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Abstract—The implementation of an accurate but also 
low computational demanding state-of-health (SOH) 
estimation algorithm represents a key challenge for the 
battery management systems in electric vehicle (EV) 
applications. In this paper, we investigate the suitability 
of the incremental capacity analysis (ICA) technique for 
estimating the capacity fade and subsequently the SOH 
of LMO/NMC-based EV Lithium-ion batteries. Based on 
calendar aging results collected during eleven months of 
testing, we were able to relate the capacity fade of the 
studied batteries to the evolution of four metric points, 
which were obtained using the ICA. Furthermore, the 
accuracy of the proposed models for capacity fade and 
SOH estimation was successfully verified considering 
two different aging conditions. 

Keywords—Lithium-ion Battery, SOH Estimation, Electric 
Vehicle, Incremental Capacity Analysis. 

I. INTRODUCTION  
During long time utilization, the capacity and power 

capability of Lithium-ion (Li-ion) batteries are subjected to 
gradual degradation [1]. Thus, knowledge about the 
batteries’ state-of-health (SOH) becomes critical in practical 
applications (as is the case of electric vehicles - EVs), in 
order to ensure  safe and reliable operation. Depending on 
the requirements of the application, the SOH can be related 
either to the battery capacity or to the battery internal 
resistance/power; for example in the case of an EV battery, 
the SOH is related to the capacity as the user is mainly 
interested in the driving range, which depends on the 
available battery capacity. 

Different methods for Li-ion battery SOH estimation 
have been reported in the literature [2]. According to 
Berecibar et al., the SOH estimation methods can be divided 
into two groups [3]. The first group is using adaptive 
methods such as Kalman filters, neural networks or fuzzy 
logic to calculate the parameters of the Li-ion battery which 
are subjected to degradation. Most of the time, these methods 
are very accurate; nevertheless, they require a lot of 
computational power, which makes them less suitable for 
battery-management-system (BMS) implementation in 
practical applications [3]. The second group of SOH 
estimation methods relies on classical experimental 
techniques such as current pulses, coulomb counting or data 
maps; these methods have low computational demands and 
are suitable for BMS implementation, however, sometimes 
their accuracy is limited [3]. 

The SOH estimation method, which we proposed in this 
paper, belongs to the second group of methods and is based 
on the incremental capacity analysis (ICA) technique. 
Different authors have considered the use of the ICA 
technique for SOH estimation of Li-ion batteries. For 
example, Weng et al., have used the ICA technique in 
combination with support vector regression to estimate the 
SOH of a lithium iron phosphate (LFP)-based battery cell, 
which was subjected to 2300 cycles [4].  For a similar Li-ion 
battery chemistry, Riviere et al. in [5], built an online SOH 
estimator using the ICA technique. In this case, the LFP cells 
were aged using the NEDC driving cycle and considering a 
temperature of 50ºC. Even though the proposed algorithm 
estimates well the battery SOH, the cells using in this work 
are not the most suitable for EV applications. The authors in 
[6] investigated the use of the ICA technique for capacity 
estimation of an LFP-based Li-ion battery which was aged 
using 1800 cycles. In this work, three feature points, 
generated using the ICA technique, were used for battery 
capacity estimation; nevertheless, the model proposed for 
capacity estimation is using the SOC values, which is 
difficult to be accurately measured in real-life applications. 
The suitability of the ICA technique for SOH estimation of 
NMC-based Lithium-ion batteries is demonstrated in [7] by 
Li et al. Similar to the previous cases, the Li-ion batteries are 
aged using cycle aging conditions and no numerical model 
connecting the battery SOH with the features, generated 
using the ICA technique is provided. Berecibar et al., have 
proposed the ICA method for SOH estimation of NMC-
based Li-ion batteries as it can detect various aging 
mechanism [8]. For achieving this purpose, three cells were 
aged at 25ºC considering three different cycle depths and; 
even though aging mechanism characteristic to Li-ion 
batteries, such as loss of lithium inventory or loss of active 
material, have been identified, no model for estimating the 
battery SOH is provided. The ICA technique was applied 
successfully also on Lithium-ion battery packs by 
Kalogiannis et al. [9]; in this work, the authors have 
compared and evaluated the ICA plots obtained at pack and 
cell level for different currents and temperatures.  

