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Abstract—Lithium-Sulfur (Li-S) batteries are a promising next-
generation technology providing high gravimetric energy den-
sity compared to existing lithium-ion (Li-ion) technologies in the
market. The literature shows that in Li-S, estimation of state of
charge (SoC) is a demanding task, in particular due to a large
flat section in the voltage-SoC curve. This study proposes a new
SoC estimator using an online parameter identification method in
conjunction with a classification technique. This study investigates
a new prototype Li-S cell. Experimental characterization tests are
conducted under various conditions; the duty cycle – intended to
represent a real-world application – is based on an electric city
bus. The characterization results are then used to parameterize
an equivalent-circuit-network (ECN) model, which is then used
to relate real-time parameter estimates derived using a Recursive
Least Squares (RLS) algorithm to state of charge using a Sup-
port Vector Machine (SVM) classifier to estimate an approximate
SoC range. The estimate is used together with a conventional
coulomb-counting technique to achieve continuous SoC estimation
in real-time. It is shown that this method can provide an acceptable
level of accuracy with less than 3% error under realistic driving
conditions.

Index Terms—Lithium-sulfur battery, parameter identification,
state of charge estimation, SVM classifier.

I. INTRODUCTION

B
ATTERY technology is vital for electric vehicles, and for
full parity with internal combustion engines, it is essential

to develop technologies that will decrease battery cost, decrease
the charging time and increase the range of EVs. There are
various strands of research, and one promising technology is
the lithium-sulfur (Li-S) battery. Compared to existing Li-ion
technologies, Li-S batteries can potentially provide higher spe-
cific energy, improved safety, and – when productionized – a
lower unit cost due to the wide availability of sulfur and the lack
of dependence on scarce heavy metals. There are limitations
to be overcome such as poor instantaneous power capabilities,
high self-discharge and short cycle life [1]. These would need
resolution for most mainstream automotive applications and are
the subject of ongoing electrochemical research [2]. In parallel
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with the efforts which are going on by electrochemists to build
new Li-S cells with superior features, control engineers are also
trying to understand particular challenges associated with the
management of Li-S battery technologies to support specialist
niche vehicle applications and so that as electrochemical ad-
vances are made, it is possible to take advantage of them in
more mainstream electric vehicles. Battery management for Li-S
is not directly comparable to that of most Li-ion cells, mainly
due to the Li-S cell’s flat voltage curve versus state-of-charge
(SOC) [3]. This study is focused on development of a new SoC
estimation technique for Li-S battery to be used in an EV, making
use of state-of-the art algorithmic techniques that have not been
applied to Li-S before.

Various battery SoC estimation approaches are described in
the literature [4]–[7]. A good summary of such techniques is
presented in [8] and [9]. One of the well-known methods of
battery SOC estimation is called ‘coulomb-counting’ that works
based on integration of the load current over time. Although
coulomb-counting method is useful in theory, it is not a stand-
alone method in practice. This method requires a good estimate
of the initial SOC and the battery capacity (Ct) which are
not always available [10], [11]. In addition, coulomb-counting
suffers from accumulated measurement errors and it is can
drift away from the correct value of SoC [12], [13]. Other
techniques for battery SoC estimation are look-up tables that
relate battery SoC to its open-circuit-voltage (OCV) curve, and
also proportional-integral (PI) observer method that works based
on a linearized model of the cell [14]. Although, these methods
have been used widely for Li-ion batteries, it is not applicable
for a Li-S cell because of the flat shape of the OCV-SoC curve of
Li-S as explained in [15]. Recursive adaptive filters are another
group of SoC estimation algorithms in the literature which have
been used for automotive application [16]–[19]. Good examples
of such estimators are Kalman filter derivatives and particle
filter estimators [20]–[25]. In addition to these SoC estimation
techniques (which rely solely on models that are characterized
as a priority), another group of estimators work based on online
battery model identification. In these techniques, a model (often
an equivalent-circuit model) is fitted to battery measurement data
in real-time and then the model’s parameters are used for battery
state estimation [26]–[28]. Although there are a number of
studies in the literature in which Li-ion battery models are used
beside a SoC estimator, few similar studies exist for Li-S battery.
Looking at the literature, a first version of Kalman filter-based
SoC estimators have been recently developed for Li-S cells
in [29]–[31]. An alternative body of work has used Adaptive
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Neuro-Fuzzy Inference Systems (ANFIS) [3]. Although both
techniques have been successfully applied for Li-S cell SoC
estimation, there are other techniques that may be more effective,
particularly as the field matures into applications with duty-cycle
aged cells, and it is valuable to understand other techniques that
can be applied. This paper describes a new approach, based on
classification via a Support Vector Machine.

