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Abstract—With continued feature size scaling, even state
of the art semiconductor manufacturing processes will often
run into layouts with poor printability and yield. Identi-
fying lithography hotspots is important at both physical
verification and early physical design stages. While detailed
lithography simulations can be very accurate, they may
be too computationally expensive for full-chip scale and
physical design inner loops. Meanwhile, pattern matching
and machine learning based hotspot detection methods can
provide acceptable quality and yet fast turn-around-time for
full-chip scale physical verification and design. In this paper,
we discuss some key issues and recent results on lithography
hotspot detection and mitigation in nanometer VLSI.

I. INTRODUCTION

The continued shrinking of feature size has made
IC manufacturing more and more prone to lithography
hotspots, i.e., the layouts with poor printability and yield.
To address this challenge, various resolution enhancement
techniques (RETs), such as optical proximity correction
(OPC), source mask co-optimization, and so on, have
been proposed to improve pattern printability. However,
lithography hotspots still remain a key challenging issue
for IC designs in deep sub-wavelength processes (e.g.,
below 32nm), as the current lithography wavelength is still
stuck at 193nm, which is much bigger than the feature size
(e.g., 22nm).

In conventional design flow, lithography simulations
[1], [2] have been used to identify problematic patterns.
Lithography simulation is accurate but extremely com-
putational intensive, especially for full-chip scale. If the
lithography hotspot detection needs to be fed into some
physical design stage to guide lithography-friendly layout
optimization, it would be almost impossible to apply these
detailed lithography simulations in the inner loop.

Recently, several hotspot detection approaches have
been proposed, mainly based on pattern matching and ma-
chine learning techniques to avoid CPU-intensive lithog-
raphy simulations. The challenges are how to extract
critical information of these hotspot patterns and match
them in the full-chip scale with high fidelity and low
false alarm. There are also studies on integrating hotspot
detection into physical design. This paper will discuss
some key aspects of these lithography hotspot detection
and mitigation methods.

The rest of the paper will be organized as follows.
In Section II, we discuss several lithography hotspot

detection techniques. We then discuss hotspot mitigation
in Section III, followed by the conclusion in Section IV.

II. LITHOGRAPHY HOTSPOT DETECTION

A. Layout Encoding Techniques

A hotspot is caused not only by a particular pattern, but
also by the interaction with neighboring patterns inside the
lithography influence region. One fundamental step for the
hotspot detection in both pattern matching and machine
learning methods is to represent layout patterns with cer-
tain format that can well describe the layout environment.
Several layout encoding methods have been proposed to
extract critical layout information from different aspects.

The concept of range pattern [3] is proposed to incor-
porate process-dependent specifications, and is enhanced
in [4] to represent new types of hotspots. A range pattern
is a two-dimensional layout of rectangles with additional
specifications encoded by strings. Fig. 1 shows an example
of range pattern “Staircase.” Each range pattern is associ-
ated with a scoring mechanism to reflect the problematic
regions according to yield impact. The hotspot patterns are
stored in a pre-defined library and the detection process
performs string matching to find hotspots. This approach
is accurate, but the construction of range patterns relies on
a grid-based layout matrix, and may be time-consuming
when the number of grids is large.
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1. Optimal width of each rectangle = 90 nm.

2. Optimal spacing between adjacent rectangles = 90nm.

3. Range of width of all rectangles = (90, 150) nm.

4. Range of spacing between adjacent rectangles = (90, 150) nm.

5. Range of length of central rectangle = (200, 500) nm.

6. Distance between right edge of rectangle 1 

and left edge of rectangle 3 cannot exceed 50 nm.

Fig. 1. An example of range pattern staircase [4].

The context characterization [5] cuts a layout pattern
into fragments. For each fragment F , an effective radius
r is defined to cover the neighboring fragments which
need to be considered in the context characterization of
F as shown in Fig. 2. A complete representation of F
includes the geometric characteristic of fragments inside
r, including pattern shapes, the distance between patterns,
corner information (convex or concave), and so on.
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Fig. 2. Fragmentation based hotspot signature extraction [5].

The density-based pattern encoding is introduced in [6],
where a layout pattern is represented as a vector of layout
density values of its surrounding area. Given a layout clip
with predefined grids, the method calculates the layout
density covered in each grid. An ordered list of density
values then forms the final vector that represents the
corresponding layout pattern. Fig. 3 illustrates the process
of pattern encoding. The goal of this representation is
not to identify the geometrical features that may degrade
the printability of a pattern. Instead, it aims at providing
a compact representation of layout patterns to enable
measurement of pattern similarities.

