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Abstract

X-ray computerized tomography (CT) images as digital representations of whole cores can provide valuable information 
on the composition and internal structure of cores extracted from wells. Incorporation of millimeter-scale core CT data 
into lithology classi�cation work�ows can result in high-resolution lithology description. In this study, we use 2D core CT 
scan image slices to train a convolutional neural network (CNN) whose purpose is to automatically predict the lithology 
of a well on the Norwegian continental shelf. The images are preprocessed prior to training, i.e., undesired artefacts are 
automatically �agged and removed from further analysis. The training data include expert-derived lithofacies classes 
obtained by manual core description. The trained classi�er is used to predict lithofacies on a set of test images that are 
unseen by the classi�er. The prediction results reveal that distinct classes are predicted with high recall (up to 92%). 
However, there are misclassi�cation rates associated with similarities in gray-scale values and transport properties. To 
postprocess the acquired results, we identi�ed and merged similar lithofacies classes through ad hoc analysis considering 
the degree of confusion from the prediction confusion matrix and aided by porosity–permeability cross-plot relation-
ships. Based on this analysis, the lithofacies classes are merged into four rock classes. Another CNN classi�er trained on 
the resulting rock classes generalize well, with higher pixel-wise precision when detecting thin layers and bed boundaries 
compared to the manual core description. Thus, the classi�er provides additional and complementing information to 
the already existing rock type description.

Article Highlights 

• A work�ow for automatic lithofacies classi�cation using 
whole core 2D image slices and CNN is introduced.

• The proposed classi�er shows lithology-dependent 
accuracies.

• The prediction confusion matrix is exploited as a tool 
to identify lithofacies classes with similar transport 
properties and to automatically generate lithofacies 
hierarchies.
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1 Introduction

Classifying lithofacies is an essential step toward charac-
terizing reservoirs and better understanding their depo-
sitional environments. To predict reservoirs’ saturation 
levels, and to perform subsequent effective reservoir 
modeling, it is crucial to correctly assess lithological 
properties such as grain size, grain shape, sorting and 
cementation. These lithological properties affect the 
petrophysical and transport properties of the reservoir 
rocks (e.g., porosity and permeability).

Conventional well-log interpretations performed for 
lithology classification typically overlook the heteroge-
neities below the log resolution. Currently, the whole 
cores extracted from wellbores are described through 
direct visual inspections by a team of geologists and/or 
petrophysicists. However, this process is time-consum-
ing and the resulting facies classification can be affected 
by subjective interpretation.

The extraction of whole core data is currently requir-
ing significant capital investment. Therefore, rapid and 
automated core classification and associated core analy-
sis is seen as a key technology for enabling improved 
return on investments and to enhance the overall deci-
sion processes [36].

X-ray computerized tomography (CT) imaging is seen 
as one of the most effective nondestructive methods 
for inspecting whole cores at a submillimeter resolu-
tion, and the resulting digital image of the core is an aid 
toward the automation of the core classification process. 
CT images can indeed be incorporated in the classifi-
cation workflow for a rapid lithology classification [10]. 
Whole core CT scanning has a long history in assisting 
the geologists to study extracted cores [39]. More pre-
cisely, 2D and 3D whole core CT scans provide high-
resolution (submillimeter) information on the texture, 
composition and internal structure of the reservoir rocks. 
Moreover, whole core CT imagery may be performed in 
the early stages of the facies analysis process: these data 
can be employed before extrusion, when the core is still 
in an aluminum barrel [36].

From technical standpoints, each voxel in the CT 
images is represented by a gray-level value that indicates 
a certain level of X-ray attenuation. This grayscale value, 
and thereby the attenuation, is a function of the density 
and effective atomic number of the underlying mate-
rial [36]. Since the first generation of the CT scanners, 
the scanning technique has gone through extensive 
refinements, and current CT images can predict 2D and 
3D distribution of the chemical composition and density 
of the whole core [19]. This information, together with 
the fact that the whole core scans are stored digitally, 

aids laboratory analyses of the internal structure of the 
cores to be used in rock characterization and evaluation 
of plug drilling locations. Recent improvements in CT 
scanning and reconstruction algorithms, combined with 
developments in computing power and image analysis, 
have opened new possibilities for extracting even more 
information from whole cores, and thereby enhancing 
their value in operational settings and facilitating the 
automation of the core classification process.