The new technique includes two stages: a real-time parameter
identifier using a Recursive Least Squares (RLS) algorithm, and
the state estimator itself which uses the identified parameters
as inputs to a Support Vector Machine (SVM) which estimates
battery state. This method is a combination of ‘system iden-
tification’ and ‘classification’ techniques. The results are also
combined with coulomb counting, to give continuous estimates.
The RLS algorithm is used for cell model identification as
a quick online technique which has been widely used in the
literature [32], [33]. In the RLS method, the model’s error (i.e.,
a function of the model’s parameters) is minimized using an
iterative procedure [34]. SVM methods have also been widely
used in the literature for modelling, prediction and classification
in different applications since 1998 in a variety of engineering
areas [35], [36]. SVM methods have been used for SoC estima-
tion in other battery types, such as lithium-ion-polymer (LiP)
[37], nickel metal hydride NiMH [38], lithium iron phosphate
(LiFePO4) cell [39], [40] and lithium iron manganese phosphate
(LiFeMnPO4) [41]. In [42] and [43], also an optimized Support
Vector Regression (SVR) model is used to develop a battery SoC
estimator for EV application. Their results have then been com-
pared favorably with those obtained from an Artificial Neural
Network (ANN). In those studies, different inputs to the SVM
have been considered such as current–voltage–temperature and
current–voltage–required-power as the inputs of SVM. These
studies suggest that SVM technique can outperform ANNs and
this is one of the reasons that SVM is chosen and investigated
in this study.

Since the proposed SVM SoC classifier only generates a
discrete cluster number (between 1 and 10 in this case), it cannot
by itself provide a smooth continuous SoC estimate. In order to
have a continuous SoC estimation in real-time, the proposed
model-based classifier is combined with a coulomb-counting
technique. Using such a hybrid system, not only a continuous
SoC estimation is achieved but also the accuracy is improved.
To test the effectiveness, the results are compared with an
after-the-event coulomb counting.

Structure of this article is as follows: in Section II, speci-
fications, characterization test and modelling approach of the
Li-S cell is explained. Section III then contains Li-S cell SoC
classification using SVM based on the identification results.
Finally, combination of coulomb-counting and the proposed
model-based SoC classifier is explained and the results are
evaluated in Section IV.

II. Li-S CELL: SPECIFICATIONS, CHARACTERIZATION

TEST, AND MODELLING

A. Li-S Cell Specifications

The lithium-sulfur cell that is considered in this study is
supplied by OXIS Energy Ltd [44] with the specifications

TABLE I
SPECIFICATIONS OF THE PROTOTYPE Li-S CELL

listed in Table I. It should be noted that the cell is a
prototype with energy density of 290 Wh/kg however, the
final product is expected to have an energy density more than
400 Wh/kg [44].

B. Li-S Cell Characterization Test

The Li-S cell test equipment is shown in Fig. 1. The test
rig includes a power source/sink that applies a desirable current
profile to the cell and measures its terminal voltage, and a thermal
chamber to control the temperature during the test. Two types
of test have been conducted: (i) pulse test, and (ii) drive cycle
test. In both cases, a current profile is programmed to be applied
to the cell and the cell’s terminal voltage is measured as the
output. All tests are started from fully charged state (2.6 V)
and are continued until fully-discharged state (based on cut-off
voltage of 1.9 V). Accordingly, cell parametrization is possible at
different SoC levels. Data is collected in the time domain with
a sampling rate of 1 Hz including time, temperature, current
and terminal voltage. The reason of choosing a relatively low
sampling rate is that an estimator that is designed to work with
1 Hz sampling rate (i.e., the worst-case scenario), also works
with 10 Hz or higher sampling rates.

