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Abstract— Lithium-ion battery is the core of new plug-in
hybrid-electrical vehicles (PHEV) as well as considered in many
2nd generation hybrid electric vehicles (HEV). In most cases
the lithium-ion battery performance plays an important role for
the energy management of these vehicles as high-rate transient
power source cycling around a relatively fixed state of charge
(SOC). In this paper an averaged electrochemical Lithium-ion
battery model suitable for estimation is presented. The model
is based on an averaged approximated relationship between
(i) the Butler-Volmer current and the solid concentration at
the interface with the electrolyte and (ii) the battery current
and voltage. A 4th order model based extended Kalman filter
(EKF) is then designed and the estimation results are tested in
simulation with the non-averaged model.

I. INTRODUCTION

Micro-macroscopic battery electrochemical modeling is
connected with the hybrid vehicle design, scale-up, optimiza-
tion and control issues of Hybrid-electrical vehicles (HEV),
where the battery plays an important role in this area as
high-rate transient power source. When the batteries operate
in a relative limited range of state of charge, high efficiency,
slow aging and no damaging are expected. As consequence,
the state of charge (SOC) estimation and regulation is one
of the most important and challenging tasks for hybrid and
electrical vehicle control.

Several techniques have been proposed for the SOC esti-
mation, like model based observers or black-box methods (as
an example using fuzzy-logic [12]). The accuracy reached by
these estimations is about 2% [9]. Since the more complete
models are based on electrochemistry laws [4], [15], [18], a
SOC estimation based on these models can improve this pre-
cision. The electrochemical models are generally preferred to
the equivalent circuit or to other kinds of simplified models,
because they also predict the physical cells limitations, which
have a relevant effect in the automotive application, where
the battery suffers very often the stress of very high transient
loads [13].

The importance of Lithium-ion battery has grown in the
past few years. Based on the the third lightest element, this
kind of battery is widely used in the hybrid vehicles, thanks
to its high energy-to-weight ratios, no memory effect and
a slow loss of charge when not in use. As the majority
of advanced battery systems, Lithium-ion batteries employ
porous electrodes in order to increase the active area between
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electrolyte and solid active material, facilitating the electro-
chemical reactions [2], [10], [13], [14]. Unfortunately, such
porosity increases also the model complexity.

Thus, a macroscopic description of the cell is needed. A
micro-macroscopic coupled model meeting this requirement,
with microscopic and interfacial phenomena, as described
in the porous electrode theory, rigorously and systematically
integrated into a macroscopic battery model, can be found in
[16]. In the porous electrode theory, developed by Newman
and Tiedemann [7], the electrode is treated as a superposition
of two continua, namely the electrolytic solution and the
solid matrix. The solid matrix is modeled as a microscopic
sphere, where the solid active material diffuses and reacts on
the spheres surface, as shown in Figure 1.

These models predict the solid concentration profile during
charge and discharge, but, unfortunately, a single point solid
concentration estimation along the electrodes is difficult
to realize with a real-time on-board estimator, due to the
complexity of the model. As a consequence several approxi-
mation are typically introduced between the input and output
of the dynamical system and the battery input and output to
reduce the system order and complexity [2], [8].

In this paper we employ an approximation and present an
extended Kalman filter for SOC estimation. In the following,
a general micro-macroscopic Lithium-ion battery model, as
it is presented in literature, is summarized. Then the model
is simplified in order to make it compatible with a feasible
solid concentration estimation. Finally an Extended Kalman
Filter (EKF) is designed based on the averaged model.
The estimation results are compared with the full micro-
macroscopic model prediction.

II. BATTERY GENERAL FEATURE

A battery is composed of three parts: the two elec-
trodes and the separator. Referring to a porous battery, each
electrode consists of a solid matrix inside an electrolyte
solution, while the separator is just made from the electrolyte
solution. In particular, for a Lithium-ion battery, the negative
electrode, or anode, is composed of carbon, the positive
electrode, or cathode, is a metal oxide and the electrolyte
is a lithium salt in an organic solvent, such as LiPF6, LiBF4

or LiClO4.
The separator is a solid or liquid solution with high

concentration of lithium ion. It conducts the ion but it
is an electronic insulator. At the negative electrode, the
solid active material particles of lithium (LixC6) diffuse to
the electrolyte-solid interface where the chemical reaction
occurs, transferring the lithium ions to the solution and
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Fig. 1. Schematic macroscopic (x-direction) cell model with coupled
microscopic (r-direction) solid diffusion model.

the electrons to the collector [13]. The produced electrolyte
material goes through the solution to the positive electrode,
where, at the interface with solid material, it reacts and
inserts into the metal oxide solid particles.

