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of Australia
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ABSTRACT

The Eastern Goldfields of Western Australia is one of the
world’s premier gold-producing regions; however, large areas of
prospective bedrock are under cover and lack detailed lithologic
mapping. Away from the near-mine environment, exploration for
new gold prospects requires mapping geology using the limited
data available with robust estimates of uncertainty. We used the
machine learning algorithm Random Forests (RF) to classify
the lithology of an underexplored area adjacent to the historically
significant Junction gold mine, using geophysical and remote-
sensing data, with no geochemical sampling available at this re-
connaissance stage. Using a sparse training sample, 1.6% of the
total ground area, we produce a refined lithologic map. The clas-
sification is stable, despite including parts of the study area with
later intrusions and variable cover depth, and it preserves the

stratigraphic units defined in the training data. We assess the un-
certainty associated with this new RF classification using infor-
mation entropy, identifying those areas of the refined map that are
most likely to be incorrectly classified. We find that information
entropy correlates well with inaccuracy, providing a mechanism
for explorers to direct future expenditure toward areas most likely
to be incorrectly mapped or geologically complex. We conclude
that the method can be an effective additional tool available to
geoscientists in a greenfield, orogenic gold setting when con-
fronted with limited data. We determine that the method could
be used either to substantially improve an existing map, or pro-
duce a new map, taking sparse observations as a starting point. It
can be implemented in similar situations (with limited outcrop
information and no geochemical data) as an objective, data-driven
alternative to conventional interpretation with the additional value
of quantifying uncertainty.

INTRODUCTION

With the increasing cost and difficulty of new discovery in areas
with substantial amounts of cover, there is a need for improved
approaches to mineral exploration. In the Eastern Goldfields of
Australia, very detailed geologic, geochemical, and geophysical
data sets exist near mines. There is, however, a sharp transition into
adjacent greenfield areas where such data are not available and the
geology is significantly less well-constrained. Geophysical and

remote-sensing data are widely available at a reasonable resolution
either in the form of government or multiclient data sets or as a first-
pass acquisition performed by explorers when new ground is ac-
quired. Machine learning presents an attractive way forward, facili-
tating the use of these data to improve a preliminary lithology map
or to produce a starting map from limited observations: in each case,
improving an explorer’s ability to identify targets. Previous studies,
however (e.g., Waske et al., 2009; Cracknell et al., 2014; Harris and
Grunsky, 2015), have primarily used a richer and more diverse set of
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data inputs such as geochemistry or additional spectral information
or made use of a different algorithm, such as, for example, support
vector machines (SVMs) (Yu et al., 2012) or artificial neural net-
works (Barnett and Williams, 2009). In this study, we assess the
ability of the machine learning algorithm (MLA) Random Forests
(RF) to produce a geologic classification using only those geophysi-
cal and remote-sensing data that would be available to an explorer in
a greenfield, early stage exploration environment.

Geologic setting

The Heron South project area is located approximately 15 km
east of the Junction gold mine, in the St. Ives Goldfield of the Yil-
garn Craton, Western Australia (Figures 1 and 2). The St. Ives camp
is estimated to contain in excess of 300 t of gold, with orogenic and
(to a lesser extent) intrusion related gold deposits hosted throughout
the entire local stratigraphy, making it one of Australia’s largest gold-
producing districts (Crawford, 2011). The Archean (2.7–2.6 Ma)

bedrock stratigraphy comprises a series of mafic-ultramafic volcanic
and intrusive units, volcanoclastic sediments, and felsic intrusions
crosscut by Proterozoic-age basaltic dikes. The region has undergone
pervasive, regional greenschist to lower amphibolite metamorphism.
The St. Ives Goldfield is bound to the west and east by the Merougil
and Boulder-Lefroy Fault Zones, respectively.
The region was subject to several distinct phases of deformation

between 2675 and 2620 Ma. Until recently, the deformational
framework for the region had largely focused on compressional
events (e.g., Ngyuen, 1997; Swager, 1997; Connors et al., 2002).
The more recent study by Blewett et al. (2010) includes events re-
lated to extension, important in understanding the formation of the
younger volcano-sedimentary units of the region (Squire et al.
2010). The revised framework proposed by Blewett et al. (2010)
is as follows: D1 is characterized by east–northeast/west–southwest
extension. The D2 period represents a phase of east–northeast/west–
southwest contraction that caused regional north-northwest-trend-
ing folds and reactivation of faults produced during D1 as thrusts.

