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Summary 

As there is a growing interest in the electrifying transportation industry and 

renewable energy in the power system, the accurate battery model has seen 

increasing relevancy in these highly demanding industries. The battery model is 

used for the Battery Management System (BMS) to estimate the battery 

performance during operation (e.g. available power and remaining energy 

estimation) and for the system simulation study during the design stage (e.g. 

optimized battery size). To produce an accurate model, it is necessary to 

understand the battery behaviour under various possible operating conditions, 

more specifically in relation with the different temperature and the current rate 

values. As the battery performance degrades over repeated life cycles, the model 

should account for the age factor as well. 

In this research work, the Second Order Equivalent Circuit (SOEC) model is 

chosen over other equivalent circuit models because it offers accurate simulation 

result and fast computational time. To ensure good accuracy in SOEC model, it is 

important to extract the parameters accurately. Hence, model parameterization has 

been developed to fit the voltage response of specific test, in this case, the Hybrid 

Pulse Power Characterization (HPPC) test. Based on the model parameterization 

results, battery parameters are found to be dependent on the cycle age, 

temperature, and the current rate. As the battery ages, its model parameters 

gradually increase. Depending on its operating temperature, the model parameters 

have higher parameter values at high temperature than those at low temperature. 

For the current rate, the model has higher parameter values at a low rather than a 

high current rate. To ensure an accurate battery model, we need to incorporate 

these dependencies. 

In this work, we focus on the Lithium Iron Phosphate (LFP) battery over 

other chemistries of lithium-ion battery technology. This is on the basis that the 

LFP battery offers excellent thermal stability (inherent safety), longer cycle life 

and less expensive material than other commercially-available lithium-ion battery 

chemistries. However, LFP battery has high hysteresis in Open Circuit Voltage 
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(OCV). It complicates the relationship between State-of-Charge (SOC) and OCV 

as the OCV value is no longer solely dependent on SOC value, but also on its 

history. Hence, it is necessary to develop a model which is able to account for this 

phenomenon. In this work, Discrete Preisach model (DPM) is proposed to account 

for both the current SOC input and its history. Although simulation result shows 

less accuracy on the constant current and the pulse discharge tests, it shows 

improved accuracy in the dynamic test which is more relevant to specific 

applications (such as HEV or ESS in power system). 

Furthermore, both SOEC model and DPM are utilized in EKF based SOC 

estimation method. The SOC estimation method has shown good results in the 

performance and robustness evaluation. We have also investigated the impact of 

aging on the SOC estimation using aged battery cell test. We compared SOC 

estimation based on battery model without and with aging consideration. Slight 

improvement can be noticed in the battery model with aging consideration. 

Moreover, we also investigated the influence of hysteresis on SOC estimation 

accuracy. We compared SOC estimation to the battery model with and without 

hysteresis consideration. The result shows significant maximum error reduction 

after considering hysteresis in OCV. 
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Chapter 1  

Introduction 

1.1 Background and motivation 

Growing concern of green electricity has become a trend in recent decades. 

The interest can be seen in the commitment to increase the penetration of 

renewable energy in the power system. As the nature of renewable energy is an 

intermittent energy source, the electrical system needs Energy Storage System 

(ESS) to ensure its reliability. To reduce local emission especially in the big city, 

hybridization and electrification of the vehicle have been in the spotlight in recent 

years. In these aspects, ESS can provide a buffer, partial or primary energy source. 

Lithium-ion battery as one of the ESS technology has gained much attention 

recently. 

Since the first commercial appearance in the 1990s, the rechargeable 

lithium-ion battery has gained growing popularity in the portable electronics 

sector, telecommunication sector, stationary application in the electrical system, 

and automotive sector. This success is attributable to its superior energy density, 

power density, nominal voltage, and durability. 

As a complex electrochemistry system, battery performance depends on 

many internal and external factors in a nonlinear fashion. Consequently, this 

makes a prediction of the battery performance during operation challenging (e.g. 

remaining energy and maximum instantaneous power).  

In this work, an Equivalent Circuit Model (ECM) is presented. The 

equivalent circuit model serves as an accurate mimic of battery system without 

going into complex governing differential equations in the battery system.  
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1.2 Objective and contribution 

In this thesis, the main objective is to develop an ECM model with 

hysteresis in battery OCV for simulation and control purposes. The model should 

allow not only an accurate simulation but also a fast-computational requirement. 

As battery performance is affected significantly by its operating conditions such 

as temperature, current rate, and age; it is mandatory to include these 

dependencies in the model. Furthermore, the model and the Extended Kalman 

Filter (EKF) are used to estimate battery State-of-Charge (SOC). Failing to 

estimate SOC accurately could lead to underutilization or overutilization of the 

battery. Underutilization could result in the non-optimal use of battery system, 

whereas overutilization could lead to either a safety issue or battery aging 

acceleration. 

The contributions of this thesis are summarized as follows 

• Model parameterization is developed to extract parameters of SOEC 

model from battery voltage during charge/discharge in HPPC test. The 

influence of various factors such as current rate, temperature, and cycle 

age, on the parameters, are investigated and modelled to ensure a good 

accuracy of the model under wide operating condition.  

• Hysteresis model in OCV of LFP battery is developed based on Discrete 

Preisach Model (DPM). We also compare the performance of two 

different DPM categories. Then, it is implemented into OCV model in 

SOEC model. 

• The SOEC model and DPM model are utilized on the SOC estimation of 

LFP battery. The estimation is based on the well-known EKF method. The 

significance of accurate model parameters (especially on age-dependent 

battery parameter and hysteresis in OCV) are evaluated on the SOC 

estimation. 
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1.3 Organisation of this report 
Chapter 1 introduces the background and motivation for this research, the 

objectives and contributions, and the organization of the report. 

Chapter 2 presents an introduction to a lithium-ion battery, a review of 

battery modelling, and a review of SOC estimation. In the introduction, 

components of the battery cell, dynamics mechanism in the battery, factors 

affecting battery voltage, and hysteresis phenomenon are presented. In the review 

of battery modelling, it covers the state-of-the-art of battery models and different 

categories of battery models. Also, it reviews different existing hysteresis models 

in the battery. Finally, it reviews the state-of-the-art of SOC estimation and 

different categories of SOC estimation. 

Chapter 3 presents the SOEC model of LFP battery based on developed 

battery parameterization method. Various influencing factors on battery 

performance such as the current rate, temperature, and the cycling age are 

discussed and captured in the extracted battery parameters. The experimental 

setup and test procedure are elaborated. Finally, measurement results under 

different cycle age, current rate, and temperature are compared with the simulated 

voltage to validate the accuracy of the extracted parameters. 

Chapter 4 develops the hysteresis model of OCV in LFP battery based on 

DPM. Possible explanation for the origin of hysteresis in OCV and introduction 

on Preisach model are presented. Model parameterization process and the test 

procedure are also elaborated. Validation of simulation results based on the SOEC 

model (in Chapter 3) and DPM are presented. 

Chapter 5 evaluates the SOEC model with the extracted parameter 

(developed in Chapter 3) and DPM (developed in Chapter 4) on the SOC 

estimation. The SOC estimation is based on EKF method. A brief introduction of 

Kalman Filter (KF) and Extended Kalman Filter (EKF) in state estimation is 

presented. State-space representation for SOC estimation is also presented. The 

representation is based on the SOEC model and coulomb counting method. The 

results of SOC estimation are discussed and compared with the reference SOC. 

We also evaluate the accuracy of SOC estimation under the influence of aging and 

hysteresis. 
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Chapter 6 presents the conclusion and recommendations for the future work. 
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Chapter 2  

Literature Review 

 

2.1 Introduction 

Lithium-ion battery refers to rechargeable batteries which use lithium-ion to 

move reversibly from positive electrode to negative electrode during charging (or 

vice versa during discharging). Both electrodes are made of intercalation material 

which is able to accept and release the ion. Lithium-ion battery was firstly 

demonstrated by M.S. Whittingham back in 1976[1]. The battery was based on 

lithium alloy as an anode and titanium disulphide as a cathode. However, it was 

not a commercial success due to the high price of the raw materials and the safety 

issues related to highly reactive lithium alloy [2]. In 1980, Goodenough filed a 

patent on his discovery on lithium cobalt oxide (LiCoO2) [3] as one of 

intercalation cathode material. Few year later, in 1982, S. Basu filed a patent on 

his discovery on lithium intercalation in graphite material [4]. These two 

discoveries led to a successful commercialization of lithium-ion battery by Sony 

Corporation in 1991. The battery was based on carbon (C) as an anode and lithium 

cobalt oxide (LCO) as a cathode or in abbreviation, C/LiCoO2.  

Although lithium cobalt oxide battery has the good specific capacity, it has 

several drawbacks such as the high cost of Cobalt material and high toxicity to the 

environment. Those reasons lead to the development of lithium iron phosphate 

(LFP) C/LiFePO4 and lithium manganese oxide (LMO) C/LiMn2O4 batteries 

which have cheaper cathode material and are more environmental friendly despite 

having lower theoretical specific capacity than LCO. Those two cells were 

commercialized in the mid-1990s. In the late 1990s, lithium nickel cobalt 

aluminium oxide (NCA) C/ LiNiCoAlO2 was commercialized. The NCA has high 

specific capacity and energy density. However, it is very costly to produce, due to 

the expensive raw material of nickel and cobalt. In 2008, lithium nickel 
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manganese cobalt oxide (NMC) C/LiNi1/3Mn1/3Co1/3 battery is introduced to the 

market. It has a slightly lower specific capacity than C/ LiNiCoAlO2 but it is safer 

than C/ LiNiCoAlO2. Table 2-1 shows a summary of advantage and disadvantage 

of several cathodes material used in commercial lithium-ion battery. 

Currently, most of the commercial lithium-ion batteries are based on 

graphite as anode material. However, graphite has operating voltage outside the 

operating windows of the common electrolyte. As the result, the electrolyte 

decomposes at the anode surface and a passivating layer on anode surface will be 

formed during the first charge [5][6]. This layer is known as Solid Electrolyte 

Interface (SEI). SEI layer inhibits further reactions from happening. However, the 

formation of the layer consumes lithium-ion; hence this reduces the amount of 

cycle-able lithium. The effect of SEI formation can be observed in the form of a 

significant irreversible capacity loss after the first charge [6]. Recently, more 

researches have concentrated on finding different anode materials (besides 

carbonaceous material) for the battery. In 2008, a new anode material has been 

commercialized. The battery is based on lithium titanate oxide Li4Ti5O12 as anode 

and lithium manganese oxide as cathode LiMn2O4. It has a lower operating 

voltage and a lower specific capacity than LFP but it is very safe and has a very 

good cycling life. Besides LTO materials, researchers have deeply studied other 

types of material, e.g. lithium silicon alloy and lithium tin alloy. For the case of 

lithium alloy (as an anode), its fundamental issue lies on its structural instability. 

During charge-discharge, the volume change of silicon and tin material is too high, 

roughly 270% for silicon and 255% for tin [7]. Table 2-2 shows a summary of the 

advantage and disadvantage of several anode materials used in the lithium-ion 

battery. Detailed description of different lithium-ion battery technologies are 

presented in Appendix A. 

According to Frost & Sullivan [8], the market share of lithium-ion battery 

accounts for 37% of the global battery market and almost half of the secondary 

battery market in the year of 2009. It owes its popularity to its superiority in 

nominal voltage, capacity, cycle life, and self-discharge over the other batteries 

technology e.g. lead acid, nickel cadmium (NiCd), and nickel metal hydride 

(NiMH). 
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Table 2-1: Summary of properties of several cathode materials for lithium-ion batteries 
[2][7][9]  

Chemistry Specific capacity 

(Typical/ Theoretical) 

& 

Specific Energy 
Typical 

Advantages Disadvantages 

LMO 

(Lithium 

Manganese 
Oxide) 

100-120/148mAh/g 

& 410-492 Wh/kg 

Low cost, 

high operating voltage, 

moderate safety, and  

excellent high rate 

performance 

Life cycle  

LCO 
(Lithium 

Cobalt 
Oxide) 

140/274mAh/g 

& 546 Wh/kg 

High specific capacity, 

field operation, and 

moderate safety 

 

High cost 

LFP 

(Lithium 

Iron 
Phosphate) 

150-165/170mAh/g 

& 

518-587Wh/kg 

Low cost,  

excellent safety,  

excellent high rate 

performance, and  

excellent life cycle 

Low capacity 

and low 

operating 

voltage 

NMC 

(Lithium 

Nickel 
Manganese 

Cobalt 
Oxide) 

160-170/280mAh/g 

& 

610-650 Wh/kg 

High capacity,  

high operating voltage,  

good life cycle, and 

moderate safety 

 

High cost 

NCA 

(Lithium 

Nickel 
Cobalt 

Aluminium 
Oxide) 

180-200/279mAh/g 

& 

680-760 Wh/kg 

High capacity, 

high operating voltage,  

excellent high rate, 

good life cycle, and 

moderate safety 

High cost 
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Table 2-2: Summary of properties of several anode materials for lithium-ion batteries [2][9] 

Chemistry Theoretical 

Specific 

Capacity  

Advantages Disadvantages 

C 

(Graphite) 

370mAh/g Field tested operation Voltage operation 

outside electrolyte 

stability 

LTO 

(Lithium 

Titanate 

Oxide) 

170mAh/g Negligible volume 

expansion, 

excellent safety, and 

stable electrochemical 

operation 

Low specific capacity 

and 

high operating voltage 

LiSn 

(Lithium 

Tin Alloy) 

990mAh/g High Capacity and low cost Large volume changes 

LiSi 
(Lithium 

Silicon 

Alloy) 

2000mAh/g Very high capacity and low 

cost 

Large volume changes 

 

 

Figure 2-1: Different battery technology contribution to global battery market [8]. The SLI 
(Starter Battery) refers to the batteries (mostly based on lead acid technology) used in 

automotive industry for starting, lighting, and ignition.  

2.1.1 Components of battery cell 

Battery cell consists of cathode, anode, separator, electrolyte, and current 



 
Chapter 2: Literature Review 

9 
 

collector as shown in Figure 2-2. As described in the earlier section (about a 

different type of cathode and anode materials as well as their advantages and 

disadvantages), both cathode and anode materials play an important role in 

determining the battery’s overall performance. This includes its specific capacity, 

operating voltage, safety, cost of production and lifespan. As the name of the 

separator suggests, it functions to prevent the positive electrode and the negative 

electrode from making physical and electrical contact, while at the same time, 

ensuring its ionic conductivity. The separator is made of thin microporous 

polymer. The electrolyte is the medium for lithium-ion to move from one 

electrode to another electrode. It consists of organics solvent and lithium salts. 

Current collector connects the battery to the external circuit. In the anode, the 

current collector is made of copper, whereas in the cathode, it is made of 

aluminium. 

 

Figure 2-2: Battery cell based on cylindrical format [10] 

2.1.2 Dynamics mechanism in lithium-ion Battery 

During charging, the external charger will force the lithium atom in cathode 

material to de-intercalate. The de-intercalation will produce lithium-ion and 

electron. Lithium-ion diffuses through the electrolyte and the separator and finally 

intercalates into the anode, whereas, the electron will flow from cathode material 

to anode material via the external electrical wire. The electron will recombine 

with the lithium-ion in the anode. During discharging, the reverse process will 

occur. When lithium atom de-intercalates from the anode, the resulting lithium-ion 

diffuses to the cathode through electrolyte and separator, whereas, the resulting 

electron from de-intercalation of the anode will flow from cathode to anode 
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through an external circuit as depicted in Figure 2-3. The ion intercalates into 

cathode as the electron recombines with the ion at the cathode. Electric current 

flows from cathode to anode through an external circuit during discharge (it is 

opposite direction of electron flow). As the electric current flows from higher 

(cathode) to lower potential (anode), the electric current will supply energy to the 

external circuit. The reactions inside the battery [9] can be stated as following 
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1 2 2arg
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x
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x
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Li C C xLi xe

 


 

  

    

arg

1 2 6 6 2arg

Disch e

x x
Ch e

Li MO Li C C LiMO
   

 

 

 

Figure 2-3: Schematic diagram of lithium-ion battery (during discharge) [11] 

The transport mechanism of lithium-ion from the positive to negative 

electrode during charge or vice versa involves charge transfer kinetics and mass 

transport [12]. The charge transfer kinetics refers to the transfer of lithium-ion 

across electrode-electrolyte interface during the electrochemical process. During 

the de-intercalation process, lithium-ion move across the electrode-electrolyte 

Aluminium 
(Al) current 
collector 

Copper (Cu) 
current 
collector 
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interface, resulting in electron flowing via an external circuit. The lithium-ion 

transfer and flow of electron cause the potential of anode/cathode material to 

deviate from its equilibrium potential. This potential deviation is known as the 

charge transfer kinetics over-potential. The mass transport refers to the transport 

process from the bulk solution to the electrode. The mass transport can be further 

classified into two different processes, namely the diffusion and the migration 

process. In the diffusion process, the driving force is concentration gradient; it 

takes place in the electrolyte, within the electrode and through SEI layer on the 

surface of the anode. In the migration process, the driving force of lithium-ion 

movement is electric field gradient. The field is generated by the positive and 

negative electrodes. In term of the magnitude of influence, diffusion is more 

responsible for the transport than migration [12]. 

Another important effect occurred in the battery is the electrochemical 

double-layer capacitance effect [12]. The effect is due to the formation of space 

charge layer in the electrode-electrolyte interface as shown in Figure 2-4. As 

double-layer capacitance effect also occurs at the same place as charge transfer 

reaction, the ionic current (lithium-ion movement) has another alternative path. 

The current flowing through charge-transfer path participates in the 

electrochemical process. However, the current flowing through double-layer path 

does not participate in the process. As the name suggests, double-layer 

capacitance acts as a capacitor, whereas charge transfer reaction acts as a resistor. 

