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Abstract— — Lithium-ion (Li-ion) batteries widely used in electric vehicles (EVs) and hybrid electric vehicles 2 

(HEVs) are insufficient for vehicle use after they have degraded to 70 to 80 percent of their original capacity. 3 

Battery lifespan is one of the largest considerations when designing battery packs for EVs/HEVs. Aging 4 

mechanisms, such as metal dissolution, growth of the passivated surface film layer on the electrodes, and loss of 5 

both recyclable lithium ions, affect the longevity of the lithium ion battery at high-temperature operations. Even 6 

vehicle maneuvers at low temperatures (T<0°C) contribute to battery lifetime degradation, owing to the anode 7 

electrode vulnerability to other degradation mechanisms like lithium plating. Nowadays, only few battery 8 

thermal managements have been properly considering with low-temperature degradation. This is due to the 9 

lack of studies on aging of Li-ion batteries at sub-zero temperature. This paper investigates how load cycle and 10 

calendar life properties affect the lifetime and aging processes of Li-ion cells at low temperatures. Accelerated 11 

aging tests were used to determine the effect of the ambient temperature on the performance of three 100Ah 12 

LiFeMnP04 lithium-ion cells. Two of them were aged through a normalized driving cycle at two temperature 13 

tests (-20°C and 25°C). The calendar test was carried out on one single battery at -20°C and mid-range of state-14 

of-charge (SOC) (50%). Their capacities were continuously measured every two or three days. An aging model 15 

is developed and added to a preliminary single cell electro-thermal model to establish in future works a thermal 16 

strategy capable of predicting how the cell ages. This aging model was then validated by comparing its 17 

predictions with the aging data obtained from a cycling test at 0°C. 18 

19 

Index Terms— Lithium-Ion; low temperatures; hybrid vehicles; aging mechanisms. 20 
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ver the past fifteen years, nearly every major automobile manufacturer in the world has been developing pure1 

electric vehicles (EVs) and hybrid electric vehicles (HEVs) to counteract the rising oil prices and because of 2 

the increasing awareness of the environmental impacts of CO2 emissions and local air pollution. EVs and HEVs have 3 

significantly reduced energy consumption and greenhouse gas emissions. With the growing popularity of electrified 4 

powertrains, the batteries used in these applications have become a common topic. Various fundamentally different 5 

battery technologies are currently being used from Nickel-Cadmium (NiCd) to Lead-Acid through Nickel-Metal 6 

hydride (NiMH) battery [1], [2]. However, this paper only focuses on the electrochemical energy storage using lithium-7 

ion batteries because of their characteristics in terms of power-to-energy ratio [1], [3]. Currently, they appear to provide 8 

the most suitable performance characteristics for storing the electrical energy in EV or HEV applications. 9 

Yet, cost [4], safety [5], charging times [6], recyclability [7], and charging infrastructure [8] are all common causes 10 

for concern. Perhaps most importantly, the batteries’ reduced energy and power densities at low temperatures have 11 

been called into question. Experiences in cold climates with batteries in laptops, cell phones, and even HEV/EV 12 

batteries with large capacity size have caused this concern [9]–[11]. Poor performance of the battery at low temperature 13 

can be attributed to a rise of the internal impedance of the cell, which is present in every lithium-ion battery technology 14 

[11]. 15 

In places like Canada, Russia, or Scandinavian countries where the temperature during winter drops below -20°C 16 

that lasts for at least four to six months, driving an HEV/EV turns out to be a problem. Linked to this concern, one 17 

challenge is to understand the battery’s electro-thermal behavior at this temperature level to develop a prime thermal 18 

strategy mandatory for use of an HEV/EV at sub-zero temperatures. 19 

Many studies in the literature have discussed the effects of temperature on batteries [11]–[15]; they usually focus on 20 

presentations of battery tests under cold temperatures [11], [15]. In some instances, they are associated with a model 21 

establishment and validation for further battery thermal management [12]–[14]. In addition, among these studies, a 22 

previous work has been proposed [16] that reports an accurate electro-thermal model validated with tests on an actual 23 

HEV battery rated at 100Ah at very low temperatures (from -20° to 0°C), which is on target for an optimal battery 24 

thermal strategy. 25 

Unfortunately, temperature is part of the aging process of the cell, which is not acknowledged in the current thermal 26 

strategies [17], [18]. The aging rate of batteries depends on a wide range of factors, and some of which are poorly 27 

O 
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known. High temperature [19], current [20], and frequency [21] are among the possible factors, but the influence of 1 

sub-zero temperatures is much more misjudged. Loss of active material lithium [22] and solid electrolyte interface 2 

(SEI) growth [23] are found to be the main contributors to aging at high temperatures. At low temperatures, known 3 

aging process encompasses the lithium deposit as metal on the anode surface (so called lithium plating [24]) instead of 4 

lithium intercalation leading to a growth of the SEI, but currently there is a lack of data on aging at low temperatures. 5 

The objectives of this paper are to present an aging study of lithium-ion cells at sub-zero temperatures and to develop 6 

an aging model built on [16] to predict the remaining capacity of an HEV Li-ion battery in a cold environment as the 7 

cell ages for a future thermal strategy development. 8 

To realize this model, accelerated aging tests were carried out on three HEV batteries. Two were cycled at 25°C and 9 

 -20°C under a normalized driving profile. One was stored at a very low temperature and mid-charge (50% SOC) to 10 

determine the effect of the storage temperature on cells. Data collected from the experimental tests were used to 11 

determine the coefficients of the models that are based on mathematical equations. Simulation results from the aging 12 

model were compared with a cycle aging test done at 0°C to validate the aging model. 13 

The rest of this paper is organized as follows: Section II presents the experimental setup for the aging tests and the 14 

results associated with it. Section III describes the aging model. Section IV discusses the results of simulations 15 

compared to experimental tests carried out to validate the aging model. Finally, conclusions are given in Section V. 16 

 17 

II. EXPERIMENTAL SETUP 18 

 19 

This section presents the experimental setup for the characterization and validation of the aging model.  20 

A. Battery feature 21 

Four rectangular LiFeMnP04 batteries were tested to accomplish the aging test procedure. The cells have a nominal 22 

capacity of 100 Ah and a voltage range of 2.5–3.8V. Even though this study is looking toward an HEV application, the 23 

cells were tested individually to simply understand the degradation caused by cold temperatures. In future studies, the 24 

cell arrangement could consist of a battery pack. 25 

B. Aging test 26 

Battery aging tests can be categorized into cycle aging test and calendar aging test. Both tests were carried out by 27 
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the same experimental test bench schematized in Fig. 1. An Arbin BT-2000 battery cycler was employed for cycling, 1 

calendar aging (in this case, the current is zero), and capacity measurement. A computer with an Arbin software 2 

interface controls all the cycling stations and treats the data acquired from the test bench, including the current, Ibatt, 3 

the cell voltage, Vcell, and temperature. On that note, limited acquisition input slots on the Arbin station allowed using 4 

a thermocouple to monitor the cell temperature. As shown in Fig. 2, it was placed on the electrode (negative), Tcore, 5 