In the pulse test, consecutive current pulses are applied to the
cell with a ‘relaxation time’ in between. Pulse tests are very com-
mon for cell characterization since the cell model’s parameters
can be observed better comparing to a random current profile. On
the other hand, in the drive cycle test, a more realistic dynamic
current profile is used based on a standard automotive drive
cycle. For this purpose, the EV power demand on the Millbrook
London Transport Bus (MLTB) drive cycle [45], [46] is scaled
and applied to a single cell. Both pulse and MLTB test results
are shown in Fig. 2. Similar to the pulse test where the current
pulse is repeated until battery depletes, the MLTB current profile
is repeated in the MLTB test until depletion of the cell. To have
a clearer view about this, Fig. 2 also presents a zoomed window
including only one MLTB cycle. One difference between the
MLTB and pulse tests is that the MLTB test also includes short
charging in between (negative current in the figure) as well.
This is designed to simulate regenerative braking in such an
application. Generally speaking, pulse tests are useful for model
development and drive cycle tests are more suitable for model
validation.
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Fig. 1. Cell test equipment: (a) thermal chamber, (b) power source-sink, (c) Li-S cell.

The idea behind choosing the electric city bus application for
Li-S cell is its unique advantage (i.e., higher specific energy)
that enables us to store more energy on board to increase the
EV range. An electric city bus is expected to operate during
the day (around 16 hours) and be charged slowly over night in
depot. Comparing to other drive cycles, MLTB contains lots
of idle time and also low speed movement that causes less
energy consumption per cycle. That means lower maximum
power demand and consequently lower discharge rate, which
is ideal for Li-S cell technology.

C. Li-S Cell Modelling Approach

An equivalent-circuit-network (ECN) model is parameterized
using the data obtained from the Li-S cell’s characterization
tests. ECN modelling approach is chosen because of its effec-
tiveness in both accuracy and computational speed [47]–[49]. A
review on different battery modelling approaches is presented in
[47]. In this study, an ECN model, called ‘Thevenin model’ [50],
is used as illustrated in Fig. 3. It consists of a voltage sourceUOC ,
representing the open circuit voltage of the battery, and three
physical components: (i) ohmic resistor RO that corresponds
to the heating losses, (ii) polarization resistor RP and (iii)
polarization capacitor CP . According to the Thevenin model,
dynamic behavior of the battery can be described as follows:

dUp

dt
= −

1
RpCp

Up +
1
Cp

IL (1)

UL = Uoc − Up −R0IL (2)

Where Up is the voltage across the polarization capacitor, and
UL and IL are the terminal voltage and load current respectively.

(2) can be written in frequency domain using Laplace trans-
formation:

s · Up (s) = −

1
RpCp

· Up (s) +
1
Cp

IL (s) (3)

Consequently, Up can be expressed as:

Up (s) =

1
Cp

IL (s)

s+ 1
RpCp

(4)

Substituting Up from (4) into (2), terminal voltage in fre-
quency domain is:

UL (s) = Uoc −

1
Cp

IL (s)

s+ 1
RpCp

−R0IL (s) (5)

To transfer it from continuous-time to discrete-time domain,
the bilinear transform s = 2

T
z−1
z+1 is applied to the above

equation:

UL (z)− Uoc

IL (z)

=
−(TRp+TR0+2R0RpCp)−(TRp+TR0−2R0RpCp)z

−1

T+2RpCp+(T−2RpCp)z−1 (6)

As a result, the terminal voltage at moment k, can be obtained
from the current signal value at moment k and the terminal
voltage and current signals at previous moment k-1 as follows:

UL (k) = θ1 · UL (k − 1) + θ2 · IL (k) + θ3 · IL (k − 1) + θ4

(7)
Where the parameters θ1, θ2, θ3 and θ4 are defined as follows:

θ1 =
2RpCp − T

T + 2RpCp

(8)