It’s generally accepted that a microscopic description of
the battery is intractable, due to the complexity of the
interfaces [16]. So, in order to mathematically model the
battery, both macroscopic and microscopic physics have to
be considered.

The resulting equations describe the battery system with
four quantities, i.e. solid and electrolyte concentrations (c s,
ce) and solid and electrolyte potentials (φs, φe). The com-
plete set of equations describing the micro-macroscopic
model is [5], [13]

ie(x) = −κeff−→∇xφe − κeff
D

−→
∇x ln ce (1)

is(x) = −σeff−→∇xφs (2)
−→
∇xie(x) = jLi (3)
−→
∇xis(x) = −jLi (4)

∂εece

∂t
=

−→
∇x

(
Deff

e

−→
∇xce

)
+

1 − t0

F
jLi (5)

∂cs

∂t
=

−→
∇r(Ds

−→
∇cs) (6)

with the Butler-Volmer current density

jLi(x) = asj0

[
exp

(
αaF

RT
η

)
− exp

(
−

αcF

RT
η

)]
(7)

where the overpotential η is obtained as

η = φs − φe − U(cse) (8)

and U is the open circuit voltage, function of the solid
concentration at the electrolyte interface indicated with
cse(x, t) = cs(x, Rs, t). The variables R and F are the

universal gas and the Faraday’s constants and T is the ab-
solute temperature. The open circuit voltage for the negative
electrode, denoted with the subscript n, is calculated using
the empirical correlation introduced in [3]

Un(θn) = 8.0029 + 5.0647θn − 12.578θ0.5
n

− 8.6322× 10−4θ−1
n + 2.1765× 10−5θ3/2

n

− 0.46016 exp[15.0(0.06− θn)]

− 0.55364 exp[−2.4326(θn − 0.92)]

(9)

where θn(x) = cse/canode
s,max is the normalized solid concen-

tration at the anode. For the positive electrode, denoted with
p, the result obtained from [13] has been adopted

Up(θp) = 85.681θ6
p − 357.70θ5

p + 613.89θ4
p

− 555.65θ3
p + 281.06θ2

p − 76.648θp

+ 13.1983− 0.30987 exp
(
5.657θ115

p

) (10)

where θp(x) = cse/ccathode
s,max is the normalized solid con-

centration at the cathode. The coefficient j0 in (7) also
exhibits a modest dependence on the solid and electrolyte
concentration, according to

j0 = (ce)
αa(cs,max − cse)

αa(cse)
αc . (11)

Finally, the cell potential which is typically measured is
computed as

V = φs(x = L) − φs(x = 0) − RfI (12)

where Rf is the film resistance on the electrodes surface. In
Figure 2 the model equations and their boundary conditions
for the x-domain and r-domain are shown. Note that the
temperature spatial and temporal gradients are neglected in
this work. For completeness the battery model parameters
are summarized in Table I and more details on the model
and its parameters can be found in [13], [17].

III. REDUCED ORDER MODEL

For a state space formulation, let the battery current I
be the model input which governs the boundary condi-
tions of (1)-(6) as shown in Fig. 2. For each x-dimension
discretization step, an ODE is obtained. This results in
2Nx different systems (Nx for the anode and Nx for the
cathode), each of (Mr−1)-order, driven by a time-dependent
nonlinear function of the battery input I through the Butler-
Volmer current. The discretized PDE system of (6) at the
l location along the x-dimension forms the l-state cs =
(cs1

, cs2
, ....csMr−1

)T showing explicitly the dependency on
the Butler-Volmer current jLi

l⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ċsq
=

(
q + 1

q

)
α1csq+1

− 2α1csq
+

(
q − 1

q

)
α1csq−1

ċsMr−1
=

(
Mr − 2

Mr−1

)
α1csMr−2

−

(
Mr − 2

Mr − 1

)
α1csMr−1

−

(
Mr

Mr − 1

)
α2j

Li
l

(13)
with q = 1, . . . , Mr − 2, l = 1, . . . , Nx, α1 = Ds/Δ2

r

and α2 = (Fas/Δr)
−1 and jLi

l (cs, I) = Ul(cs, I), where
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TABLE I

BATTERY PARAMETERS.

