be attributed to the memory limitations
of standalone FPGA systems, which prevent their use for
processing large images. Another structured evaluation and
comparison of the FPGAandGPUwas performedbyPauwels
et al. [88] in the context of a real time analysis of optical
�ow, local image features, and stereo vision applications. �e
authors applied their method to the Middlebury dataset. �e
comparison was performed based on the hardware architec-
ture, speed, data dependency, accuracy, and time required to
design the structure of the algorithms. �e presented results
demonstrated that the GPU implementation was superior in
all respects and yieldedmore accurate and faster results when
implemented as real time stereo vision systems compared
with the FPGA implementation. Xu et al. [89] compared the
speed performances achieved using CPU and a GPU for their
pyramidal stereo algorithm. �eir results indicated that the
GPU was 12x faster than the CPU.

Russo et al. [90] performed a performance comparison
of FPGA and a GPU for image convolution processing. �ey
reported that the GPU exhibited the better performance in
terms of execution time and number of clock cycles. �is
	nding was attributed to the fact that the GPU tended to be
better able to explore the extremely large amounts of data
contained within the high-resolution images. Moreover, the
characteristic features of a GPU, such as multiple pipelines
and high bandwidth, assist in enhancing its performance.
Fowers et al. [91] conducted a performance and energy
comparison of a GPU, FPGA, and a CPU with a multicore
architecture. �ey used the SAD algorithm with the sliding
window technique as the algorithm implemented for the
comparison. It was found that the FPGA provided the best
energy e�ciency, whereas the GPU delivered the best per-
formance. Jin andMaruyama [92] compared implementation
of their algorithm on the FPGA and a GPU based on speed
and accuracy. �ey also proposed a method of improv-
ing the circuit design for FPGAs to reduce the required
memory resources while maintaining accuracy. However, the
results reported in all of the reviewed papers are subject
to processing performance, which depend on the available
hardware resources and the computational requirements of
the considered task. A recent study of FPGAs was conducted
by Lentaris et al. [93] for their ongoing projects SPARTAN,
SEXTANT, and COMPASS to improve the behaviour of
autonomous planetary exploration rovers. �e study focused
on the potential use of FPGAs for implementing a variety
of stereo correspondence, feature extraction, and visual
odometry algorithms.

5.2. Global Approaches. Several global methods have been
implemented on FPGAs and GPUs for the development
of real time stereo vision disparity map algorithms. A
global optimization algorithm for stereo matching based on
improvement to the BP approach implemented on a GPU
was presented by Xiang et al. [9]. �eir technique involves

the integration of color-weighted correlations to improve
hierarchical BP. Occlusion problems are resolved by combin-
ing a uniqueness constraint and a similarity constraint for
the detection of occluded regions. �e approach of Xiang et
al. outperforms other BP methods with regard to their real
time implementation on GPUs. However, its results in dis-
continuous regions of the disparity maps are somewhat poor
and it requires more complex computations. �e approach
also su
ers an increased time delay when the algorithm is
attempting to generate accurate results for such discontin-
uous regions. An improvement to the poor quality of the
disparity maps was achieved by Wang et al. [94]. �ey used
the AD-CT algorithm in the matching cost calculation stage
with a semiglobal optimization framework on FPGA board.
Semiglobal optimization involves optimizing the smoothness
of the disparity map along di
erent directions separately.
�e designated directions are along lines traveling to the
right, bottom, bottom right, and bottom le�. �is system
was found to be able to adjust the image resolution and
degree of parallelism to achieve maximum e�ciency. �e
result was the ability to produce high quality disparity maps
from high-de	nition images. In [95], a new cost function
was developed for the matching of corresponding pixels. �e
authors proposed a parallel approach to a variant of a global
matching cost calculationmethod implemented on aGPU for
symmetric stereo images. A bank of log-Gabor wavelets was
developed for the analysis of such symmetric images in the
spectral domain. Using a GPU, the authors achieved real time
disparity estimations for high-resolution images.