Both charge transfer reaction and double-layer effect result in low pass filter effect 

inside the battery. As the consequent, any alternative current at high frequency 

does not flow to charge transfer resistance. 
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Figure 2-4: Electrochemical double-layer at electrode-electrolyte interphase [13] 

2.1.3 Cell voltage and factors affecting it 

The voltage measured across battery terminal is a combination of 

equilibrium potential and polarization (over-potential). The equilibrium potential 

also known as open circuit voltage (OCV) is a potential difference between the 

positive electrode and the negative electrode during steady state condition (no 

current being flown in or out and in fully relaxed condition). Polarization is a 

potential drop/rise associated with the kinetics and mass transport due to the 

current flowing through an external circuit. This polarization causes the measured 

terminal voltage of a battery to deviate from OCV. 

The typical discharge voltage curve as a function of the amount of extracted 

charge from the battery, also known as SOC, is shown in Figure 2-5. The 

discharged voltage curve originates from the OCV (stable voltage before 

discharging). As the charge (lithium-ion) of the battery is being extracted, the 

actual voltage is being influenced by different polarization and followed the 

behaviour as shown in Figure 2-5. The various types of polarization inside the 

battery are namely ohmic polarization, activation polarization, and concentration 

polarization[12] [14]. 
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Figure 2-5: Typical battery discharge curve and the influence of various types of polarization 
[14] 

Ohmic polarization is related to the electrolyte, electrode and the contact 

resistance (e.g. current collectors). It increases proportionally with the current 

density; hence it can be modelled with ohm’s law. Activation polarization is 

related to reaction associated with charge-transfer (electrochemical reaction – 

reduction and oxidation reaction) in the electrode/electrolyte interface of anode 

and cathode. This type polarization is dependent on the active material or 

electrode characteristics [15]. The activation polarization is associated with the 

electrochemistry kinetics (charge-transfer) at the electrolyte-electrode interface. 

The polarization can be described by the Butler-Volmer equation. Concentration 

polarization is related to a mass transport process, in this case mainly through the 

diffusion process of lithium-ion. Near the end of the discharge (low SOC region), 

concentration polarization increases significantly due to the limitation of mass 

transport of lithium-ion. 

Besides SOC level, battery voltage curve is affected by its current density, 

age, ambient temperature, and chemistry of the battery (cathode and anode 

material). Current density has a positive correlation with the battery polarization, 

e.g. higher current density leads to higher polarization, whereas lower current 

density leads to low polarization. Depending on whether the battery is charged or 

discharged, higher current density leads to higher battery voltage during charge or 

lower battery voltage during discharge as shown in Figure 2-6. Like the influence 

of current density on battery voltage, age also has a positive correlation with the 

battery polarization. Aged cell has higher ohmic polarization, activation 

polarization and concentration polarization. As the battery is being used (cycled), 
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the internal impedance is increasing as well. The increase is mainly contributed to 

an increase of Solid Electrolyte Interface (SEI) resistance [16][17]. The SEI layer 

is essential for maintaining the stability of lithium-ion battery using carbon as 

anode [2][5][6][15]. However, it inhibits movement of lithium-ion, and it also 

consumes lithium-ion as it grows. These lead to higher polarization and capacity 

fade. Hence the discharge voltage curve and discharge time decrease as the battery 

ages, as shown in Figure 2-7. Unlike current density and age, ambient temperature 

has a negative correlation with battery polarization. At high temperature, battery 

voltage increases along with the battery capacity, owing to an increased chemical 

reaction and a decrease in polarization, whereas at low temperature, the chemical 

reaction is significantly reduced hence this leads to sharp declines in voltage and 

discharge capacity as shown in Figure 2-8. Depending on the battery’s chemistry 

of cathode and anode material, it has different voltage characteristics and 

operating voltage as shown in Figure 2-9. 
 

 

Figure 2-6: Influence of discharge current density on the voltage curve [18] 
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Figure 2-7: Influence of cycle number on the discharge voltage curve with constant 2 A (1C) 
rate [19] 

 

 

Figure 2-8: Influence of ambient temperature on the voltage curve [18] 
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Figure 2-9: Operating voltage of a various chemistries of lithium-ion batteries [20] 

2.1.4 Hysteresis phenomenon 

During the charge-discharge process of a battery, the charge voltage always 

has higher potential than the discharge voltage at any given SOC value. The 

reason is not only due to the overpotential during charge-discharge, but also due to 

OCV having higher potential during charge than during discharge at any given 

SOC. The phenomenon has also been reported in [21]–[23]. It is known as 

hysteresis in OCV. Hysteresis is dependent on the type of battery anode and 

cathode material. A comparison study on hysteresis in NMC, LFP, and LTO 

conducted by [24] found out that LFP has the highest value of maximum 

hysteresis, and LTO has the lowest value of maximum hysteresis among the 

different battery chemistries. NiMH battery is also known to have a large 

hysteresis in OCV. In 1.5 V nominal voltage of NiMH, it has around 150mV 

maximum hysteresis [25], whereas in 3.3V nominal voltage of LFP, the maximum 

hysteresis is around 37mV. 

2.2 Battery modelling 

To utilize the knowledge on battery discussed in the previous sections, 
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modelling the battery is necessary to acquire the useful information and to 

incorporate this information into any application. Battery model can be found in 

the design of battery cell, the design of system/system simulation, and the energy 

management system (EMS) and the battery management system (BMS) during its 

operation. In cell design, battery model is used to optimize the cell design 

parameters such as the amount of active material, porosity, thickness separator, the 

location of tab cell, and the dimension of the cell. In the design of the system, 

battery model can simulate the behaviour of Battery Energy Storage System 

(BESS) that can help us to understand the performance and reliability of BESS, or 

to find optimal size of BESS under different condition. During its operation, 

battery model can be used in the energy management system to indicate the run 

time of the battery, maximum discharge power, and the optimal use of the battery. 

In general, battery models can be classified into three broad categories, 

namely electrochemical-based models, mathematical models, and equivalent 

circuit-based models. Each category of the model serves different purposes and 

applications. 

2.2.1 Electrochemical-based model 

Electrochemical-based model is based on the physical laws of 

electrochemistry, which are in the form of differential equations. The law governs 

internal processes inside the battery such as diffusion process in solid and liquid 

solution, charge transfer reaction, among many others. Hence, the 

electrochemical-based model is able to provide insight of a spatial charge, current 

density, and temperature distribution which are essential parameters in design 

optimization of the battery. The electrochemical-based model is divided into 

several domains which correspond to different physical components of the battery 

cell, such as electrodes, separator, electrolyte, and the current collector. Each 

domain has distinctive transport (kinetics and diffusion) and electrical properties. 

Thus, it has different governing dynamic mechanisms and boundary condition as 

illustrated in Figure 2-10. 

Electrochemical-based model has been used to study the effect of 

electrode’s thickness on utilization of the active material [26], heat generation 
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related to electrochemistry processes during charge and discharge operation [27], 

charge redistribution phenomenon in electrode during battery relaxation [28]. It is 

also used to predict cycle life performance of battery [29], [30], and to simulate 

short circuit model during nail penetration test for safety improvement study [31]. 

In recent years, the electrochemical-based model has been widely used as an 

integrated part of the multi-physics model. Multi-physics model greatly facilitates 

users to study the battery behaviour and to attain better performance, reliable and 

safe battery as it allows the computation of complex coupled electrochemical-, 

thermal-, and electrical- model. Multi-physics model is developed using the 

Multi-physics analysis software such as Ansys and Comsol. Multi-physics model 

is useful to understand and analyse the issue of spatial temperature and charge 

inhomogeneity, especially in a large format cell. The study and analysis are 

helpful in generating tab design as studied by [32] on pouch cell design. They 

found out that nominal design tab in Figure 2-11(a) shows more degree of 

inhomogeneous in the cell than crossed tab as illustrated in Figure 2-11(b) and 

also a larger area of cell means a higher degree of inhomogeneous in the cell. In 

[33], the multi-physics model has been used to study the electrical and thermal 

distribution of series stacked cell to produce a better design cooling system. 

 

Figure 2-10: Illustration of electrochemical-based model [34] 
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Figure 2-11: Illustration of tab location design on pouch cell [32] 

2.2.2 Mathematical model 

A mathematical model utilizes mathematical functions or method to 

describe certain aspect in battery e.g. battery voltage terminal and battery capacity. 

As the model is built based on data experiment (empirical data), its accuracy relies 

on quality and quantity of data. The model complexity is varied from simple 

mathematical function to complex artificial intelligence. Simple mathematical 

function describes the relationship between the known or measurable parameter 

and parameter of interest, for example, Peukert formula, shepherd model and 

capacity estimation model. In [35], [36], they describe Peukert factor which 

relates current density and the discharge capacity. Shepherd model relates 

extracted amount of charge and battery voltage [37][38]. In [39], it introduced a 

different type of capacity estimation models such as linear model, discharge rate 

dependent model, and relaxation model. Linear model assumes the amount of 

discharge capacity is constant regardless of current rates, whereas discharge rate 

dependent model considers the effect of current rates on discharge capacity. 

Relaxation model considered recovered capacity during relaxation process in 

addition to the effect of discharge rate. More complex methods are based on 

artificial neural network (ANN)[40], [41] and Markov model [42]. The ANN 

predicted available discharge capacity based on discharge current and temperature. 

Markov model is used to capture battery behaviour as a state in Markov chain to 

predict recovered capacity during relaxation [42]. 
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2.2.3 Equivalent Circuit Model (ECM) 

Equivalent circuit model (ECM) is an empirical model based on electrical 

components, such as resistor, capacitor, inductor and voltage dependent source. 

Despite of its empirical nature, it is widely used in the electrical engineering and 

system level, as it provides accurate prediction and fast calculation. There are a 

number of existing structure of equivalent circuit-based model as shown in Figure 

2-12, namely (a) Rint model [43], [44]; (b) RC model [43]–[45]; (c) Thevenin 

model or first order-based model [46]–[48] (d) PNGV model [44]; and (e) dual 

polarization model or the Second-Order Equivalent Circuit (SOEC) model [49]–

[55]. Rint model consists of voltage-dependent source and series resistor. RC 

model consists of the RC network components without voltage-dependent source. 

Thevenin model consists of a voltage-dependent source, series resistor, and one 

RC network. PNGV model consists of a voltage-dependent source, series resistor, 

series capacitor, and one RC network. SOEC model consists of a 

voltage-dependant source, series resistor, and two RC networks. As battery 

voltage is dependent on many factors e.g. SOC, temperature, current rate, and age, 

equivalent circuit model is implemented with SOC dependent [43], [44], [46], 

[47], [50], [53]–[56], current rate dependent [49], [55], [56], temperature 

dependent [43], [49], [52], [54], current direction dependent [51], [54], [55], and 

cycling dependent [50] parameter. Based on the performance evaluation from [57], 

the second order equivalent circuit model gives a prediction of simulated voltage 

with the smallest error among all other models. 

 

  
(a) (b) 
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(c) (d) 

 
(e) 

Figure 2-12: Various equivalent circuit-based (electrical) battery models : (a) Rint model, (b) 
RC model, (c) Thevenin or First order-based model, (d) PNGV, and (e) Dual Polarization or 

Second order equivalent circuit model [57] 

 

2.3 Hysteresis modelling 

Hysteresis phenomenon in the battery has been long-recognized. However, 

in a battery model, it was not given much attention until recently, where there is a 

growing interest in modelling hysteresis to improve the accuracy of the model and 

SOC estimation. 

In [58], Windarko and Choi modelled minor and major hysteresis in the 

OCV of NiMH battery by using the improved Takacs Model. The improved 

Takacs model is a combination of a hyperbolic tangent function and a polynomial 

function. The model relates OCV (as the input) and SOC (as the output) which 

exhibit hysteresis phenomenon. In the later publication [59], the same authors 

have shown that the model was able to take into account the effect of temperature 

on hysteresis OCV-SOC curve in NiMH battery. 

Gregory Plett proposed to use hysteresis state to model the hysteresis 

phenomenon [60]. The state is incorporated to account for voltage hysteresis. It is 

a function of the SOC and time. Furthermore, the difference between major 

hysteresis curve and voltage hysteresis is proportional to the hysteresis rate of 

change during its transition. 
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Roscher et al. studied the open circuit voltage characteristics of lithium iron 

phosphate (LFP) [61]. The authors categorized OCV dynamic according to the 

contribution of the relaxation and the hysteresis effect. The author proposes OCV 

modelling based on a combination of these two effects to estimate SOC. For 

OCV’s relaxation model, it is calculated as a weighted combination of both OCV 

after 3-hour rest and OCV after 1-minute rest. For the hysteresis modelling, OCV 

hysteresis is calculated as a combination of weighted OCV charge and discharge. 

X Tang et al. have implemented a discrete Preisach model for the NiMH 

battery hysteresis model [62]. The authors estimated SOC with OCV as an input 

for the model. 

In [63], the magnitude of hysteresis in OCV is calculated as a multiplication 

of the hysteresis factor and the magnitude of hysteresis in major OCV. Hysteresis 

factor is calculated as the ratio between Ampere-hour (Ah) discharge (or charge) 

during the transition period and the maximum Ah at any particular SOC. 

2.4 State-of-charge estimation 

In BESS, estimation of the state-of-charge (SOC) is very crucial in judging 

its useable capacity and available power. With accurate estimation, this will 

prevent unnecessary underestimation and overestimation of available energy in 

the system. In general, there are several categories of SOC estimation methods, 

namely coulomb counting, direct measurement, and model-based estimation 

method. 

2.4.1 Coulomb counting method 

The coulomb counting method is the simplest and easiest way to implement 

the SOC estimation. It integrates the charges going into or away from the battery. 

The drawback of this method lies in its open loop nature; which does not produce 

any corrective feedback on the method. Without the corrective feedback, the 

measurement error and modelling error will keep accumulating and eventually, 

leading to a large error. To prevent the accumulated error, the method requires a 

frequent reset/adjustment. Typically, the reset is done at both the battery cut-off 
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voltage (SOC estimation is adjusted to be 0%) and the fully charged condition 

(SOC estimation is adjusted to be 100%). In some applications that require an 

extended period of operation, a frequent reset is not practical to be implemented. 

Furthermore, it also requires an accurate initial SOC value and an accurate current 

sensor to perform good estimation. In applications which demand a high level of 

reliability, the use of coulomb counting method alone is not recommended. 

2.4.2 Direct measurement method 

In the direct measurement method, the relationship between SOC and 

measured parameters such as OCV and the internal resistance value are exploited 

for the SOC estimation. The relationship maps the measured parameter (in this 

case, either OCV or internal resistance) into the SOC value. OCV measurement 

provides robust indication on SOC as it does not vary significantly with the 

current rate and temperature, unlike the battery voltage. However, it requires the 

battery to be in a rest condition. This drawback inhibits the independent use of 

OCV measurement to estimate SOC in real-life application. Typically, SOC 

estimation based on OCV measurement is used together with the coulomb 

counting method. During operation period, coulomb counting method estimates 

the SOC. However, during the rest period, OCV measurement provides the SOC 

estimation. The estimated SOC obtained from OCV measurement is then used to 

reset SOC estimation from coulomb counting method. 

Similar with OCV measurement, internal impedance has been used to 

estimate SOC as reported in [64]–[66]. In [64], [66], internal impedance 

parameters obtained from electrochemical impedance spectroscopy were used to 

estimate the SOC value. In [65], the internal resistance provided the initial SOC 

estimation for coulomb counting method. 

2.4.3 Model-based method 

The model-based method uses measured signals (e.g. voltage, current, and 

or temperature), and battery model to estimate SOC. In general, it can be further 

divided into two methods, namely, non-adaptive and adaptive method. The 
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difference lies on whether the method has feedback control system or not. 

The non-adaptive method does not have the capability to do a correction 

towards the SOC. [67]–[70] discuss methods to predict OCV given the measured 

relaxed voltage (for a short period right after the current interruption). In [67], 

[68], the OCV prediction model is based on a second-order equivalent model. In 

[69], Pop et al. proposed a voltage-relaxation model that can be used to predict 

OCV. In [70], Waag et al. described an OCV relaxation process by using ZARC 

element in equivalent circuit model, where ZARC element is approximated as five 

RC networks. The predicted OCV can be used to estimate the SOC of the battery. 

The adaptive method uses a closed-loop control system to do a correction on 

the estimated SOC. Kalman filter, neural network, recursive least square, observer, 

and machine learning are some of the techniques used. Kalman filter was 

proposed by R.E. Kalman in 1960 to provide a solution to state estimation on the 

linear dynamical system. Some advancement in Kalman filters such as Extended 

Kalman Filter, Unscented Kalman Filter, and Adaptive Kalman Filter, were made 

to solve problems in the non-linear dynamical system. In SOC estimation, KF 

[71]–[74], EKF [74]–[87], AEKF [88]–[90], and UKF [76], [91] have been used 

along with different battery model. Observer techniques in control theory such as 

sliding mode [74], [92] and Luenberger [93] have also been applied to the 

estimation. Recursive least square [94]–[96] which estimate battery parameters 

including OCV, can also be used to estimate SOC. Particle filter has been applied 

to estimate battery’s SOC [97], [98]. Artificial neural network (ANN) [99], [100] 

is used to predict SOC based on the recent history of battery voltage and current 

as well as the ambient temperature. Dual estimation has been applied to a joint 

estimation of both SOC and capacity [75], [82]; and both SOC and impedance 

[101]. 