The application of supervised and unsupervised 
machine learning algorithms has found significant use 
in many disciplines, including the petroleum industry. 
Recently, exploration and production companies have 
been extensively interested in the analysis of large data 
and automated solutions to reduce operational ineffi-
ciencies that slow down decision-making processes with 
associated losses of revenue [5].

Machine learning algorithms, especially artificial neu-
ral networks and support vector machines, have been 
successfully applied in several research studies to clas-
sify lithofacies and to estimate petrophysical properties 
using well log or core plug measurements [1, 2, 8, 10, 15, 
18, 22, 25, 31, 33, 38, 41, 42, 49, 52].

In regard to image-based lithology classifica-
tions, several publications have utilized deep learning 
approaches to classify lithology based on the optical 
core photographs, borehole image logs, thin sections, 
and microtomographic images. De Lima et al. [12, 13] 
employed deep learning and transfer learning technique 
to classify core images of carbonate rocks. In another 
publication De Lima et al. [14] explored the use of deep 
convolutional networks to accelerate the microfacies 
classification based on rock thin sections. Valentin et al. 
[50] introduced a methodology for automatic lithofacies 
identification based on ultrasonic and microresistivity 
borehole images and a deep residual convolutional net-
work. Baraboshkin et al. [6] compared the performance 
of several well-known neural network architectures 
(AlexNet, VGG, GoogLeNet, ResNet) to classify rock types 
based on the optical core images. Moreover, deep learn-
ing technique was utilized by Anjos et al. [4] to identify 
lithological patterns in carbonate rocks based on the 
microtomographic images.

In the majority of the aforementioned publications, 
either well log data or core analysis data have been used 
as inputs for the models learning phase. However, a recent 
trend is integrating both pieces of information together, 
potentially with also multiscale images. More specifi-
cally, Al-Obaidi et al. [3] used a combination of rock fabric 
properties extracted from image logs and well log-based 
petrophysical and compositional estimations to perform 
an automatic rock classi�cation using a k-means based 
clustering method.
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While artificial intelligence has been extensively 
employed for facies classi�cation and petrophysical prop-
erty estimations based on well log and core analysis data, 
there have been a few approaches that utilize CT images 
for facies classification and flow property estimations. 
These approaches employ information content of the 
CT images through the extraction of various features for 
clustering and classi�cation purposes. Hall et al. [19] pre-
processed the whole core CT images, extracted statistical 
features from processed images, and trained a Random 
Forest classi�er to identify bioturbated core intervals. Odi 
and Nguyen [36] utilized physical features such as density, 
porosity and photoelectric e�ect, extracted from dual-
energy CT scans, for supervised and unsupervised geo-
logical facies classi�cations. Moreover, the models were 
trained to learn the relationship between the CT extracted 
physical features and existing user-defined geological 
facies description.

Gonzalez et al. [17] considered a work�ow for an auto-
matic rock classi�cation that combines conventional well 
logs, whole core CT images, optical core photographs, and 
routine core analysis (RCA) data. In this work�ow, rock-fab-
ric-related features are �rst extracted from whole core CT 
images and core photographs and then used to determine 
the rock classes by means of a clustering algorithm. Ini-
tially, the authors assumed several rock classes, and then 
they optimized this number by iteratively increasing the 
number of classes and minimizing a permeability-based 
cost function below a certain threshold. The obtained 
rock classes were �nally used to train an arti�cial neural 
network to predict the classes from well log data. shin 
et al. [10] employed Support Vector Machines (SVM) to 
automatically classify lithofacies using the �rst order sta-
tistics and gray-level co-occurrence matrix (GLCM) features 
extracted from 2D cross-sectional whole core CT images. 
The authors used an SVM model to learn the relationship 
between the extracted features and expert-derived man-
ual core descriptions.

In the mentioned publications, facies classi�cation is 
performed using information content of the CT images 
in the form of various statistical and textural features. 
However, the CT images are not directly used as input for 
machine learning-based classi�cations.

In this study, we propose a work�ow for automatic litho-
facies classi�cation that uses whole core CT image slices 
as input to train a CNN model. In the proposed approach, 
the need for manual feature extraction is eliminated as rel-
evant features are learned by the network while it is being 
trained on a set of CT images. The obtained results reveal 
that the trained classi�er is able to distinguish certain 
lithofacies classes with satisfying accuracy. However, litho-
facies classes with similar texture and grayscale values are 
confused. In our work�ow, the information acquired from 

prediction results is utilized to evaluate the misclassi�ed 
lithofacies classes in terms of similarities in the transport 
properties. Further, as a post-classi�cation processing step, 
hierarchical clustering analysis is performed to automati-
cally cluster similar lithofacies classes using the prediction 
confusion matrix and then these results, together with 
porosity–permeability relationships, are used to group 20 
lithofacies classes into 4 rock classes.