This was followed by D3, a period of extension
on the same orientation. The D4a period of con-
traction tightened existing north–northwest folds
and was followed by D4b, a period of sinistral
transpression. During this deformation event,
existing structures, such as the Boulder Lefroy
Fault Zone, which passes through Heron South,
were reactivated as sinistral strike slip faults.
Localized deflections, step-overs, and local
higher order structures produced during D4b are
associated with the main mineralizing event in
the region (Cox and Ruming, 2004; Blewett et al.,
2010; Miller et al., 2010). The D5 period of dex-
tral transtension produced north–northeast-trend-
ing strike-slip high-angle faults. These structures
may also be associated with a gold mineralizing
event at various sites in the region (Connors et al.,
2002; Ruming, 2006; Blewett et al., 2010; Miller
et al., 2010). The D6 period is not documented in
the St. Ives Goldfield. The D7 period of contrac-
tion is associated with the emplacement of domi-
nantly east–northeast-trending Proterozoic dikes,
which occur in abundance in the study area.
The Heron South project area is proximal to the
Boulder-Lefroy Fault Zone, which passes through
the southwest of the project in a north–northwest
orientation.
The geology of the study area is split by the

Boulder Lefroy Fault Zone into a western and an
eastern region. The western area forms part of the
main St. Ives sequences and contains thick succes-
sions of Paringa Basalt and Black Flag Group
volcano-sedimentary sequences. The eastern area
contains north−south-striking, steeply dipping
packages of mafic-ultramafic and sedimentary
units impinged between larger granitoid bodies
(Figure 2). It is anticipated that these units are cor-
relates of the main stratigraphic sequence mapped
at St. Ives, however, this has not yet been con-
firmed. For the purpose of this study, these units
have been defined by the interpreted geologic

Figure 1. Schematic representation of the Yilgarn Craton including the location of major
gold deposits. The approximate location of the Heron South project is shown in red (modi-
fied after Cox and Ruming, 2004).
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map of the St. Ives Goldfield (Figure 3), as stratigraphically distinct.
Stratigraphic labels can be assigned to these units as geochemical and
geochronological information becomes available allowing these units
to be amalgamated or subdivided as required at a future date.

RF

RF (Breiman, 2001, pp. 5–32) is a supervised ensemble classi-
fication algorithm and an extension of the decision tree method.
This classifier constructs a “forest” comprising many decision trees
(Figure 4), allowing for superior performance and lower sensitivity
to over-fitting compared with single classifiers (Hastie et al., 2009,
pp. 587–604). Randomness is introduced at two
stages during implementation of the algorithm.
First, a process of bootstrap aggregation, known
as bagging (Breiman, 1996, pp. 123–124) is used
to modulate the training data (Ta) available to
each decision tree. Bagging obtains for each tree,
via random sampling with replacement, a subset
of Ta equal in size to Ta. This duplicates some
samples and will not select others. An average of
approximately 63.2% of instances is included in
each training subset, whereas the remaining, or
“out-of-bag,” samples (approximately 37.8%)
are used for validation. The second form of ran-
domization involves the selection of variables
available to the classifier to split each node. At
each node, a random subset of input variables se-
lected from all available input variables. The
number of variables in this subset is predefined
and consistent across the forest. At every node,
the randomly selected variables are then ranked
by their ability to produce a split threshold that
maximizes the homogeneity of child nodes (Fig-
ure 4) relative to the parent node. The decrease in
the Gini index (equation 1), as implemented by
Breiman et al. (1984), provides this measure. The
Gini index is an expression of information purity
given by

GiniðtÞ ¼
Xj

c¼1

gcð1 − gcÞ; (1)

where gc is an expression of the relative frequency
of each class c, of a set comprising j classes, at a
given node t; gc is given by

gc ¼
nc

n
; (2)

where nc is the number of samples comprising
class c at a given node and n is the total number
of samples comprising that node. Using this
measure, the variable that produces the greatest
improvement in homogeneity in child nodes rela-
tive to the parent node is used to split the node at
the threshold that produced the best split. This is
repeated at every node until sufficient depth is
reached to produce nodes with complete homo-
geneity (or approached to within a defined toler-

ance). The class assigned by RF to each sample is determined by a
majority vote compiled from the output of all classification trees
(Breiman, 2001, p. 6).
Many studies have noted a point of diminishing returns, neces-

sitating a forest be grown to a certain extent where a stable error
minima is approached, beyond which, additional trees are redun-
dant (e.g., Waske et al., 2009; Cracknell et al., 2014; Rodriguez-
Galiano et al., 2014; Harris and Grunsky, 2015). RF has been shown
to achieve equal or better accuracy to other classification algorithms
with the advantage that parameter selection is relatively straightfor-
ward (e.g., Hastie et al., 2009; Cracknell and Reading, 2013). The
process of RF training can be performed on any PC with specifi-