2.5 Summary 

In this chapter, we have presented brief introduction of the lithium-ion 

battery technology and literature review on the battery model and the SOC 

estimation methods. Since the first commercialization of lithium-ion battery, 

developing and understanding how different cathode and anode materials react 
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toward higher operating voltage, higher nominal capacity, cheaper cost of material, 

and high thermal stability have been a key interest. We have highlighted the 

development of lithium-ion battery technology and summarized the strengths and 

weaknesses of different chemistry of the commercial batteries. Furthermore, 

dynamics mechanism and factors affecting battery performance were presented. 

These knowledge are crucial in determining the battery model. 

There is a broad range of applications that utilizes battery model, ranging 

from battery designs to battery control strategies in BMS. Hence, we presented 

various categories of battery model to achieve various modelling objectives. In 

general, there are three categories of battery model, namely electrochemical-based 

model, mathematical model, and equivalent circuit model. Electrochemical-based 

model is used in battery design process to optimize the battery design parameters. 

Mathematical model and equivalent circuit model are less complex than the 

electrochemical-based model. Hence, they are suitable for system simulation 

study and the implementation of control strategies in BMS. 

Battery performance is dependent on multiple factors, such as SOC, 

temperature, current rate, current direction and cycle age. In the reviews, most of 

the model accounts for SOC, temperature, current rate, and current direction 

dependent. Few of the models actually account for cycle age dependent. Moreover, 

in real operation, the battery could be affected by multiple factors. Hence, it is 

necessary to accounts for the multiple factors interaction as well. The review of 

hysteresis modelling in the battery is also presented. Academic works on the 

hysteresis model in battery are still relatively few, and there is no preferred model 

yet at the moment.  

Lastly, we have reviewed different categories of SOC estimation. SOC 

estimation is crucial for BMS to predict the remaining running time of battery 

during operation, to prevent overestimation or underestimation of the use of the 

battery. SOC estimation based on model-based method has been widely 

researched as it has many advantages, such as robust against measurement error, 

modelling error, and wrong initialization, against other methods categories such as 

coulomb counting and direct measurement. In the model-based method, KF 

family has been widely used as SOC estimation method. However, up to now, 
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there are only a few publications on SOC estimation that considers the effect on 

cycle age and hysteresis in OCV. 
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Chapter 3              

Battery Modelling 

3.1  Introduction 

An accurate battery model is essential to do simulation study and control 

strategy for any engineering applications using BESS. Besides the accuracy of the 

model, computational resources and time to simulate the model are essential 

factors to be considered in the selection of model categories. In Chapter 2.2, three 

different categories of battery model have been presented. Each category has its 

advantages and disadvantages over the other categories. The 

electrochemical-based model achieves very accurate simulated results, but it 

suffers from heavy computational resource and long computing time. The model 

is not suitable for application in real-time or system level simulation, but rather it 

is useful for battery design purposes. Equivalent circuit-based model and 

mathematical model require much less computational resource and time than the 

electrochemical-based model. However, in term of model’s accuracy, they are not 

as accurate as the electrochemical-based model. Both the equivalent circuit-based 

model and the mathematical models can be implemented into simulation study, 

real-time control strategy and monitoring in BMS. In this work, we focus on the 

equivalent circuit model as it is widely used as battery model. 

In this chapter, the SOEC model is presented and discussed. 

Parameterization method of the model are developed and discussed. The 

parameterization is conducted on specific test procedure. Experimental setup and 

test procedure during battery testing are also presented. As battery performance is 

affected by multiple factors, the influence of current rate, temperature, and age 

dependent on parameters and battery capacity are also discussed. Finally, it 

provides a practical example of multiple battery cells’ model (pack’s model) 
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simulation. 

3.2 Second-Order Equivalent Circuit (SOEC) 

Model 

In Chapter 2.2.3, a different type of equivalent circuit model has been 

reviewed and briefly described. SOEC has been widely studied and used as 

battery model in simulation and estimation problem due to its good balance of 

accuracy and complexity [54], [57]. Hence, SOEC is chosen to be a base structure 

in the model as shown in Figure 3-1. 

 

Figure 3-1: Battery model based on SOEC model. 

In our study, SOEC model is used to simulate battery voltage based on the 

given battery input current and battery parameters. All parameters, such as OCV, 

Ri, R1, R2, C1, and C2, are SOC, current rate, current direction, ambient 

temperature, and age dependence. These dependencies allow the model to 

simulate battery behaviour under different operating conditions accurately. The 

simulated voltage and SOC calculation based on coulomb counting can be written 

mathematically as the following: 

 
t t t t

- - - -
T1 T1 T2 T2Vs(t)=OCV(t)+ I(t).Ri+ U1.e + I(t).R1(1-e )+ U2.e + I(t).R2(1-e )   (1) 

 

0

t

t

I(t)
SOC(t) =SOC(t0)- dt

Cap ,  (2) 

where Vs(t) is simulated terminal voltage at time t; OCV(t) is OCV at time t; I(t) 

is applied current rate at time t;Ri is ohmic resistance; U1 and U2 are initial 
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voltage of R1-C1 network and R2-C2 network, respectively; R1, C1, R2, and C2 

are RC networks parameters; T1 and T2 are time constant corresponding to RC 

network (Tk = Rk.Ck); SOC(t) is calculated SOC at time t; SOC(t0) is initial SOC; 

and Cap is capacity. Depending on whether the battery is charged or discharged, 

the Cap will take the corresponding capacity value. Charge capacity always has a 

higher value than discharge capacity. 

3.3 Experimental description 

3.3.1 Experimental setup 

The experiment setup consisted of A123 APR18650m1A cylindrical battery 

cells (LFP chemistry), Basytec Cell Test System (CTS), Memmert thermal 

chamber, and Kelvin probe cell holder. The test equipment is shown in Figure 3-2. 

The setup is illustrated in Figure 3-3. The battery under test has a nominal voltage 

of 3.3V and capacity of 1.1Ah. The datasheet can be found in Appendix B. 

Basytec CTS are equipped with four independent channels. Each channel is able 

to discharge/charge a cell at a maximum current of 5A and voltage range from 0 to 

5V. For voltage measurement, it has a resolution of 0.25mV and accuracy of 

0.05%. For current measurement and control, it has a resolution of 0.005% of 

controlled current magnitude (e.g. for 1A charge/discharge current, the resolution 

is 0.05mA) and accuracy of 0.05%. The battery tester comes with the software 

which is able to programme and execute the test procedure, control the tester, and 

logs the data into the computer as shown in Figure 3-4 and Figure 3-5. It also 

provides safety functionality against possible abuse on the battery, by setting 

termination point at the maximum and minimum value of allowable voltage and 

current to be applied to the battery. For testing which required controlled 

environment (e.g. temperature), the test was done inside the thermal chamber 

which was able to provide constant temperature from -42 degree Celsius to 190 

degrees Celsius as well as temperature ramping up/down. The battery holder was 

used to hold the position of battery firmly and make a connection to the battery 

tester. The connection from the battery to the tester was established using the 



 
Chapter 3: Battery Modelling 

30 
 

four-terminal sensing technique (Kelvin sensing technique). The technique 

utilized a separate pair of current-carrying wire (Out-line) and voltage-sensing 

wire (Sense-line) to have accurate voltage measurement as illustrated in Figure 

3-6. 

 

 
 

(a) 

(b) 

(c) 
Figure 3-2: Test equipments: (a) Memmert thermal chamber, (b) Basytec CTS, and (c) Cell 

holder 
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Figure 3-3: Illustration of battery test system 

 

 

Figure 3-4: Test procedure in Basytec Battery Test Software (BTS) 
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Figure 3-5: Data logging in Basytec BTS 
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Figure 3-6: Illustration of 4-wire connection on battery cell 

 

3.3.2 Test procedure 

3.3.2.1 HPPC test procedure 

HPPC stands for the Hybrid Pulse Power Characterization (HPPC) 
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technique. The HPPC technique is described in FreedomCAR Battery Test 

Manual [102]; it is used to evaluate battery performance (e.g. resistance 

discharge/charge, available energy, pulse power capability). Also, the test 

procedure is widely used in battery parameterization. The detailed flow chart of 

the test procedure is shown in Figure 3-7. From fully-charged battery (SOC 

100%), it is discharged partially to SOC 90% with 1C rate. It rested for 1 hour to 

get stable OCV value at the corresponding SOC level, before being followed by a 

hybrid pulse test. The hybrid pulse test consisted of discharge pulse and charge 

pulse of 5A for 10 seconds. Ten minutes rest was inserted in between discharge 

and charge pulse. The hybrid pulse test is then repeated at various SOC level with 

10% SOC decrement until the SOC reached 0% level. From fully-discharged state, 

the battery was subjected to the hybrid pulse test (charge pulse and discharge 

pulse of 5A for 10 seconds with 10-minutes rest in between), then it rested for 1 

hour to get stable OCV. After 1-hour rest, it is charged partially to 10% SOC with 

1C rate. Hybrid pulse test was repeated at various SOC level with 10% SOC 

increment until the SOC reached 100%. The procedure can be modified for the 

use of different current rate (e.g. 0.25C, 0.5C, or 2C) and different percentage 

SOC increment or decrement (e.g. 2% or 5%). 

Before HPPC test was conducted, it was necessary to have the battery’s 

preconditioning test. In the preconditioning test, the battery was first completely 

discharged to 0% SOC. A 1-hour rest then followed. The fully-discharged state or 

0% SOC is defined by battery cut-off voltage (in this case, 2V for LFP battery). 

After the rest, it was charged to 100% SOC by following Constant-Current 

Constant-Voltage (CCCV) protocol. A CCCV protocol is a standard charge 

protocol consisting of two regimes, Constant-Current (CC) and Constant-Voltage 

(CV) regime. In CC regime, the battery is charged by a constant current until the 

battery voltage reach maximum charge voltage (3.6V for LFP battery). 

Subsequently, the battery enters in CV regime. In CV regime, the battery voltage 

is kept at the maximum charge voltage while the current is decreasing until it hits 

C/20 rate. After the CV regime ends, the battery enters a fully-charged state. The 

fully-charged battery is discharged at C/5 rate to 0% SOC. Lastly, the battery is 

charged to 100% SOC at 1.5A current (standard charge rate recommended by the 
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manufacturer for A123 APR18650m1A). 

Figure 3-8 shows the current and voltage profile of HPPC procedure in our 

experiments. The Figure 3-9 shows the zoom-in version of the red dashed 

rectangle in Figure 3-8. 

 

Figure 3-7: Flowchart of HPPC test procedure 
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Figure 3-8: Measured voltage and current vs. time in HPPC test procedure 
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Figure 3-9: A zoom-in version of the red dashed rectangle in Figure 3-10. The voltage and 
current profiles consist of hybrid pulse, discharge 10% SOC, and relaxation part 

3.3.2.2 Test plan matrix 

Test plan matrix was devised to study different affecting factors on battery 

e.g. temperature effect, current rate effect, and age effect. Table 3-1 is a tested 

matrix to study cycled age dependent on battery parameters at different 

temperature condition. Table 3-2 is a tested matrix to study current rate and 

temperature dependent effect on battery parameters. 

HPPC Test Preconditioning 
Test 
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Table 3-1: Test matrix for age-dependent study 

Cell id Test plan Termination 
#1 The battery was cycled at 25oC and 

1C discharge-charge rate. 
HPPC test was conducted after 
every 100 or 200 cycles. 

The test was 
terminated at 3800 
cycles. 

#2 The battery was cycled at 15oC and 
1C discharge-charge rate. 
HPPC test was conducted after 
every 100 or 200 cycles. 

The test was 
terminated at 3800 
cycles. 

#3 The battery was cycled at 40oC and 
1C discharge-charge rate. 
HPPC test was conducted after 
every 100 or 200 cycles. 

The test was 
terminated at 2800 
cycles. 

 

Table 3-2: Test matrix for current rate and temperature dependent study 

Cell id Test plan Comment 
#4 HPPC and constant current 

discharge test was conducted at 
different current rates, such as 2C, 
1C, 0.75C, and 0.5C; and different 
temperature set points, such as 
15oC, 25oC, and 40oC. 

Cell #4 was lightly 
cycled (It had been 
tested for less than 100 
equivalent 
charge-discharge 
cycles). 

#5 Constant current discharge test 
was conducted at different current 
rates, such as 2C, 1.5A, 1C, 0.5C, 
and 0.25C; and different 
temperature set points, such as 
15oC, 25oC, 30oCand 35oC. 

Cell #5 was lightly 
cycled. 

 

3.4 Model parameterization and implementation 

3.4.1 Model parameterization 

Equation (1) describes a simulated battery voltage based on the battery input 

current and the model parameters. In this section, the parameterization method is 

developed to obtain the parameter value based on experiment data. 

From the HPPC test in Figure 3-8, OCV, Ri, and RC networks (R1, R2, C1, 

and C2) parameter can be extracted for model’s parameters at various SOC levels. 

Ideally, the OCV is measured after battery voltage has fully relaxed (equilibrium 
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state). However, this requires long relaxation time to reach the fully relaxed state. 

In practice, OCV is taken in quasi-equilibrium (not fully relaxed voltage). There 

are four commonly-used methods to obtain the OCV, namely gradient of the 

relaxed voltage, fixed amount of resting time, voltage relaxation model, and very 

low excitation current. In first method, the measured relaxed voltage is taken as 

OCV when the gradient of the voltage is less than certain value e.g. 5µV/s [103]. 

In second method, OCV is obtained after a fixed amount of resting time e.g. 

1-hour rest time. In third method, voltage relaxation model is used to predict the 

OCV based on measured voltage during relaxation for several minutes [69]. In 

fourth method, the battery is discharged/charged at very low current rate e.g. C/50 

[104], in order to have negligible overpotential effect on the battery voltage. The 

measured voltage is then taken as OCV. In this study, OCV is determined based on 

fixed amount of relaxation time because the technique is more convenient in 

implementation. An hour relaxation time is sufficient enough to approximate 

equilibrium condition. Figure 3-10 shows overpotential after discharge at 30%, 

50%, 70%, and 90% SOC. From the observation in Figure 3-11 (which is a 

zoom-in version of Figure 3-10), the overpotential change from 1-hour rest time 

to 3-hour rest time is insignificant - it is roughly less than 2mV. Thus, this 

provides justification for one-hour rest time instead of a longer waiting time. As 

mentioned in Chapter 2, hysteresis phenomenon exists in battery OCV. Depending 

on whether the battery is charged or discharged, the corresponding OCV after 

charge and after discharge are different even at the same SOC level. In the model 

parameterization, both charge and discharge OCV are required to be extracted. 
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Figure 3-10: Overpotential decaying profile after discharge at 30%, 50%, 70%, and 90% 
SOC. 

 

Figure 3-11: Zoom-in of Figure 3-10 

Series resistance is calculated as the difference between instantaneous 

voltage before and after applying current, divided by the applied current, as shown 

in the Figure 3-12. It is written in mathematical form as: 
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  i,2 i,1Ri= V -V /I ,  (3) 
where I is applied current with positive value during charge and negative value 

during discharge; Ri is series/ohmic resistance; Vi,1 is voltage before current, and 

Vi,2 is instantaneous voltage right after current as shown in Figure 3-12. 

The rest of the RC parameters (R1, R2, C1, and C2) can be derived from the 

voltage curve in the presence of current excitation (e.g. discharge or charge 

current) using an optimization routine. The objective function of the optimization 

routine is to find RC parameters that minimize the least square error between 

measured voltage and simulated voltage in the equation (4). The optimization 

routine is implemented in Matlab by using Curve Fitting tool based on a nonlinear 

least square method. In mathematical form, the objective function is written as: 

 2LSE=(V(t)-Vs(t)) , (4) 
where LSE is a least square error as the objective function to be minimized, V(t) 

is measured voltage and Vs(t) is simulated voltage. 

Before the optimization routine starts, initial guess values of the parameters 

are required to input into the routine, and these values can be calculated as the 

following: 

 

 2 1

1

3 2

2

R1= V -V /I

C1=T /R1

R2=(V -V )/I

C2=T /R2

 (5) 

where I is current rate, V1, V2, and V3 are selected measured voltage at different 

parts of discharge pulse as illustrated in Figure 3-12. The battery voltage curve 

between V1 and V2 is used to model fast-transient behaviour of battery, whereas 

the voltage curve between V2 and V3 is used to model slow-transient behaviour of 

battery. The T1 and T2 are the time constant of fast-transient and slow-transient 

behaviour of battery, respectively. 

During charge and discharge, the SOC of the battery changes (they increase 

during charge or decrease during discharge) and this leads to changes in the OCV 

of the battery. As illustrated in Figure 3-12, the OCV during discharge is assumed 

to be in linear relationship with SOC and its values is linearly interpolated 

between OCV value before (OCV1) and after (OCV2) the discharge pulse part of 

HPPC test. The obtained value of Ri (from equation (3)) and OCV parameter is 
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fed into equation (1) then the optimization routine runs on R1, R2, C1 and C2 

parameter to minimize the square error of simulation as described in equation (4) 

on charge or discharge pulse as illustrated in Figure 3-13. If the all termination 

criteria (in this study, the criteria are Step Tolerance (TolX) < 10-6, Function 

Tolerance (TolFun) < 10-6, Maximum Iteration (MaxIter) > 10000, and Maximum 

Function Evaluations (MaxFunEvals) >10000) are not met, the routine will update 

the parameters’ value. The routine is terminated only if one of the termination 

criteria is met. The optimized parameters’ values are stored and the process 

repeats itself till the end of the test procedure (e.g. index “k” > n). 

 

 

Figure 3-12: Illustration part of HPPC test used for the optimization routine. The solid 
blue line represents measured voltage data; the dashed black line represents 

interpolated OCV; and the black round shape (e.g. Vi,1, Vi,2, V1, V2, and OCV2) refers to 
selected measured voltage data. 