because it rejects more heat than the surface under current solicitations [9], [25]–[27], thus it is the best place to observe 6 

the temperature variations of the cell core. 7 

To recreate the cold environment climate, a climatic chamber was used; it is independent from the rest of the bench 8 

and is self-controlled to maintain the aging temperature test called, Ttest, that is, the temperature of the chamber. The 9 

tested cell was placed in the chamber for calendar, cycling, or capacity measurement. The data collection took place in 10 

the AMPERE laboratory located in Lyon, FRANCE. The aging lab contained a number of battery aging stations, which 11 

were all carefully monitored. 12 

 13 
Fig. 1. Experimental test bench. 14 

 15 



 5 

 1 

Fig. 2. Display of the K-type thermocouple for temperature data acquisition. 2 

1) Calendar aging test 3 

Calendar aging occurs while the cell is in storage. In other terms, it is the irreversible cell’s loss of capacity when 4 

the battery is not used [14], [23]. The test procedure for an accelerated calendar test is simple; the cell is charged to a 5 

predefined SOC and stored at the requested temperature of storage with no floating voltage. Lack of testing material 6 

compelled us to experiment on one cell, thus only one temperature and one state-of-charge (SOC) were tested. The cell 7 

was exposed to a cold temperature of -20°C corresponding to an average temperature during winter in Canada. As for 8 

the value of the SOC, a mid-charge state (50%) was chosen to minimize the outcome of the SOC impact on the cell 9 

[28], and this allowed us a better observation of the temperature effect. The fully charged cell was discharged at 1C 10 

rate (100A) to the desired SOC. The cell temperature was then allowed to drop to the target cold temperature for 8h to 11 

reach the thermal equilibrium, and the cell voltage was left to drift. 12 

2) Cycle aging test 13 

Cycle aging occurs when the cell is either charging or discharging. The current solicitations, the temperature 14 

conditions, and the operation mode of the battery are factors in the cycle aging. The cycling test procedure focuses on 15 

finding the correlation between driving conditions in a real application and the fundamental aging processes in the 16 

battery cell. Two cells underwent a driving cycle presented in Fig. 3 until they have degraded to 70 to 80 percent of 17 

their original capacity. The cycle aging test exposed the two cells to two temperatures (25°C and -20°C), one SOC 18 

(60%), and one ΔSOC (20%), where ΔSOC is the window of nominal capacity of the cell discharged during the cycle. 19 

Here it should be underlined that other aging factors like depth-of-discharge (DOD) [29] and discharge rates [30] are 20 
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out of the scope of this paper. 1 

The driving profile (Fig. 3a) was conceived for an urban EV driving application. It is composed of 3 phases: 2 

discharging, resting, and charging. Each phase lasts one hour and succeeds each other alternatively to reach a 5-hour 3 

driving profile. The current profile for the discharging phase was taken from an Electric Toyota Prius running a 4 

standardized cycle known as the New European Driving Cycle (NEDC) (see Fig. 3b). The details of the sequences are 5 

explained as follows: 6 

 Sequence 1: in this driving profile, the cell starts at 60% charge state to avoid exceeding the upper or 7 

lower voltage limits with high current rates that accelerate the lifetime of the cell; an SOC of 50% appeared 8 

to be sufficient enough to prevent these damages. The cell at a 60% charge state is discharged for 1h to a 9 

50% SOC corresponding to a driving sequence of an EV user from home to workplace. The discharge 10 

profile is actually a micro-discharging cycle of 800s extended to 3600s (see Fig. 3b). 11 

 Sequence 2: the cell is kept resting for one hour. At first, the time of rest was agreed to be a resting phase 12 

during a working day of 7–8 hours. However, to execute multiple cycles per day, the time was shortened to 1h 13 

corresponding to the necessary time for Tcore to reach thermal equilibrium with the chamber, Ttest. Moreover, 14 

compared to cycle aging, calendar lifetime has few impacts on cell degradations, thus seven hours can be 15 

stripped of the resting sequence without harming the cell too much. Additionally, the calendar aging results 16 

presented in section E.2 emphasizes this point. This is also a reason why a mid-charge SOC was performed in 17 

the calendar aging tests. 18 

 Sequence 3: the cell is going through a discharging phase (see sequence 1) again but to a lower SOC (40%) 19 

matching the return trip of the EV driver. 20 

 Sequence 4: the cell is charged up to an SOC of 60% with a constant current of 0.25C. This sequence 21 

compensates the capacity spent in sequences 1 and 3, which is analogous to the EV user’s recharging procedure 22 

of the EV at home. 23 

 Sequence 5: the cell is kept at rest for 1h corresponding, for instance, to a non-utilization of the EV. Same 24 

explanations as for sequence 2 apply for this sequence. 25 

 26 
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The cycling at -20°C started after 8h of rest at each temperature for the cell interior, Tcore, to reach the thermal 1 

equilibrium with the temperature of the chamber, Ttest. 2 

 3 

Fig. 3. (a) Schematic of the driving profile used for the cycle aging test. (b) The first 800 seconds of the standardized NEDC cycle. 4 

C. Capacity measurement 5 

The capacity measurement test is designed to acquire as much information as possible about the cell regularly during 6 

a life test of a cell. This test monitors the progression of the battery aging by extracting the cell capacity as it degrades. 7 

Capacity measurement tests were performed every two or three days at the aging temperature (Ttest) using a few test 8 

cycles only. They consisted of standard capacity tests, constant current (CC), constant voltage (CV) charge, and CC 9 

discharge tests. Each test cycle started with a charging regime at 1C rate (100A) to 3.8V and held at 3.8V until the 10 

current dropped to a current of 0.05C (5A). Subsequently, the cell was rested and then discharged at 1C rate to a cut-11 

off voltage of 2.5V. The rest period between charging and discharging was 30 min at 25°C and 45 min at -20°C for the 12 

cell to come close to a thermal equilibrium state with Ttest. After another resting time, the cell was charged following 13 

the same CC-CV protocol. Finally, the cell was discharged to the desired SOC – 50% or 60% for calendar aging test 14 

and cycle aging test, respectively. 15 
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D. Resistance increment assessment 1 

In addition to the remaining capacity extraction, cell resistance was evaluated during each capacity measurement test 2 

using: [31] 3 

 𝑅𝑝 = 𝑉1−𝑉0𝐼𝑏𝑎𝑡𝑡  4 

where Rp is the discharge pulse resistance (Ω), V1-V0 is the voltage difference (V) caused by the current pulse, and Ibatt 5 

is the current passing through the cell (A). In this study, a 2s pulse resistance was considered. 6 

E. Aging test results 7 

This subsection presents the cell aging test results of the cycle and calendar experiments from two points of view: 8 

the capacity fade and the resistance increment. All test results for the three different aging tests are reported in Tables 9 

I and II. 10 

1) Cycle aging test results 11 

Fig. 4 shows the results measured in the cycle test at both temperatures. The gradual discharge curves of the capacity 12 

measurement test vs discharging time are displayed for the two temperature tests of 25°C (Fig. 4a) and -20°C (Fig. 4b). 13 