θ2 = −

TRp + TR0 + 2R0RpCp

T + 2RpCp

(9)

θ3 = −

TRp + TR0 − 2R0RpCp

T + 2RpCp

(10)

θ4 =
2T

T + 2RpCp

Uoc (11)

(7) can be written in a more standard form for the later use of
identification:

UL (k) = ϕT
· θ (12)

where ϕ = [UL(k − 1); IL(k); IL(k − 1); 1] and θ =
[θ1; θ2; θ3; θ4].
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Fig. 2. Li-S cell test measurements: (a) pulse test, (b) MLTB test.

D. Li-S Cell Model Parameterization Using Forgetting Factor

Recursive Least Square (FFRLS) Algorithm

Because of the application of this study in EVs, it is desirable
to have a simple and quick algorithm suitable for real-time
application. For this reason, Forgetting Factor Recursive Least

Square (FFRLS) identification algorithm [33] is used in this
study to identify parameters of the discrete model presented in
(12). The model has four unknown parameters to be identified:
R0, Rp, Cp and Uoc which are formulated in the parameters
vector θ. According to the FFRLS algorithm, the parameters
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Fig. 3. Thevenin battery model.

vector is updated at each iteration as follows:

θ̂ (k) = θ̂ (k − 1) +K (k) ·
[

UL (k)− ϕT
· θ̂ (k − 1)

]

(13)

Where K is the correction gain obtained from:

K (k) = P (k − 1) · ϕ ·

[

γ + ϕT
· P (k − 1) · ϕ

]

−1
(14)

P (k) =
1
γ

[

I −K (k) · ϕT
]

· P (k − 1) (15)

Where P is the covariance matrix and γ is the forgetting factor,
indicating the effect of historical data on identification. The
forgetting factor that is obtained in this study to achieve the
best identification results is 0.996.

Once θ1 ∼ θ4 are estimated using the above equations, the
original four physical parameters of the Thevenin model (R0 ,
Rp, Cp and Uoc) can be calculated from θ as follows:

R0 =
θ3 − θ2

1 + θ1
(16)

Rp = −2
θ1θ2 + θ3

1 − θ1
2 (17)

Cp =
T (1 + θ1)

2

−4 (θ1θ2 + θ3)
(18)

Uoc =
θ4

1 − θ1
(19)

The FFRLS identification algorithm is applied to the Li-S cell
test data (presented in Section 2.2) to parameterize the Thevenin
model as shown in Fig. 4. For model validation, the terminal
voltage, UL, is compared between the measured value and the
value obtained from the proposed model as illustrated in Fig. 5.
The results demonstrate that the voltage estimations at different
SoC levels are very close to the measurements that proves the
cell model’s accuracy.

III. Li-S CELL STATE-OF-CHARGE (SOC) CLASSIFICATION

A. SoC Classification Concept

As discussed earlier, estimation of SoC of a Li-S cell is more
challenging than the other types of battery mainly because of
its flat voltage curve at low plateau. Consequently, most of
the existing SoC estimation techniques in the literature are not
applicable for Li-S battery [15]. To tackle this issue, a new
framework is used here based on online model parameterization
and SoC classification as presented in Fig. 6. As mentioned
before, FFRLS method is used for identification whereas the

Fig. 4. Li-S cell model’s parameters identified using FFRLS algorithm.

Fig. 5. Terminal voltage validation of Li-S cell model.

Fig. 6. Battery measurement, identification and SOC estimation.

SVM technique is used as the classifier. The theory of the SVM
as type of a supervised machine learning method, which is
explained in [51]. According to the literature, SVM is a quick
method that is suitable for online applications.