2  Methodology

In brief, we propose an automatic lithofacies classi�cation 
work�ow that uses whole core CT images and CNN and 
that is summarized in Fig. 1. The whole approach starts 
with preprocessing of 2D DICOM (Digital Imaging and 
Communication in Medicine) images. Lithofacies labels are 
then assigned to the processed images based on a user-
de�ned geological core description. Lithofacies simply 
refers to a lithological subdivision that is distinguishable 
by its texture, grain size and the depositional environment. 
The labeled images are further augmented and used as 
inputs to train a CNN classi�er. The trained classi�er is then 
validated on a set of unseen images to predict lithofacies 
classes. Then, lithofacies classes that are deemed to be 
su�ciently similar are combined into rock classes (i.e., a 
combination of similar lithofacies classes form a rock class); 
in this step, the similarity indexes are computed starting 
from assessments of the transport properties (porosity 
and permeability) together with the degree of confusion 
in the confusion matrix resulting from the learning algo-
rithm. Further, the classi�er is coarsened with respect to 

Fig. 1  Proposed work�ow for lithofacies classi�cation
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the number of rock classes; in other words, the classi�er is 
trained with a smaller number of rock classes. Finally, the 
coarsened classi�er is employed to predict rock classes on 
a set of unseen images.

In the following subsections, the CNN algorithm and its 
general architecture will be explained in detail, followed 
by image preprocessing and image augmentation pro-
cesses employed in this study.

2.1  Convolutional neural networks

Convolutional neural networks (CNN) have found signi�-
cant applications in many sciences and industries. They 
have proven to be speci�cally e�ective in the �elds of 
image recognition, voice recognition and classi�cation. 
In general, neural networks draw the inspiration from the 
human brain. As mentioned before, this class of algorithms 
learns the relevant features directly from the input training 
data, so there is no need for manual feature extraction by a 
subject matter expert. Most of the modern CNN architec-
tures consist of alternating convolutional and pooling lay-
ers followed by fully connected layers. The convolutional 
and pooling layers deal with feature extraction, while the 
fully connected layers map these extracted features into 
the �nal output. For an extensive discussion on CNN, we 
refer the interested reader to [53].

In the convolutional layers, a convolution operation is 
performed, i.e., a set of optimizable convolutional kernels 
are superposed in each position of the image represented 
by a 2D array of pixels. An element-wise multiplication 
between the elements of the kernel and the receptive �eld 
in the input image is performed, and the product results 
are summed up and stored in the corresponding position 
in the output feature map. Once the convolution opera-
tion is computed and stored for that speci�c location, the 
kernel is then moved either horizontally or vertically by an 
o�set called stride. This process is repeated until the entire 
image is covered and the resulting feature map is com-
pletely populated. Convolutional layers are locally con-
nected, whereas in the classic neural networks each neu-
ron is fully connected to the neurons in the other layers.

To introduce nonlinearity, the outputs of the convolu-
tion operations pass through an activation function. The 
most common activation function is the recti�ed linear 
unit (ReLU); the advantage of using this speci�c function 
is that it allows fast and e�ective convergence during the 
training process. The feature map output of the convolu-
tional layer records the exact position of the existing fea-
tures in the input image. Therefore, minor spatial changes 
in the input image will yield a di�erent feature map. To 
address this problem, a pooling layer is added after 
applying the nonlinear activation function (e.g., ReLU) to 
the feature map output of the convolution operation. A 

pooling operation is selected to be applied on each indi-
vidual feature map. Two common pooling functions are 
average pooling and maximum pooling. The advantage 
of the added pooling layer is that the pooled feature map 
becomes invariant to local translations and spatial varia-
tions in the input image, e.g., edges, angles, feature posi-
tions, etc. [24].

The downsampled feature map outputs derived from 
the �nal pooling layer are then �attened into a 1D array 
of values that is connected to one or more fully con-
nected layers that are referred to as dense layers. Here, 
input nodes are connected to output nodes by learn-
able weights [53]. The extracted features are eventually 
mapped into the �nal output of the network through the 
fully connected layers. Nonlinearities may also be intro-
duced in the fully connected layers by adding an acti-
vation function (such as ReLU) following each fully con-
nected layer.