Implementation of a new algorithmusing theGCmethod
on a GPU was presented by Choi and Park [96]. �ey
built their algorithm to operate in three stages using the
graph construction method to accelerate the convergence of
the GC calculation. A reordering heuristic and initialization
method were employed to further increase the execution
speed based on the proposed graph construction method.
�en, a repetitive block based push and relabel method was
used to increase the data transfer e�ciency. Finally, they
used low-overhead global relabelling algorithm to increase
the GPU occupancy. �ey achieved an improved execution
time compared with typical global methods at the cost of
considerable programming e
orts. Yao et al. [97] treated
image warping as an energy minimization problem. First,
they developed a sparse disparity map by means of stereo
matching process. �en, the map was warped an energy
minimization function with three independent terms (i.e., a
disparity constraint, a structure constraint, and a temporal
constraint). �ey applied their method to test images with
di
erent resolutions and evaluated the results that are based
on the execution times required for the GPU and CPU
implementation. �e GPU runtime was 24x faster than the
CPUprocessing time, satisfying the requirements of real time
operation.

5.3. Local Approach. Current FPGA technology o
ers thou-
sands of small logic blocks embedded in the connection
matrix. �is allows arbitrary computation blocks to be con-
structed frombasic computing blocks through parallel circuit
connections. Detailed summary of information regarding
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the advantages and disadvantages of real time implementa-
tion of stereo vision algorithms on FPGAs has been pro-
vided by Samarawickrama [98]. Kalarot and Morris [87]
implemented an algorithm on FPGA using a fast and simple
approach by combining the distortion removal and alignment
correction tasks in a single step by means of lookup tables.
However, a problem was encountered in the case of images of
more than 1 megapixel in size, at which the FPGAwas unable
to process because of its very limited onboard memory. �is
memory limitation makes FPGAs unsuitable for the process-
ing of high-de	nition images unless external memory is used
to support it.Mattoccia [99] performed a comparison of three
di
erent algorithms, namely, a 	xed window algorithm, an
ASW algorithm, and a semiglobal algorithm implemented
on FPGAs. Mattoccia’s results demonstrated that the output
disparity maps were fairly accurate for all tested algorithms.
Recently, Colodro-Conde et al. [100] implemented an area
based stereo matching algorithm on FPGA board and tested
its performance using the Middlebury dataset. �ey devel-
oped the algorithm to use the SAD approach for thematching
cost calculation and the median 	lter to re	ne the disparity
maps. �eir architecture design involved multiple bu
ers for
temporary memory storage. In this design, when the window
size is increased, the bu
ers also need to be increased for
the parallel processing of the allocated memory. However,
the memory size and inherent frequency of FPGA limit
its suitability for such tasks and applications, especially for
real time applications. Nalpantidis et al. [20] used FPGA
to prepare an e�cient implementation of their hierarchical
matching algorithm on uncalibrated stereo vision images. In
their approach, two-dimensional correspondence search is
performed using a hierarchical technique. �en, the inter-
mediate results are re	ned by three-dimensional cellular
automata (CA).�e 	nal disparity value is de	ned in terms of
the distance between the matching positions. �is proposed
algorithm is able to process uncalibrated and nonrecti	ed
stereo images when implemented on the FPGA.

Excessive time consumption is the main challenge fac-
ing real time algorithm implementation because of their
computational complexity. �e reasons that real time vision
algorithms are generally suitable for implementation on
GPUs have been explained and discussed by Kim et al. [107].
A GPU unit is able to run the same instructions on multiple
sets of data simultaneously. Based on the functionality,
Mei et al. [45] developed a stereo matching algorithm for
implementation on a GPU with good performance in terms
of both accuracy and speed. �e matching cost value was
initialized using the AD measure and CT. �e cost was
aggregated in dynamic cross based regions and updated in
a multidirection scan line optimization. Several researchers
have developed algorithms based on domain transforma-
tions. �is technique was previously initiated by Gastal and
Oliveira [108], who used a transformation technique that
enables the aggregation of 2D cost data using a sequence of 1D
	lters. �is technique was improved upon by Pham and Jeon
[24] by means of dimensionality reduction technique. �e
advantage of this technique is that it reduces the complexity
of the computational requirements compared with a 2D
cost aggregation calculation. A multiresolution anisotropic