 

Comparison between the measured data and the fitted results (simulation) 

are shown in Figure 3-14. The fitted result fits the measured data well, as shown 

in a small error in Figure 3-15. Extracted second order based model parameters of 

cell #1 at 100 cycles are shown in Figure 3-16 to Figure 3-21. Time constant T1 
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and T2 are R1xC1 and R2xC2, respectively. As parameter values during charge 

and discharge are different, each parameter has two parameter values which 

correspond to the discharge and charge parameter values, except for Ri (both 

charge and discharge Ri value are almost the same). 
 

 

Figure 3-13: Flow chart of optimization routine to obtain R1, R2, C1, and C2. 
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Figure 3-14: Comparison between experiment data and fitted result 

 

Figure 3-15: Voltage error of fitting in Figure 3-14 
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Figure 3-16: Parameter R1 vs. SOC 

 

Figure 3-17: Parameter T1 vs. SOC 
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Figure 3-18: Parameter R2 vs. SOC 

 

Figure 3-19: Parameter T2 vs. SOC 
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Figure 3-20: Parameter Ri vs. SOC 

 

Figure 3-21: Parameter OCV vs. SOC 

3.4.2 Model implementation 

The model is implemented in Simulink environment as shown in Figure 

3-22. Controlled voltage source models the battery OCV value. A series resistor 

and two resistor-capacitor networks model battery overpotential. The parameters 
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which obtained from Section 3.4.1 are stored inside a look-up table because it is 

easy to manage the stored data and extend the data dimensions, especially when 

the parameters are dependent on multiple factors. Linear interpolation line is used 

to estimate the parameter value in between two consecutive points in the look-up 

table. Based on observation from Figure 3-16 to Figure 3-21, parameters obtained 

during discharge and charge differ significantly. Therefore, two look-up tables 

have been used to store charge parameters and discharge parameters separately as 

shown in Figure 3-23.  

 

Figure 3-22: The SOEC battery model in Simulink. 

 

Figure 3-23: Look-up tables for battery parameter R1 (charge and discharge). 

 

For SOC calculation part, it is based on the coulomb-counting equation (2). 

It integrates the current over time as shown in Figure 3-24. The initial SOC value 

has been pre-determined. The capacity model accounts for current rate, current 

direction, temperature, and cycle age as shown in Figure 3-24. 
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Figure 3-24: SOC calculation implemented in Simulink 

3.5 Results and discussion 

The battery model is used to simulate the HPPC test procedure. The model 

takes the current (as input of the model) of the test procedure and simulates the 

battery voltage (as output of the model). The simulated voltage and measured 

battery voltage of cell #1 on the HPPC test are found to be in good agreement, as 

shown in Figure 3-25. Figure 3-26 shows its corresponding simulated voltage 

error. Figure 3-27 shows battery terminal voltage and simulation voltage of 

constant current discharge at C/5 rate. Figure 3-28 shows associated error in the 

simulation. Table 3-3 below shows tabulated mean and maximum error of 

simulation. Both Figures show big simulation errors at low SOC region. 

Table 3-3: Tabulated statistic error of the simulation results 

Test procedure Mean error 
(mV) 

Maximum error 
(mV) 

HPPC 30 790 
Constant current discharge 
at C/5 rate 

18 710 
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Figure 3-25: Comparison between measured voltage and simulated voltage at HPPC test. 

 

Figure 3-26: Simulation error at HPPC test 
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Figure 3-27: Comparison between measured voltage and simulated voltage at constant 
current C/5 rate. 

 

Figure 3-28: Simulation error at constant current C/5 rate 

As battery behaviour is affected by multiple factors, we will look at the 

effect of each factor and its interaction in the subsequent sections. In this study, 

two interactions are investigated and discussed. First interaction is cycle life (age) 

and temperature. Second interaction is current rate and temperature. The structure 
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in Figure 3-29 shows that the next subsequent subsections are organized. 

 

 

Figure 3-29: Structure of subsection 3.5 

 

3.5.1 Battery discharge capacity 

Battery discharge capacity is a total charge obtained when the battery 

discharges from 100% SOC to 0% SOC. Like battery voltage, the capacity is 

dependent on its current rate, ambient temperature, and cycle age. Figure 3-30 

shows discharge capacity versus cycle age at a different ambient temperature from 

test matrix in Table 3-1. A simple battery capacity model using a combination of 

two linear functions is implemented to describe the battery capacity over its cycle 

life as shown in Figure 3-31. The two linear functions are used to describe 

different capacity decay rate at various age level. In Figure 3-31, after around 

2700 Ah-throughput of cell #1, its capacity decay rate increases. In cell #2, it has 

similar characteristic as the cell #1. However, the characteristic is not obvious in 

cell #3. It is probably due to the collected cycle data being not long enough to 

observe this phenomenon. This characteristic has also been reported by [105] for 

the NMC battery. They concluded that the phenomenon is attributed to 

age-induced lithium plating on the anode. SEM image on morphology changes in 

anode during cycle process has supported their findings. 

To describe the current rate dependency on discharge capacity, the Peukert 



 
Chapter 3: Battery Modelling 

51 
 

law as described in equation (6) is being used. By reformulating equation (6), the 

discharge capacity at any current rate can be described mathematically in equation 

(7). Reformulation procedure can be found in [35]. Furthermore, Peukert factor (k) 

can be calculated for different ambient temperatures to describe both current rate 

and temperature dependency on discharge capacity. The equation (7) is being 

replaced by the equation (8) to accommodate temperature dependency on the 

Peukert factor. 

 
k

pC =I .t   (6) 
 

 ^(k-1)
n nCap(I) = Cap(I )/ (I /I)     (7) 

 

 ^(k(T)-1)
n nCap(I,T) = Cap(I ,T)/ (I /I)   , (8) 

where Cp is a discharge capacity; I is current rate; k is Peukert factor; t is total 

discharge time; Cap(I) is discharge capacity at current rate I; Cap(I,T) is discharge 

capacity at current rate I and temperature T; Cap(In) is a known discharge capacity 

at specific current rate In (e.g. In is 0.825A in Figure 3.32(a)); Cap(In,T) is a 

known discharge capacity at specific current rate In and temperature T; In is 

specific current rate; and k(T) is Peukert factor with temperature dependency. 

For current rate and temperature dependent study on discharge capacity, the 

test description is presented in Table 3.2. The estimated capacity obtained from 

Peukert law is shown in Figures 3-32(a) and (b). The Peukert factor at various 

ambient temperatures is presented at Table 3-4. The estimated capacity in Figure 

3-32(a) shows a good approximation, except at 40oC the estimated capacity has a 

quite bad approximation. This is due to the measured capacity at 40oC (more 

specifically, at 1.1A) inconsistent with Peukert’s law (the inconsistent measured 

capacity is shown in the measured capacity at 1.1A 40oC higher than at 0.825A 

40oC). Furthermore, another set of data (from different cell from the one used in 

Figure 3-32(a)) is shown in good agreement with the estimated capacity in Figure 

3-32(b). 
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Figure 3-30: Discharge capacity of cell #1, #2, and #3 v.s. Ah-throughput 

 

Figure 3-31: Comparison between measured discharge capacity and modelled discharge 
capacity 

Table 3-4: Peukert factor at different temperature set points 

Cell 
id. 

Temperature (T) Current rate 
(In) 

Peukert factor (k) Capacity 
(Cap(In,T)) 

#4 15oC 0.825A 1.0043 0.992Ah 
#4 25oC 0.825A 1.0051 1.007Ah 
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#4 40oC 0.825A 1.0097 1.012Ah 
#5 15oC 1.1A 1.0122 1.025Ah 
#5 25oC 1.1A 1.0123 1.04Ah 
#5 30oC 1.1A 1.0119 1.046Ah 
#6 35oC 1.5A 1.0121 1.047Ah 

 

 
(a) 

 
(b) 

Figure 3-32: Comparison between measured and estimated capacity based on Peukert law of 
(a) cell #4 and (b) cell #5 
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3.5.2 Open circuit voltage 

In this section, the effect of current rate with temperature and cycle age with 

temperature on OCV is investigated. The OCV after discharge and charge 

obtained during HPPC test at different cycle age level, and different cycle 

temperature are presented in Figure 3-33 to Figure 3-35. Figure 3-33 shows OCV 

values of cell #1 at selected cycle numbers at 25oC. From the observation in 

Figure 3-33, OCV after discharge and charge is decreasing as battery ages. Figure 

3-34 shows OCV values of cell #2 at selected cycle numbers at 15oC. Figure 3-35 

shows OCV values of cell #3 at 1 selected cycle numbers at 25oC. A similar trend 

of decreasing OCV in cell #1 can be observed in cell #2 and cell #3. Based on the 

observation in the figures, both cycle age and temperature have a great influence 

on the battery’s OCV. 

Figure 3-36 shows OCV after discharge and charge at the different current 

rate of cell #4. From the observation, current rate has a less significant influence 

on the OCV than temperature. At flat OCV region (from around 40% to 70% SOC) 

in Figure 3-36, the OCV variation due to temperature is very evident. Hence, 

temperature and cycle age dependency on battery OCV are to be included in the 

model. 

 

Figure 3-33: Open circuit voltage after charge and discharge of cell #1 at different cycle 
numbers (100, 1000, 2000, 3000, and 3800 cycles) at 25oC 
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Figure 3-34: Open circuit voltage after charge and discharge of cell #2 at different cycle 
numbers (100, 1000, 2000, 2900, and 3800 cycles) at 15oC 

 

Figure 3-35: Open circuit voltage after charge and discharge of cell #3 at different cycle 
numbers (0, 1000, 1600, 2000, 1600, 2000, and 2800 cycles) at 40oC 
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Figure 3-36: Open circuit voltage after charge and discharge of cell #4 at different current 
rates at 25oC 

3.5.3  Age and temperature dependence 

Test condition for the investigation of age and temperature dependence is 

described in Table 3-1. The model parameters are obtained from HPPC test at 

various cycle age level and ambient temperature. Figure 3-37 to Figure 3-40 

present the battery model parameters of cell id #1 cycled at 25oC. Figure 3-41 to 

Figure 3-44 provide the battery model parameters of cell id #2 cycled at 15oC. 

Figure 3-45 to Figure 3-48 demonstrate the battery model parameters of cell id #3 

cycled at 40oC. 

In general, the trend of R1, R2, T1 and T2 are increasing along battery’s 

number of cycle. Resistance R1 cycled at 15oC in Figure 3-41 has higher 

resistance value than resistance R1 cycled at 25oC in Figure 3-37 and 40oC in 

Figure 3-45. Resistance R1 cycled at 25oC has higher resistance value than 

resistance R1 cycled at 40oC. Thus, resistance R1 and R2 have a higher value at 

low temperature than those at high temperature. However, in resistance R2, the 

difference is only slightly different. Unlike resistance R1 and R2, time constant T1 

and T2 at low temperature have lower values than high temperature. 

Series resistance Ri cycled at 15oC, 25oC, and 40oC is shown in Figure 3-49. 
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Influence of cycled age on Ri is not as significant as the influence of temperature 

on Ri. Hence, cycle age dependence on Ri can be neglected, while the temperature 

influence on Ri need to be considered in the model. Please refer to Appendix D 

for charge battery parameters. 

 

Figure 3-37: Parameter R1 value of cell #1 at different cycle number 25oC 

 

Figure 3-38: Parameter T1 value of cell #1 at different cycle number 25oC 

0 20 40 60 80 100
0.02

0.04

0.06

0.08

0.1

0.12

SOC (%)

R
1
 (


)

 

 

100

1000

2000

3000

3800

0 20 40 60 80 100
20

30

40

50

60

70

80

90

100

Time (%)

T
1
 (

s
)

 

 

100

1000

2000

3000

3800



 
Chapter 3: Battery Modelling 

58 
 

 

Figure 3-39: Parameter R2 value of cell #1 at different cycle number 25oC 

 

 

Figure 3-40: Parameter T2 value of cell #1 at different cycle number 25oC 

0 20 40 60 80 100
0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

SOC (%)

R
2
 (


)

 

 

100

1000

2000

3000

3800

0 20 40 60 80 100
4

4.5

5

5.5

6

6.5

7

Time (%)

T
2
 (

s
)

 

 

100

1000

2000

3000

3800



 
Chapter 3: Battery Modelling 

59 
 

 

Figure 3-41: Parameter R1 value of cell #2 at different cycle number 15oC 

 

Figure 3-42: Parameter T1 value of cell #2 at different cycle number 15oC 
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Figure 3-43: Parameter R2 value of cell #2 at different cycle number 15oC 

 

Figure 3-44: Parameter T2 value of cell #2 at different cycle number 15oC 
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Figure 3-45: Parameter R1 value of cell #3 at different cycle number 40oC 

 

 

Figure 3-46: Parameter T1 value of cell #3 at different cycle number 40oC 
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Figure 3-47: Parameter R2 value of cell #3 at different cycle number 40oC 

 

Figure 3-48: Parameter T2 value of cell #3 at different cycle number 40oC 



 
Chapter 3: Battery Modelling 

63 
 

 

Figure 3-49: Parameter Ri value of cell #1, #2, and #3 

For validation purpose, constant current discharge of 1C rates at different 

cycle values are used to validate the age and temperature dependence of the model. 

Figure 3-50, Figure 3-52, and Figure 3-54 show a comparison of the measurement 

and simulation results at different cycle number of cell #1, #2, and #3, 

respectively. Figure 3-51, Figure 3-53, and Figure 3-55 show the associated error 

in simulation. Apart from low SOC and high SOC region, the model is able to fit 

well with measurement data. 

 

Figure 3-50: Comparison between measured voltage of cell #1 and simulated voltage at 
different cycle number 25oC 
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Figure 3-51: Simulation error at different cycle number 25oC 

 

Figure 3-52: Comparison between measured voltage of cell #2 and simulated voltage at 
different cycle number 15oC 
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Figure 3-53: Simulation error at different cycle number 15oC 

 

Figure 3-54: Comparison between measured voltage of cell #3 and simulated voltage at 
different cycle number 40oC 
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Figure 3-55: Simulation error at different cycle number 40oC 

3.5.4 Current rate and temperature dependence 

In this section, the current rate and temperature dependent effect on the 

battery model parameters are investigated. The test plan matrix which describes 

various current rates and ambient temperatures is presented in Table 3-2. Figure 

3-56 to Figure 3-60 show the battery model parameters at a various current rate of 

cell #4 at 25oC. From the figures, battery parameters vary as current rate changes. 

R1, R2, T1 and T2 parameters at a lower current rate have higher values than 

those at a higher current rate. However, it is not the case for series resistance Ri. 

Current rate has little influence on Ri as shown in Figure 3-60. Ri can be taken as 

constant value across SOC and current rate (in this case, 0.021 Ohm). Comparison 

between measured voltage and the simulated voltage on constant discharge 

current are presented in Figure 3-61. 
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Figure 3-56: Parameter R1 value of cell #4 at different current rates 25oC 

 

Figure 3-57: Parameter T1 value of cell #4 at different cycle number 25oC 



 
Chapter 3: Battery Modelling 

68 
 

 

Figure 3-58: Parameter R2 value of cell #4 at different cycle number 25oC 

 

Figure 3-59: Parameter T2 value of cell #4 at different cycle number 25oC 
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Figure 3-60: Parameter Ri value of cell #4 at different cycle number 25oC 

 

 

Figure 3-61: Comparison between measured voltage of cell #4 and simulated voltage at 
different current rates at 250 C 

Battery parameters of cell #4 at various current rate and ambient 

temperature are presented from Figure 3-62 to Figure 3-65. From the observation 

of the figures, battery parameters (R1, R2, T1, and T2) for all three ambient 

temperatures (15oC, 25oC, and 40oC) are increasing as current rate is decreasing. 

As the temperature is increased, the battery overpotential tends to be smaller and 
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this leads to smaller internal resistance (smaller R1 and R2 values). Similarly, 

series resistance Ri has smaller resistance value at high temperature and vice versa, 

as shown in Figure 3-66. However, the influence of current rate on series 

resistance is less significant than the influence of temperature. Hence, it could be 

assumed to be constant value at various current rates. Please refer to Appendix D 

for charge battery parameters. 

The simulated voltage at various temperature are presented in Figure 3-67 

for 1C current rate, Figure 3-68 for 0.5C current rate and Figure 3-69 for 2C 

current rate. The simulation results show good agreements with measured 

experimental data. 

 

Figure 3-62: Parameter R1 value of cell #4 at various current rate and temperature 
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Figure 3-63: Parameter R2 value of cell #4 at various current rate and temperature 

 

Figure 3-64: Parameter T1 value of cell #4 at various current rate and temperature 
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Figure 3-65: Parameter T2 value of cell #4 at various current rate and temperature 

 

Figure 3-66: Parameter Ri value of cell #4 at various current rate and temperature 



 
Chapter 3: Battery Modelling 

73 
 

 

Figure 3-67: Simulated voltage on constant current discharge 1C rate at various 
temperatures 

 

Figure 3-68: Simulated voltage on constant current discharge 0.5C rate at various 
temperatures 
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Figure 3-69: Simulated voltage on constant current discharge 2C rate at various 
temperatures 

3.5.5 Battery pack model simulation 

In this section, the developed battery model is arranged in the series-parallel 

connection to simulate battery pack shown in Figure 3-70. The pack consists of 

two strings A and B which are connected in parallel. Each string is made up of 

four series connected cells. 

We simulate the pack model based on the scenario described in Table 3-5. 