In the proposed framework shown in Fig. 6, the identification
results are served by the SVM classifier to estimate the range of
SoC in form of a label between 1 and 10 (i.e., cluster number).
Cluster 1 is defined to include SoC range of 0%–10%, cluster 2
for 10%–20% SoC and so on. As shown in Fig. 6, different sets of
input parameters can be used for SoC classification. In this study,
different combination of inputs have been tried and the results
are compared as presented in Table II. To train the classifier in
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TABLE II
SOC CLASSIFICATION RESULTS USING SVM AND DIFFERENT INPUTS

each case, the MLTB test data is used. Each test is divided into
100 segments based on the time and then the ECN model is
parameterized for each segment separately. Consequently, 100
data points are available from each test. So the inputs of the
classifier are the ECN parameters and the output is SoC cluster
number. In order to calculate the ‘true label’ (i.e., the output) for
each data point, coulomb-counting method is utilized for off-line
training of the classifier. Each battery experiment is repeated at
least two times in order to obtain enough data for training and
testing of the classifier. The structure of training and testing data
is similar (in terms of inputs-output) however, the data points
which are used for training, are not used again for testing.

B. Classification Results

In this Section, the results of applying the proposed SoC
classifier to the Li-S cell is presented in form of classification
accuracy percentage and ‘confusion matrices’. Table II includes
training and testing accuracy values using SVM classifier for
a MLTB test at 25 °C. Different combination of inputs are
considered in this study to find the best configuration that gives
the highest accuracy. For both the training and testing data sets,
the accuracy is defined as the ratio of the number of correctly
classified data segments (each test consists of 100 segments)
over the whole number of segments:

Accuracy (%) =
Ncorrect

Ntotal
× 100 (20)

Two types of accuracy measures are calculated called ‘hard
clustering’ and ‘soft clustering’. In ‘hard clustering’, a seg-
ment is considered as a correctly classified one (counted for
Ncorrect) when the estimated cluster number is exactly same as
the expected ‘true cluster number’. On the other hand, in ‘soft
clustering’, allocation of a data segment to the neighbor cluster
is also acceptable. That means for example, if the true cluster
number is 3, all estimations of 2, 3 and 4 are counted for Ncorrect

but not an output of 1, 5, 6, etc. The results presented in Table II
show that using all four parameters of the Thevenin model (R0,
Rp, Cp and Uoc) gives slightly higher level of accuracy.

In addition to the numerical results presented in Table II, the
confusion matrix of each classifier is presented in Fig. 8 in form
of colorful graphical pictures showing the levels of uncertainty
at different SoC levels. In each matrix, the rows present the
true cluster number whereas the columns present the estimated
cluster number. The green cells contain percentage of correct
classifications while the red cells represent percentage of incor-
rect allocations. For example, Fig. 8(a) presents performance of

Fig. 7. Thermal camera used for checking cell’s surface temperature during
the tests.

the classifier using two inputs, Voc and Ro. In that case, true
and estimated cluster numbers are matched 100% for cluster
number 10 (the bottom row) which corresponds to the SoC
range between 90% to 100%. This result is in accordance to
our expectation since SoC estimation is easier at high plateau
where voltage curve has a clear gradient. Again from Fig. 8(a),
it is clear that cluster number 6 has the worst accuracy that is
around 10%. This result also looks quite reasonable because the
most challenging region of Li-S SoC estimation is in the middle
when the voltage curve is completely flat. As explained earlier,
the red cells show the percentage of inaccurate predictions. For
example, in the first row (cluster 1), 78% of the data points are
classified correctly while 22% of them are classified incorrectly
into cluster number 2.

Similarly, the confusion matrix presented in Fig. 8(b) indi-
cates 100% precision in prediction of cluster 1 and 10 that means
high accuracy at very high and very low SoC levels. However, it
demonstrates weak performance again in the middle SoC range
between 40% and 60%, not only because of the low percentage
of accuracy but also the wide range of incorrectly allocated
cluster numbers. Almost same discussion is valid for the results
presented in other parts of Fig. 8 where different sets of inputs are
used. The confusion matrix presented in Fig. 8(f) shows the best
performance of the proposed classifier in which all the Thevenin
parameters are used. Even in that case, the results are not perfect
however, they are very promising. In Section 4, combination of
coulomb-counting and the proposed classifier is presented in
form of a hybrid system to achieve higher accuracy.
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Fig. 8. Confusion matrices of SVM battery SoC classifier using different inputs: (a) Voc and Ro, (b) Voc and Rp, (c) Voc and Cp, (d) Ro, Rp, and Voc,
(e) Ro, Cp, and Voc, (f) Voc, Ro, Rp, and Cp.