Figure 2. Schematic geology of the St. Ives gold camp including the location and extent
of the project (red outline box) relative to several major existing and historical gold mines
(indicated by red circles with the mine name adjacent). The project outline (red box) de-
fines the extent of the project in all subsequent figures. Map coordinates are projected
using WGS84, UTM grid 51S (m).

Lithologic mapping with RF B185

kellyps
Sticky Note
None set by kellyps

kellyps
Sticky Note
MigrationNone set by kellyps

kellyps
Sticky Note
Unmarked set by kellyps



cations readily commercially available at the time of this study and
does not require specialized equipment. In this study, combined
training and cross validation of an RF for any given set of param-
eters required between 15 and 40 s on a Dell Precision T7610 with
an Intel Xeon e2630 processor and 32Gb RAM. This is ideal for
uptake by geoscientists because requirements for specialized com-
puting skills and equipment are minimal.
RF has been increasingly applied to the problem of lithologic

classification. Waske et al. (2009) compare RF and another popular
MLA, SVM (Vapnik, 1995, 1998), in the context of mapping lith-
ology using hyperspectral imagery. They conclude that RF and
SVM achieve significantly more accurate results than standard clas-
sifiers. Although in that instance, SVM marginally outperformed
RF, it is noted by the authors that RF remains an attractive option
due to its high accuracy and ease of use. Cracknell and Reading
(2014) compare RF with four other MLAs: SVM, Naïve Bayes,
k-nearest neighbors, and artificial neural networks; as applied to
lithologic mapping. In their study, RF marginally outperformed

other MLAs. Although there were only small differences in accu-
racy, Cracknell and Reading (2014) demonstrate that RF was able to
produce accurate results with simpler input parameters and at less
computational cost than other algorithms evaluated. Another study
by Cracknell and Reading (2013) assesses RF and SVM for lithol-
ogy mapping and identification of lithologic contacts and zones of
structural complexity. They discover that RF, in addition to an ex-
cellent overall performance, produced more usable outputs. Unlike
for SVMs, high uncertainty was spatially associated with incorrect
classification and proximal to geologic boundaries and zones of
high structural complexity. Cracknell and Reading (2014) note that
with increasingly spatially dispersed training data, the comparative
performance of RF improved further, widening the gap over
other MLAs.
Cracknell and Reading (2014) demonstrate that RF was able to

identify and redefine incorrectly mapped features in western Tasma-
nia using 2% of the surface area as training samples. Harris and
Grunsky (2015) use a similar approach, applying RF to geologic
mapping in northern Canada. They test two Ta selection scenarios:
one based on lake sediment geochemical sample locations and an-
other based on field-mapping observations. Both approaches pro-
duced meaningful results with the authors concluding that RF is
of value as a first-pass mapping tool or as a means of focusing effort
into areas where there is a mismatch between predicted geology and
legacy maps.

Information entropy

There has been increasing effort in the field of mineral exploration
to quantify the uncertainty associated with mapping and prediction.
One such method, information entropy (H) (Shannon, 1948), is
defined as

H ¼ −k
Xn

i¼1

pi logpi; (3)

where pi is the class membership probability at location i, n is the
number of candidate classes, and k is an arbitrary positive constant.
The k and the base of the logarithm can be selected by the user to
define the scale. Information entropy has been used to great effect in a
“per-voxel” setting to demonstrate how uncertainty is distributed spa-
tially (Wellmann and Regenauer-Lieb, 2012).
In the process of producing a final classification, RF calculates

the class-membership probabilities. These are defined as the propor-
tion of trees in a RF that voted for a given candidate class (Hastie
et al., 2009). RF class-membership probabilities can be used in
equation 3 to calculateH for each classified instance. The properties
of H for a two-class, binary system are such that a value of 0 cor-
responds to a 100% probability of one class occurring and a value of
1 corresponds to an equal probability of both represented classes
being present. Information entropy in its general form preserves
monotonicity such that an increase in the number of candidate
classes results in a higher H. For the purpose of this study, a nor-
malized version of H has also been used to account for the number
of candidate classes by dividing H by the logarithm of the number
of classes present, such that H assigned to each pixel represents, on
a scale of 0–1, the range of minimum to maximum possible H for
that pixel. As such, all pixels are comparable with regard to how
close they each internally approach their minimum or maximum