First, from the comparison of the two experimental graphics (Fig. 4a and Fig. 4b), one can observe the impact of the 14 

test temperature on the cell electrical performances. At -20°C (Fig. 4b), a strong voltage drop is seen at the beginning 15 

of the trial. The literature [1] attributes this drop to the Nernst’s equation [1], [32] and explains the dependence of the 16 

cell voltage to the temperature as follows: 17 

 𝐸 = 𝐸0 − 𝑅𝑇𝑛𝐹 𝑙𝑛 𝑎(𝑜𝑥)𝑎(𝑟𝑒𝑑) 18 

where ai is the activity of the relevant species (ox for oxidizers and red for reducers), R is the gas constant (J/mole/K), 19 

T is the temperature (K), E is the cell voltage (V), and E0 is the standard potential (V). After 250s, the voltage curve 20 

experiences an important voltage rise potentially due to the electrochemical processes inside the cell and the electron 21 

density passing through the circuit leading to a significant heat generation from the cell. According to [9], [33], heat 22 

generation rates are produced by various sources, but only joule heating (ohmic) prevails at this current rate over the 23 

other resistances. It follows a voltage benefit attributed to the lower cell impedance due to a higher temperature of the 24 

cell [34]. 25 
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In most cases, ideal conditions are usually specified by the manufacturer, such as 25°C, a voltage range, etc. These 1 

conditions are intended to represent the anticipated decreasing operating performances of the battery during aging. 2 

However, as shown in Table I, the end of life criterion (80% of the nominal capacity) of the 100Ah lithium-ion cell 3 

given by the manufacturer was found to be extremely inaccurate with the results. At ambient temperature (25°C), 7% 4 

of the capacity is lost after 170 cycles, which is by extension very dissimilar to the results reported by the manufacturer 5 

(2000 cycles). 6 

As a rule, when the cell ages, its capacity decreases (fades), and its internal resistance increases. It is thought that the 7 

cells at higher temperatures botched before the ones at lower temperatures [35], [36]. As surprising as it is, the 8 

conventional limit of 20% capacity loss referring to the nominal capacity 80 Ah at -20°C is reached only after a dozen 9 

cycles, which is equivalent to 60h. The main cause of this large capacity loss is that at subzero temperature, the reactions 10 

between the lithium ions entering the anode and the electrolyte (Li intercalation) induce another aging mechanism [23], 11 

[24]. After a literature survey, there are some known aging phenomena [24], [36]:  12 

1) Loss of cyclable lithium [24] due to massive consumption for the formation. 13 

2) Growth of the passivation layer around the anode known as the solid electrolyte interphase (SEI) [37]. 14 

3) Growth of the SEI layer during aging is also engendered by the cathode main metal (Mn, Fe, or Co) dissolution. 15 

4) Consequence of 3) is the transition from the cathode of the metal and then its deposition on the anode [24], [37].  16 

5) Minor effect of 3) is the loss of positive active material that also counts for capacity fades [36]. All these mechanisms 17 

are accelerated at high temperature [38]. 18 

Logically, when the cell is down to below 0°C, the phenomena quoted above should be slowed or not prevalent. 19 

However, as shown in Fig.4b, the aging rate of the cell is still accelerated at low temperature. In [39], the authors 20 

explained the occurrence of this increasing lithium loss rate at sub-zero temperature with another aging mechanism: 21 

the lithium plating. By measurements with pouch cells with the reference electrode, the authors showed a negative 22 

polarization with respect to Li/Li+ in the low temperature range. This polarization far surpasses the lithium plating 23 

potential (100mV)[40], which signifies a high possibility of metallic lithium deposition at lowered temperatures. Post-24 

mortem studies of the pouch cells revealed that the anodes were indeed plated with grey metallic lithium. This lithium 25 

plating leads to capacity loss by interfering with the Li intercalation between the anode and electrolyte and a loss of 26 

lithium (electrolyte decomposition) [39], which dramatically affects the cell lifetime. 27 
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As for the cell internal impedance, Fig. 5a shows the evolution of the cell resistance through the aging cycles. A 1 

focus on this plot (Fig. 5a) displays an increase of the cell resistance as the cell ages. This is mainly caused by reduced 2 

electrolyte conductivity due to the consumption of salt during the formation of the SEI and aging [37]. Another way to 3 

demonstrate its increment is to plot the thermal evolution of cell during each capacity measurement test. Figs. 5b and 4 

5c display the temperature of the cell, Tcore, vs the capacity of the cell for each cycle number for the two Ttests. 5 

First, comparing between Figs 5b and 5c shows that low temperature operation significantly increases the impedance 6 

of the cell. The ΔT, which is the difference of the temperatures between the final temperature and the initial temperature 7 

for a given cycle number, is 14°C at -20°C, whereas at 25°C, ΔT= 12°C. The reasons for the rise of the impedance are 8 

reduced conductivity of the electrolyte and decreased diffusivity of the Li+ inside the cells due to the SEI growth [20], 9 

[38]. 10 

Moreover, for the lower temperature (Fig. 5c), this effect is stronger. This is due to the aging phenomenon, the 11 

lithium plating, which is consuming the negative electrode area. The net consequence of the latter is an increase of the 12 

charge-transfer resistance at the electrolyte-anode interface [36], [40], [41]. 13 

  14 

Fig. 4. (a) Capacity measurement test for cycle aging at 25°C. (b) Capacity measurement test for cycle aging at -20°C. 15 
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 1 

  

Fig. 5. (a) Evolution of the resistance for both cycle aging test (25°C/-20°C) (b) Evolution of the temperature Tcore vs discharging capacity for cycle aging test at 2 
25°C. (c) Evolution of the temperature Tcore vs discharging capacity for cycle aging test at -20°C 3 

2) Calendar aging test results 4 

Figure 6 shows the results of the calendar capacity loss test at -20°C. The end of the life criterion (80% of the nominal 5 

capacity) is reached in less than 415h of storage time, which corresponds to 17 days. As expected, for the same 6 

temperature Ttest, a lower capacity fade than cycle aging is seen, as calendar aging is caused by the battery storage time 7 

(e.g., self-discharge, impedance rise [36]). Hence, aging effects occurring within the battery like loss of cyclable lithium 8 

or active material may be slowed, but they are still a major concern. 9 

For the resistance increment assessment shown in Fig. 7a, the same conclusion as for the cycle aging test is made. 10 

As shown in Fig. 7a, the progressive rise of the impedance during aging is significant due to the same but less impacting 11 
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 12 

aging mechanisms as cycling. Fig. 7b, which represents the evolution of the cell temperature with calendar aging, 1 

emphasizes this point. Nevertheless, this increase has a negative impact on the battery performances as explained 2 

above. 3 

 4 

Fig. 6. Capacity measurement test for calendar life at -20°C. 5 

 

Fig. 7. (a) Evolution of the resistance increment with calendar aging at -20°C. (b) Evolution of the temperature Tcore vs discharging capacity for calendar life test 6 
at -20°C. 7 
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3) Calendar / cycling effect 9 

The data from the calendar aging test at -20°C allowed us to quantify the effects (%) of the calendar and cycling, at 10 

the same temperature, on the cell. An estimation of the effects of each aging process can be done on the driving cycle 11 
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at -20°C. The effects were reported in Table I and calculated as follows: 1 