Note that the activation function applied to the �nal 
fully connected layer is normally di�erent than the other 
layers, and it is selected depending on the type of the task, 
i.e., classi�cation and regression. A common activation 
function for multiclass classi�cation is the so-called ”soft-
max” function that returns the probability distribution of 
the predicted classes, i.e., it converts the output of the last 
layer into the predicted output class probabilities.

2.2  Information on the type of available data

The provided CT scan data consist of individual cross-
sectional image slices from each core interval. Therefore, 
the number of image slices differ for each core, since 
depending on both the length of the core itself and the 
corresponding vertical image resolution (i.e., how many 
images are taken per meter of core). As an example, if the 
vertical image resolution is 0.4 millimeters and an indi-
vidual core length is 1 meter, this results in more than 2000 
individual image �les for that 1 meter core interval. In our 
dataset, the image slices are stored in a 16-bit unsigned 
DICOM format, a standard format developed for medical 
images [34]. The DICOM images of individual cores have 
been then stacked together and stored as 3D raw images 
using the ImageJ software [43].

2.3  Image preprocessing

To prepare the images as inputs for our CNN training pro-
cess, we need to discard undesired noncore regions. The 
images coming from certain zones can negatively a�ect 
the classi�cation results, since they contain information 
that is nonrelated to the actual phenomena we want to 
model.
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The �rst step we adopted is to remove border e�ects by 
cropping the 3D raw image slices into rectangular crops 
of size 256 × 256 pixels. A comparison of an example 
image before and after this cropping is shown in Fig. 2. 
After cropping, a global minimum and maximum inten-
sity value, selected by observing the 3D histograms of all 
rectangular crops, is assigned to the images of the entire 
considered core intervals. Further, the intensity adjusted 
images are encoded in 8-bit format, i.e., 0– 255 gray-scale, 
and stored for further analysis.

Another preprocessing operation includes remov-
ing images with missing data associated with poor core 
recovery, induced fractures, or rush plugs. Note that the 
image slices with missing core intervals show low gray-
level attenuation values (Fig. 3a).

We also note that the images dataset contains a num-
ber of other undesired artefacts related to core barrel cou-
plings, drilling mud invasion, and cementation of high-
density minerals such as pyrite and siderite (examples 
are shown in Fig. 3b and c). Also these zones need to be 
excluded from the training set.

To flag and remove the above artefacts, we thus 
implemented dedicated type-dependent algorithms to 
the raw data. More precisely, to remove missing intervals 
we calculate the average attenuation �

c
 in the center of 

the image using a centered square covering 40% of the 
total number of pixels. If the computed average attenu-
ation is less than a predefined cutoff C

m
 , the image is 

flagged and removed:

where fm is the flag for missing interval. The image is 
removed if fm is equal to 1.

Intervals with high-density material appear very 
bright with relatively high gray-level attenuation read-
ings. To identify these intervals, the average attenuation 

� of the whole 2D image is computed and, if the aver-
age is greater than a predefined cutoff Ch , the image is 
flagged for removal:

where fh is the high-density �ag. The image is removed if 

fh is equal to 1.
In the intervals with core barrel couplings, the attenu-

ation values in the middle of the images are lower than 
the attenuation values of the image edges (i.e., the 
edges are brighter, as shown in Fig. 3c). To detect inter-
vals with core barrel couplings, the difference in average 
attenuation of the center and edges of the 2D image 
is calculated. As above, the center average attenuation 

�
c
 is computed considering 40% of the total number of 

pixels using a centered square. To represent edge aver-
age attenuation �

e
 , the outer 5% of the total number of 

pixels along the edges are considered. If the difference 

between center average attenuation and edge average 

(1)fm =

{

1, if �c < Cm

0, else

(2)fh =

{

1, if � > Ch

0, else

Fig. 2  Original DICOM image slices a are cropped (red square) into 
256x256 squares b as a preprocessing step to prepare images to be 
used as inputs for the CNN training process

Fig. 3  2D image slices with: a missing CT values (due to rush plugs), b high-density material (cementation or drilling mud invasion), and c 
core barrel coupling
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attenuation is greater than a predefined cutoff value Cb , 
the image interval is flagged and removed:

where fb is the core barrel coupling flag. The image is 
removed if fb is equal to 1. Note that the thresholds above 
have been computed using the global distribution of the 
minimum, mean and maximum intensity values observed 
in the dataset.