C. Effect of Temperature

In this section, the effect of temperature is investigated on
both the identification and classification results. For this purpose,
same algorithms are used however, they are applied on various
test data sets which are obtained at different temperature levels.

The MLTB test is repeated at 10 °C, 15 °C, 20 °C, 25 °C and
30 °C again from fully charged state until depletion. The thermal
chamber that is presented in Section 2.2, is used to control the
temperature. Since the discharge rates are not very high, we can
assume that the cell’s temperature is very close to the chamber
temperature. To be sure about this, a thermal camera shown in
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Fig. 9. The effect of temperature on the identification results: (a) Voc , (b) Ro,
(c) Rp, and (d) Cp.

Fig. 7is often used during the tests too. Fig. 9 illustrates the
parameter identification results at different temperature levels.
As shown in the figure, the algorithm is able to successfully
identify the parameters under different conditions. Although the
temperature slightly affects the Thevenin model’s parameters,
there is not a big difference in parameter values when switching
between different temperatures. Robustness against the temper-
ature is a very good feature of this new Li-S prototype cell
comparing to the previous models presented in [49].

Similarly, the effect of the temperature is investigated on
classification results. Table III contains the training and testing
accuracy results of the SVM SoC classifier at different temper-
ature levels. All results are obtained using the best input set that
is Voc, Ro, Rp and Cp as discussed in Section 3.2. The results
demonstrate that the classification accuracy is not very much
affected by temperature and the proposed algorithm works well
in the whole range of temperature. In addition, Fig. 10 shows
the confusion matrices of the best classifier (using four inputs) at
different temperature levels. Although, the results are not exactly
same at different temperatures, overall, the outcome is quite
promising.

It should be mentioned that the implementation of this tech-
nique in real-time in a battery management system (BMS) will
be as follows: first the range of operational temperature is
determined at the design stage. Having the range of temperature,
it should be discretized into smaller areas (for example every
5 °C as we did here). Then one separate classifier is trained for
each temperature limit using the test data obtained at that partic-
ular temperature. Finally, in real-time application, temperature
value is provided by a sensor and then the suitable classifier is
selected.

IV. Li-S CELL SOC ESTIMATION USING SVM CLASSIFIER AND

COULOMB-COUNTING: A HYBRID METHOD

In the previous sections, a classifier was designed to estimate
Li-S cell SoC according to real-time ECN model parameteriza-
tion. Although the classifier is able to give us the range of cell’s
SoC with a good approximation, it’s improvement is possible
in two directions: (i) the output of the classifier is a label that
changes between 1 and 10; if this output is used directly, the
SoC value can only be presented in form of fractions of 10%
(i.e., 0%, 10%, 20%, and so on), However, we can improve it to
generate a number that changes with resolution of 1% instead.
(ii) the other direction of development is related to the fact that
the output of the proposed classifier can jump from a number to
another without considering the history of the predictions. This
is due to the fact that the classifier only uses the identification
outcomes at each time step. So, possible fluctuations in the
identification results can easily lead to fluctuations in the SoC
estimation.

In order to improve the proposed framework by addressing
the above mentioned issues, a hybrid method is investigated in
this section that works based on combination of two estimation
techniques: coulomb-counting and SVM. The hybrid method
uses benefits of both SVM and coulomb-counting while it gets
rid of their limitations. According to the literature, coulomb-
counting has disadvantageous such as accumulated error mainly
due to measurement noise [12], [13]. In addition, it can only
start working from a given initial SoC value which might not
be available in real working condition. Another problem of
using coulomb-counting is the change in battery capacity under
different conditions which can cause an additional error.

To combine the classification technique and coulomb-
counting, the first step is to convert the classifier’s label to a value
between 0 and 100 (i.e., SoC). In order to do this conversion,
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TABLE III
SOC CLASSIFICATION RESULTS USING SVM AND DIFFERENT TEMPERATURES FOR Voc/Ro/Rp/Cp INPUTS

the middle value of each cluster is considered as follows:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

SoC of cluster 1 (0 − 10%) : 5%
SoC of cluster 2 (10 − 20%) : 15%

. . .