Parameter Negative electrode Separator Positive electrode

Thickness (cm) δn = 50 × 10−4 δsep = 25.4 × 10−4 δp = 36.4 × 10−4

Particle radius Rs (cm) 1 × 10−4 - 1 × 10−4

Active material volume fraction εs 0.580 - 0.500
Electrolyte phase volume fraction (porosity) εe 0.332 0.5 0.330
Conductivity of solid active material
σ (Ω−1 cm−1) 1 - 0.1

Effective conductivity of solid active material σeff = εsσ - σeff = εsσ

Transference number t0+ 0.363 0.363 0.363
Electrolyte phase ionic conductivity
κ (Ω−1 cm−1) κ = 0.0158ce exp(0.85c1.4

e ) κ = 0.0158ce exp(0.85c1.4
e ) κ = 0.0158ce exp(0.85c1.4

e )

Effective electrolyte phase ionic conductivity κeff = (εe)1.5κ κeff = (εe)1.5κ κeff = (εe)1.5κ

Effective electrolyte phase diffusional conductivity κ
eff
D

= 2RTκeff

F
(t0

+
− 1) κ

eff
D

= 2RTκeff

F
(t0

+
− 1) κ

eff
D

= 2RTκeff

F
(t0

+
− 1)

Electrolyte phase diffusion coefficient
De (cm2 s−1) 2.6 × 10−6 2.6 × 10−6 2.6 × 10−6

Effective electrolyte phase diffusion coefficient D
eff
e = (εe)1.5De D

eff
e = (εe)1.5De D

eff
e = (εe)1.5De

Solid phase diffusion coefficient Ds (cm2 s−1) 2.0 × 10−12 − 3.7 × 10−12

Maximum solid-phase concentration
cs,max (mol cm−3) 16.1 × 10−3 - 23.9 × 10−3

Average electrolyte concentration c̄e (mol cm−3) 1.2 × 10−3 1.2 × 10−3 1.2 × 10−3

Change transfers coefficients αa, αc 0.5,0.5 - 0.5, 0.5
Active surface area per electrode unit volume
as (cm−1) asn = 3εe

Rs
- asp = 3εe

Rs

Electrode plate area, A (cm2) 10452 - 10452
Film resistance at electrode surface, Rf (mΩ) 20 - 20

the dependence on the input of the Butler-Volmer current is
explicitly highlighted. It follows

ċs = Acs + bUl(cs, I) (14)

where A and b can be determined from (13) and the U l

can be considered as a set of Nx parameters, each of them
appearing in one of the respective Nx state-space systems,
and has to be derived from (1)-(6). The output of the system
is the value of the solid concentration on the sphere radius,
that can be rewritten

cse = csM−1
−

α2

α1
Ul(cs, I). (15)

Note that the positive and negative electrode dynamical
systems differ for the constant values and for the input
expression through equations (7)-(10). Furthermore, along
each electrode, as the boundary condition, i.e. the input U l,
depends on x the system output in also function of x.

A model simplification can be achieved by neglecting
the solid concentration distribution along the electrode and
considering the material diffusion inside a representative
solid material particle for each electrode. That introduces an
average value of the solid concentration that can be related
with the definition of battery state of charge. Although this
simplified model results in a heavy loss of information,
it can be useful in control and estimation applications. In
accordance with the mean solid concentration, the spacial
dependence of the Butler-Volmer current is ignoredand a
constant value j̄Li is considered which satisfy the spacial
integral of (3) or (4), giving for the anode (and can be

reproduced accordingly in the cathode)∫ δn

0

jLi(x′)dx′ =
I

A
= j̄Li

n δn (16)

where δn is the anode thickness, as shown in Figure 1. The
battery voltage (12) using (8) can be rewritten as

V (t) = η(L, t) − η(0, t) + (φe(L, t) − φe(0, t))

+ (Up(cse(L, t)) − Un(cse(0, t))) − RfI
(17)

and using the average values at the anode and the cathode
instead of the boundary values the following relation is
obtained

V (t) = η̄p − η̄n +
(
φ̄e,p − φ̄e,n

)
+ (Up(c̄se,p) − Un(c̄se,n)) − RfI.