Finally, to reduce computational time associated with 
CNN training, the remaining 2D CT images are coarsened 
by a factor of four (i.e., the �nal image size is 64 × 64 pix-
els). Further, the images are rescaled, i.e., all pixel values 
are divided by 255, before being used as input for the CNN 
training.

2.4  Image augmentation

Generally, large amounts of training data are required to 
achieve a good performance in deep neural networks. 
Image augmentation is a strategy that is performed to 
boost the performance of the network through di�er-
ent kinds of modi�cations, e.g., random rotation, shifting, 
shearing and �ipping, applied to the original images.

Image augmentation is applied during the training 
phase, so that the model can learn from more image 

(3)fb =

{

1, if �e − �c > Cb

0, else

examples. In our framework, we speci�cally considered 
rotation and horizontal �ips of the original images. We 
thus implemented the ”ImageDataGenerator” class in 
Python using the Keras API [11], a publicly available code 
that can be used for image augmentation purposes on the 
�y. The ”ImageDataGenerator” class rotates the images 
randomly within a range of user-de�ned angles. There-
fore, in case of squared images, it is very likely that for 
some speci�c rotation angles, the pixels will fall out of the 
image frame leaving some areas of the image with no pix-
els. There are a number of interpolation techniques such 
as nearest neighbor that can be used for those areas, but it 
can amend the key features resulting in dissimilar features 
counterproductive for training. To avoid this problem, the 
images were rotated outside Keras, while the horizontal 
�ip was applied in Keras using ”ImageDataGenerator” class 
on the �y during training the CNN classi�er. The images 
were rotated by 90◦ , 180◦ and 270◦ . An example of the 
rotated and horizontally �ipped images is shown in Figs. 4 
and 5.

3  The dataset

3.1  Whole core CT scan images

This study uses whole core cross-sectional image slices 
from a well on the Norwegian continental shelf. The 

Fig. 4  An example of image augmentation applied on the CT 
images. a Original CT image, b original image rotated by 90 
degrees, (c) original image rotated by 180 degrees, d original image 
rotated by 270 degrees, e original image horizontally �ipped, f 

90◦ rotated and horizontally �ipped, g 180◦ rotated and horizon-
tally �ipped, h 270◦ rotated and horizontally �ipped. Note that the 
images are coarsened by a factor of 4 with a �nal size of 64 × 64 
pixels
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studied well penetrates four main formations denoted as 
Fm.1, Fm.2, Fm.3 and Fm.4 in Fig. 5: Formation 1 consists of 
very �ne-grained argillaceous sandstones and cemented 
sandstones, Formation 2 constitutes successive layers 
of mudstones and �ne-grained sandstones, Formation 
3 consists of granule-rich medium-grained sandstones 
and spiculites (a biogenic rock composed of sponge silica 
spicules), and Formation 4 comprises mud and calcite rich 
marlstones. As mentioned in Sect. 2.3, the images were 
provided in 16-bit unsigned DICOM slices with a vertical 
resolution of approximately 0.45 millimeters. The indi-
vidual DICOM images were stacked and stored as 3D raw 
images and then cut into rectangular crops. In addition, 
a global minimum and maximum intensity value was 

assigned to all images before they were encoded in 8-bit 
format. The images with undesired artefacts were removed 
as described above, and the remaining images were coars-
ened by a factor of four to reduce computational time.

3.2  The lithofacies from the employed core 
description

We exploit information obtained from a manual core-
based lithology description, performed by a geologist, as 
groundtruth to create the training lithofacies classes. The 
CNN classi�er was then trained to learn the relationship 
between the image features extracted by the convolution 
process, and the corresponding lithofacies classes. For the 

Fig. 5  Well log data and 2D cross section of the core CT image 
showing 142 meters of the studied well. Log tracks from left to 
right: track 1: Formations, track 2: Caliper (CALI) and Gamma ray 
(GR), track 3: Density (DEN) and Neutron (NEU), track 4: Deep resis-

tivity (RDEP), track 5: Photoelectric factor (PEF), track 6: Compres-
sional wave slowness (AC) and shear wave slowness (ACS), track 7: 
2D cross section of whole core CT scan
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sake of completeness, we report that our dataset presents 
20 lithofacies classes derived through the manual core 
description mentioned above (the abbreviated classes 
together with a short description is found in Table 1). The 
three most abundant lithofacies are mudstone (marine 
and continental), granule-rich medium-grained sandstone 
with dispersed cementation, and �ne-grained sandstone 
with di�erent textures/laminations (ripple, cross-strati�ed 
and massive); these are interbedded with other sparser 
lithofacies.