Figure 3. Heron South geology map. In subsequent figures, the litho-
logic units will be abbreviated as follows: Volcanogenic Sediments
(VS), Tripod Hill Komatiite (THK), Paringa Basalt (PB), Granitoid
(G), High MgO Basalt (HMgOB), Basalt (B), Dolerite 1 (D1), and
Dolerite 2 (D2). The map extent in this figure defines the extent of all
subsequent map figures in this paper.
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possible H. For example, for a pixel with two possible and equally
probable classes and a pixel with four possible and equally probable
classes, they shall both be described as H being equal to 1.

METHODS

Data

In this study, 16 geophysical and remote-sensing data sets were
used (Figure 5), and interpolated at a grid cell size appropriate
(20%–25%) to their respective acquisition line spacing (Table 1).
Landsat thematic mapper Landsat Program (2003) and Shuttle Ra-
dar Topography Mission (SRTM) products (United States Geologi-
cal Survey, 2003) were procured in raster format, and their original
point separation specifications were preserved (United States Geo-
logical Survey [2003] and United States Geological Survey [2006],
respectively). Each data set was resampled to a 30 m grid to
populate a matrix where each line takes the form: x; y; p1;

p2; : : : ; pn, where x and y are the spatial coor-
dinates and p are the various measured properties
at each pixel. At the extent of the study area, this
comprised approximately 56,000 samples. The
compiled data were split into subsets comprising
training (Ta) and test (Tb) data through a process
of stratified spatially random sampling. One hun-
dred samples were taken from each of the eight
lithologic classes comprising the study area.
These 800 samples comprising Ta represent ap-
proximately 1.6% of the total data set (Figure 6).
The remaining 98.4% of data Tb were not shown
to the classifier during the training process.

Variable ranking and selection

RF facilitates several means of ranking the
importance of input variables. In this instance,
each variable was permuted and the effect on the
out-of-bag classification accuracy was measured.
Those variables which, when permuted, pro-
duced the greatest change to classification accu-
racy were ranked highest (Table 2). Due to the
relatively small number of data sets used in
this study, none of the starting input variables
were sufficiently well-correlated (as defined by
a threshold at a Pearson’s correlation coefficient
= 0.85) with one another to warrant removal, due
to the duplication of information prior to ranking.
To optimize the speed and interpretability of
results, redundant variables were screened at
this stage. Using Ta, variables were successively
added to the classification according to their
ranked importance established in the prior step.
Accuracy was assessed using a forest comprising
500 classification trees, via 10-fold cross valida-
tion (Table 2). The cross-validation accuracy im-
proved with the input of additional variables,
albeit at a diminishing rate, until a peak cross-val-
idation accuracy of 79% was achieved via the in-
clusion of variables ranked one to eight (Table 2).
Beyond this point, no increase in cross-validation

accuracy was observed through the inclusion of additional variables;
as such, the Landsat data, ranked 9th to 15th, were omitted. This is
logical given the sensitivity of reflectance methods to the immediate
surface in an area heavily influenced by transported cover. Easting
and northing were omitted at this stage to avoid over fitting to the
classification based on position.

Classification and uncertainty

Eight hundred samples comprising 100 from each of the lithologic
units defined above (Figure 6) were used to train an RF classifier.
Each sample was attributed with the eight nonredundant variables
identified during variable ranking. We used an RF comprising 500
trees with no limits on individual tree depth or subsequent pruning.
The RF produced under these parameters required 12 s to train.
Subsequently, the remaining data comprising Tb, which do not have
an associated class, were shown to the trained classifier and a class
prediction for each was made. Class-membership probabilities,

Figure 4. An example showing three levels of a classification tree, showing at each
node: (a) the most numerous class, (b) the proportion of samples of the most numerous
class, relative to all samples in the node (shown as percentage and count of total), (c) the
pie-graph distribution of all classes present, (d) the variable used to split the parent node
into child nodes, and (e) the threshold at which that split was executed.

Table 1. Geophysical and remote sensing data sets used in study, including
abbreviations and spatial resolution.