At -20°C, the degradation for calendar aging is 20.3% in 415 hours that corresponds to, 4.89e-2% of loss of 2 

lithium/hour. In the driving profile, 2 hours are dedicated to calendar aging, so in one cycle, 9.8e-2% of lithium is lost 3 

due to calendar aging at -20°C. 4 

In a cycle, 5 %𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟𝑙𝑜𝑠𝑠 =  2 × 4.9𝑒−2 = 9.8𝑒−2(% 𝑜𝑓 𝑙𝑖𝑡ℎ𝑖𝑢𝑚 𝑙𝑜𝑠𝑠/𝑐𝑦𝑐𝑙𝑒) (3) 6 

 7 

Thereby, in 12 cycles (the EOL), 1.17% is lost due to calendar aging. In the end, in the driving cycle at -20°C, 20.8% 8 

is lost after 12 cycles. Therefore, calendar aging accounts for 5.6% of these losses. 9 %𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟𝑒𝑓𝑓𝑒𝑐𝑡 =  12×%𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟𝑙𝑜𝑠𝑠𝑇𝑜𝑡𝑎𝑙 %𝑙𝑖𝑡ℎ𝑖𝑢𝑚 𝑙𝑜𝑠𝑠 𝑖𝑛 12 𝑐𝑦𝑐𝑙𝑒𝑠 = 1.1720.8 = 5.6% (4) 10 

 11 

Moreover, at 25°C, the quantification of the two aging processes is 50%/50%, as in this study, the impact of cycling 12 

aging on the cell degradation is considered as harmful as the calendar aging at this temperature. A literature survey 13 

emphasizes this point. In [42], at ambient temperature (30°C), the degradation rate and internal resistance increment 14 

for cycle aging and calendar aging are close: 0.03% versus 0.05% after 32 days. The results in Table I show that at low 15 

temperature, cycle aging has much more greater effect than calendar aging. 16 

4) Aging results conclusion 17 

As a result, low temperatures show a strong connection with cell aging. Ensuring an accurate prediction of the cell 18 

capacity fade and resistance increment as the cell ages in cold weather is critically important to build a thermal strategy 19 

for HEVs/VEs. Therefore, a thorough battery model that can determine the remaining capacity of the battery with aging 20 

through a range of temperatures is important. 21 

  22 
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TABLE I.  OUTPUT EXPERIMENTAL DATA OF THE CAPACITY MEASUREMENT TEST 1 

Ttest 

(°C) 

Test characteristics 

Testing 
Initial capacity 

measured (Ah) 

Final capacity 

measured (Ah) 

Number of cycle (or time) before end-of-life criterion 

(80% of the cell initial capacity) 

Calendar effect / 

Cycle effect (%) 

25 Cycling 99.8 92.9 
170 cycles = 850 hours (7% of capacity loss) (from a 60% 

SOC to a 0% SOC) 

50% / 50% 

-20 Cycling 58.6 46.4 12 cycles = 60 hours (from a 60% SOC to a 40% SOC) 

5.6% / 94.4% 

-20 Calendar 63.1 50.3 415(hours) at 50% charged 

100% / 0% 

25 
Manufacturer’
s data curve 

100 80 
2000 cycles = 20000 hours (from a 100% SOC to a 0% 

SOC at 0.1C (10A). 

 

 2 

TABLE II.  OUTPUT EXPERIMENTAL DATA OF THE RESISTANCE INCREMENT CALCULATION 3 

Ttest (°C) 

Test characteristics 

Testing 
Number of cycle (or 

time): instant measure. 

Measured resistance 

(mΩ) 
Tcore initial value (°C) 

Tcore maximal 

value (°C) 

25°C Cycling 
0 cycle 0.52 24.2 31.1 

170 cycles = 850 hours 0.78 24.6 37.3 

-20°C Cycling 
0 cycle 5.92 -19.6 -8.6 

12 cycles = 60 hours 8.88 -20.8 -6.19 

-20°C Calendar 
0 (hours) 5.77 -19.4 -6.90 

415 (hours) 7.56 -18.7 -5.91 

 4 

III. AGING MODEL DEVELOPMENT 5 

 6 

This section discusses the modeling of batteries and puts the accent on modeling of the degradation processes present 7 

in the batteries. First, a brief discussion on the art of battery models is required. 8 

A. State-of-art 9 

Cell aging is a complex mechanism. There are two main observable variations in a cell as it ages: a loss of capacity 10 

and a rise of its impedance. To evaluate those aging indicators, many methods have been documented in the literature. 11 

They are divided into three parts: electrochemical models[43], performance-based models [44], [45], and equivalent 12 



 15 

circuit-based models. Here, the objective is to obtain a representation of the battery’s aging behavior that has a good 1 

balance among accuracy, tuning simplicity, and simulation duration. Consequently, a semi-empirical model is designed 2 

(electric circuit-based). 3 

An equivalent circuit model representation encompasses an ideal voltage source, an internal resistance, and “n” 4 

parallel RC circuits, where n is the order of the model. All the aforementioned parameters are considered variant during 5 

the battery aging process [46]. 6 

Additionally, an electro-thermal model built on the equivalent circuit model methodology has been proposed [16], 7 

exploring the variation of the cell performance loss during cold weather operation. The purpose of this model is to 8 

develop a battery thermal management system for severe winter applications. The model uses a MATLAB/Simulink® 9 

interface, and it is based on the Thevenin model [47]. It has been validated on experimental data taken from an actual 10 

HEV Li-Ion battery (rated at 100Ah). Multiple discharging tests were executed at different low temperatures, namely, 11 

-20°C, -10°C, and 0°C. Parameters were identified using the experimental data, and the resulting model provided 12 

suitable voltage and temperature responses. 13 

Nonetheless, this model does not consider all the changes in the battery capacity and battery impedance caused by 14 

battery degradation occurring in cold climates. Therefore, this paper focuses on the development of a lifetime model 15 

from this simple model [16] to account for the variation of capacity loss rate and the resistance increment during cycle 16 

aging and storage at low temperature to pursue an optimal battery thermal strategy. 17 

B. General aging model 18 

In this study, two principal effects of battery aging are identified: capacity fade and resistance increment. Both differ 19 

on their consequences, thus having different chemical sources. 20 

1) The effect of capacity fading 21 

The chosen battery model [16] is an equivalent circuit model. As it is defined as simple, it is perfectly suitable for 22 

optimization because it can be easily integrated in a battery management system (BMS) [48]. This model represents, 23 

in a suitable way, the dynamic behavior of the battery, to which the effects of the temperature have been added. A 24 

representation of the simplified model is displayed in Fig. 8. The battery output voltage of the Li-ion cell is calculated 25 

due to the battery open circuit voltage (OCV), voltage drop resulting from the battery ohmic resistance (R0), and battery 26 

polarization impedance (R1C1 circuit). It is represented by the following formula [49]: 27 