4  Training phase

In this section, the training phase will be explained in 
detail. The section starts with the strategy used to sepa-
rate train and test samples followed by training steps and 
hyperparameter optimization processes.

4.1  Division of the dataset in training vs. test data

A standard data analysis paradigm is to train a machine 
learning model on a set of data considered as the 
groundtruth and then evaluate its statistical performance 
on another set of unseen instances, again considered as 
correctly labeled in the manual labeling process. Con-
sidering the statistical distribution of the images in our 
dataset, we assessed that a suitable training vs. test sets 

splitting ratio is 80% for training and 20% for testing. To 
maintain continuous intervals and at the same time bal-
ancing the frequency of the lithofacies within each set, 
the train and test sets were selected manually. The reason 
for not selecting train and test sets randomly is that the 
images are slowly varying, so a random selection would 
give similar data points in both sets. Approximately 20% of 
the train set was employed as validation set, which is used 
to evaluate the performance of the model during training 
(see Sect. 4.2.3).

For completeness, the distribution of di�erent lithofa-
cies classes in the resulting train and test sets is presented 
in Fig. 6, from which we can see similar class distributions 
in both sets.

4.2  Details on the CNN training process

The CNN training is a process by which the kernels weights 
in the convolutional layers, the weights in the fully con-
nected layers, and their associated biases are adjusted 
in such a way that the di�erence between the predicted 
labels and the given labels (i.e., the groundtruth) is mini-
mized. Training is commonly performed by a forward- and 
back-propagation process throughout the entire network 
using a gradient descent optimization algorithm and a 
loss function. The loss function computes the di�erence 
between the output predictions, computed through 
forward propagation, and the actual label. The network 

Table 1  Lithofacies classes 
and their associated fractions 
derived from core-based 
lithology descriptions (225524 
images from 142 meter of core)

Lithofacies labels Description Fraction

Marl Mud/clay rich marl 0.0214

CalMarl Marl with caliche cementation 0.0157

SpiculiteSS Medium-grained spiculitic sandstone 0.0438

Mudstone Dark gray mudstone with plain parallel bedding, mottled mudstone 0.1181

WCemBelSS Well-cemented medium-grained sandstone with Belemnite fossils 0.0035

GraMSSDispC Granule-rich medium-grained sandstone with dispersed carbonate 
cementation

0.103

PCemGraMSS Poorly cemented granule-rich medium-grained sandstone 0.032

WCemMSS Well-cemented medium-grained sandstone 0.025

MudsHighDens Mudstone with high density minerals (pyrite) 0.005

ArgFineSS Argillaceous �ne-grained sandstone 0.0726

RippleFineSS Fine-grained sandstone with ripple cross-lamination 0.0809

MassFineSS Massive �ne-grained sandstone 0.099

CrossFineSS Fine-grained sandstone with cross-strati�ed lamination 0.093

MudFineSS Muddy �ne-grained sandstone 0.0397

BioFineSS Bioturbated �ne-grained sandstone 0.0121

WCemFineSS Well-cemented �ne-grained sandstone 0.013

ContMud Continental mudstone 0.0906

MassVeryFineSS Massive very �ne-grained green sandstone 0.0385

CemVeryFineSS Cemented very �ne-grained green sandstone 0.0667

VeryFineSSHorizontal Very �ne-grained sandstone with horizontal lamination 0.0264
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performance is evaluated using the loss function. Cross-
entropy is typically used as the loss function for multi-
class classi�cation tasks, whereas the mean squared error 
is typically used for prediction of continuous values, i.e., 
regression analysis [53]. In the current study, we are deal-
ing with a multiclass classi�cation task. Therefore, we used 

cross-entropy to determine the loss function of the CNN 

model as given by [9]:

where yi and ŷi are, respectively, the true and predicted 
labels of the ith sample, p is the probability, while N is the 
total number of training samples.