(18)

Using the microscopic current average values and imposing
the boundary conditions and the continuity at the interfaces,
the solutions of equations (1) - (6) are, for the anode

φe(x) = φe(0) −
I

2Akeff
δnx2 (19)

φs(x) = −
I

Aσeff

(
x −

1

2δnx2

)
(20)

for the separator

φe(x) = φe(0) −
I

2Akeff
δn −

I

Akeff
(x − δn) (21)

and for the cathode

φe(x) = φe(0) −
I

2Akeff
δn −

I

Akeff
δsep+

I

2Akeffδp
(x − δsp)

2 −
I

Akeff
(x − δsp)

(22)
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Fig. 2. Schematic representation of the set of equations and of the
boundary conditions for the potentials and solid concentration. The current I
is assumed to be positive (battery discharge) and provide boundary condition
(boxes with dotted line) and the non-local constraints (boxes with solid line)
governing the Butler-Volmer current density.

φs(x) = φs(L) −
I

Aσeff

(
(x − δsp) −

1

2δn
(x − δsp)

2

)
(23)

where δsep is the separator thickness and δsp = δn + δsep.
The approximate solutions (19)-(22) lead to

φ̄e,p−φ̄e,n = φe(L)−φe(0) = −
I

2Akeff
(δn + 2δsep + δp) .

(24)
Furthermore, considering

j̄Li
n =

I

Aδn
= asj0

[
exp

(
αaF

RT
η̄n)

)
− exp

(
−

αcF

RT
η̄n

)]

j̄Li
p = −

I

Aδp
= asj0

[
exp

(
αaF

RT
η̄p)

)
− exp

(
−

αcF

RT
η̄p

)]

η̄n and η̄p can be estimated as

η̄n =
RT

αaF
ln

(
ξn +

√
ξ2
n + 1

)
(25)

η̄p =
RT

αaF
ln

(
ξp +

√
ξ2
p + 1

)
(26)

where

ξn =
j̄Li
n

2asj0
and ξp =

j̄Li
p

2asj0
. (27)

Finally, the battery voltage (18) can be written as a function
of battery current and of the average solid concentration

V (t) =
RT

αaF
ln

ξn +
√

ξ2
n + 1

ξp +
√

ξ2
p + 1

+ φ̄e,p − φ̄e,n

+ (Up(c̄se,p) − Un(c̄se,n)) − RfI.

(28)
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Fig. 3. Average versus complete battery model: output voltage.
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Fig. 4. Average versus complete battery model: anode and cathode solid
material concentration. The different lines represent the concentration values
along the x-direction.

Figures 3 and 4 demonstrate the performance of the
reduced order model driven by (Mr −1)-order (14) ordinary
equation, comparing the simulated signal with the whole
model given by (14) resolved at Nx locations across the
x-direction during a FreedomCAR test procedure, an U.S.
Department of Energy program for the zero-emission vehicle
and technology research [1]. The test procedures, shown in
the top plot of Figure 3, consists of a 30 A battery discharge
for 18 s, open-circuit relaxation for 32 s, 22.5 A charge for

705



10 s followed by open-circuit relaxation. In particular, Figure
3 shows a good battery voltage prediction, with a maximum
error of 2 mV, while Figure 4 highlights a good agreement
between the distributed value of the solid concentration and
the predicted average. It’s important to note that the averag-
ing procedure for the Butler-Volmer current introduced here,
is equivalent to considering a representative solid material
particle somewhere along the anode and the cathode.

IV. KALMAN FILTER STATE OF CHARGE ESTIMATION

In most cases the battery voltage V is measured, and along
the known input (current demanded) one needs to estimate
the battery SOC. The physical quantity related to the battery
state of charge is the solid concentration at the electrodes.
In order to design a Kalman Filter for the on-line SOC
estimation based on the electrochemical proposed model, a
preliminary observability discussion is required.

Specifically, the average dynamical system describes the
diffusion effects into two solid material particles, one for
the cathode and one for the anode, and allows to com-
pute the solid concentration at the spheres radius, which
represent an average value of the solid concentration along
the electrodes. However the cell voltage (33) depends on
(Up(c̄se,p) − Un(c̄se,n)) making the difference of the open
circuit voltage observable but not necessarily each open
circuit voltage. Indeed, the system that includes both pos-
itive and negative electrode concentration states is weakly
observable (in the linear sense) from the output cell voltage.