 16 

 𝑉𝑐𝑒𝑙𝑙 = 𝑂𝐶𝑉 − 𝑅1𝐼1 − 𝑅0𝐼𝑏𝑎𝑡𝑡 1 

where I1 is the polarization current expressed as [46]:  2 

 𝑑𝐼1𝑑𝑡 = (𝐼𝑏𝑎𝑡𝑡−𝐼1)𝑅1𝐶1  3 

Below is a description of the role the open-circuit voltage (OCV). It represents the difference of the electrical 4 

potential between the two electrodes of the cell when the cell is in open-circuit connection. In [16] and [44], the authors 5 

have shown that this voltage is only strongly dependent upon the SOC and very little on the temperature: 6 

 𝑂𝐶𝑉 = 𝑓(𝑆𝑂𝐶) 7 

where SOC is the state-of-charge of the cell and is expressed as 8 

 𝑆𝑂𝐶 = 𝑆𝑂𝐶0 − ∫ 𝐼𝑏𝑎𝑡𝑡𝐶𝑖𝑛𝑖𝑡  𝑑𝑡 9 

where Cinit is the initial capacity measured of the cell in Ah and SOC0 is the initial state-of-charge of the cell. 10 

However, the internal impedance block composed of one RC circuit and an ohmic resistance, takes into account both 11 

the varying state of charge, and the rise of the cell temperature, which transforms (5) into the following: 12 

𝑉𝑐𝑒𝑙𝑙 = 𝑂𝐶𝑉(𝑆𝑂𝐶) −  𝑅1(𝑆𝑂𝐶, 𝑇)𝐼1 − 𝑅0(𝑆𝑂𝐶, 𝑇)𝐼𝑏𝑎𝑡𝑡 13 

As mentioned earlier, the effect of capacity fading must be considered in modeling the capacity thermal and electrical 14 

behaviors for a battery. The capacity fading is the translation of the loss of usable capacity of a battery due to storage 15 

time, temperature, and cycle number. The loss occurs when the battery is inoperative (calendar life losses [24]) or 16 

employed (cycle life losses [20]). 17 

Thus, the irreversible loss causing capacity fading leads to a capacity correction factor (CCF) to assess the remaining 18 

usable battery capacity. It is stated as: 19 

 𝐶𝐶𝐹 = 1 − 𝑘1(𝑇, 𝑁) − 𝑘2(𝑇, 𝑡) 20 

where, k1 is the aging factor caused by cycle life. It is a function of the cycle number (N) and the temperature (°C). k2 21 

is the aging factor caused by calendar aging. It is temperature- (°C) and time- (h) dependent. 22 

Then, the available capacity, Cav, of the battery is defined as a function of the CCF, which is expressed as: 23 

 𝐶𝑎𝑣 = 𝐶𝑖𝑛𝑖𝑡 × 𝐶𝐶𝐹 24 



 17 

And this transforms equation (8) into:  1 

 𝑆𝑂𝐶 = 𝑆𝑂𝐶0 − ∫ 𝐼𝑏𝑎𝑡𝑡𝐶𝑎𝑣  𝑑𝑡 2 

As a result, the model includes a factor that represents the capacity degradation of the battery obtained as a 3 

consequence of cycling, storage, and temperature tests.  4 

 5 

Fig. 8. Schematic of the Thevenin model 6 

2) The effect of resistance increment 7 

The internal impedance block consists of a series resistor composed of an ohmic resistance and one RC network. All 8 

are temperature- and SOC-dependent. However, the internal impedance also experiences an increment as a result of 9 

cycle and calendar aging. Thereby, the equivalent impedance is divided into three terms, as follows: 10 

 𝑍𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = 𝑍𝑒𝑞 . 𝑘3(𝑁, 𝑇). 𝑘4(𝑇, 𝑡) 11 

And in accordance with [50]:  12 

 𝑍𝑒𝑞 = 𝑅11+𝑠𝑅1𝐶1 + 𝑅0 13 

where k3 is the cycling factor accountable for the increment of the impedance, expressed as a function of the cycle 14 

number and the temperature (°C), and k4 is the calendar aging factor, which is time- and temperature-dependent. 15 

As discussed in Section II.E, the resistance increment is seen during the gradual cell temperature through both 16 

calendar and cycle aging. Therefore, the following estimation of the resistance increment is a continuation of the 17 

thermal model presented in [16]. The thermal model is centered on the next equations [50], and it is illustrated in Fig. 18 



 18 

9:  1 

 𝑑𝑈/𝑑𝑡 = 𝑄𝑔𝑒𝑛 (𝑡) − 𝑄𝑙𝑜𝑠𝑠 (𝑡) 2 

where U, the internal energy, is the total energy contained by a thermodynamic system, here the core, expressed in 3 

Joules. The following assumptions are made for the thermal model: 4 

1. Due to the moving liquid electrolyte inside the core, the temperature of the core, Tcore (the temperature of the inner 5 

cell), is assumed to be uniform. In this paper, uniformity of Tcore happened to be sufficient for thermal simulation. 6 

2. For uniformity of Tcore, a linear temperature gradient settles between Tcore and the temperature of the crust; Tcrust 7 

(the temperature of the surface of the cell) (see Fig. 9). 8 

3. For simplification, current distribution and heat generation in core are assumed to be uniform during the operation 9 

process. It is difficult to acquire the thermal conductivities of battery in x, y, and z directions, so this paper assumes 10 

that the heat conductivity inside the lithium core is uniform and invariant with the operating status. 11 

4. The thermal capacity of the crust of the cell is assumed as negligible against the thermal capacity of the core. 12 

5. In this paper, heat generation is characterized only by ohmic losses because of their simplicity to model, contrary 13 

to other losses where an electro-chemical usually simulates them [20]. Then, based on these assumptions: 14 

 𝑄𝑔𝑒𝑛 =  𝑅0. (𝐼𝑏𝑎𝑡𝑡)2 + 𝑅1. (𝐼1)2 = 𝑅𝑒𝑞 . (𝐼𝑏𝑎𝑡𝑡)2 15 

Qgen is the generating heating rate (W), or the rate of the heat generation occurring in the cell core.  16 

Finally,  17 

 𝑄𝑙𝑜𝑠𝑠 =  𝑄𝑐𝑜𝑛𝑑 =  𝑄𝑐𝑜𝑛𝑣 18 

with Qcond (W) as the conductive heat transfer and Qconv (W) the convective heat transfer. The conductive heat transfer 19 

between the core and the crust can be calculated as: 20 

 𝑄𝑐𝑜𝑛𝑑 = (𝑇𝑐𝑜−𝑇𝑐𝑟)𝑅𝑐  21 

where Tcore and Tcrust represent the temperature at the core and the crust of the cell, respectively. Rc is the thermal 22 

conductivity resistance associated with the conductive heat flux. The heat transfer from the crust to the surrounding is 23 

estimated and determined by: 24 

 𝑄𝑐𝑜𝑛𝑣 = ℎ𝑐𝑜𝑛𝑣𝑆𝑎𝑟𝑒𝑎(𝑇𝑐𝑟𝑢𝑠𝑡 − 𝑇𝑎𝑖𝑟) 25 



 19 

Hence, Qconv depends on the air flow temperature, Tair, the area of heat exchange, Sarea, and the convective heat 1 

transfer coefficient hconv. The physical parameters can be found in the literature or with an experimental exploration. In 2 

this paper, the first option is chosen, and Table III shows all the parameters needed to operate the model. 3 