Data set Abbreviation Spacing

Gravity (Bouguer anomaly) BA267 200 × 200 m

First vertical derivative of gravity BA267_1vd 200 × 200 m

Airborne magnetics — RTP RTP 50 m EW flight lines

First vertical derivative of airborne magnetics RTP_1vd 50 m EW flight lines

Airborne mass spectrometry: Potassium K 50 m EW flight lines

Airborne mass spectrometry: Thorium Th 50 m EW flight lines

Airborne mass spectrometry: Uranium U 50 m EW flight lines

Elevation (digital terrain model) SRTM 90 m pixel

Landsat thematic mapper: Channels 1–8 LSb1-8 30 m pixel
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describing the proportion of trees voting for each class, were retained
for the calculation and assessment of H.

RESULTS

RFs produced a new version of the geologic map (Figure 7a),
correctly predicting mapped geology in 76.8% of Tb instances.
The remainder of the samples can be categorized either as incorrect
predictions or as showing new information not previously mapped,
or incorrectly mapped in the starting product. When plotted, class
probabilities produced by RF (e.g., Figure 7b–7d) show the spatial
distribution of lithology-dependent class-membership probabilities.
Areas where a class has a very high probability of occupying an area
with little likelihood of another class being present such as, for ex-
ample, the central zone of D2 (Figure 7c) are apparent. There are,
however, regions where multiple classes compete such that the class
that ultimately is predicted displays a marginally higher probability
than its competition (e.g., Figure 7b and 7d).
The confusion matrix in Table 3 indicates, on a per-class basis,

the distribution of correct and incorrect classification percentages

with respect to all other classes. Several classes, namely, the basaltic
and granitic units, have been predicted with a high degree of accu-
racy. One of the doleritic units (D2) is commonly classified by RF
as basalt or high-MgO basalt. This suggests that either the classi-
fication was incorrect in this instance or, alternatively, areas mapped
as dolerite are in fact basalt. There is spatial control on classification
accuracy with misclassification more likely when units with similar
petrophysical properties occur adjacent to one another. The overlap-
ping petrophysical signals of these classes, particularly in the case
of potential field data due to smooth transitions as opposed to sharp
boundaries, may be contributing to a reduced ability to make accu-
rate predictions. This is particularly notable where these classes oc-
cupy the same areas of the map suggesting that the similarity of
properties and spatial proximity are factors.
The spatial distribution of H (calculated using equation 3) shows

very few examples in which a candidate class has a 0 probability of
occurrence in a given pixel. By definition, this means that it must be
included as a term in the calculation of H, mitigating the ability to
display the monotonic increase in H that additional possible classes
impose. As such, a threshold probability of 2% was selected, below
which a class can be considered, for this purpose, to be not present
in that pixel. The calculation of H with this parameter imposed was
used to produce a map of the spatial distribution of H (Figure 8a).
Areas in the central north and southwest of the project display the
highest H, indicating that these areas are characterized by a high
level of uncertainty across multiple classes that display a relatively

Figure 5. Examples of input data: (a) Bouguer anomaly, (b) eleva-
tion, (c) RTP total magnetic intensity, and (d) ternary radiometric
image.

Figure 6. The Ta location coded by lithology. Note that the sample
point diameter has been enlarged by a factor of five for legibility.
Legend abbreviations are as described in Figure 3.
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high probability of being predicted. Conversely, areas in the east
and west of the project extent that are classified as granite coincide
with low H, indicating that, RF classifications can be treated with a
high degree of confidence such that no other classes have a high
probability of being present. When normalized for the number of
possible classes, H represents the relative minimum to maximum
possible H on a per-pixel basis (Figure 8b). There is a direct rela-
tionship between normalized H and the observed discrepancies be-
tween the interpretation map and that produced by RF. This
correlation can qualitatively observed in a visual comparison of Fig-
ure 8b and 8d, and it was confirmed quantitatively by Kuhn et al.
(2016), who demonstrate statistically distinct populations of H cor-
responding to correctly and incorrectly classified sample groups.
Both H and normalized H can potentially form the basis of the as-
sessment of the quality of RF predictions in the absence of a starting
map with which to compare.