The pack has been cycled for 2000 cycles. We assume that unequal temperature 

distribution across the pack and a hot spot in the pack have been developed at cell 

number 2. The simulated voltage and input current are shown in Figure 3-71. As 

the consequence of unequal temperature distribution across the pack, the current 

passing through each string and the cells voltage are different. In equation (1), cell 

voltage is dependent on cell resistance; as discussed in Section 3.5.3, one of factor 

influencing the resistance is temperature; the resistance at high temperature value 

tends to be lower than at low temperature. Thus, cell voltage at a higher 

temperature tends to be lower than at lower temperature. Similar with the cell 

voltage, battery capacity cycled at high temperature tends to be lower than that 

cycled at low temperature (As battery cycles, battery experiences both 

modifications of the surface films on electrodes [106][107] and the structural 
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changes of electrodes [108]. The higher battery operating temperature leads to 

higher battery degradation [107], [109]). 

As discussed earlier about the battery resistance and its temperature, Figure 

3-72 shows simulated current passing through string A is higher than string B, due 

to string A having lower total battery cells’ resistance than string B. During rest 

time, there is a self-balancing current (as shown in Figure 3-72 inset) due to 

voltage mismatch between string A and B. The mismatch is due to sum of cells’ 

voltage at string A (as shown in Figure 3-36, OCV at higher temperature is higher 

than at lower temperature) being higher than string B. Figure 3-73 shows SOC 

and voltage of cell 1, 2, 3, and 4 at string A. Figure 3-74 (which is zoom-in of 

Figure 3-73) shows cell #3 (highest temperature in the string A) has the highest 

SOC profile among other cells in string A. One plausible explanation is that cell 

#3 has been cycled at high temperature; hence it has a lower battery capacity 

among other cells in string A. The lower battery capacity translates into a bigger 

change of SOC (change of SOC is a ratio between integral of current over time 

and battery capacity). For cells’ voltage, cell #3 has lowest value during charge 

and highest value during discharge. This is due to the resistance of cell #3 being 

lower among other cells in string A. Figure 3-75 shows SOC and voltage of cells 5, 

6, 7, and 8 at string B. Figure 3-76 is zoom-in of Figure 3-75. Similar explanation 

of cells’ SOC and voltage in string A can be applied to cells’ SOC and voltage in 

string B. 

 

Figure 3-70: Illustration of battery pack 
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Table 3-5: Case scenarios of battery pack 

Cell no. Temperature (oC) Cycled age Initial SOC (%) 

1 25 2000 50 

2 27 2000 50 

3 32 2000 50 

4 25 2000 50 

5 25 2000 50 

6 27 2000 50 

7 27 2000 50 

8 25 2000 50 

 

 

Figure 3-71: Simulated pack voltage (output of the model) and required current (input of the 
model).  
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Figure 3-72: Simulated current passing through string A and B 

 

Figure 3-73: SOC and voltage of cell number 1, 2, 3, and 4 of string A. 
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Figure 3-74: Zoom-in of Figure 3-73. 

 

Figure 3-75: SOC and voltage of cell number 5, 6, 7, and 8 of string B. 
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Figure 3-76: Zoom-in of Figure 3-75. 

3.6 Summary 

In this chapter, we have presented and discussed battery modelling based on 

the SOEC model. A battery model parameterization method has been developed 

and implemented into SOEC model in Simulink environment. The method utilizes 

application of the least square technique on the discharge or charge voltage 

response of HPPC test to obtain the model parameters empirically. The battery 

model parameters such as Ri, R1, R2, C1, and C2, are the output of the parameter 

extraction. The OCV is obtained from the measured relaxed voltage during 

relaxation period. Furthermore, the influence of SOC, current rate, temperature 

and cycled age on battery parameters and battery capacity have been investigated 

and studied.  

The simulated voltage has been compared with measurement data to 

validate the accuracy of the extracted parameters. From the simulation results, a 

good match between simulated and measured voltage is found, except at the low 
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and high SOC region. At the low and high SOC region, the battery discharge 

voltage behaves nonlinearly. However, in the SOEC model implementation, the 

relationship between the model parameter and SOC is in a linear fashion. As the 

consequence, the simulated voltage is poor in this region. To tackle this problem, 

the extracted parameters need to be obtained using small SOC step (in our test, 

SOC step is either 5% for cell # 4 or 10% for cell #1, cell #2, and cell #3) at this 

region. However, in the real application, the battery will most likely not be 

operated in the low SOC regions; thereby the accuracy of the model at the region 

is not a big concern. 

Based on our review, battery overpotential is highly dependent on SOC, 

current rate, temperature, and cycle age. Influences of the dependencies on battery 

overpotential have been observed in the extracted battery parameters. As battery 

ages, the impedance of the battery is growing, and its capacity is decreasing. It is 

observed in the extracted battery parameter with a consistent increase of R1 and 

R2 as the battery ages. On the other hand, battery’s OCV consistently decreases as 

battery ages. The influence of cycle age on Ri is not significant. For the capacity 

loss, the piecewise function can be utilized for the modelling purpose. Moreover, 

the influence of temperature and current rate dependency on the battery voltage 

has also been observed in the extracted battery parameters. At high temperature, 

R1 and R2 have relatively smaller value than those at low temperature. Similarly, 

R1 and R2 at high current rate have relatively smaller value than those at the low 

current rate. For battery OCV, current rate has an insignificant influence on it. 

Unlike the current rate, the temperature has a significant influence on battery OCV, 

especially from 40% SOC to 70% SOC. Similar with OCV, Ri is influenced 

insignificantly by the current rate. At high temperature, Ri has relatively smaller 

value than those at low temperature. For temperature and current rate dependent 

battery capacity, it was successfully modelled by Peukert formula.  

The battery parameters extracted using the proposed method have been 

validated through experimental data, and the results show good agreement 

between simulated voltage response and experimental voltage data. Furthermore, 

a pack model has been considered by connecting the developed model in 

parallel-series arrangement. The pack model can be used to simulate the 
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cell-to-cell variation of voltage, current, and SOC due to temperature gradient 

across the cells in the pack. 

More in-depth study and model of the effect of hysteresis in OCV after 

charge and discharge, are presented in the next chapter. 
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Chapter 4  

Hysteresis Modelling 

4.1 Introduction 

Besides occurring in the battery domain, hysteresis phenomenon also occurs 

in mechanical deformation, ferromagnetic material, and ferroelectric material. The 

definition of hysteresis varies from one area to the other. In this study, hysteresis 

can be viewed as a property in the system where the output of the system is not 

only dependent on current input but is also dependent on past input history. 

Alternatively, hysteresis can also be viewed as path-dependent phenomenon [110], 

the output of the system depends on both current input and its path before 

reaching the current input. In a battery, the OCV curve exhibits hysteresis 

phenomenon as shown in Figure 3-21. The OCV is not only dependent on current 

SOC value but also its path before reaching to its current SOC, in this case, 

whether the battery is either charged or discharged. It is clear that hysteresis 

model in OCV can improve the accuracy of battery model. In addition to 

improvement in model accuracy, it also helps to improve SOC estimation as OCV 

has an intimate relationship with SOC. 

In this chapter, hysteresis model based on Discrete Preisach Model (DPM) 

is presented and discussed. Possible explanation for the origin of hysteresis is 

briefly presented to have a better perspective on the phenomena. A brief 

introduction of Preisach model and its parameterization are presented as well. 

Simulation based on battery model developed in Chapter 3 and hysteresis model is 

presented and discussed. 
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4.2 Origin of hysteresis in OCV 

The origin of hysteresis in lithium-ion battery is not fully understood. In 

[22], [110]–[112], they explain that the hysteresis effect in LFP is owed to the 

existence two phase transitions in the cathode. The phases are a lithiated phase 

(lithium rich phase) and delithiated phase (lithium poor phase). The two phase 

transitions are related to the mechanism of lithium-ion intercalation and 

deintercalation process [113]. The existence of two phases in cathode’s solid state 

has been confirmed through X-Ray Diffraction technique [114]. Furthermore, the 

mechanism of the intercalation and de-intercalation can be explained by using a 

shrinking core model [110], [111], [113], [115]. The model assumed the two 

phases in cathode’s solid state exist in the form of core and shells structure. In 

Figure 4-1, it shows the mechanism of lithium-ion intercalation into cathode 

during discharge by using shrinking core model; the lithium-ion will diffuse 

through the shell (lithiated phase region) before it finally intercalates with the core 

(delithiated phase region). Alternatively, it also can be viewed that during 

discharge, the growing shell consumes its core. 

 

Phase 

interface 

Movement of 

phase interface 

Lithiated phase 

region 

Delithiated 

phase region 

Li
+
 

e
- 

Li 

 

Figure 4-1: Two-phase transition mechanism explained in shrinking core model [110], [111] 

The process of charge-discharge in shrinking core model is depicted in 

Figure 4-2. At a fully-discharged state, the cathode is in a single phase which in 

this case, is a lithiated phase. When the battery is being charged, the lithium-ions 

are starting to de-intercalate from the cathode. Once all lithium-ions at the 

cathode’s surface have left, the shell of delithiated phase starts to grow inwards 

and consumes the core. The charge process continues until the shell completely 

consumes the core, hence the core is converted into delithiated phase, and the 
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battery is in a fully-charged state. The reverse of charge process is occurring 

during the discharge process. At fully-charged state, the cathode is in a single 

phase (delithiated phase). As the battery is being discharged, the shell of lithiated 

phase grows and consumes the core of delithiated phase as the lithium-ions 

intercalate into the cathode. The discharge process continues until the battery is 

fully-discharged and the cathode enters a single phase (lithiated phase) again. The 

model suggests the difference of electrochemistry reaction at lithiated and 

delithiated phases is responsible for hysteresis phenomenon in LFP. The lithiated 

phase has lower transport properties than delithiated phase when lithium-ions 

diffuse on the region [116]. 

 

 

Figure 4-2: Two-phase transition mechanism during charge and discharge in LiFePO4 
cathode explained in shrinking core model [110] 

Contrary to the commonly held belief of two phase transitions mentioned in 

[110], Zheng et al. [117], [118] explained that hysteresis effect came from carbon 

material used as the anode of the lithium-ion battery. The hysteresis effect was 

explained as the result of some lithium-ions bound with hydrogen-containing 

carbon (at terminated edges of carbon) during lithium-ion intercalation process 

into carbon as shown in Figure 4-3. Before the lithium-ions can bind with 

hydrogen-containing carbon, the lithium-ions are required to overcome activation 
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energy to come closer to the hydrogen, and subsequently bind with the carbon. 

This activation energy would contribute to the hysteresis effect. Depending on the 

required amount activation energy, it would determine the size of hysteresis. 

Hence, the higher hydrogen content in carbon material leads to higher activation 

energy and higher hysteresis effect. 

 

Figure 4-3: During lithium-ion insertion in hydrogen-containing carbon, some lithium atoms 
bind on the hydrogen-terminated edges of hexagonal carbon fragments [117] 

4.3 Introduction of Preisach model 

4.3.1 Classical Preisach model 

The fundamental idea of Classical Preisach Model (CPM) is to use basic 

elementary units, called hysteron, to construct the hysteresis curve. A hysteron is 

an operator which gives out an output value depending on input value and its 

properties. In the input-output diagram, it can be represented as a loop as shown in 

Figure 4-4(a) [119]. The x-axis of the diagram represents the input, whereas the 

y-axis represents the output. The α1 and β1 in the x-axis represent the switch-on 

and switch-off value of the hysteron properties, respectively. The output of the 

hysteron depends on the input value. If it is less than β1 value, the hysteron will 

give an output value of -1 (being switched off). However, if it is more than α1, the 

hysteron will give an output value of 1 (being switched on). For the input value 

between α1 and β1, the output remains unchanged as its previous output value. 

The hysteron input-output relationship [119] can be described mathematically in 

equation (9) as follows: 
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where 𝑢(𝑡)  is input; ̂  is output of hysteron, also known as hysteresis 

operator; α is the switch-on value of the corresponding hysteron; and β is the 

switch-off value of the corresponding hysteron. 

The hysteron is defined in a plane as shown in Figure 4-4(b), or also known 

as the Preisach plane. The plane is defined within line of α=β, maximum input 

value (𝑢𝑚𝑎𝑥), and minimum input value (𝑢𝑚𝑖𝑛). The axis of the plane corresponds 

to β (switch off) value in horizontal axis and α (switch on) value in vertical axis. 

Hysteron’s switch-on and switch-off (α,β) value corresponds to its coordinate 

points defined inside the Preisach plane. 

The output of CPM [119] is the combination of all hysteron output and its 

corresponding weight contribution, can be shown mathematically in the equation 

(10) as follows: 

        .  ˆ,
P

f t u t µ u t d d            ∬   (10) 

where ̂  is the output of hysteresis operator at (α, β); ( , )    is the weight 

function of hysteron at (α, β); and P represents the Preisach plane which can be 

defined mathematically as:  𝑃 = { (𝛼, 𝛽) | 𝛼 ≥ 𝛽 , 𝛼 ≤ 𝑢𝑚𝑎𝑥 , 𝛽 ≥ 𝑢𝑚𝑖𝑛 } 

u

1

-1

α1β1

 
(a) 

 

(0,0) β1

α

β 

α = β α1

β = umin

α = umax

  
(b) 

Figure 4-4: (a) Representation of a hysteron as a loop in input-output diagram and (b) 
Representation of a hysteron in Preisach plane 

ˆ ( )u  
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4.3.1.1 Geometric interpretation of classical Preisach model 

In this section, we present the geometric interpretation of CPM and 

formation of memory in Preisach plane. In the plane shown in Figure 4-4(b), the 

vertical axis α corresponds to increasing input, whereas the horizontal axis β 

corresponds to decreasing input. As the input increases, all hysterons with α value 

less than or equal to input value will have an output of 1. In the geometric 

interpretation, the increasing input can be represented by a moving horizontal line 

along the α axis in an upward direction. On the other hand, when the input 

decreases, all hysterons with β value more than or equal to the input value, will 

have an output of -1. In the geometric interpretation, the decreasing input can be 

represented by a moving vertical line along the β axis in a leftward direction. 

For example, a varying input value as illustrated sequentially in Figures 

4-5(a), (c), (e), and (g) is applied to the Preisach model. An increasing input from 

an initial value of 0 at time t0 to the value of U1 at time t1 is illustrated in Figure 

4-5(a). At time t0, all hysterons are initialized in switched-off condition (output of 

hysteron is -1). As the input increases, hysterons with α value less than or equal to 

the input value are in switched-on condition (output of hysteron is +1) according 

to the equation (9). The rest of hysterons with α value more than input value 

remain unchanged (according to the equation (9)). The corresponding output of all 

hysteron at time t1 in the plane is illustrated in Figure 4-5(b). From observation of 

Figure 4-5(b), line α = U1 divides the plane into two regions, S+ region 

(switched-on hysteron region) and S- region (switched-off hysteron region). 

Subsequently, from time t1 to time t2, the input decreases monotonically 

from the input value of U1 to the input value of U2 as illustrated in Figure 4-5(c). 

As the input decreases, all hysterons with β value more than or equal to the input 

value are in a switched-off condition (output of hysteron is -1). Whereas, the rest 

of hysteron with β value less than the input value remain unchanged. The negative 

region, S- is growing, whereas the positive region, S+ is shrinking as illustrated in 

the movement of the vertical line toward the leftward direction in Figure 4-5(d). 

The boundary lines between S+ and S- region are line α = U1 and line β = U2. 

Subsequently, the input is increasing monotonically from the input value of 

U2 at time t2 to the input value of U3 at time t3 as shown in Figure 4-5(e). The 
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value of U3 is less than the value of U1. To determine the output of hysteron, the 

same procedure described during time t0-t1 can be applied. As the input is 

increasing, the boundary line is moving upward from α = U2 to α = U3. Any 

negative region S- which has been passed by the boundary line, will turn into 

positive area S+. Figure 4-5(f) illustrates S+ and S- region in the plane at time t4. 

The boundary lines are line α = U1, β = U2 and α = U3. 

Subsequently, the input is decreasing monotonically from value of U3 at 

time t3 to value of U4 at time t4 as shown in Figure 4-5(g). The value of U4 is 

more than the value of U2. To determine the output of hysteron, the same 

procedure described during time t1-t2 can be applied. As the input is decreasing, a 

new boundary line will appear at β = U3 and move in the leftward direction from 

β = U3 to β = U4. Any positive region, S+ which passed by the boundary line, will 

turn into negative region S-. The S+ and S- region in the plane at time t4 and the 

boundary lines, namely line α = U1, β = U2, α = U3 and β = U4, are illustrated in 

Figure 4-5(h). 

Figures 4-5(b), (d), and (f) represents the memory formation in the plane at 

a different time instant. The memory formation is a crucial property of the 

Preisach model, needed to consider the hysteresis. It is not necessary to consider 

all hysteron information in the plane. Instead, it is sufficient to be described by the 

intersection of boundary lines α and β. The intersection makes a vertex, V(α, β). 

The vertices are formed by both local maximum and local minimum. While three 

vertices can be identified in Figure 4-5(h), one of the vertices is redundant. Hence, 

there are only two relevant vertices; those are V1(U1, U2) and V2(U3, U4). 

From geometry, the equation (10) can be further divided into integral over 

S+(t) and S-(t) as follows [119]: 

          
( ) ( )

, .   , .  ˆ ˆ
S t S t

f t µ u t d d µ u t d d          
 

       ∬ ∬ . (11) 

By replacing 

     1,    ,  ˆ ( )u t if S t        and 

       1,  ˆ   ,  u t if S t        

into the equation (11), hence 
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f t µ d d µ d d       
 

 ∬ ∬   (12) 
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Figure 4-5: Varying input values with time (in (a), (c), (e), and (g)) and its representation in 
Preisach plane (in (b), (d), (f), and (h)) [120] 
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If the subsequent input after time t4 is increasing monotonically to the value 

of U5, which is larger than the value of U3 at time t5 as illustrated in Figure 

4-6(a); the boundary line will move upward starting from value of U4 to value of 

U5. As the value of U5 is higher than the value of U3, there is an instance when 

the increasing input has the same value with the value of U3. At the instance, the 

vertex V2 corresponding to α = U3 and β = U4 in the plane is wiped out by the 

boundary line. Only vertex V1 remains in the plane as illustrated in Figure 4-6(b). 