Even though good SOH estimation results have been 
reported, in none of the abovementioned works, the ICA 
technique was applied to predict the SOH of Li-ion battery 
tailored for EV applications. Moreover, the developed SOH 
estimation models, if available, are difficult to be applied 
since they are based on other battery parameters, which are 
not directly measurable [6]. Consequently, for proving the 
suitability of the ICA technique for EV batteries’ SOH 
estimation, we have used Li-ion batteries, specially designed 
for EV applications, which were subjected to twelve months 
of calendar aging tests carried out at different conditions. 



The remainder of the paper is organized as follows. The ICA 
technique is introduced in Section II. The experimental set 
up, introducing the Li-ion battery cells use in this work and 
the considered aging tests are presented in Section III. The 
aging results and the proposed method for battery SOH 
estimation based on the ICA technique are introduced in 
Section IV, while conclusions to the work are given in 
Section V. 

II. INCREMENTAL CAPACITY ANALYSIS TECHNIQUE 
The ICA technique was initially used to study the 

electrochemical behavior of Li-ion batteries; more specific, 
ICA can be applied to analyze the lithium intercalation 
process and the corresponding staging phenomenon [10], 
[11]. Consequently, many researchers used this technique to 
determine the aging mechanisms, which cause the gradual 
capacity fade of Li-ion batteries. The ICA technique consists 
in differentiating the battery charging capacity against the 
battery voltage. In the obtained incremental capacity (IC) 
curve, the voltage plateaus of the charging voltage are 
transformed into clearly visible dQ/dV peaks (also referred to 
as IC peaks) [12], [13], as illustrated in Fig. 1. 
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Fig. 1. Capacity (top) and IC (bottom) as a function of the battery voltage 
obatined for a current of 12.6 A (C/5 rate) and temperature of 25ºC. 

It is worth mentioning that in order to apply the ICA 
technique, the charging of the battery should take place with 
as low as possible current since a high current strongly 
influences the reactions in the cells and results into distorted 
or undetectable IC peaks. Furthermore, in order to allow for 
aging analysis and SOH estimation, the capacity 
measurement has to be performed with a consistently current 
and at the same temperature, since the ICA plots are very 
sensitive to the changes in both these parameters (i.e., current 
and temperature), as shown in Fig. 2. For example, a change 
from C/5 to C/2 in the charging current used during the 
capacity measurement can results in 15 % (i.e., 18.4 Ah/V) 
change in the amplitude of the IC peaks. Similarly, a shift in 
the measurement temperature, from 15 to 30 ºC, can results 
in approximatively 20 % (i.e., 26.2 Ah/V) deviation in the 
amplitude of IC peak. 
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Fig. 2. Influence of the charging C-rate at 25ºC (top) and of the 
temperature at 12.6 A (bottom) on the IC plot; the arrows highlight the 
increase on the C-rate (top) and decrease in the temperature (bottom)  

III. EXPERIMENT SET-UP 

A. Tested Battery Cell 
In this research, prismatic Li-ion battery cells with a 

nominal capacity of 63 Ah and a nominal voltage of 3.75 V 
were used (see Fig. 3). The cells are based on a graphite 
anode and a mixture of LMO/NMC at the cathode, 
Furthermore, they are specially designed for EV applications. 
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Fig. 3. LMO/NMC-based battery cell connected to the battery test station 



The voltage range of the battery cell is 3 V – 4.125 V. 
Furthermore, at the beginning of life, the internal resistance 
of the cell, measured at 50% SOC and 25ºC with a 1C-rate 
current (i.e., 63 A), is 1 mΩ. 