SoC of cluster 10 (90 − 100%) : 95%

(21)

By this conversion, the classifier’s output can be mixed with
coulomb-counting method’s SoC that also changes between 0
and 100. The next step is to combine the two estimations using
a mathematical formulation such as follows:

SoCH =
W 1.SoCSV M +W 2.SoCcoulomb−counting

W 1 +W 2
(22)

Where SoCH is the hybrid SoC, SoCSVM is the SoC
coming from SVM andSoCcoulomb−counting is the SoC from
coulomb-counting. W1 and W2 are the fusion gains given to
estimated values of SVM and coulomb-counting respectively.
Using these gains, we can give different value to each estimator
(not necessarily equal). Coulomb-counting algorithm starts from
an initial guess value (i.e., considered to be 50% in this study)
and it is updated at each iteration by integration of current
(consumed Ah) in a short period of time until the next iteration.
At each iteration, the algorithm is initialized from the previous
value of SoCH to eliminate the accumulated error. On the
other hand, SVM does the estimation separately based on the
identification results at each iteration. Finally, the outcomes of
both methods are combined using the fusion gains as presented
in (21).

The proposed hybrid method is simulated under different
initial conditions as presented later in this section. In order to
evaluate its performance, the ‘theoretical’ coulomb-counting is
used as a benchmark. Such a benchmark is only available after
finishing a test because it uses the real achievable capacity (not
the nominal capacity). In this article, the benchmark is called
‘true SoC’, ‘correct SoC’ or ‘reference SoC’ in the following
parts.

The advantage of SVM is that it can provide a better guess
of the initial condition at the beginning. This can be controlled
by changing the fusion gains, W1 and W2, accordingly. For
example when W1 > W2, more trust is on SVM which leads to
a quicker convergence however, after convergence it fluctuates
more around the reference SoC. In the other case, when W2 >

W1, more trust is on coulomb-counting which leads to a slower
convergence however, after convergence it remains very close
to the reference SoC. Fig. 11(a) and (b) illustrates the results of
two cases in which W1 = 0.3, W2 = 0.7 and then W1 = 0.7,

W2= 0.3 respectively. As shown in Fig. 11(a), the real test starts
from 100% SoC while the estimator starts from 50% because it
doesn’t know about the true SoC. The estimator then converges
to the true SoC value gradually. The convergence rate is low in
this case since more trust is on coulomb-counting (W2 = 0.7).
In the other case presented in Fig. 11(b), more trust is on
SVM (W1 = 0.7). In that case, the estimator converges quicker
however, it fluctuates more around the reference SoC after
convergence.

Regarding the results presented in Fig. 11 that demonstrate
the importance of fusion gains on performance of the estimator,
a question is raised: how can we get the best performance of the
estimator by changing the fusion gains? In both aforementioned
cases, the fusion gains were constant in the whole range of
SoC. However, referring to the classification results presented in
Section 3.2, the accuracy of SVM varies at different SoC values.
Therefore, one solution to improve the estimator’s performance
is to change the fusion gains in real-time (adaptive gains). For
example, giving more value to the SVM when the uncertainty
in SoCSVM is lower and vice versa. Let’s look again at the
results presented in Fig. 11(a) and (b); what can we do to have
both advantages of quick convergence and less fluctuations after
convergence. Constant gains cannot produce better results, but
what will happen if we use a set of gains at the beginning and
then switch to another one? In theory, when we fix the gains over
the whole range of SoC, the hybrid technique has less flexibility
to maximise the benefit from both SVM and coulomb-counting
methods at the same time. However, when the fusion gains can
change over the range of SoC, we can play with the numbers
and find the best trade-off to achieve the best convergence rate
at the beginning while having the best performance after the
convergence as well.