di
usion approach based on a disparity re	nement algorithm
that can be executed in a real time environment was proposed
by Vijayanagar et al. [65]. �is algorithm exploits the image
pyramid concept to gradually enhance the disparity map
at di
erent levels of resolution and to align the object
boundaries in color images.�is technique allows smoothing
to be achieved without loss of edges, making it a useful tool
for improving image segmentation.

A novel local method for stereo matching using a GPU
was presented byKowalczuk et al. [104].�e algorithmbegins
with an approximation based on ASW aggregation and a
low-complexity iterative disparity re	nement technique. �e
probabilistic framework combines the summation term into
a matching cost minimization via a series of approximations
and facilitates interactive processing to improve the accuracy
of the disparity map. �e re	nement algorithm operates
by calculating the estimated disparity value of each pixel
during the current iteration using nearby pixel disparities
from previous iterations.�e implementation of this method
of cost aggregation and iterative disparity re	nement was
performed by Yoon and Kweon [102]. Instead of searching
for the matching window with the optimal size and shape,
it is possible to aggregate costs a�er local smoothing within
a corresponding window to reduce matching noise. Usually
noise can be e
ectively reduced by applying a linear 	lter such
as a Gaussian 	lter, but the resulting disparity map always
exhibits edge fattening. �erefore, to address this problem of
mismatching pixels or noise around regions of discontinuity
disparity maps, Lin et al. [105] proposed a new algorithm
based on an edge preserving 	lter for the ASW method
computed using a hierarchical clustering algorithm. �is
algorithm used a novel cost aggregation block to compute
corresponding response for all the corresponding pixels in a
set of sampling points. Tippetts et al. [106] used an intensity
pro	le shape-matching algorithm implemented on an FPGA
to achieve real time estimations for microscale unmanned
vehicles (i.e., helicopter). �e algorithm consists of three
steps. In the 	rst stage, 	ltering is performed using aGaussian
kernel. �en, the shapes of target objects are identi	ed on a
row-by-row basis. In the last stage, a�er the entire image has
been processed, a vertical smoothing 	lter is applied to reduce
the remaining noise. �e authors also presented designs for
FPGA blocks for each stage of implementation.

5.4. e Challenges of Implementing Stereo Vision Algorithms
on GPUs and FPGAs. Over the past decade, developments
in computing architectures have exhibited a clear trend
toward increased heterogeneity and parallelism, with most
mainstream microprocessors now possessing multiple cores
and robust system architectures [109]. At the same time, the
increasing number of accelerator options has considerably
increased the complexity of application design because of
the need to perform an extensive exploration of the available
design space when attempting to choose a suitable device.
Although GPUs with CUDA have come into common use as
accelerators because of their low cost, ready availability, and
simple programming model comparable to that of FPGAs,
Ekstrand et al. [110], Perez-Patricio et al. [111], Stein [112],
and Long et al. [113] have all presented results that di
erent
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Figure 6: Standard benchmarking images provided in the Middlebury Stereo Vision datasets in [35].

devices are better suited for di
erent applications. �erefore,
su�cient exploration of the di
erent available devices for
di
erent applications is critical to prevent researchers from
selecting unsuitable devices during the design phase. In
this survey, for the summary of performance comparisons
between GPUs and FPGAs, the results vary among di
er-
ent implementation and application domains. None of the
platforms appears to be universally superior. �e preferred
design depends on the speci	cations of the target platform.
However, the use of GPUs and FPGAs can facilitate increased

speeds and reduced execution times. �e challenge for a new
researcher in this 	eld is to determine how to develop an
algorithm that is appropriate to a speci	c application and the
most suitable platform.