DISCUSSION

In the absence of the information that indicates orogenic gold
mineralization directly, the ability to map and interpret geology ac-
curately is a key feature in target identification and the establish-
ment of priority areas for exploration. We have demonstrated in
this study that RF was able to classify lithology with an accuracy
of approximately 76% relative to an existing interpreted geologic
map using only 2% of the available data as training samples. These
results are comparable with those achieved by Cracknell et al.
(2014), who use a similar approach, achieving 78% accuracy, and

they compare favorably with similar implementations using SVM,
such as by Yu et al. (2012), who achieve a consistency with the
geology map of between 62.2% with a modal convolution filter ap-
plied. It is important, however, to note that different data and geo-
logic conditions were encountered in each case. Nevertheless, the
results of this study compare positively with similar applications in
different settings.
Looking beyond bulk similarities, there is a wide range in per-

formance with regard to predictive power of the RF as applied to
individual classes. As shown in Table 3, the VS and D1 classes pro-
duced accuracies with respect to the starting geologic map, in the
order of 59%, whereas the PB class exceeded 98%. It is likely that
this excellent result is due to the spatially discrete and small area
defined by the PB class, resulting in a very well-constrained class
signature. The poor performance of the VS class is likely due to a
highly variable class signature, the result of a wide range of sample
locations and, potentially, misidentification in the original map.
The D1 class was commonly confused with B (16.5% of instances)

Table 2. Variable importance rankings as determined by RF
and cross-validation accuracy (CV acc). Cross-validation
accuracy indicates the accuracy achieved when the
corresponding variable is added in addition to higher ranked
variables. Abbreviations are as per Table 1. The bold text
indicates the first occurrence of peak cross-validation
accuracy corresponding to variables selected for classification.

Variable Score RF Rank CV acc (%)

BA267 20.61 1 35.1

Th 16.54 2 62.1

DTM 14.37 3 69

RTP 12.14 4 74.5

U 7.83 5 76.6

Ba267_1VD 7.18 6 78.4

K 2.69 7 79.5

RTP_1VD 1.52 8 79.8

LSb3 0.97 9 79.7

LSb7 0.69 10 79.1

LSb4 0.61 11 79

LSb5 0.58 12 79.8

LSb2 0.37 13 79.6

LSb8 0.26 14 79.8

LSb1 0.24 15 79.5

LSb6 0.19 16 79.4

Figure 7. (a) The RF predicted Heron South geology, (b) probability
of the THK class, (c) probability of the D2 class, and (d) probability
of the D1 class. All class membership probabilities are presented on
the same linear scale, shown at the bottom of the image. Lithology
abbreviations are described in Figure 3.
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and HMgOB (14.9%), which is logical, given the compositional
similarity of these mafic units. The D2 class, however, while quite
accurately captured at 81.8% was confused most commonly with
the THK class at a rate of 10.5% indicating the possibility of un-
mapped ultramafic material interspersed in the region mapped as
D1, or conversely, doleritic intrusions in the THK. Alternatively,
this could indicate erroneous mapping of these units in the original
geologic interpretation map. The G class was most often confused
with the D2 class. This is explained by erroneous mapping in the
starting map being repartitioned into the D2 class, which RF ex-
tends further to the west, supported by the expression of H in that
region (Figure 8c).
An important component of these results was the observation that

RF was able to preserve class labels defined from stratigraphic re-
lationships and distinguishes between equivalent lithologies. In this
case, the stratigraphic sequence is not well-characterized and geo-
chemical data were not available to resolve this distinction. Geo-
logic interpretations indicate that multiple dolerites and basalts are
present in this region. The contrast between greenstone, felsic to
intermediate intrusive bodies, and sedimentary packages is well-ex-
pressed in the gravity and magnetic data sets facilitating mapping
using these variables via machine learning. It is, however, difficult
to distinguish between units of similar composition using these data
sets alone. Nevertheless, RF is able to capture this distinction, to the
extent that it was present in the training data, and produce a map
retaining stratigraphy and not simply amalgamating by rock type.
Results produced by RF do not indicate a large-scale revision to the
mapping or understanding of the structure in the area. Updates to
lithologic boundaries could form the basis of an adjustment to the
position of faults subparallel to stratigraphy and those that offset
stratigraphy. Knowledge of the position within the stratigraphic col-
umn is important in an exploration context given that several models
for the stratigraphic position of favorable host units, relative to the
timing of gold deposition, have been identified. Again, this is con-
tingent on the congruency of the sampled region. We suggest that