B. Aging Conditions and Capacity Measurement 
The performance (i.e., capacity and power) of Li-ion 

batteries are degrading during both cycle and calendar (e.g., 
stand-by) operation. However, there are many applications, 
where calendar aging represents a high percentage of battery 
operation during its life. For example, as it is presented in 
[14], batteries used in EVs spend approximately 90 to 95% 
of their lifetime in stand-by, during which calendar aging 
will occur. Furthermore, as shown by Swierczynski et al. in 
[15], more than 75% of the capacity fade to which a battery 
was subjected during EV operation was due to calendar 
aging. Besides EVs, another application in which batteries 
will degrade due to idling is uninterruptable power systems, 
where the batteries are scarcely used as presented in [16]. 
Thus, we have considered that it is relevant to investigate the 
degradation and to estimate the SOH of Li-ion batteries, 
which are aged under calendar aging conditions. 

In order to consider different calendar aging scenarios, a 
test matrix was developed and the considered LMO/NMC-
based Li-ion batteries were aged at the conditions 
highlighted in Table I. Each month (i.e., 30 days), the aging 
tests were interrupted and a reference performance test 
(RPT) procedure was applied to the cells. Among various 
parameters, the capacity of the battery cells was measured 
during the RPT at a temperature of 25°C. In order to comply 
with the requirements of the ICA technique, which demands 
the capacity measurement with a small C-rate, the capacity 
of the LMO/NMC cells was measured with C/5 (i.e., 12.6 A) 
during both charging and discharging. All the measurements 
were carried out using the Evaluator B battery test station, 
manufactured by FuelCon GmbH, with a voltage and current 
resolution of 0.1mV and 1mA, respectively. During the 
measurement, the data were sampled at each second. 

TABLE I.  CALENDAR AGING CONDITIONS FOR THE LMO/NMC 
BATTERY CELLS 

SOC 
Temperature 

5 ºC 35 ºC 40 ºC 45 ºC 

10 %    X 

50 % X X X X 

90 %    X 

IV. RESULTS 

A. Capacity Fade 
The LMO/NMC-based Li-ion battery cells were aged at 

the calendar conditions presented in Table I for a period of 
11 months. For analyzing the effect of different ageing 
conditions on the battery capacity, the measured capacities 
were normalized to the corresponding values measured at the 
beginning of life (BOL) according to (1). Fig. 4 and Fig. 5 
present the effect on the battery capacity fade of storage 
temperature and storage SOC, respectively. 

 

Capacity [%] = Capacityactual / CapacityBOL · 100% (1) 

Where Capacityactual [Ah] represents the battery actual 
capacity measured during the aging process and CapacityBOL 
[Ah] represents the battery capacity measured at the cells’ 
BOL. 
 

 
Fig. 4. Capacity fade of LMO/NMC-based battery cells measured at 
different temperatures and SOC = 50%. 
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Fig. 5. Capacity fade of LMO/NMC-based battery cells measured at 
different SOCs and T = 45ºC. 

As expected, the increase of the storage temperature 
causes the acceleration of the capacity fade; this behavior is 
especially obvious for the battery cell tested at 45°C, which 
during the seven months of aging tests lost approximately 
23% of its capacity, i.e. double than the battery cell tested at 
40°C. These results are in good agreement with the behavior 
of NMC battery cells, which are reported for example in 
[17]. The influence of the storage SOC on the capacity fade 
of the tested LMO/NMC cells is more complex than the 
influence of the temperature. As it is illustrated in Fig. 4, 
higher capacity fade was obtained for the case when the cells 
were stored at a middle SOC (i.e., 50%) than for the cells 
stored at extreme SOCs (i.e., 10% and 90%). Similar 
behavior was reported by Keil and Jossen in [18] for an 
NCA-based Li-ion battery. 

B. ICA for LMO/NMC cells 
A typical ICA plot for the studied LMO/NMC-based Li-

ion battery cell is presented in Fig. 6. In the figure, six zones 



in the voltage interval of 3.3 V - 4.1 V are highlighted for 
further analysis. These six zones are defined by twelve 
metric points, representing four IC peaks, two IC valleys, 
and their corresponding six voltage values. 
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Fig. 6. ICA curve obtained for a C/5 charge of the LMO/NMC battery 
cells with five zones selected for further analysis. 