 4 
 5 

As the internal impedance increases through aging, the increment estimated by (13) obtained from pulse discharge 6 

resistance (1) is directly counted into (16). 7 

As a consequence, the degradation model will now account for both capacity fade and resistance increment at the 8 

same time. But in order to obtain a reliable lifetime prediction of the cell under different cycling test, storage times and 9 

temperature conditions, a clear separation of these aging effects is needed. 10 

 11 

 12 

Fig. 9. Schematic of the battery thermal model. 13 

TABLE III 
BATTERY PHYSICAL PARAMETERS 

Symbol QUANTITY Value 

Cp Specific heat capacity 

(J.g-1°K-1). 
3.58[1] 

λ Thermal conductivity 

of air (W.m-1.°K-1) 
0.02620 at 20°C[50] 

hcond Conductive heat 
transfer coefficient 

(W.m-².°K-1) 

0.30 at 20°C[50] 

hconv Convective heat 
transfer coefficient 

(W.m-².°K-1) 

5 (natural convection)[50]
 

m Battery mass (kg),  
 

2.1 (manufacturer) 
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C. Calendar aging 1 

Calendar aging refers to a loss of capacity during storage time. The main variables for modeling are time and 2 

temperature; this paper considers a range of use of the battery around a point of the SOC and, therefore, neglects the 3 

SOC effect on aging [48]. 4 

1) Arrhenius’ law  5 

In general, it is a common practice to fit the calendar aging result with Arrhenius’ law [44], [51]. It appears that the 6 

aging rate has an Arrhenius-like kinetic. 7 

 𝑣 = 𝐴. 𝑒𝑥𝑝(−𝐸𝑎𝑅𝑇 ) 8 

where v is the aging rate, A is the pre-exponential factor, Ea (KJ/mol) is the activation barrier, R is the gas constant 9 

(J/mol/K), and T is the temperature of aging (K). 10 

This law is used in many studies that consider storage temperatures [46], [52], [53]. In [44], the authors exhibit in 11 

2003 that capacity fades during calendar aging follow an Arrhenius law. Also, in [52], the authors determine the 12 

activation barrier, Ea, of Li-ion cells for calendar aging with Arrhenius law. In [53], the impact of aging on the state-13 

of-energy is depicted and reproduced via the Arrhenius theory. 14 

However, the Arrhenius-like behavior used in these studies is only valid in certain temperature intervals that do not 15 

cover temperatures that EV/HEV might be exposed to during winter operations (-20°C to 0°C). At subzero temperature, 16 

the aging rate does not follow the Arrhenius law because of the presence of another mechanism: the lithium plating 17 

[39]. Therefore, for this model development, an alternative is sought instead. 18 

2) Mathematical modeling.  19 

In [54], Broussely et al. proposed a model that accounts for the capacity loss rate during accelerated calendar aging 20 

at high temperature. From this simple model, the corrosion rate was found to be time-dependent as t1/2. Since then, 21 

numerous studies have been following this linear law [51], [54]. [51], [55]. However, there is a lack of aging model at 22 

low temperatures; thereby, we first adapted this mathematical for cold weather applications. 23 

Nonetheless, this mathematical law simple model doesn’t fit well with the experimental results. Thereby, a regression 24 

with a 4th polynomial order is chosen. The fitting equation is then: 25 

 %𝑙𝑜𝑠𝑠(𝑇, 𝑡) = 𝑘2 = 𝑎. 𝑡 + 𝑏. 𝑡2 + 𝑐. 𝑡3 + 𝑑. 𝑡4 26 



 21 

with a = 0.2, b = -7.6e-4, c = 1.1e-6, and d = -1.8e-10. 1 

To verify the accuracy of the calendar aging model, an error calculation was performed for five points corresponding 2 

to five storage times. The error between the simulated value and the experimental data were calculated by: 3 

 𝜀𝑘2 = |𝐿𝑖𝑒𝑥𝑝− 𝐿𝑖𝑠𝑖𝑚|0.2𝐿𝑖𝑒𝑥𝑝  × 100 4 

where εk2 is the error on the parameter k2 (%), Liexp is the capacity loss experimental value due to calendar aging 5 

capacity (%) and Lisim is the capacity loss simulation value (Ah) at a given time. The error is actually the error based 6 

on the useful lifetime of the cell: 0-20% (a 0.2 coefficient a t the denominator). In addition, the maximum value was 7 

determined as follow: 8 

 𝜀𝑘2𝑚𝑎𝑥 = max (𝜀𝑘2) 9 

with εk2 is the maximum error of the data points (%).The results of the error calculation are displayed in table IV. 10 

The maximum value was 1.6% for a storage time of 16h. This error calculation shows that the original fitting at -20°C 11 

gives similar results to the simulation, thus proving the good performance of the calendar aging model. 12 

 13 

Fig. 10. Lithium loss vs storage time at -20°C for both experimental and simulation data with a polynomial fitting. 14 
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TABLE IV.  ERROR CALCULATION OF THE CALENDAR AGING MODEL 1 

Ttest 

(°C) 
Observation Storage time (h) Measured value Simulated value Error (%) 

-20°C 
Lithium Loss 

(%) 

15 1.3% 1.32% 1.6 

75 9.8% 10% 2 

200 14.7% 14.9% 1.4 

350 17.1% 16.9% 1.45 

415 20.3% 20.1% 1 

 2 

D. Cycle aging 3 

There are already some researches on the aging models of lithium-ion batteries cycle life [20], [45], [56]–[58]. Ploehn 4 

et al. [56] defined the loss of cyclable lithium proportional to the thickness of the SEI layer and the activation barrier. 5 

Additionally, Wang et al. [20] developed a complex capacity loss model considering the influence of the charge and 6 

discharge rate, depth of discharge, and working temperature modeled by the Arrhenius’ law (20). As also discussed in 7 

the previous subsection, this latter methodology is not valid for our application because the area of the law of Arrhenius 8 

validity does not include low temperatures (<0°C) [39]. 9 

Yet, other aging models presented in the literature [45], [56], [57] evoked a typical cycle number dependency model 10 

for cycle aging. They addressed the thickness of the SEI layer as linear or simple function to the cycle number. Thus, 11 

in this study, the model for cycle aging is developed according to their investigations. Therefore, the capacity loss 12 

during cycle aging can be expressed as: 13 

 𝑘1(𝑁) = %𝑙𝑜𝑠𝑠(𝑁) =  𝛽. 𝑁 14 

where β is the coefficient of proportionality, and N is the cycle number. 15 

Considering this equation (24) for each temperature of aging, Ttest, the degradation level obtained now follows 16 

dependence like the cycle number and temperature of aging. For a better graphic understanding, a two-dimensional 17 

graph was realized with MATLAB®’s curve-fitting tool, representing the capacity fade (i.e. k1) with a color graph as 18 

a function of cycle number and temperature. The 2Ds is presented in Fig. 11, where a sudden rise in lithium loss can 19 

be observed at low temperatures. Then, curve fitting was done using MATLAB’s curve-fitting tool. The type of fit 20 

employed was a custom equation:  21 

 𝑘1(𝑁) = 𝑎 + 𝑏. sin(𝑚. 𝑇. 𝑁. 𝛺) + 𝑐. 𝑒𝑥𝑝−(𝑤.𝑁)²22 



 23 

with a = 60.46, b= -3.6, c = -41.6, m = 0.19, and w = 0.089 as the fitting parameters, and N and T are the variables 1 

accounting for the cycle number and the temperature, respectively. It has to be underlined that the limits of the model 2 