It’s possible to find a relation between the anode and
the cathode average solid concentrations which can be used
for the estimation of the negative electrode concentration
based on the positive electrode. As it is shown below, the
positive electrode concentration states are observable from
the output cell voltage. Then the voltage measurement is
used as an output injection to the positive (alone) electrode
concentration observer. This relation can be found starting
from the electrodes capacity and the SOC by introducing the
stoichiometry ratio θ = c̄se

cs,max
. Its reference value, θ100%,

can be defined for each electrode finding the average concen-
tration corresponding to a full charge battery, i.e. 100% of
the state of charge. Thus, the 0% reference stoichiometry can
be derived from θ100% by subtracting the battery capacity Q,
with the appropriate conversion:

θ0% = θ100% −
Q

δ

(
1

AFεcs,max

)
(29)

where δ, ε and cs,max have appropriate values for anode and
cathode. Then, the state of charge of the battery is, with a
good approximation, linearly varying with θ between the two
reference values at 0% and 100%

SOC(t) =
θ − θ0%

θ100% − θ0%
. (30)

Equation (30) allows the SOC estimation using a single
electrode solid concentration. Because the measured battery
voltage depends on both concentrations, the SOC estimation

has to account for both electrodes. The negative electrode
concentration can be computed using (30) as

c̄se,n = cs,max,n(
θn0% +

c̄se,p − θp0%cs,max,p(
θp100% − θp0%

)
cs,max,p

(θn100% − θn0%)

)

(31)

where θn0%, θn100%, θp0% and θp100% are the reference
stoichiometry points for the anode and the cathode.

Hence, introducing the state vector x =
(c̄s,p1, c̄s,p2, ....., c̄s,p(Mr−1))

T , the dynamical system
is

ẋ = Apx(t) + Bpu(t) with u = j̄Li
p and y = V (x, u)

(32)
where the matrices Ap and Bp are obtained from (13) with
reference to the positive electrode. For a linear state-space
formulation, the linearized battery voltage results in an output
matrix C = ∂V/∂x which is a row matrix with zeros in its
first Mr − 2 elements and the last non-zero term being

∂V

∂c̄s,p(Mr−1)
=

∂Up

∂c̄s,p(Mr−1)
−

∂Un

∂c̄se,n

∂c̄se,n

∂c̄s,p(Mr−1)
(33)

due to the fact that the battery potential V is only a function
of the solid concentration at interface. This output matrix C
leads to a strongly observable system (32).

The non linear system observability was also studied. The
(32) leads to a (Mr−1)-dimensional codistribution H of the
observation space H , which imply that the system is strongly
locally observable ∀c̄se,p �= 0 [6], [11].

Based on the average model developed in the previous
section, a Kalman filter can be designed, according to

˙̂x = Apx̂ + Bu + Ke(y − ŷ)

ŷ = V (x̂, u)
(34)

where x̂ and ŷ are respectively the estimate state and output,
V is the output nonlinear function in (28), Ap, Bp are the
matrices describing the dynamical system defined in (32),
C defined in (33) and Ke is the Kalman gain, obtained as
follows

Ke = PCR−1 (35)

where P is the solution of the Riccati equation

Ṗ = ApP + PAT
p − PCR−1CT P + Q

P (0) = P0,
(36)

and Q and R are weight matrices appropriately tuned in order
to minimize the quadratic error on battery voltage. A Matlab
optimization procedure returned Q = 10 × I (where I the
identity matrix) and R = 12.

Figure 5 highlights the filter performance. The 4th order
Kalman filter estimation results are compared with the full
300th order model. The error in the initial condition, close
to 10%, is fully and quickly recovered, showing that the
filter is able to estimate the correct value of the battery state
of charge even if its open loop model prediction was 10%
wrong. The step in current demand results in a step in solid
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Fig. 5. Kalman Filter: solid concentration estimation.
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Fig. 6. Kalman Filter: open circuit voltage estimation.

concentration which is again estimated by the filter, as shown
in a zoom of the same figure.

Furthermore, the reduced order model based Kalman filter
provides also a good estimation for the single electrode open
circuit voltage even though just the open circuit voltage U p−

Un is observable. It is because the measured output V is
not very sensitive to Un, so the correct value of the battery
voltage can be predicted uniquely by the positive electrode
solid concentration, as confirmed by the results shown in
Figure 6.

V. CONCLUSION

An isothermal electrochemical model of the Lithium-ion
battery was used to derive an averaged model coupling
the average microscopic solid material concentration with
the average values of the chemical potentials, electrolyte
concentration and microscopic current density. Finally, an
EKF, based on the average model, was designed for the SOC
estimation. Its performance was analyzed and the excellent
estimation results were shown and discussed.
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