The evolution of the ICA curves obtained during the 
calendar aging process for the battery cell tested at 35°C and 
50% SOC is presented in Fig. 7. By analyzing these results, 
obtained after 11 months of aging, a-quasi monotonous 
displacement of the IC peaks and valleys in Zone 1, Zone 2, 
and Zone 4 was observed as illustrated in Fig. 8, Fig. 9, and 
Fig. 10, respectively. The evolutions of the IC peaks in Zone 
3 and Zone 6 are scattered and no consistent aging trends 
were observed. Furthermore, the IC peak corresponding to 
Zone 5 has ceased to be visible after five months of aging. 
Similar behaviors were obtained for the LMO/NMC battery 
cells aged at the other considered conditions. Therefore, the 
following analysis is focused only on the results obtained for 
the LMO/NMC  battery cell aged at 35 ºC and 50% SOC. 
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Fig. 7. Evolution of the ICA curve corresponding to the battery cell aged 
at T=35°C and SOC=50% (the capacity was measured at 25ºC using a 
current of 12.6 A (C/5 rate)). 

 

Fig. 8. Evolution of the IC peak in Zone 1 for the battery cell aged at 
T=35°C and SOC=50%. 

 

Fig. 9. Evolution of the IC valley in Zone 2 for the battery cell aged at 
T=35°C and SOC=50%. 

 

Fig. 10. Evolution of the IC valley in Zone 4 for the battery cell aged at 
T=35°C and SOC=50%. 

C. ICA-based SOH estimation 
The evolution of the peak and valleys and their 

corresponding voltage values, corresponding to Zone 1, Zone 
2, and Zone 4 were further analyzed. Thus, based on (2), (3), 
and (4), we have related the values of the IC peaks and 



valleys and their corresponding voltage levels, obtained 
during aging, to the values, which were obtained at the 
battery cell BOL.  

 

ICpeakevolution [%] = ICpeakactual / ICpeakBOL · 100% -
100%  (2) 

  

ICvalleyevolution [%] = ICvalleyactual / ICvalleyBOL ·100% 
- 100% (3) 

  

Vevolution [%] = Vactual / VBOL · 100% - 100% (4) 

 

Where ICpeakevolution represents the change in the value of the 
IC peak (corresponding to Zone 1) caused by aging, 
ICpeakactual represents the actual value of the IC peak 
measured after each month of aging, and ICpeakBOL 
represents the value of the IC peak at the battery cell’s BOL. 
Analogical definitions are valid for ICvalleyevolution, 
ICvalleyactual, ICvalleyBOL, Vevolution, Vactual, and VBOL. 

The evolution of the investigated IC peak/valley value, 
and their corresponding voltage values,  during calendar 
ageing, at T=35°C and SOC=50%, are presented in Fig. 11 – 
Fig. 16, respectively. 

By analyzing the aging results presented in Fig. 11 – Fig. 
16, it can be observed that the evolution of the IC peak value 
corresponding to Zone 1 (Fig. 11) and the evolution of the 
voltage value corresponding to Zone 2 (Fig. 15), are not 
following consistent trends. Namely, the evolution of the IC 
peak value corresponding to Zone 1 is not monotonous, 
while in the evolution of the voltage value corresponding to 

Zone 2 a sudden decrease after nine months of aging takes 
place.  

After comparing the capacity fade behavior of the 
LMO/NMC battery cell aged at T=35°C and SOC=50%, 
which is presented in Fig. 4, with the evolutions of IC metric 
points (e.g., peaks, valleys, voltage values), presented in Fig. 
12 – Fig. 14 and Fig. 16, similar aging trends have been 
observed. Thus, we have plotted the battery cell capacity 
fade as function of the evolution of the IC metric points, 
which were obtained through the ICA. As presented in Fig. 
17 and Fig. 18, a power-law function (5) fits with high 
accuracy the relationship between the battery capacity fade 
and the evolution of the IC valleys corresponding to Zone 2 
and Zone 4, respectively. Moreover, it was found out that a 
linear relationship (6) exists between the evolution of the 
voltage value corresponding to Zone 1 and Zone 4 and the 
capacity fade of the LMO/NMC battery cells, as shown in 
Fig. 19 and Fig. 20. 