Figure 4-6(c) illustrates S+ and S- in Preisach plane at time t5 and the boundary 

lines in the plane namely line α = U1, β = U2, and α = U5. Similarly, same 

mechanism can be applied in decreasing input as well. The mechanism is known 

as the Wiping-out property [119], [121], [122]. Consequently, the associated 

histories stored in vertices are being wiped out as well. 
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Figure 4-6: (a) Input value vs. time, (b) its representation in Preisach plane at u(t)=U3, and (c) 
its representation in Preisach plane at u(t)=U5 [120] 

4.3.1.2 Implementation of memory formation 

As discussed earlier, the memory formation considers the history of input 

variation in the Preisach model. The memory formation does not require to 
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consider all input variation, but rather, it only needs to consider the local 

maximum and minimum input value. In the implementation, stack data structure 

is applied in storing the local maximum and minimum. Each information in the 

stack contains a pair of local maximum and local minimum as illustrated in Fig. 

4-7(a). The pair (Xk, Yk) means the input is increased to the value of Xk before 

being followed by a decrease to the value of Yk. Supposedly, pairs of (X1, 

Y1),…,(Xk, Yk) exist in the stack and new input is fed into the stack - there are 

consequently four possible cases: 

1. The input U1 is in increasing trend (charging) and its value is less than Xk 

value. The input is stacked on the top of the pair (Xk, Yk) as shown in Fig. 4-7(b). 

2. Supposedly after case 1, the subsequent input U2 is in decreasing trend 

(discharging), and its value is more than Yk value. The input is stacked on the top 

of the pair (Xk, Yk) as shown in Fig. 4-7(c). 

3. The input U3 is in increasing trend, and its value is more than or equal to Xk-i 

value. All pairs between (Xk, Yk) and (Xk-i, Yk-i) are wiped out from the stack. The 

input is stacked on the top of the pair (Xk-i-1, Yk-i-1) as shown in Fig. 4-7(d). 

4. The input U4 is in decreasing trend, and its value is less than or equal to Yk-i 

value. All pairs between (Xk, Yk) and (Xk-i+1, Yk-i+1) are wiped out from the stack. 

The input replaces Yk-i as local minimum as shown in Fig. 4-7(e). 
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4.3.1.3 Identification problem in Preisach model 

The identification problem is basically to determine the weight function, 

( , )   . In [58], Mayergoyz introduced the First Order Reversal Curve (FORC) 

or also known as the First order Transition Curve can be used for the training for 

weight function determination. As the name (FORC) suggests, this curve is 

formed after the first reversal/transition of input. There are two types of FORC, 

namely decreasing FORC and increasing FORC. For decreasing FORC, it is 

indicated by a monotonically decreasing input after first reversal of a 

monotonically increasing input from negative saturation point A, as shown in 

Figure 4-8(a). On the contrary, for increasing FORC, it is indicated by a 

monotonically increasing input after first reversal of a monotonically decreasing 
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Figure 4-7: Implementation of memory formation in stack data structure [120] 
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input from positive saturation point B, as shown in Figure 4-8(a). Figure 4-8(b) 

and Figure 4-8(c) show the corresponding Preisach plane to the decreasing FORC 

and the increasing FORC respectively. 
 

 
(a) 

 
(b) 

 
 (c) 

Figure 4-8: (a) Increase and Decrease FORC in the input-output diagram, (b) Decrease 
FORC in Preisach plane and (c) Increase FORC in Preisach plane. 

 
The corresponding notation of fα’ represents output value of input value u = 

α’, whereas the notation of fα’β’ represents the output value of FORC with 

corresponding input u = β’with the first reversal at u = α’. 

From [119], the identification of weight function can be formulated as 

 
2

' '1
( ', ')

2 ' '

f
u

  
 



 

  (13) 

The derivation of weight function can be referred to the reference. 

4.3.2 Discrete Preisach model 

As mentioned in Section 4.3.1, the classical Preisach model requires an 

implementation of the double integral for the calculation of the model’s output in 

equation (12), and a second derivative for weight function identification in 

equation (13). For practical reasons, implementation of classical Preisach model is 

not desirable due to the required computing resources to perform double 

integration calculation, and due to the error introduced by the second derivative. 

A 
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FORC 
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Hence, model discretization is required to make it numerically implementable. 

Discrete Preisach Model (DPM) consists of a finite number of hysteron 

which is represented as points in the plane [119] as shown in Figure 4-9 (a). To 

facilitate the discussion, the model is called DPM-1. In contrast to the hysteron 

state defined in CPM, the hysteron state is represented as w. In DPM-1, the 

hysteron state can take value of either 0 or 1 because both input and output of the 

model are always positive value. The hysteron state is described in equation (14) 

as follows: 

  
1,   

0,     

  ,      

k

k k

k

if u

w u if u

remain unchanged if u



 


 
  

 . (14) 

Each hysteron has one local weight value h
 . The local weights h

  

represent weight function ( , )    in discrete form. The output of the model is 

the summation of all hysteron state, h
w  multiplied with local weight h

 . Total 

number of defined hysteron in the model is n (e.g. n is 28 in Figure 4-9). The 

output can be formulated as in equation (15) 

 
1

1 1 2 2

( ).

( ). ( ). ... ( ).

( ).

n

k h k h

h

k k n k n

T

k

y w u c

w u w u w u c

w u c



  





 

    

 


  (15) 

where k
u ,  1 2( ), ( ),....., ( )

T

k k n k
w w u w u w u ,  1 2, ,....,

T

n
    , and c are input 

of the model in discrete form, hysteron state, local weight in n-dimensional vector 

form, and a constant term, respectively. 

In this study, we define another type of DPM; the model is called DPM-2. 

The model consists of a finite number of hysteron, but, the hysteron is represented 

as a rectangular region in the plane as shown in Figure 4-9 (b). Each region has 

only one local weight. Unlike in DPM-1, hysteron state in DPM-2 is defined as a 

normalized region’s area under the boundary line as shown in Figure 4-9 (b) and it 

can take value from 0 to 1. The output formulation is same as equation (15). 

The local weight   can be determined through offline training. 

Supposedly, a set of training data are obtained, and it will be used to train 

estimated local weights with n number of hysteron  1 2, ,....,
n    . The 
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training data consists of input-output data pairs. The steps of the identification 

procedure as the following: 

1. Determine the number of hysteron on the side of the Preisach plane (e.g. 

on α and β axis), m, as shown in Figure 4-9. The total number of hysteron, 

n on the plane can be calculated as:  

Nh = m.(m+1)/2. 

2. Assign parameters’ value on each hysteron based on its location in the 

Preisach plane as shown in Figure 4-9. For DPM-1, the hysteron is 

described with a value of (αi, βj) where i and j are index value (the index 

can take value from 1 to m and i ≥ j). Whereas for DPM-2, the hysteron is 

described with a value of (αi-1, αi, βj-1, βj). 

3. The hysteron state h
w  can be calculated by following rule of Preisach 

operator in equation (14) for DPM-1 or as the following for DPM-2 

k i

k j-1

a. 1 if input u > α ,
b. 0 if input u < β  or
c. Normalized area of the region under the curve as shown in 

Figure 4-9(b) if otherwise  (16) 
4. Obtain the local weights, k

  by applying regression technique on the 

equation (15) with desired output of trained model, k
y , and hysteron state,

k
w . 

 

(a) 
 

(b) 

Figure 4-9: Discrete Preisach plane (a) DPM-1 [120] and (b) DPM-2 
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4.4 Preisach modelling 

4.4.1 Test procedure 

In this section, a test procedure is designed to identify the weights k
  of 

the Preisach model. For this purpose, the identification based on FORC is 

implemented as mentioned in Chapter 4.3. As the objective of the model is to 

relate SOC-OCV, the desired SOC is set in the test procedure, and the 

corresponding OCV is recorded. The desired SOC can be set through battery 

tester software as shown in Figure 3-4 in Chapter 3. The SOC calculation in 

battery tester is done automatically through current integration. Whereas, OCV 

value can be measured from the relaxed voltage after desired input SOC is 

reached. The amount of relaxation time must be sufficient enough for the relaxed 

voltage to reach the quasi-equilibrium condition. The relaxation time is set for 1 

hour for all SOC level. The test procedure consists of some increasing FORCs and 

decreasing FORCs as listed in Table 4-1. Before any increasing FORC, the battery 

is discharged from fully-charged state to target SOC level. Then, the battery is 

charged with a certain number of SOC increments until fully-charged state. In 

between the increments, the relaxation time is inserted to measure OCV value. 

The reverse process is true for decreasing FORC. Before decreasing FORC, the 

battery is being charged from fully-discharged state to target SOC level. In 

decreasing FORC, the battery is being discharged with a certain number of SOC 

decrements until the fully discharged state. In between the decrements, the 

relaxation time is inserted to measure OCV value. An example of one increasing 

FORC is shown in Figure 4-10 (for the battery voltage profile) and Figure 4-11 

(for the SOC profile). All increasing and decreasing FORCs are within major 

curves (major charge OCV and major discharge OCV curve) as shown in Figure 

4-12 and Figure 4-13, respectively. Figure 4-12 shows selective increasing FORCs 

of cell #4. For example, the increasing FORC #4 in Figure 4-12 is obtained from 

fully-charged battery (100% SOC) to 86% SOC, then the battery is charged with 2% 

SOC increment to 100% SOC. After each increment of 2% SOC, relaxation time 

is inserted to measure OCV value. For the increasing FORC #4, OCV values at 
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88%, 90%, …, 100% SOC are recorded. Figure 4-13 shows selective decreasing 

FORCs of cell #4.  

 

Figure 4-10: Example of an increasing FORC voltage profile. From fully-charged state, 
battery is discharged to 80% SOC then it has 2% SOC step charge until it reached 100% 

SOC 

 

Figure 4-11: Corresponding SOC profile of Figure 4-10 
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Figure 4-12: Selective increasing FORCs of cell #4 in the training 

 

Figure 4-13: Selective decreasing FORCs of cell #4 in the training 
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Table 4-1: Detailed FORC for training 

FORC set Detailed SOC (%) 
Increasing 
FORC #1 

94-96-98-100 

Increasing 
FORC #2 

92-94-96-98-100 

Increasing 
FORC #3 

90-92-94-96-98-100 

… … 
Increasing 
FORC #45 

6-8-10-…-96-98-100 

Increasing 
FORC #46 

4-6-8-10-…-96-98-100 

Increasing 
FORC #47 

2-4-6-8-10-…-96-98-100 

Decreasing 
FORC #1 

6-4-2-0 

Decreasing 
FORC #2 

8-6-4-2-0 

Decreasing 
FORC #3 

10-8-6-4-2-0 

... … 
Decreasing 
FORC #45 

94-92-90-…-10-8-6-4-2-0 

Decreasing 
FORC #46 

96-94-92-90-…-10-8-6-4-2-0 

Decreasing 
FORC #47 

98-96-94-92-90-…-10-8-6-4-2-0 

Table 4-2: Test procedure for validation 

Test name Cell 
id 

Details 

Constant 
current 
discharge 

#4 Discharge at 2C rate from 100% SOC to 0% SOC 
continuously 

Pulse 
discharge 

#4 Discharge at 2C rate from 100% SOC to 0% SOC with 2 
hours’ rest for every 5% SOC decrement 

Dynamic test #4 Discharge and charge at a various rate as shown in Figure 
4-14.  After each dynamic test, the battery is reduced by 
14% SOC. The dynamic test is repeated five times from 
84% SOC to 20% SOC with 15 minutes’ rest in between. 

 
Constant current discharge, pulse discharge, and dynamic test procedure are 

used to validate the model. The detail of tests is presented in Table 4-2. 
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Figure 4-14: Current profile of dynamic test 

 

4.4.2  Discrete Preisach model parameterization 

As mentioned in the earlier section, the identification of DPM requires 

regression technique to obtain the optimal weight. In this section, the regression 

technique, parameterization process, and output comparison between DPM-1 and 

DPM-2 are presented. 

The parameterization process of the model is described systematically in 

Figure 4-15. Training data used for parameterization is described in Table 4-1, 

OCV data are used as the desired output of the model and SOC data are used as an 

input to the model. Using equation (9) for DPM-1 and equation (16) for DPM-2, 

hysteron state in the entire plane can be calculated based on the input SOC data. 

Hysteron state together with OCV data are then regressed using regularized least 

square (RLS) to calculate an optimal weight for each hysteron in the plane. 

In the parameterization, RLS regression is chosen over the least square 

technique. This is under consideration that RLS has the capability to prevent any 

overfitting during identification [123], hence it can improve the generalizability of 

the model. RLS is implemented using Lasso algorithm. In Lasso algorithm, the 

dimension of the model may be reduced after regression process due to 
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elimination on some redundant parameters in the model [124]. The formulation of 

Lasso algorithm in RLS is as the following 

 
0
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0

,
1 1

1
min ( )
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i i j

i j

y x
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 (17) 
, where N is the number of measured data, yi is the response at observation i, xi is 

data with a vector of p values at observation i, λ is a positive regularization 

parameter, parameters β0 and β are scalar and p-vector respectively. From equation 

(17), the difference between RLS based on Lasso algorithm and the least square lies 

on the additional penalty term on the RLS objective function. 

 

Figure 4-15: Weight parameterization process 

For comparison purpose, the mean and maximum errors of training data on 

both models are tabulated in Table 4-3. The results show DPM-2 outperforms 

DPM-1 consistently at different total hysteron defined in the model. It is within 

our expectation as hysteron state calculation of DPM-2 has higher resolution than 

DPM-1. Figure 4-16 illustrates simulated OCV on a major charge-discharge curve 

and minor curves from both DPM-1 and DPM-2 with a total number of hysteron 

of 1275. From the observation, the output OCV of DPM-1 has staircase-like 

structure, whereas the output OCV of DPM-2 has a smooth curve. The 

staircase-like structure is the result of hysteron state in DPM-1 only taking value 

either 0 or 1, whereas, in DPM-2, it can take any value between 0 and 1. Hence, 

DPM is implemented based on DPM-2. From the parameterization result, it is 
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found out that weight of DPM consisting both positive and negative value. As the 

variation of weight is big, the obtained logarithm of absolute value of DPM-2 

weight with 1275 hysteron is shown in Figure 4-17 instead. 

Table 4-3: Comparison of mean and maximum error on training data set produced by DPM 
and DPM-2. Notation: ‘m’ refers to the number of hysteron on the side of Preisach plane as 
shown in Figure 4-9 in Section 4.3.2, ‘Nh’ refers to a total number of hysteron defined in the 

plane and ‘n’ refers to the total remaining number of hysteron after parameterization. 

m 
Nh 

 
DPM DPM-2 

mean maximum n mean maximum n 

20 210 0.0274 0.5723 140 0.0173 0.3362 78 

30 465 0.0240 0.5170 247 0.0167 0.3245 79 

40 820 0.0189 0.5465 377 0.0155 0.2895 70 

50 1275 0.0183 0.4229 528 0.0097 0.2753 284 

60 1830 0.0170 0.4203 610 0.0096 0.2332 549 

70 2485 0.0162 0.4199 667 0.0094 0.2270 753 

 

Figure 4-16: Comparison between DPM-1 and DPM-2 simulated OCV on selective training 
data. 
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Figure 4-17: Logarithm of absolute value of DPM weight distribution across the plane. 

4.5 Result and discussion 

In this section, the DPM (or more specifically, DPM-2 type) replaces the 

OCV model based on the look-up table in the battery model developed in Chapter 

3. The OCV model used in Chapter 3 is limited to model the behaviour of OCV 

during continuous charge and discharge (major hysteresis curve). The OCV model 

assumed that there was no transition happening in the OCV, but, this is not true in 

the real case. From observation in Figure 4-12 and Figure 4-13, it is clear that 

OCV does not only exist on the major hysteresis curve but also exist inside major 

hysteresis curve, which also known as the minor hysteresis curve. Hence, the 

DPM can take into account both the major and minor hysteresis curve. With the 

introduction of the DPM as OCV model, the accuracy of the battery model is 

expected to increase. 

Comparison between battery model developed in Chapter 3 and battery 

model with the DPM on constant current discharge, discharge pulse, and dynamic 

test are presented in Figure 4-18, Figure 4-19 and Figure 4-20, respectively. The 

zoom-in of Figure 4-20 is presented in Figure 4-21. The simulation errors are 

tabulated in the Table 4-4. The statistics results show battery model developed in 
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Chapter 3 outperform battery model with the DPM on constant current discharge 

and pulse discharge test, whereas, on the dynamic test, battery model with the 

DPM outperforms the battery model developed in Chapter 3. Depending on the 

application on which the battery model is going to be implemented, introduction 

of DPM can improve the accuracy of overall battery model. In hybrid electric 

vehicle application, DPM in the battery model will be beneficial as BESS is 

expected to have similar load and regeneration profile as in the dynamic test. 

Both battery models have exactly same battery overpotential due to the 

same battery parameters e.g. Ri, R1, R2, C1, and C2. Thereby, the only difference 

lies on OCV modelling. In both constant current and pulse discharge tests, the cell 

is consistently discharged throughout the tests. In both tests, there is no OCV 

transition in the battery and OCV will keep following major discharge OCV curve 

throughout both tests. OCV model developed in Chapter 3 is based on the major 

OCV curve, thereby, it can simulate OCV well in both tests. Unlike the OCV 

model in Chapter 3, DPM is used to simulate both major and minor OCV under 

one general model. Thus, it may lose some accuracy in major OCV, especially in 

high and low SOC region. On the other hand, in the dynamic test procedure, the 

cell is not consistently discharged or charged throughout the test as shown in 

Figure 4-14. Thus, OCV transition exists in the test. The existence of OCV 

transition in the dynamic test explains why battery model with the DPM 

outperforms the battery model developed in Chapter 3. Comparison between both 

models’ simulated OCV is presented in Figure 4-22. 