Fig. 3. Density-based pattern representation. [7].

B. Pattern Matching Based Hotspot Detection

In pattern matching based approaches, a set of known
hotspots are pre-characterized and stored in a database.
The hotspot detection process involves matching the tested
layout patterns with the hotspots in the database. This
method is fast and accurate at detecting known patterns,
but it lacks the capability of predicting unseen data.

A layout graph is proposed in [8] to reflect pattern-
related CD variation. The resulted graph can be used to
find hotspots including closed features, L-shaped features
and complex patterns. Yu et al. proposed a DRC-based
hotspot detection [9] by extracting critical topological
features and modeling them as design rules. Therefore,
hotspot detection can be viewed as a rule checking process
through a DRC engine.

Recently a fuzzy matching model was proposed in [7]
which can dynamically tune appropriate fuzzy regions
around known hotspots in multi-dimensional space. Fig. 4
shows an example with known layout patterns of hotspots
and non-hotspots in a 2-dimensional space. A machine
learning method would divide the space into two regions
of hotspots and non-hotspots as shown in Fig. 4(a), while
a conventional pattern matching approach would construct
an individual pattern to match each known hotspot as

(a) (b) (c)

Fig. 4. A 2D-space example of hotspot region decision. (a) Machine
learning; (b) Pattern matching; (c) Fuzzy matching model. [7]

shown in (b). The fuzzy matching model in Fig. 4(c) in-
cludes groups of hotspots, where the fuzzy region of each
group will iteratively grows to provide better detection
accuracy.

C. Machine Learning Based Hotspot Detection

Machine learning techniques construct a regression
model based on a set of training data. This method can
naturally identify previous unknown hotspots. However, it
may generate false alarms, which are not real hotspots.
How to improve the detecting accuracy is the main chal-
lenge when adopting machine learning techniques.

Many recent approaches utilize support vector machine
(SVM) and artificial neural network (ANN) techniques
to construct the hotspot detection kernel. In [10], a 2-D
distance transform and histogram extraction is performed
on pixel-based layout images, which are then used to
construct the SVM-based hotspot detection. In [11][12],
SVM is employed through extraction and classification of
layout density-based metrics. A neural network judgment
based detection flow is proposed in [13], where 2-D
hotspot patterns are directly used to train an ANN kernel.
A hybrid method [14] that adopts both SVM and ANN is
presented to further improve the performance.

D. Hybrid Machine Learning and Patterning Matching

Since both patterning matching and machine learning
have pros and cons, it will be is to apply both machine
learning models and pattern matching models. In [15], data
samples are fed to a pattern matcher first, then machine
learning classifiers are used to examine the non-hotspots
left by the pattern matcher. Motivated by the fact that
different hotspot classifiers have different objectives and
strengths, [15] further proposed a unified meta-classifier
that enables several classifiers to work together. The
meta-classifier is composed of multiple base classifiers
and weighting functions. Each base classifier is an indi-
vidual hotspot classifier that is optimized under certain
performance metric, such as detection accuracy, false-
alarms, adaptivity to new unknown designs, etc. Weighting
functions are used to control the overall combination of
base classifiers, which needs to be optimized to achieve
better accuracy and less noise. The construction flow of
meta-classification is illustrated in Fig. 5. For each layout
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Fig. 5. Meta-classifier construction via a combination of disparate base
classifiers [15].

pattern, certain hotspot features are extracted and then fed
into each base classifier, which calculates the prediction
decision and generates a weight based on the weighting
functions. The final meta-decision is based on the weighed
sum of base classifiers.

E. Clustering in Hotspot Detection

Since there are many design rules to guide and restrict
physical design, in general the number of non-hotpot
patterns greatly outnumber that of real hotspot patterns
[16]. The imbalance between hotspot and non-hotspot data
is called imbalanced populations, and it may cause perfor-
mance degradation for some hotspot detection approaches.
In addition, how to avoid redundant data and reduce the
time for detection is an important issue.