6. Accuracy Measurement

�ere are several academic research centers that provide
qualitative accuracy assessments of disparity maps through
online submissions. �e datasets used for these assessments
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Figure 7:�e performance of local algorithms in terms of bad pixel
percentages for the nonocc, all, and disc which are cited from [35].

can also be downloaded from the associated web pages,
for example, the Middlebury Computer Vision pages [35],
KITTI Vision Benchmark [114], and DIBRIS [115]. �ese
datasets include both static and dynamic scenes. Most of the
articles reviewed in this survey use the qualitative accuracy
measurements provided by [35]. �us, this paper uses the
same resource to report the accuracy performance of a stereo
vision algorithm in terms of the percentage of bad pixels.
According to Scharstein and Szeliski [11], the evaluation of the
accuracy level for each image is based on three attributes (i.e.,
the percentages of bad pixels among all pixels in nonoccluded
regions (nonocc), all pixels detected as valid pixels (all), and
pixels in regions near depth discontinuities and occluded
regions (disc)). Four standard benchmarking images are used
in this evaluation; these images are Tsukuba, Venus, Teddy,
and Cones and the original images and ground-truth images
for each are shown in Figure 6. Figures 7 and 8 show the
nonocc, all, and disc results obtained on these images for
approximately 60 algorithms selected based on both local and
global optimizations methods. �e bad pixel percentages of
these algorithms are among the lowest values represented in
the database of [35].

Because this section discusses only accuracy measure-
ments cited from [35] which are based on online submissions,
the implementation of the algorithms in Figures 7 and 8
is not speci	ed as either so�ware-based or hardware-based.
�ere is some possibility that accuracy improvement can be
achieved through implementation on additional hardware
as shown by Pauwels et al. [88]. However, as reported by
Kalarot andMorris [87], the primary advantage of hardware-
based (i.e., FPGA andGPU) implementation is that the speed
or execution time can be tremendously improved compared
with implementation using only a CPU. Figure 9 shows
the average errors of local and global methods. Here, the
algorithms are represented by numbers, which correspond
to the algorithms represented at the same �-axis positions
in Figure 7 (i.e., for local methods) and 8 (i.e., for global
methods). �is 	gure shows only the accuracy performances
of existingmethods and is intended as a guidance or reference
for those who wish to develop their own algorithms.
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Figure 8: �e performance of global algorithms in terms of bad
pixel percentages for the nonocc, all, and disc which are cited from
[35].
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Figure 9: �e average errors in terms of bad pixel percentage for
local and global methods.

7. Conclusion

�e stereo matching problem remains a challenge for com-
puter vision researchers. A literature survey of the latest stereo
vision disparity map algorithms is provided here and all cited
algorithms are categorized according to the processing steps
with which they are associated in the taxonomy of Scharstein
and Szeliski. Becoming familiar with the state-of-the-art
algorithms for stereo vision disparity mapping is a time
consuming task. In this survey of the latest developments
in the area of stereo matching algorithms, the processing
steps composing such an algorithm and their so�ware-based
as well as hardware-based implementation was therefore
performed and presented to assist in this task.�e qualitative
measurement of the accuracy of such algorithmswas also dis-
cussed. To assist the reader in navigating the numerous works
presented, Table 2 is presented as a summary. It speci	es the
steps and computational platforms used in each approach as
a reference for the development of new algorithms.

Nomenclature

��: Le� image
��: Right image

: Disparity value
(�, 	): Pixel coordinates
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�: Support window
∈: Element of
(�, �): Neighboring pixel coordinates
��: Support window centered on

pixel �
�: Pixel of interest

�: Smallest pixel value

�: Set of disparity values
�: Weighting factor
�: Energy function
�: Neighboring pixels in the

support window.
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