 
Chapter 4: Hysteresis Modelling 

105 
 

 

Figure 4-18: Comparison between battery model simulation and battery model with DPM 
simulation on constant current discharge test procedure 

 

Figure 4-19: Comparison between battery model simulation and battery model with DPM 
simulation on pulse discharge test procedure 
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Figure 4-20: Comparison between battery model simulation and battery model with DPM 
simulation on dynamics test procedure 

 

Figure 4-21: Zoom-in of Figure 4-19 
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Figure 4-22: Comparison between battery model OCV simulation and battery model with 
DPM OCV simulation on Figure 4-19 

 

Table 4-4: Tabulated statistic error of the simulation results 

  

Constant current 
test procedure 

Pulse discharge 
test procedure 

Dynamic test 
procedure 

mean max mean max mean max 

Battery model 
developed in 

Chapter 3  
mV 8.3 403 3 358 9 25 

Battery model 
with DPM 

mV 12 443 4.4 397 4 22 

4.6 Summary 

In this chapter, hysteresis model of OCV in LFP battery has been developed 

based on DPM. Possible origin of hysteresis in OCV was reviewed. In the 

implementation, DPM has been selected over CPM due to its practicality of the 

DPM’s weight calculation. The weight of DPM was obtained through regularized 

least square on a specifically designed test procedure. The test procedure was 

based on FORC tests which allow the model to be trained on both major and 

minor hysteresis curve. 
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Based on the definition of hysteron in DPM, we discussed two different 

types of DPM. DPM-1 defines hysteron as a point in Preisach plane, whereas 

DPM-2 defines hysteron as an area in the plane. Both types only define one 

weight per hysteron. We have compared the accuracy of both types. Compared to 

DPM-1, DPM-2 has higher accuracy with lower number of hysteron remained 

after parameterization; consequently, lower number of parameters is required in 

DPM-2. Hence, in this study, DPM was implemented based on DPM-2 type. We 

also tried a different number of hysteron, and we found out 1275 hysteron has 

produced the best trade-off between the number of hysterons defined and the 

accuracy. 

Finally, DPM was incorporated into SOEC model in Chapter 3 to improve 

the OCV model for LFP battery, especially on the minor OCV transition. 

Although the simulation result shows less accuracy on constant current discharge 

and pulse discharge test, it also demonstrates improved accuracy in the dynamic 

test which is more relevant in specific applications (such as HEV or BESS in 

power system). 
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Chapter 5 State-of-Charge (SOC) 

Estimation 

5.1 Introduction 

State-of-Charge (SOC) is the percentage of remaining usable capacity in the 

battery. The SOC information is useful to predict how long the battery can 

discharge before it enters the fully discharged state. The fully-discharged state is 

defined when the terminal voltage of battery reaches the cut-off voltage. 

Depending on the chemistry of the cells, the cut-off voltage varies in a manner as 

shown in Chapter 2. SOC is also used as one of the input in Battery Management 

System (BMS) to control charge/discharge of the battery system, perform 

estimation on remaining running time, and monitor whether the battery system in 

the safety operating region. 

As discussed in literature review Section 2.3, there are three broad 

categories of SOC estimation, namely coulomb counting, direct measurement, and 

model-based method. In this chapter, the design of SOC estimation based on 

model-based method will be focussed on, more specifically, Extended Kalman 

Filter (EKF) method. EKF method is a variant of KF method. In a comparison 

with the other KF variants, EKF method has less complicated computation and 

produces good estimation results. 

Battery model developed in Chapter 3 and the OCV model that considers 

hysteresis discussed in Chapter 4 are integrated with the EKF method. SOC and 

polarization potentials at RC branch are used as the ‘states’ in the method. Effect 

of aging on parameter and presence of hysteresis in OCV will be discussed as 

well. 
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5.2 SOC estimation design 

5.2.1 Kalman filter 

KF based estimation solves both state prediction (a.k.a. process model) and 

state correction (a.k.a. measurement model) for unknown states in linear dynamic 

system recursively. State prediction and state correction of linear dynamic system 

with discrete-time state-space representation are defined as follow: 

 

k k-1 k-1 k-1 k-1 k-1

k k k k

x  = A x  + B u + ω
y  = C x + v  (18) 

where xk and xk-1 are the state of the system at time k and k-1, respectively; uk-1 is 

an input to the system at time k-1; yk is measurement model at time k; Ak and Ak-1 

are state transition matrix of the system model at time k and k-1, respectively; Bk-1 

is input matrix at time k-1; Ck is measurement matrix at time k; and ωk-1 and vk are 

process at time k-1 and measurement noise at time k, respectively. Both the 

process and the measurement errors are assumed to be additive, white, and 

Gaussian with zero mean and uncorrelated. 

The ‘state’ is a variable that can represent the dynamical behaviour of the 

system at any given time. Typically, the state cannot be measured [125]. Thus, 

estimation of the state is necessary. In the beginning, the initial state estimate 

values 0x̂  and initial estimate covariance error P0 are assumed. It is then 

propagated to next time step by the state model. This process is known as a state 

prediction process. The propagated state estimate and its error covariance are 

named as prior state estimate and prior estimate error covariance, respectively. 

Prior state estimate and prior estimate error covariance at step k are denoted as 

ˆ
k

x
  and k

P
 , respectively. When new measurement or observation zk arrives at 

step k, the prior state is then corrected by Kalman gain Kk and the difference 

between the measurement and the output of measurement model. The process is 

known as the state correction. The corrected state estimate and its error covariance 

are named as posterior state estimate ˆ
k

x  and posterior estimate error covariance 

k
P . State prediction and state correction process run recursively. The recursive 



 
Chapter 5: State-of-charge (SOC) estimation 

111 
 

nature avoids the requirement of storing all past state values and it leads to 

efficient computation. Figure 5-1 below shows the step involved in KF in a 

systematic manner. 

 

 

Figure 5-1: Kalman filter schematic 

 

5.2.2 Extended Kalman filter 

EKF is an extension of KF to deal with the nonlinear dynamic system. EKF 

performs an approximation of nonlinear process model and/or nonlinear 

measurement model, through linearization around the estimated state at each time 

step. The nonlinear dynamic system is described in state-space representation as 

follows: 

 
k k-1 k-1 k-1

k k k k

x  = f(x ,u ) + ω
y  = h(x ,u ) + v

  (19) 

where, xk, xk-1, uk, uk-1, yk, ωk and vk have the same definition as an equation (18); 

f(.) and h(.) are nonlinear state transition matrix and measurement matrix, 

respectively. 

The principle of EKF is similar with KF. However, f(xk-1,uk-1) and h(xk,uk) 

are linearized around the estimated state at each time step, based on the first-order 

    Initialization 

    0 0
ˆ ,x P

 

 

                State Prediction              State Correction 

         State model      Kalman gain 

        k-1 k-1 k-1 k-1
ˆ ˆx  = A x +B u

k



      
- T - T -1

k k k k k kK =P C (C P C +R)
  

         Error covariance prediction    State update 

        
- T
k k k-1 kP = A P A +Q

       
- -

k k k k k
ˆ ˆ ˆx =x +K(z -C x )

  

        Error covariance correction 

        
-

k k k kP =(I-K C )P
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Taylor series expansion. The linearized f(xk-1,uk-1) and h(xk,uk) are represented as 

Fk and Hk, respectively. Fk and Hk are expressed mathematically as: 

 
-
k-1

-
k

k-1 k-1ˆx=x

k kˆx=x

F  = f(x,u)/ x | + ω

H  = h(x,u)/ x |  + v

 

 
  (20) 

Figure 5-2 below shows the step involved in EKF based estimation 

systematically. 

 

Figure 5-2: Extended Kalman filter schematic 

5.2.3 State-space representation for SOC estimation 

In SOC estimation, state model consists of coulomb counting method and 

potential of two RC networks of the equivalent circuit model. The measurement 

model is based on battery terminal voltage. Both state and measurement model are 

described in the equation (21) and (22), respectively. 

 

State model 

SOC(k+1) 1 0 0 SOC(k)

U1(k+1) = 0 exp(-T/R1C1) 0 . U1(k) +

U2(k+1) 0 0 exp(-T/R2C2) U2(k)

T/Cap

R1(1-exp(-T/R1C1) .I

R2(1-exp(-T/R2C2)

     
     
     
     
     
 
 
 
 
 

 (21) 

    Initialization 
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ˆ ,x P
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        k-1 k-1 k-1 k-1
ˆ ˆx  = F x +B u

k



      
- T - T -1

k k k k k kK =P H (H P H +R)
  

         Error covariance prediction    State update 

        
- T
k k-1 k-1 k-1P = F P F +Q

       
-

k k k k
ˆ ˆ ˆx =x +K(z - h(x ,u ))

k



  

        Error covariance correction 

        
-

k k k kP =(I-K H )P
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Measurement Model 

 V(k)=OCV(SOC(k))+ U1(k)+ U2(k)+ Ri.I(k)   (22) 
 

 k

1 0 0

F  = 0 exp(-T/R1C1) 0

0 0 exp(-T/R2C2)

 
 
 
  

 (23) 

 

  

 ,  kH = dOCV/dSOC 1 1   (24) 

where [SOC(k+1) U1(k+1) U2(k+1)] is state estimate matrix of SOC and 

potential at RC networks at step k+1; R1, R2, Ri, C1, C2, Cap, and I have the 

same definition as in the equation (1); T is time step; and OCV(SOC) is open 

circuit voltage representing as a nonlinear function of SOC. 

5.3 Experimental description 

The experimental set-up is the same as described in Chapter 3. The test 

procedures are based on the HPPC and constant current discharge tests. Table 5-1 

describes the details of test procedures and its operating condition. 

Table 5-1: Test procedures and its operating conditions 

Test no. Cell id Test procedure Operating condition 

5-1 #4 Constant current discharge test 

of 2C rate 

Lightly cycled and 

operated at 25oC 

5-2 #4 Pulse discharge test of 2C rate 

with 5% SOC pulse width. 

Lightly cycled and 

operated at 25oC 

5-3 #1 HPPC discharge test of 1C rate 

with 10% SOC pulse width. 

At 3000 cycle and 25oC 

5-4 #4 HPPC discharge test of 1C rate 

with 5% SOC pulse width. 

Lightly cycled and 

operated at 25oC 
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5.4 Results and discussion 

In this section, we will present and discuss the SOC estimation based on 

SOEC model (developed in Chapter 3) and EKF method (described in the 

previous section). We initialize the following matrices for this study: error 

covariance matrix, , noise 
0 0 0

P = 0 0 0

0 0 0

 
 
 
  

 covariance matrix, and 

0.003 0 0

Q = 0 0.004 0

0 0 0.004

 
 
 
  

 noise covariance matrix, R =0.001. 

In test no. 5-1 (please refer to Table 5-1 for the details), the EKF is 

initialized with the right SOC value, SOC 100 %. Comparison between the 

reference SOC value and the estimated SOC is shown in Figure 5-3. The reference 

SOC is provided by the CTS as described in Section 3.3.1. From our observation 

of the estimation error (the difference between SOC reference and SOC estimation) 

on the Figure 5-4, the maximum error is 2.8 %. The maximum error occurs at low 

SOC region (SOC <10%) where battery model produces a high error in voltage 

simulation as shown in Figure 5-5. It is worth noting that despite of model’s 

inaccuracy at low SOC region (the error is in order of hundreds of mV), the error 

in SOC estimation is still less than 5%. It is accounted for the low value of 

sensitivity matrix, H. The H matrix is directly related to dOCV/dSOC as described 

in the equation (24). At low SOC range, dOCV/dSOC is high as shown in Figure 

5-6. The high value of dOCV/dSOC results in high H matrix and small Kalman 

gain (refer to Kalman gain calculation in Figure 5-2). The Kalman gain is shown 

in Figure 5-7. Therefore, despite of big difference between simulated and 

measured battery voltage, it does not reflect directly to the SOC estimation. 
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Figure 5-3: Comparison of reference SOC and estimated SOC on test 5-1 

 

 

Figure 5-4: Estimated SOC error on test 5-1 
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Figure 5-5: Comparison between measured and simulated voltage at test 5-1 

 

Figure 5-6: Derivative of OCV vs. SOC 
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Figure 5-7: Kalman gain on SOC at test 5-1 

The SOC estimation of pulse discharge test 5-2 is shown in Figure 5-8. The 

maximum error is 3.6% as shown in Figure 5-9. Similar with previous test 

condition, high SOC error occurs at low SOC region. It is due to a high error in 

the simulated voltage. 

 

Figure 5-8: Comparison of reference SOC and estimated SOC on test 5-2 
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Figure 5-9: Estimated SOC error on test 5-2 

As mentioned in Chapter 2, the advantage of using Kalman filter over 

coulomb counting is its adaptive capability to self-correct its state value against 

inaccurate initial state value and noisy measurement. Wrong initial SOC value is 

purposely set in the estimator to evaluate its robustness. The scenarios are 

presented in Table 5-2. 

Table 5-2: Test scenarios on Kalman filter’s robustness 

Scenario 

No. 

Test no. Initial SOC 

Initialized value True value 

1 5-1 50% 100% 

2 5-2 50% 100% 

 

In the first scenario, the true initial value is 100% SOC, while the EKF is 

incorrectly initialized to 50% SOC. The estimated SOC is able to recover from the 

wrong initial value as shown in Figure 5-10. It takes 296 seconds to have SOC 

error falls below 5% as shown in Figure 5-11. In the second scenario, it is similar 

to the first scenario, except the test plan is pulse discharge test. The estimated 

SOC is able to recover from the wrong initial value as shown in Figure 5-12. 

However, it takes much longer time than the first scenario. It takes roughly 7210 

seconds to have SOC error falls below 5% as shown in Figure 5-13. 
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Figure 5-10: Comparison of reference SOC and estimated SOC on test 5-1 

 

Figure 5-11: Estimated SOC error on test 5-1 
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Figure 5-12: Comparison of reference SOC and estimated SOC on test 5-2 

 

Figure 5-13: Estimated SOC error on test 5-2 
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The sensitivities of the SOC estimation over changing battery parameters, 

such as Ri, R1, R2, C1, C2, and OCV, due to aging are also investigated. Section 

3.5.2 and Section 3.5.3 have shown that battery parameters change as the battery 

ages. In general, Ri, R1, R2, C1, and C2 parameters increase as the battery ages. 

On the other hand, OCV parameter exhibits a decreasing trend. For the purpose of 

investigating the battery parameters effect on SOC estimation, we compare two 

scenarios based on HPPC discharge test after 3000 cycles (refer to test no. 5-3 at 

Table 5-1). In the first scenario, the battery parameters are not dependent on the 

age effect. The parameters’ values are based on the parameterization at 100 cycles 

(refer to Section 3.5.2 and Section 3.5.3 for detailed parameters value). In the 

second scenario, the battery parameters are dependent on the cycle age. The 

parameters’ values are based on parameterization at 3000 cycles (refer to Section 

3.5.2 and Section 3.5.3 for detailed parameters value). Both scenarios are 

initialized with the true SOC, 100% SOC. The SOC estimation is shown in Figure 

5-14, and the associated SOC error is shown in Figure 5-15. The second scenario 

produces better estimation than the first scenario. Thus, age-dependent battery 

parameters can improve the accuracy of the SOC estimation. 

 

Figure 5-14: Comparison of reference SOC and estimated SOC based on constant 
parameters and aged dependent parameter on test 5-3 
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Figure 5-15: Estimated SOC error of Figure 5-14 

 

As discussed in Chapter 4, OCV model that addresses hysteresis effect can 

improve the overall battery model accuracy. DPM is used to model hysteresis in 

OCV. In this section, we will investigate the effect of hysteresis in OCV on SOC 

estimation. For the purpose of the investigation, we consider two scenarios in 

HPPC discharge test (refer to test no. 5-4 in Table 5-1). In the first scenario, the 

model does not recognize hysteresis in OCV. In the second scenario, the model 

takes into account the hysteresis by using DPM. The first scenario takes an 

average value of OCV after charge and discharge to eliminate hysteresis in OCV. 

In other words, there is a one-to-one relationship between OCV and SOC. The 

SOC estimation result on both scenarios is shown in Figure 5-16. The associated 

SOC error in Figure 5-17 indicates that model without hysteresis has poorer 

performance than model with hysteresis. 
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Figure 5-16: Comparison of reference SOC and estimated SOC without hysteresis and with 
hysteresis consideration 

 

Figure 5-17: Estimated SOC error associated with Figure 5-16 

 

5.5 Summary 

In this chapter, the accuracies of battery SOC estimation in SOEC model 

utilizing the proposed parameterization method (in Chapter 3) and the hysteresis 
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modelling (in Chapter 4) are evaluated. For these purposes, the EKF method is 

applied to SOEC model and coulomb counting method. 

The performance and robustness of the SOC estimation method were 

investigated on different test procedure using new battery cell (cell #4 at test no. 

5-1 and test no. 5-2). Good estimation results were obtained in constant current 

discharge test (test no. 5-1) and pulse discharge test (test no. 5-2). An error around 

3.2% is obtained in low SOC region due to the inability of battery model to 

correctly described battery behaviour in this region. Furthermore, the robustness 

of the SOC estimation method can be shown in its capability to self-correct from 

wrong initial value to reference SOC value. 