(range of validity) are represented in the dark zone in Fig. 11 where the End-of-Life criterion is over 20%. 3 

 4 

Fig. 11. 2D plot of k1 as a function of cycle number and temperature, in case of aging produced by cycling. 5 

 6 

E. Resistance increment 7 

As already described in section II.D, the cell impedance was taken at each capacity measurement test during the 8 

discharging phase. The voltage dropped immediately after the current was applied. This pulse step in voltage helps in 9 

calculating the internal resistance at progressive aging states, based on equation (1). 10 

Similarly to cycle aging modeling, previous works [57], [58] reported that the resistance increment is a function of 11 

the storage time, temperature, and cycle number. They observed that the resistance of the cell appeared to grow linearly 12 

with the test cycle number and time1/2 with the test calendar life. Therefore, the resistance increment is defined by: 13 

 𝑍𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡(𝑇, √𝑡, 𝑁) =  𝑘3(𝑇, 𝑁) + 𝑘4(𝑇, √𝑡) 14 

In reality, this estimation is simple. The battery increment impedance block consists of only two parameters: k3 and 15 

k4. The values of the impedances obtained for each characterization test were utilized to obtain the impedance increment 16 

dependencies for both aging tests. They are represented in Figs. 12 and 13. Note that the data obtained from the cycle 17 

aging tests allowed us to employ a surface-fitting equation to estimate the parameter k3. A curve fitting was then also 18 

employed using MATLAB’s curve-fitting tool. The type of fit employed was custom equation:  19 
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 𝑘3(𝑁) = 𝑎 + 𝑏. sin(𝑚. 𝑇. 𝑁. 𝛺) + 𝑐. 𝑒𝑥𝑝−(𝑤.𝑁)²1 

with a = 1.5, b= -0.06, c = -0.498, m = 0.818, and w = 0.82 as the fitting parameters, and N and T are the variables 2 

accounting for the cycle number and the temperature, respectively. 3 

Finally, the most reasonable fit to the calendar parameter A was, thus, found to be a 3rd-order polynomial fit given 4 

by the expression: 5 

𝑘4(𝑇, √𝑡) =  6.10−5√𝑡3 − 2.10−4√𝑡2 − 9.10−4√𝑡 + 16 

Finally, for a better understanding, a schematic of the overall model is displayed in Fig. 14.  7 

 8 

Fig. 12. Tridimensional surface plot of k3 as a function of cycle number and temperature, in case of cell impedance increment produced by cycling. 9 

 10 

Fig. 13. Three-order polynomial curve of k4 as a function of storage time and temperature, in case of cell impedance variation produced by calendar life. 11 
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 1 
Fig. 14. Overall schematic of the model. 2 

IV. MODEL RESULTS AND DISCUSSIONS 3 

 4 

Once the methodology for predicting future battery lifetime was finalized, it was employed on new sets of battery 5 

aging data, and one single cell that has the same characteristics than the previous three battery cells was tested under 6 

one temperature of aging: 0°C. The results of this accelerated lifetime test and the simulation associated produced by 7 

the lifetime model are shown in this section. Tables V and VI summarizes all results for the experiment, the simulation 8 

and error calculation. Different errors were calculated: the error on capacities measurement, the error on the 9 

temperature assessment, the mean and maximum values. Given the data of aging tests and simulation values, the 10 

approximation error for the capacity fade for all cycle numbers (or storage times) is defined as: 11 

 𝜀𝑐𝑎𝑝𝑎 = |𝐶𝑒𝑥𝑝− 𝐶𝑠𝑖𝑚|0.2𝐶𝑒𝑥𝑝  × 100 12 

where εcapa is the capacities error (%), Cexp is the discharged capacity experimental value (Ah) and Csim is the 13 

discharged capacity simulation value (Ah) at a given cycle. The capacities error is actually the error based on the 14 

functional lifetime of the cell: 0-20%. Thereby, in the equation 29, a 0.2 coefficient is found at the denominator.  15 

Alternatively, the temperatures error was calculated by: 16 

 𝜀𝑡𝑒𝑚𝑝 = ∑ (|𝑇𝑒𝑥𝑝(𝑖)− 𝑇𝑠𝑖𝑚(𝑖)|𝑇𝑒𝑥𝑝(𝑖) )𝑁𝑁𝑖=1  × 100 17 



 26 

with i= 1,2,3…N the maximum number of points of a discharge curve, εtemp the temperatures error (%). Texp is the 1 

experimental temperature values of all data points (Ah) and Tsim is the simulation temperature values of all data points 2 

(Ah) for a discharging curve at a given cycle. Given the amount of data points, only the mean value of εtemp is listed. 3 

For each error, the maximum and mean values were determined as follow. As the names suggest, the mean value is 4 

an average of the capacities or temperature errors and the maximum is the maximum value found comparing all cycle 5 

numbers or storage times, the latter is underlined in red in each table. For example, for the capacities error; the mean 6 

and maximum values are defined by:  7 

 𝜀𝑚𝑎𝑥 = max (𝜀𝑐𝑎𝑝𝑎) 8 

 𝜀𝑚𝑒𝑎𝑛 = mean (𝜀𝑐𝑎𝑝𝑎) 9 

where εmax is the maximum value (%) and εmean is the mean value (%).  10 

A. Cycle aging results 11 

In this subsection, a new aging test was performed for validation of the aging model. The results of the simulation 12 

and of the experiments are presented here from two angles: the capacity fade and impedance rise. The cell was cycled 13 

at a temperature Ttest of 0°C to continue the investigation of the low temperature’s influence on battery aging. The 14 

experiment conducted followed the cycling protocol presented in Section II.B. 15 

1) Capacity fade results 16 

Fig. 16 shows the comparison of the capacity fade simulation (represented by the dashed lines) with the measured 17 

data for the cycle life test. Capacity fade (Fig. 15) increases rapidly at 0°C, and the end-of-life criterion of 80% of the 18 

original capacity under this condition is reached only after 111 cycles. This result indicates the presence of other 19 

mechanisms below 25°C, like lithium plating [24], [39]. At each charge cycle, the anode will be plated, and it will 20 

consume cyclable Li of both the electrolyte and anode resulting in a rise of the capacity fade [23], [37]. 21 

The measured cycling data replicated the simulation results quite well as shown in Fig. 15; the capacities errors 22 

values remain indeed below 5% with a maximal error of 4% found at 60 cycles. The data suggest that the cycling data 23 

followed a linear function with cycling number. As a result, the simple linear aging model for the cell capacity is able 24 

to make estimations of the battery lifetime. 25 

2) Resistance increment results 26 

Fig. 16 shows the simulation results for the resistance increment assessment by plotting the temperature, Tcore, 27 