In [17][18], the extracted hotspots are classified into
clusters by data mining methods. An incremental cluster-
ing algorithm [18] is used to group the hotspot snippets
into a small number of clusters containing geometrically
similar hotspots. Given a set of hotspot patterns, a distance
metric is defined to calculate the similarity of different
hotspot patterns. All patterns are assigned to a cluster
where the distance between the cluster center and the
pattern is less than the cluster radius. Once the clusters
are determined, it is analyzed to produce a description
of this cluster, including a representative hotspot snippet
and a radius that characterizes the cluster tightness. The
representative hotspot in each cluster is then identified and
stored in a hotspot library for future hotspot detection.
The clustering method is further extended in [19] using an
improved tangent space based distance metric to achieve
better accuracy.

III. LITHOGRAPHY HOTSPOT MITIGATION

A. Lithography Friendly Placement

For CMOS feature size significantly smaller than the
lithography wavelength (193nm), the printability of a
standard cell could be well affected by its neighboring

cells. To minimize the interference between adjacent cells,
standard cell design itself and the standard placement
methodology need to be co-designed to avoid newly
generated lithography hotspots between these cells after
placement. Dummy poly or metal lines may be inserted to
create regular neighborhood patterns between neighboring
cells.

As the feature size and pitch become even smaller,
double or multiple patterning is needed to extend the
193nm lithography. A grand challenge for standard cell
and placement co-optimization is that there may be col-
oring conflict between adjacent cells. In fact, it is still
an open question whether the cells shall be pre-colored
(i.e., during the standard cell layout stage) or post-colored
(i.e., flat after standard cell placement of of the entire
chip). Liebmann et al. in [20] proposed some guidelines
to enable double patterning friendly standard cell design
and placement. Other placement studies toward double
patterning are present [21][22]. Recently, Yu et al. [23]
proposed a systematic framework to seamlessly integrate
triple patterning constraints for standard cell and place-
ment stages.

B. Lithography Friendly Routing

Lithography hotspot mitigation can be performed at
the post-routing stage, e.g., [24]. In [26][27], design rule
checker is integrated with the routing engine at the post-
routing stage to identify and correct hotspots. First, a set of
problematic pattern topologies are transformed into DRC
rules. Once placement and routing is done, those pre-built
rules are applied to the layout to identify violated pattern
region based on a pattern matching based rule checker.
These approaches can provide a fast feedback to the router
on the hotspot location, and then the router can apply rip-
up and reroute to fix the hotspots.

However, fixing hotspots at this post-routing stage has
limited flexibility as only limited rip-up and reroute may
be performed. With efficient hotspot predictions, it will
be interesting to integrate lithography hotspot detection
together with routing.

One challenge of lithography-aware routing is that
hotspots are difficult to be detected before a real routing
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Fig. 6. The hotspot detection challenge in the detailed routing stage
[25].



path is obtained. Fig. 6(a) shows a layout region with metal
blockages and unrouted pins Pin1-Pin4. Because some
nets are not yet routed, there is an un-characterized region
where no hotspots would be identified by general hotspot
detection methods. Consequently, potential hotspots may
be caused by route Pin1-Pin2 as shown in Fig. 6(b). Ding
et al. [25] proposed a lithography-friendly detailed routing
based on a pre-built hotspot prediction kernel and a routing
path prediction kernel. First, the hotspot detection kernel is
trained to evaluate the pattern printability based on a set of
post-RET data. To overcome the issue of un-characterized
regions, the routing path prediction kernel is established
using the following steps: (1) explore the possible routing
solutions given the available routing resources; (2) perform
accurate lithography simulation for the possible layout
results; (3) identify preferable routes according to results
of hotspots and routing congestion. Because the data
that need to be processed for building the routing path
prediction kernel is huge, a neural network classifier is
constructed to guide the routing engine. The experimental
results showed very promising results with this approach.

IV. CONCLUSION

Lithography hotspots have a great impact on the manu-
facturing yield. Identifying these problematic layouts dur-
ing physical design has become a critical problem. Since
full chip lithography simulation is computational expen-
sive, pattern matching and machine learning based hotspot
detection are very useful for full-chip scale physical ver-
ification/screening and layout optimization. In this paper,
we discuss some key issues of the lithography hotspot
detection problem, including critical feature extraction,
pattering matching, and machine learning based methods.
We also discuss hotspot mitigation, e.g., at placement and
routing stages. It shall be noted that the accuracy and
robustness of hotspot detection, and the integration with
physical design still have a lot of room for improvement
and future research, in particular for multiple patterning
and other emerging lithography technologies.
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