Using the verified method, we then investigate the influence of aging on the 

SOC estimation using aged battery cell test (cell #1 at test no. 5-3). We compared 

SOC estimation based on battery model with and without the aging effect. In aged 

battery, different battery parameters (obtained using parameterization method in 

Chapter 3) were used. Slight improvement (maximum error difference of 3%) can 

be noticed in the battery model with aging consideration.  

Furthermore, we also investigated the influence of hysteresis on SOC 

estimation accuracy. We compared SOC estimation to the battery model with 

hysteresis consideration (developed in Chapter 4) and without hysteresis 

consideration. The result shows significant maximum error reduction of 7% SOC 

by considering hysteresis in OCV. 



 
Chapter 6: Conclusion & Recommendation for Future Study 

125 
 

Chapter 6            

Conclusions and 

Recommendations 

In this chapter, the conclusion of our research and recommendation of future 

work are presented. 

6.1 Conclusions 

The goal of this research work is to further develop the SOEC model 

parameterization method on LFP battery, improve the hysteresis model of OCV in 

LFP battery based on DPM, and evaluate the extracted battery parameters and the 

hysteresis model on the SOC estimation. The state of the art of lithium-ion battery 

modelling, the hysteresis modelling in battery OCV and SOC estimation have 

been reviewed. The applications of the SOEC model can be implemented in 

real-time control and monitoring applications (e.g. battery charge/discharge 

control, available power estimation and remaining energy/SOC estimation in 

BMS) and system simulation studies (e.g. simulation on battery performance over 

the useful lifetime to optimize battery sizing in the system). The battery model 

and simulation provide a low cost and efficient tool to study, analyse, design and 

optimize any electrical system with battery system as ESS.  

A battery model parameterization method on SOEC model has been 

developed. The method utilized least square technique to fit the simulated result 

with the experimental data. The experiment was conducted on HPPC test. The 

SOEC model parameters, such as Ri, R1, R2, C1, and C2, are obtained through 

the model parameterization, whereas, the OCV is obtained through voltage 

measurement during the rest period of the HPPC test. To validate the accuracy of 
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the extracted parameters, a simulated voltage based on the parameters has been 

compared with the measurement data. From the simulation result, a good match 

between the simulated and the measured voltage can be obtained except at the low 

SOC region. At the low SOC region, the model is not able to describe battery 

behaviour well. However, in a real application, the battery most likely will not be 

operated in this region; thereby the accuracy of the model at the region is not a big 

concern.  

The performance of a battery is known to be dependent on the several 

factors, such as current rate, temperature, and cycle age. As the battery cell ages, 

its capacity and power capability fades. The capacity fade is due to loss of 

cyclable lithium-ion and loss of active material, whereas, power fade is mainly 

because of the growth of SEI layer on the anode which increases the battery 

impedance. Moreover, internal impedance is closely dependent on the kinetic and 

transport mechanism inside the battery, which are positively correlated with 

ambient temperature. At high temperature, it has good kinetic and transport 

mechanism critical for a lower internal impedance. However, high temperature 

can accelerate the ageing process in the long run as it also stimulates the side 

reaction. To investigate the influence of those dependencies on the model 

parameters, the parameterization is conducted under various operating conditions. 

From the observation made on the extracted parameters, R1, R2, C1 and C2 have 

increasing values as the battery cycles. Parameter R1 and R2 have relatively 

smaller values at high temperature than low temperature. Similarly, R1 and R2 at 

high current rate have relatively smaller value than the low current rate. For 

battery OCV, it is significantly dependent on the temperature and the cycle age. 

However, its dependence on the current rate is insignificant. For parameter Ri, it is 

also significantly dependent on temperature. Battery capacity has shown 

significant dependencies on the current rate, temperature, and cycle age. For 

temperature and current rate dependent battery capacity, it was successfully 

modelled by the Peukert formula. For cycling dependent capacity, the piecewise 

function can be utilized for the modelling purpose. The performance of battery 

during the cycle is also dependent on temperature; at high temperature, it has a 

higher rate of capacity fading than at low temperature. Furthermore, the developed 
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model has been extended to simulate cell-to-cell variation of voltage, current, and 

SOC in the pack by connecting the model in series-parallel arrangement. 

In LFP battery, it is known to have flat voltage characteristics and largest 

size of hysteresis among other chemistries. To develop more accurate of battery 

model, we consider hysteresis in battery OCV and develop hysteresis model of 

OCV in LFP battery based on DPM. The DPM has the capability to account not 

only current input SOC, but also its past history. Thus, it is able to model battery 

OCV for both major charge-discharge and minor transition. 

The DPM consists of a finite number of hysteron, which is a basic 

elementary unit of the model. In the hysteron, memory formation of the model 

takes place. To ensure good accuracy, the DPM needs to define a sufficient 

number of hysteron. During the parameterization, we also have tried various 

numbers of hysteron, and it turned out that a total of 1275 hysteron has produced 

the best trade-off between the accuracy and the total number of hysteron defined. 

We also incorporate DPM into the SOEC model in Chapter 3, to improve 

the OCV model for LFP battery. Although the simulation result shows less 

accuracy on constant current discharge and pulse discharge tests, there is also an 

improved accuracy in the dynamic test, later of which is more relevant to specific 

applications (such as HEV or ESS in power system). 

Finally, the battery model is used in SOC estimation based on EKF. EKF 

method is chosen as it is a widely-used method for state estimation, and it proves 

to be robust against measurement and model error. The SOC estimation based on 

EKF has shown to be robust against wrong initialization value. We also 

investigate the aging effect and hysteresis effect on the SOC estimation. For age 

effect, we can obtain a maximum error of 2.1 % with the age effect, and 4.8 % 

without the age effect. For hysteresis effect, we can obtain a maximum error of 2 % 

with hysteresis effect and 9 % without hysteresis effect. 
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6.2 Recommendations 

Based on our research, several recommendations for future work are listed 

below.  

• Design of experiment 

The battery performance is known to be dependent on multiple factors, such 

as current rate, temperature, and cycle age. In this research, we have only looked 

at two factor combinations due to a time constraint. The first combination 

considered both the temperature and current rate factors, whereas, the second 

combination considered both the temperature and cycle age factors. However, the 

combinations are not enough to gain a complete understanding of the battery 

operation and lifetime. Hence, a combination of all factors will be strongly 

recommended. 

• Electro-thermal model 

During battery operation (charge-discharge), it generates heats due to joule 

heating from internal impedance. By working out the energy balance equation, the 

extent of temperature rises during battery operation can be obtained. In this work, 

our battery model only accounts for the ambient temperature, and it omits joule 

heating effect on the battery temperature. As a consequence of considering the 

joule heating effect, a thermal model of battery is required to be coupled with the 

electrical equivalent circuit model, as both the electrical and thermal properties 

are interdependent. 

• Investigation on hysteresis contribution of anode and cathode  

Hysteresis phenomenon can be further investigated on the level 

cathode-anode material. The investigation can help to gain better understanding of 

hysteresis in material level. This is especially so as currently, the measured 

hysteresis in OCV is a combination of cathode and anode material. The result 

might help in designing more efficient battery system because hysteresis size 

corresponds to energy losses during charge-discharge. To investigate hysteresis in 

cathode and anode, we could either assemble the half-cell test consisting of 

anode/cathode material pairing with lithium metal, or insert lithium metal as the 

reference in the battery cell. 
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• State-of-Health (SOH) 

State estimation of the battery is very crucial in BMS application. In a 

battery, there are two important states, namely, SOC and SOH. In this work, we 

have already presented SOC estimation. SOH estimation, however, has not yet 

being discussed due to time limitation. Information about SOC is crucial to 

provide remaining operating time of battery before the energy of the battery is too 

low for supplying power. On the other hand, information of SOH is crucial to 

decide whether or not the battery is still able to perform its designed duty or 

required replacement.
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Appendix A 

Lithium-Ion Battery Technology Review 
 

• Lithium Cobalt Oxide (LCO) 

 

Lithium Cobalt Oxide (LCO) is the first commercial lithium-ion battery 

which introduced in 1991. The cathode material has a layered structure (as shown 

in Figure A-1). It has a theoretical high specific capacity (274mAh/g) [7]. 

However, the main drawbacks of LCO are low thermal stability, short cycled life, 

limited specific power (charge and discharge current rate typically is less than its 

C-rating), and high material cost (Cobalt material is expensive) [7].  

 

Figure A - 1: Schematic diagram of the layered-structure [126] 

 
• Lithium Manganese Oxide (LMO) 

 

The LMO cathode has a spinel structure (as shown in Figure A-2). The 

structure has more degree of freedom for the ion to flow through than the 

layered-structure, which leads to a lower internal resistance and high specific 

power. Another advantage is a better thermal stability than LCO battery and the 

low cost of material. However, it suffers in limited cycle and calendar life due to 

electrolyte decomposition [127]and manganese dissolution [128]. Furthermore, it 

also has a lower theoretical specific energy than LCO. 
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Figure A - 2: Crystal structure of spinel [126] 

 
• Lithium Iron Phosphate (LFP) 

 

The LFP cathode has an olivine structure, as shown in Figure A-3. It has a 

unique flat voltage profile due to the existence of two phases (LiFePO4 and FePO4) 

during charge/discharge. The key advantages are high current rating, long cycle 

life, very good thermal stability, and very good safety. However, the 

disadvantages are low nominal voltage (3.3V) and low theoretical specific 

capacity (170mAh/g)[9]. The very good thermal stability and safety are 

contributed to its lower heat generation and no oxygen release due to strong 

covalent bond in PO4
-3[129].  

 

 

Figure A - 3: Crystal structure of LFP Olivine [126] 

 
• Lithium Nickel Manganese Cobalt Oxide (NMC) 

 

The NMC contains nickel, manganese and cobalt materials. It has a layer 

crystal structure. The combination of different materials intends to achieve an 
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improved thermal and structural stability, and an increase of the specific capacity 

[130]. Nickel has known for its high specific energy but relatively poor thermal 

stability [131]. Manganese, in contrast to Nickel, has low specific energy; but it 

also has a low internal resistance and good thermal stability [131]. Cobalt is 

essential to stabilize the layered-structure [131]. The NMC battery has a high 

theoretical specific capacity (280mAh/g), high nominal voltage and good cycle 

life[7]. The practical specific capacity for both NMC and LFP battery are almost 

same. However, the theoretical specific capacity of NMC battery is higher than 

LFP battery. Its safety is relatively lower than LFP battery, but higher than LCO 

battery[132]. Also, its cost is still higher than LFP battery. 

 
• Lithium Nickel Cobalt Aluminium Oxide (NCA) 

 

The NCA offers high specific energy (200mAh/g and 279mAh/g for 

practical and theoretical specific capacity, respectively), high specific power, and 

a long cycle lifespan[7], [9]. However, it has low safety (similar level of safety as 

LCO battery) [132] and high cost. The NCA battery has a layer crystal structure. 

For NCA battery, the substituent element of Aluminium is used to increase the 

electrode thermal stability and its cycling lifetime [9]. However, the substitution 

reduces the electrode capacity. 

 
• Lithium Titanate (LTO) 

 

The LTO battery refers to lithium-ion battery with lithium titanate as anode 

material (replacing the graphite as anode material). The LTO (anode material) has 

a spinel structure. The LTO battery has a lower nominal cell voltage (around 2.4V 

if cathode is NMC [133]) than other lithium-ion battery with graphite (anode 

material). The key benefits of LTO are high current rating, long lifespan, excellent 

safety, and excellent low-temperature discharge [133]. The disadvantage is 

expensive material and low specific energy. 

The lithiation voltage (voltage during lithium insertion) of LTO (1.55V [7]) 

is higher than graphite (0.07-0.19V[7]). As a consequence of its high operating 

voltage, LTO does not have SEI layer formation on its surface during charging 

[134] and does not have lithium plating during charging at negative temperature 
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unlike in graphite. The LTO is also known for zero strain lithium insertion 

material [7] due to its small volume change during cycling which leads to long 

lifespan. 

 
• Lithium Tin Alloy (LiSn) and Lithium Silicon Alloy (LiSi) 

 

The Lithium Alloy (e.g. Lithium Tin Alloy and Lithium Silicon Alloy) has a 

much higher specific capacity than the current existing intercalation host based 

anode material (e.g. carbonaceous anode and Lithium Titanate Oxide). Theoretical 

specific capacity of LiSn and LiSi are 990 mAh/g [135] and 4000 mAh/g [135], 

respectively. They are also abundant in nature and environmentally friendly. 

However, the major drawback is that it is still unstable during cycling. The 

instability is due to a large volume change in the material during cycling which 

induces mechanical stress, and subsequently leads to microstructural cracks and 

loss of electric contact[7], [126]. 

The lithiation voltage of Lithium Tin Alloy and Lithium Silicon Alloy are 

0.4-0.69V and 0.05-0.21V [7]. Due to anode voltage below 1V, the SEI layer is 

formed on the silicon and tin alloy anode [130]. However, due to large volume 

change, the formed SEI during lithiation is not stable. It even disintegrates during 

delithiation. The repeated process of SEI formation and disintegration cause the 

capacity reduced significantly (as lithium is consumed during SEI formation)[7], 

[126]. 
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Appendix B 

Battery Datasheet 
 

 

Figure B- 1: Battery datasheet 
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Appendix C 

Overview of BaSyTest Battery-Test Software 

The software allows for planning and preparing battery test plan, to control 

the test, for analysing and organization of the tests.  

 
• Structure of database system 

 
Each test is described in the database table. The database table has structure 

as the following: batteries, test plan, test-channel, user, data of test, and grouping 

as shown in Figure C-1.  

 

 

Figure C- 1: Structure of database system[136] 

 

• Program window structure 
 

The head of Basytec program contains three icon panel areas as shown in 

Figure C-2. On the left area, there are icon for opening, saving, printing and 
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clipboard. On the middle area, it contains different main windows of the program, 

such as online screen and test plan, channel database, graph, battery database, and 

test database. On right area, icons to start, pause, and terminate the test can be 

found.  

 

 

Figure C- 2: Head of Basytec program[136] 

 
• Test database  

 

The test database (shown in Figure C-3) contains information of tests, such 

as test name, battery id, test plan, and channel id. The data can be filtered using 

“Adjust filter” button. Other functionalities, such as presenting numerical data, 

presenting graph, exporting the data, and archiving the data, are available in the 

“analyse data” icon panel area. The test plan contains the test procedure 

sequentially. 
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Figure C- 3: Test database[136] 

 

• Battery database 

 
All batteries in test should be registered in battery database as shown in 

Figure C-4. Basytec system requires information of battery, such as capacity, 

nominal voltage, chemistry, maximum voltage and minimum voltage, to be 

inputted.  

Test 
database 

Test 
plan 
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Figure C- 4: Battery database[136] 

• Test plan 

 
A test plan has nine columns as listed in table C-1 below. Example of test 

plan is shown in Figure C-5. The test plan in Figure C-5 has main cycle and sub 

cycle. The main cycle starts with discharge at 0.35A until the voltage drops below 

1V and it reaches the sampling time of 60 seconds. The sub cycle consists of 

charge (charge current of 0.4A until the voltage is above 1.6 and the sampling 

time is 60 seconds), rest for 100 seconds with sampling time of 20 seconds, and 

discharge (discharge current of 0.4A until the voltage is below 1.05V and the 

sampling time is 60 seconds). The main cycle is repeated for three times. For 

every main cycle, the sub cycle is repeated twice.  
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Table C-1: Explanation of test plan’s column[136] 

 
 

 

Figure C- 5: Test plan[136] 

 

• Monitoring and viewing running test 

 
The list of running test is shown in Figure C-6. From each channel, most 
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important data (i.e. state, battery name, test plan, voltage, current, Wh, and time) 

are displayed. 

 

Figure C- 6: List of running test[136] 

 

• Analysing test data 

 
Analysing test data can be done both numerically and graphically. In 

numerical data analysing, the test data is presented in table as shown in Figure 

C-7; whereas, in graphical data analysing, the test data is displayed in graph as 

shown in Figure C-8. 
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Figure C- 7: Numerical data analysing in table representation[136] 

 

 

Figure C- 8: Graphical data analysing[136] 
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Appendix D 

Battery Parameters During Charge 

 

• Charge and discharge capacity 

 

Figure D- 1: Charge and discharge capacity of cell #1 (25oC), cell #2 (15oC), and cell 
#3 (40oC) over life cycle 

  



 
Appendix 

153 
 

• Age and temperature dependence 

 

Figure D- 2: Parameter R1 value of cell #1 at different cycle number 25oC 

 

Figure D- 3: Parameter R2 value of cell #1 at different cycle number 25oC 
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Figure D- 4: Parameter T1 value of cell #1 at different cycle number 25oC 

 

Figure D- 5: Parameter T2 value of cell #1 at different cycle number 25oC 
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Figure D- 6: Parameter R1 value of cell #2 at different cycle number 15oC 

 

Figure D- 7: Parameter R2 value of cell #2 at different cycle number 15oC 
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Figure D- 8: Parameter T1 value of cell #2 at different cycle number 15oC 

 

Figure D- 9: Parameter T2 value of cell #2 at different cycle number 15oC 
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Figure D- 10: Parameter R1 value of cell #3 at different cycle number 40oC 

 

Figure D- 11: Parameter R2 value of cell #3 at different cycle number 40oC 
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Figure D- 12: Parameter T1 value of cell #3 at different cycle number 40oC 

 

Figure D- 13: Parameter T2 value of cell #3 at different cycle number 40oC 
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• Current rate and temperature dependence 

 

Figure D- 14: Parameter R1 value of cell #4 at different current rates and 
temperatures 

 

Figure D- 15: Parameter R2 value of cell #4 at different current rates and 
temperatures 
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Figure D- 16: Parameter T1 value of cell #4 at different current rates and 
temperatures 

 

Figure D- 17: Parameter T2 value of cell #4 at different current rates and 
temperatures 
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