when using geophysical data, the accuracy of RF lithologic predic-
tions cannot be assumed to apply to adjacent terrains. Potential field
data in particular are influenced by effects such as cover depth, or
the response of deeper sources can produce a shift in absolute signal
amplitude, not related to geology as mapped at the surface. As such,
the rules defined by RF are only reliably applicable to the domain
and from which they were derived. Radiometric data are indicative
of surficial features and may be mirrored in adjacent or distant
domains, however, it is also likely that these data may be influenced
by weathering and vegetation, which differs from the study area. In
any event, it is not anticipated that radiometric data alone would
be sufficient to propagate mapping to greater distances beyond
the sampled region. Our approach is designed as a pragmatic work-
flow; however, further insights might be gained by more geostatis-
tical- or computer-science-oriented practitioners (e.g., Grunsky and
Kjaarsgaard, 2016).
It is important to note that regardless of the physical response,

elevation, depth to source, or height of the sensor of a method, RF
will preferentially use whichever variables allow the algorithm to
most accurately solve the given problem, in this case, lithology. The
data sets which are ranked highest and the associated frequency re-
sponse are entirely determined by those that allow RF to discrimi-
nate between the lithologies.
The topographic (SRTM) data set ranked highly among the avail-

able input data. Given the contiguity and dominant strike of the
geology relative to topography, it is possible that topography is, in
fact, serving as a proxy for lithologic position in the landscape. It is
also probable that rock composition is one of the controlling factors
in preferential weathering and hence topography, although this re-
lationship is not always obvious in the region.
The Bouguer anomaly and reduced-to-pole (RTP) total magnetic

intensity data sets were both ranked as more important to the clas-
sification than their first vertical derivatives. The most plausible in-
terpretation of this result being that the potential field data are more
closely related to rock composition at the scale of this study. The

respective derivatives may define detailed fea-
tures of the units that could reflect structural
or compositional variability. This information
is of immense value in accurately mapping and
interpreting the regional and within-unit struc-
tural complexity of the area, but it does not ne-
cessitate a change to the lithologic class at any
given location. Should the mapping area be ex-
panded, the effects of regional trends would be-
come more significant with derivatives, as a form
of high-pass filter, being required to mitigate the
influence of these trends and thus would likely be
ranked of higher importance. It is possible that
the introduction of additional, textural data, de-
rived from those data sets could have improved
results. It is worth noting, however, that of key
importance is the ease of use of the method by
geoscientists and as such we consider this a good
demonstration of the method using readily avail-
able data sets, accessible to most projects without
additional prerequisite knowledge of geographic
information systems (GIS) operations.
The value H provided an indication of those

areas where an operator can be confident of

Table 3. Confusion matrix comparing mapped class with RF predictions. Values
are shown as a percentage of the number of samples of a class present in the
interpretation map. The red, yellow, and blue text indicates a recall greater than
50%, 70%, and 80%, respectively.
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accurate mapping and those areas where they are more likely to be
incorrect. Consistent with prior research (Cracknell and Reading,
2013; Cracknell, 2014), high uncertainty was generally observed
in proximity to lithologic boundaries and areas of geologic com-
plexity. Kuhn et al. (2016) demonstrate statistically, through exami-
nation of the distribution of normalized H of correctly and
incorrectly classified (Figure 8f) samples that H provides a good,
albeit imperfect, proxy for inaccuracy. As such, H is a valuable tool
when mapping in unknown areas and where validation against a
known result is not possible. Performing any exploration activity
requiring fiscal expenditure through a decision unknowingly under-
pinned by a type II statistical error in classification has a greater
consequence than performing additional study on an area that in
fact was mapped correctly. Displaying H highlights areas that

require additional data collection, such that geoscientists can further
validate these areas to within the scope of reasonable due diligence
prior to additional expenditure. Conversely, areas producing low H

do not require the same level of attention, and, as such, effort need
not be expended here and can be diverted to those areas of higher
uncertainty. We believe that H is therefore a valuable mechanism
for quantifying uncertainty given that in addition to a normalized
product, the purest form of H preserves monotonicity and provides
a measure of the absolute uncertainty present throughout the
classification.
The presence of highly magnetic Proterozoic dikes often con-

founds the ability to interpret Archaean stratigraphy. A manual in-
terpreter may opt to attempt to see past these features in a somewhat
subjective manner. It does, however, prohibit the use of absolute
levels in classification of individual data sets, such as aeromagnetic
imagery, when analyzing only that property, dikes are indistinguish-
able from other mafic units on a pixel-by-pixel basis. In this instance,
our randomly selected training data included several samples of vari-
ous rock units in the locations where they were intruded by Protero-
zoic dikes. Because this interaction was represented in the training
data, RF was able to consistently map the underlying geologic class
and was largely immune to the presence of these features. Looking at
H, we can see that uncertainty does consistently increase by up to
approximately 20% (Figure 8b) in areas where dikes intrude other
lithologies; however, the correct decision has still been obtained.
It is assumed that classifications produced by RF are deemed in-