Table IV presents the estimation results in different cases
including the two aforementioned sets of constant gains and
also new cases in which the fusion gains are variable. For results
comparison, the average and maximum estimation errors after
convergence, and the convergence rate (in form of number of
iterations) are investigated. As presented in Table IV, case 1 is
better than case 2 in terms of error values however, it suffers
from slow convergence. On the other hand, case 2 outperforms
case 1 in terms of convergence rate since it more relies on SVM.
In case 3 for example, the gains of W1 = 0.7, W2 = 0.3 (i.e.,
SVM dominant) are same as case 2 at the beginning however,
after initial iterations, the gains change to W1 = 0.3, W2 = 0.7
(i.e., coulomb-counting dominant). Case 3 has both advantages
of case 1 and 2 using variable fusion gains. It converges quickly
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Fig. 10. Confusion matrices of SVM battery SoC classifier at different temperature: (a) 10 °C, (b) 15 °C, (c) 20 °C, (d) 25 °C, (e) 30 °C.

at the beginning using SVM and then controls the fluctuations by
relying more on coulomb-counting. It should be noted that we
cannot rely 100% on coulomb-counting even after convergence,
since it can gradually deviate from the reference SoC. That
is because of the accumulative noise effect and the nominal
capacity that is used in its formulation. In the proposed hybrid

technique with variable gains, SVM modifies any potential error
in coulomb-counting gradually at each iteration.

In order to find the best ratio between the fusion gains, differ-
ent configurations have been investigated as listed in Table IV
(cases 3-7). According to the results, the best performance is
achieved in case 5 where W1 = 0.9 and W2 = 0.1 at the



222 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 1, JANUARY 2021

TABLE IV
Li-S CELL SOC ESTIMATION ACCURACY USING HYBRID METHOD WITH DIFFERENT FUSION GAINS (INITIAL SOC = 100%)

Fig. 11. True SoC vs. SoC estimation: (a) Fusion gains: W1 = 0.3, W2 = 0.7
(b) Fusion gains: W1 = 0.7, W2 = 0.3.

beginning and they change to W1 = 0.1 and W2 = 0.9 after
convergence.

As a final analysis, different initial conditions are tested to
evaluate the proposed technique under more realistic conditions.
In a real application such as an EV, the BMS might start working
from any initial condition. So, the SoC estimator should be
able to converge to the true SoC value in a reasonable time.
To investigate that, four case-studies are considered where only
part of the test data is provided to the estimator (starting from
unknown initial conditions). Fig. 12 shows the estimated SoC
vs. true SoC under four initial conditions, 100%, 70%, 40%
and 20%. According to the results, the proposed estimator is
able to produce acceptable results in all four cases. This is
a significant achievement particularly for Li-S battery that is
more challenging than other types of battery in terms of SoC
estimation [15].

Fig. 12. True SoC vs. SoC estimation using variable fusion gains: (a) initial
SoC = 100%, (b) initial SoC = 70%, (c) initial SoC = 40%, (d) initial
SoC = 20%.
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V. CONCLUSION

In this study, a new SoC estimation technique was developed
for a new prototype Li-S cell. For this purpose, a number of
experiments were conducted on individual cells under MLTB
working condition and then an ECN model was parameterized
using FFRLS identification algorithm. The proposed idea was
to perform parameter identification in real-time and then use
it in a classifier such as SVM to give an approximation of
the cell’s SoC. Although the proposed method requires offline
training, its advantage is that it does not need data storage in
real-time or either the initial SoC value. The classification results
showed that Li-S cell SoC is less observable in the middle range
(30%-70% SoC) that is in accordance to the previous published
results in the literature. Against the complexities in Li-S cell
SoC estimation, the proposed hybrid method has demonstrated
promising results where coulomb-counting was combined with
SVM and FFRLS. According to the results (which are validated
by using experimental test data), the proposed hybrid method is
able to estimate Li-S cell’s SoC from any initial condition with
maximum error of 2.63% and average error less than 1%.

As an extension of this study, the effect of ageing can be
considered too. Because the parameters of the ECN model are
influenced by cell aging, a modification factor should be added
to the estimator to compensate the effect of ageing.
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