 

Cfade [%] = a · ICvalleyevolution b (5) 

  

Cfade [%] = c · Vevolution (6) 

 

Where Cfade represents the measured capacity fade of the 
LMO/NMC-based Li-ion battery cell, a and b represent the 
coefficient and exponent of the power-law fitting function, 
while c represents the coefficient of the linear fitting 
function. 
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Fig. 11. Evolution during calendar aging of the IC 
peak value corresponding to Zone 1. 

Fig. 12. Evolution during calendar aging of the IC 
valley value corresponding to Zone 2. 

Fig. 13. Evolution during calendar aging of the IC 
valley value corresponding to Zone 4. 
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Fig. 14. Evolution during calendar aging of the 
voltage value corresponding to Zone 1. 

Fig. 15. Evolution during calendar aging of the 
voltage value corresponding to Zone 2. 

Fig. 16. Evolution during calendar aging of the 
voltage value corresponding to Zone 4. 



Based on the results obtained from the fitting processes, 
it can be concluded that the capacity fade of the tested 
battery cells can be estimated most accurately by monitoring 
the evolution of the voltage value corresponding to the Zone 
4, obtained by the ICA technique. In many applications (e.g., 
EVs, renewable energy storage), the capacity fade of the 
battery is directly used to express its SOH. Subsequently, 
based on the results presented in this section, the evolution of 
the voltage value corresponding to Zone 4 represents a very 

accurate and promising alternative to express the SOH of the 
studied LMO/NMC battery cell. Thus, in order to determine 
the battery’s SOH, the lengthy capacity measurement 
(carried out over the entire battery voltage interval) can be 
replaced by a short charge of the battery in the interval 3.95 
V – 4.05 V (the zone where the targeted IC valley appears) 
and the application of the ICA technique. 
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Fig. 17. Relationship between the battery capacity fade based and the IC 
valley evolution, corresponding to Zone 2. 

Fig. 18. Relationship between the battery capacity fade based and the IC 
valley evolution, corresponding to Zone 4. 
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Fig. 19. Relationship between the battery capacity fade based and the 
voltage evolution, corresponding to Zone 1. 

Fig. 20. Relationship between the battery capacity fade based and the 
voltage evolution, corresponding to Zone 4. 

D. Validation 
In order to validate the proposed SOH estimation models, 

the capacity of the considered battery was measured after 12 
months of calendar aging at 35°C and 50% SOC. A 
discharging capacity value of 53.486 Ah, was measured, 
which represents a capacity fade of 12.241 %. Based on this 
capacity measurement, the ICA curve corresponding to 12 
months of calendar aging was derived and is presented in 
Fig. 21.  

In Fig. 21, the values of the metric points, used for SOH 
estimation, are highlighted. Based on these values and 
knowing the values at the battery cell’s BOL, the SOH 

estimation can be performed. The SOH obtained by applying 
the SOH models proposed in Fig. 17 – Fig.  20 are 
summarized in Table II, together with the SOH value 
obtained from the traditional measurements (i.e., 12.241 % 
capacity fade). As one can observe, the proposed models are 
able to estimate with high accuracy the SOH, expressed as a 
function of capacity, of the considered Li-ion battery.  The 
best SOH estimation was obtained using the IC valley from 
Zone 4 metric point, with a 0.367% capacity fade error, and a 
2.99 % normalized root-mean-square error. 
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Fig. 21. ICA curve obtained after 12 months of calendar aging at 35°C and 
50% SOC. 

TABLE II.  SOH ESTIMATION OF LMO/NMC-BASED ELECTRIC 
VEHICLE LITHIUM-ION BATTERY 

SOH metric 
point 

Value at BOL Value after 12 
months 

Estimated 
SOH 

IC valley – Zone 
2 39.38 Ah/V 32.15 Ah/V 13.80 % 

IC valley – Zone 
4 104.1 Ah/V 82.94 Ah/V 11.874 % 

Voltage – Zone 
1 3.526 V 3.56 V 11.686 % 

Voltage – Zone 
4 3.956 4.021 V 11.429% 

Capacity 
Measurement 60.947 Ah 53.486 Ah 12.241 % 

 

Furthermore, the accuracy of the proposed SOH 
estimation models, which were developed for a battery cell 
aged at 35°C and 50% SOC, was evaluated also for the 
battery aged at 40°C and 50% SOC. The capacity fade 
behavior of the battery cell aged at 40°C and 50% SOC is 
presented in Fig. 4 using a red color. The evolution of the 
ICA curves obtained during the aging process at the 
aforementioned conditions is presented in Fig. 22 and the 
location of the SOH metric points are highlighted. 