 27 

evolution through cycle aging. The simulation data are represented in dashed lines in Fig. 16. Again, as the cell ages, 1 

the internal resistance increases. This result emphasizes an indication of the lithium plating mechanism below 0°C. 2 

The growth of the SEI is making a layer impermeable enough that Li+ ions cannot efficiently pass through the SEI; 3 

hence, cell impedance rises [38]. As it can be pointed out from the analysis of the results, the thermal model provides 4 

estimation with 8.8% of mean error with a maximal error found for 16 cycles. Such a high value would be alarming 5 

but the estimated temperature is only untrue by 1°C, which is acceptable in our application. As a consequence, the 6 

good model agreement of the thermal behavior with experimental results also underlines the validation of the model 7 

developed in this work. 8 

 9 

Fig. 15. Evolution of the capacity as the cell ages for cycle aging test at 0°C as well as the simulation results displayed in dashed lines. 10 

 11 

Fig. 16. Evolution of the temperature Tcore vs discharging capacity for cycle aging test at 0°C as well as the simulation results displayed in dashed lines. 12 

 13 

0 500 1000 1500 2000 2500

2,5

2,6

2,7

2,8

2,9

3,0

3,1

3,2

0 cycle

16 cycles
60 cycles

91 cyclesV
o
lt
a
g
e
 (

V
)

Time (s)

111 cycles

 Simulation

 Experimental



 28 

TABLE V.  OUTPUT DATA OF THE CYCLE LIFE TEST AT 0°C 1 

Ttest 

(°C) 

Capacity fade results 

Testing 
Initial capacity 

measured (Ah) 

Final capacity 

measured (Ah) 

Number of cycle (or time) before end-

of-life criterion (80% of the cell’s 
initial capacity) 

0 Cycling 80.1 63.6 111 cycles = 555 hours 

Ttest 

(°C) 

Resistance increment results 

Testing 
Number of 

cycle  

Measured resistance 

(mΩ) 

Tcore initial 

value (°C) 

Tcore maximal 

value (°C) 

0 Cycling 

0 2.01 -0.58 8.3 

111 cycles = 

555 hours 
3.41 -1.5 9.05 

 Error calculation 

Ttest 

(°C) 
Observation 

Number of 

cycle 
Measured value 

Simulated 

value 

Capacities error 

(%) 

0 

Discharged 

capacity (Ah) 

0 80.1 80.5 2.5 

16 78.3 77.6 4.5 

60 76.2 75.8 2.6 

91 68.1 68.9 3.7 

111 59.4 59.7 2.5 

Mean error (%) 3.2 

Tcore maximal 

value (°C) 

Number of 

cycle 
Temperatures error of all data points of the curve (%) 

0 9 

60 12 

91 8 

111 6 

Mean error (%) 8.8 

 2 

B. Calendar aging results 3 

In this subsection, the results of the calendar aging simulation are discussed, likewise, from two points of view: the 4 

capacity fade and resistance increment. All the experimental data for calendar lifetime test are already displayed in 5 

Table I and II, and the error calculation is summarized in Table V.  6 

1) Capacity fade results 7 

Fig. 17 presents the results of the capacity fade measurement and simulation (in dashed lines) for the calendar aging 8 
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test at -20°C. The estimated voltage profiles in Fig. 18 also agree closely with the experimental test. As the plot 1 

indicates, the voltage from the simulation matches the actual voltage very closely with a mean temperatures error 2 

estimated fewer than 8.8% and the maximum value found at 50 cycles. As a concluding remark, the simple 3 

mathematical model describing the calendar lifetime behavior is accurate. 4 

2) Resistance increment results 5 

The result from the temperature Tcore evolution during aging in Fig. 18 indicates that the temperature of aging is 6 

correlated with the change in cell’s impedance. A higher heat rejection is found at the end of life of the cell than at the 7 

first phase. In addition, despite the high temperatures error percentage (13%) and the mean error (8.5%), the estimated 8 

temperature (dashed line in Fig. 18) shows a pretty good trend with the experimental data. 9 

 10 

Fig. 17. Evolution of the capacity as the cell ages for calendar lifetime test at -20°C as well as the simulation results displayed in dashed lines. 11 

 12 

Fig. 18. Evolution of the temperature Tcore vs discharging capacity for calendar lifetime  at -20°C as well as the simulation results displayed in dashed lines. 13 
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TABLE VI.  ERROR CALCULATION OF THE CALENDAR LIFE TEST AT -20°C 1 

Ttest 

(°C) 
Observation Number of cycle Measured value Simulated value 

Capacities error 

(%) 

-20 

Discharged 

capacity (Ah) 

0 63.1 63.3 1.6 

50 57.1 57.6 4.4 

200 54.2 54.4 1.9 

415 50.3 50.5 1.9 

505 49.3 49.5 2 

Mean error (%) 2.3 

Tcore maximal 

value (°C) 

Number of cycle Mean temperatures error of all data points of the curve (%) 

0 13 

50 7 

415 8 

505 4 

Mean error (%) 8 

 2 
 3 

V. CONCLUSION 4 

In this paper, a lifetime analysis at low temperatures based on available experimental data was presented. Lithium-5 

ion cells were aged through severe aging protocols spanning cycle aging and calendar aging. The experimental results 6 

show that the capacity loss is strongly affected by low temperatures. For example, the end-of-life criterion was reached 7 

only until 12 cycles at -20°C and only 17 days of storage. In addition, a correlation between temperature of the cell and 8 

the internal resistance showed a noticeable progressive rise of the impedance as the cell aged especially at low 9 

temperatures. 10 

Known aging studies explained this rapid aging rate with the presence of new mechanism in cold weather: the lithium 11 

plating. As the results shown, the known degradation consequences of this mechanism are all accelerated: loss of 12 

cyclable lithium, loss of electrode active materials, and decrease of accessible surface area (equals an impedance rise). 13 

Alternatively, a lifetime model based on an existing electro-thermal model was developed to reproduce the 14 

temperature effect on capacity fade and resistance increment at low temperatures. Data collected during aging tests and 15 

simple equations for the aging parameters were used as basis in developing a mathematical aging model. 16 

To obtain reliable validation results, an accelerated cycle test was performed on the cell at 0°C. The data obtained 17 

were confronted with simulation results. The result interpretations again point towards a worsening operation of cell 18 
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below 0°C but also to good performance of the aging model. The same goes with the calendar aging model; the simple 1 

mathematical model is accurate, and the SEI growth represented by the variable k2 is well reproduced. 2 

Overall, a simple battery life model that accounts for cycle aging and calendar aging at low temperature and that 3 

achieves qualitative agreement with experimental data was established. 4 

As a consequence, the resulting aging model can be used to predict both cell’s electro-thermal behavior [16] and the 5 

remaining capacity at low temperature (from -20°C to 0°C). Future work could focus on developing a battery thermal 6 

management system for HEVs for winter applications considering aging mechanisms. 7 
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