correct in the event that they do not conform to the geologic map.
An interpreted geologic map, however, is a constantly evolving
product. The accuracy and level of detail of an interpreted geologic
map improves as data of higher resolution and accuracy and better
interpretation techniques become available. In a greenfield setting,
where a geologic map is based on limited outcrop and interpretation
of potential field data sets, it is entirely plausible that it contains
errors and/or oversimplifications.
When RF produces a result that differs from the geologic map

that the training data are sourced from,H provides a means to assert
whether the RF output or the reference information are likely to be
incorrect. In this instance (Figure 8e), we can see that the western
boundary of the greenstone package is moved to the west relative to
its position in the interpreted map. Low H at the original boundary
suggests that RF predicted with high certainty that this was in fact
an area of greenstone. In addition, H increases toward the predicted
contact suggesting greater uncertainty as the transition between rock
types was approached and the potential field signals “smear” (e.g.,
gravity decreasing toward the granitoid body). The relationship ob-
served between the RF uncertainty and the distance to geologic boun-
daries is consistent with prior observations (e.g., Cracknell et al.,
2014). A high H value is also observed in the southeast region of
the study area. It is not possible to determine whether the interpreta-
tion map is incorrect; however, the RF classifications and highH sug-
gest that this rock unit is significantly more complex than is shown.
This is a clear example of the benefit of analysis of the RF classifi-
cation in conjunction with uncertainty, and it may serve to optimize
ongoing field efforts, either outcrop mapping or drilling as appro-
priate.

CONCLUSION

This study demonstrates that RFs may be applied to reconnais-
sance-type geophysical data, in the absence of geochemistry, and

Figure 8. (a) The H (information entropy). (b) H normalized per
pixel to 0–1. (c) Lithology predictions made by RF. (d) Accuracy
relative to starting map (white = correct, red = incorrect). (e) The
relative proportion of correctly (blue) and incorrectly (orange) clas-
sified samples (blue) at a given threshold of H. (b and c) The white
box indicates a westward extension of D1 predicted by RF and as-
sociated high H increasing toward, and peaking at, the geologic
boundary. (b and c) The white-black outlined box indicates a zone
of potential geologic complexity associated with high H. (b-e)
Modified from Kuhn et al. (2016).
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produce sound lithologic predictions. There are two obvious appli-
cations for the use of RF for early-stage geologic mapping. The first
is for the refinement of an existing geologic map. The second is for
the production of a geologic map from a limited number of obser-
vations in the creation of a first-pass map. Sparse outcrop or a broad
drilling campaign could provide such starting observations, pro-
vided the spatial distribution of the observations adequately samples
the project area.
In this demonstration study, RF was able to preserve class labels,

i.e., the stratigraphic context, where more than one class comprised
the same lithology. This is an important outcome because the timing
relationships between mineralization and various stratigraphy are
vital information for mineral prospecting. Proterozoic dikes, which
are petrophysically indistinguishable from Archean mafic rocks in
the study area, confuse aeromagnetic interpretation. RF using a
higher dimensional data space can deal with this complication, pro-
vided examples of the dikes overprinting the older stratigraphy are
sampled in the training data.
Information entropy (H) provides a valuable insight into the clas-

sification results. The highest H denotes areas of geologic/geometric
complexity and proximity to lithologic boundaries. Where a pre-
dicted lithologic boundary significantly differs from the reference
map, the behavior of H proximal to interpreted and predicted boun-
daries indicates which position is most probable. Statistically distinct
populations in H correlate with correctly and incorrectly classified
samples. Through understanding H, an optimal trade-off, retaining
the greatest number of correct samples while discarding incorrect
samples can be identified. Understanding the distribution of H for
correct and incorrect sample populations allows a user to define an
acceptable trade-off between discarding the maximal number of in-
correctly classified samples or retaining a more complete, albeit a
potentially less accurate, map. This will reflect the tolerance for risk
of each individual explorer/company. The combination of RF clas-
sification and uncertainty appraisal allows explorers to critique quan-
titatively, the validity of map outputs — a quality control measure
not available in conventional mapping.
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