 

Fig. 22. Evolution of the ICA curve corresponding to the battery cell aged 
at T=40°C and SOC=50% (the capacity was measured at 25ºC using a 
current of 12.6 A (C/5 rate)). 

The evolution during the eleven aging months of the 
values of the four considered metric points (i.e., IC valley – 
Zone 2, IC valley – Zone 4, Voltage – Zone 1, and Voltage – 
Zone 4) were applied to the developed SOH estimation 
models in order to estimate the battery. The obtained SOH 
estimation results, in terms of capacity fade, are presented in 
Fig. 23 and the capacity estimation errors are presented in 
Fig. 24 for all the four metric points. As one can observe, 
three out of four of the proposed SOH estimation models 
(i.e., except the model developed for the IC valley – Zone 2) 
are able to estimate accurately the capacity fade of the 
battery cell, for a different aging condition than the one used 
to parameterize the model. Moreover, it has to be highlighted 
that the error of the capacity fade estimation is below 3%, for 
the first seven months of aging. After seven months of 
calendar aging, a capacity fade of 12.75% was measured, 
which is close to the maximum capacity fade value (i.e., 
12.24 %) obtained for the aging conditions for which the 
SOH estimation models were developed. These results might 
suggest that the calendar aging conditions are less important 
than actual capacity fade value. 

 
Fig. 23. Capacity fade estimation using the proposed SOH estimation 
models; calendar aging conditions: 40°C and 50% SOC. 

 
Fig. 24. Capacity fade estimation error of the proposed SOH estimation 
models; calendar aging conditions: 40°C and 50% SOC. 

V. CONCLUSIONS 
In this paper, it was shown that the ICA technique 

represents a reliable method for estimating the capacity fade, 
and subsequently the SOH of Li-ion batteries. Based on 



results from eleven months of calendar aging test at 35ºC and 
50% SOC, we have been able to relate the capacity fade of 
an LMO/NMC-based EV Li-ion battery to various peaks and 
valleys and their corresponding voltage values, which were 
obtained by applying the ICA technique.  

The IC plot of the studied LMO/NMC-based battery cells 
is described by six different zones, which correspond to 
twelve metric points. Out of the twelve metric points, only 
four, have shown consistent aging trends during calendar 
aging at 35ºC and 50% SOC. By relating the evolution of 
these four metric points to the measured battery capacity 
fade, four SOH estimation models have been developed. The 
accuracy of these models was verified using the capacity 
measurement from the twelve-month of aging. Even though 
all the four models are estimating accurately the battery’s 
capacity fade, the model corresponding to the IC valley from 
Zone 4, which corresponds to a voltage interval between 
3.95V and 4.05V, has returned the best results (i.e., 0.367% 
capacity fade error and 2.99% normalized root-mean-square 
error).  

Furthermore, the developed SOH estimation models were 
also applied to estimate the capacity fade of the battery cell, 
which was aged at 40ºC and 50% SOC. In this case, for three 
out of the four models, capacity fade estimation errors below 
3% were obtained for the first seven months of calendar 
aging; after seven months of calendar aging, a capacity fade 
of 12.75% was measured, which is close to maximum 
capacity fade value (i.e., 12.24 %) obtained for the aging 
conditions (i.e., 35°C and 50% SOC) for which the SOH 
estimation models were developed. Nevertheless, the metric 
point associated with the evolution of the voltage in Zone 4 
estimates very accurately (i.e., 1.7% capacity fade estimation 
error) the battery capacity fade for the entire calendar aging 
period. 

Based on the results obtained from the two verification 
cases, it can be concluded that the metric points 
corresponding to Zone 4 (i.e., IC valley – first verification, 
voltage – second verification) are the most suitable for the 
SOH estimation of the tested Li-ion battery 
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