As mentioned above, the learnable parameters are 
updated iteratively using a gradient descent optimiza-

tion algorithm that seeks to minimize cross-entropy losses. 
Basically, the partial derivative of the loss function with 
respect to each learnable parameter is �rst calculated; 
once the whole loss function gradient is computed, the 
learnable parameters are updated using [53]:

where w refers to each learnable parameter with w+ being 
the updated value, � stands for learning rate, and L is the 
loss function. The learning rate is an important hyperpa-
rameter that determines how fast the learnable parameter 
(e.g., weight) should move in the direction of the gradient. 
Note that �nding the optimal learning rate during training 
is crucial for neural networks, since the training process 
may not converge when using a too high learning rate (in 

(4)L = −

1

N

N
∑

i=1

yi log
(

p
(

ŷi
))

,

(5)w
+
= w − �

dL

dw

this case, indeed, the optimizer overshoots the minimum 
and lands in a zone of the parameters space that leads to 
worse loss values).

To avoid this issue, it is common to employ various 
types of optimizers so to search the optimum weight 
and kernel parameters using a pool of di�erent gradient 
descents strategies, among which then choose the best 
one. Examples of the di�erent types of descent methods 
are stochastic, batch and mini-batch gradient descents. 
These methods vary in terms of the number of samples 
used to compute the error between the actual and pre-
dicted labels.

In our study, we evaluated the performance of the 
RMSProp [20] and Adam [29] optimizers to optimize the 
weights. The obtained results revealed that Adam outper-
formed the RMSProp. Therefore, we eventually optimized 
the weights using the Adam optimizer together with a 
mini-batch gradient descent method. Note that this is 
the most common variation of gradient descent used in 
deep learning; to give some intuitions, mini-batch gradi-
ent descent splits the training data into small batches and 
calculates the error per batch before updating the learn-
able parameters.

In our study, the �nal optimal approach was to consider 
a batch size of 32 images and a CNN classi�er training pro-
cess of 70 epochs (where an epoch is a period in which all 
the training samples have been presented at least once 
to the network).

4.2.1  Hyperparameter selection

Generally, there exist two types of parameters in the 
machine learning algorithms. As mentioned in Section 4.2, 

Fig. 6  Distribution of di�erent lithofacies classes in the train (blue) and test (red) sets
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the kernel weights in the convolutional layers, the weights 
in the fully connected layers, and their associated biases 
are learnable, and thus optimized during the training pro-
cess. The second type of parameters, referred to as hyper-
parameters, determine the structure of the cost function 
that is minimized, and need to be set by the user. These 
hyperparameters include the learning rate, the number 
of convolutional layers, the number of kernels in the con-
volutional layers, and the number of neurons in the fully 
connected layers. It is quite straightforward to realize that 
the performance of a machine learning model is highly 
dependent on the right choice of both the parameters and 
the hyperparameters. The process of adjusting the hyper-
parameters is called hyperparameter tuning.

As previously explained, the here proposed CNN classi-
�er was developed in Keras using the Tensor�ow backend. 
In our case we solve the hyperparameter tuning problem 
using the Keras tuner library [30, 37, 40]. This library ena-
bles to de�ne a search space that includes the considered 
hyperparameters and an opportune tuner that will auto-
mate the solution of this tuning process. More precisely, 
the task of the tuner is to evaluate a certain number of 
hyperparameter combinations in a model that is explicitly 
set-up for hypertuning, i.e., a hypermodel. The considered 
hyperparameters in this study are presented in Table 2. 
Four tuners are available is Keras, including Random-
Search, Hyperband, BayesianOptimization, 

and Sklearn. For more information on the di�erences 
among these approaches, we direct the interested reader 
to [7, 23, 32, 47].

In this study, we utilize the Hyperband algorithm [32], a 
relatively new method for tuning the iterative algorithms. 
Basically, the strategy behind this approach is to try a 
large number of random con�gurations using adaptive 
resource allocation and an early stopping rule to quickly 
converge to a high-performance model. More speci�cally, 
the random con�gurations are run for a speci�c number 
of epochs (i.e., one or two) per con�guration, and then the 
top-performing model con�gurations based on the previ-
ous results are trained for longer runs. Finally, the algo-
rithm returns a best con�guration trained to the assigned 
maximum number of epochs. The optimized classifier 
architecture, obtained by this hyperparameter selection 
processes, is presented in Fig. 7, and described in detail in 
the next section.

4.2.2  Classifier architecture

The proposed CNN classifier architecture is shown in 
Fig. 7. Its input and output layers consist of 2D image 
slices and lithofacies classes that have been derived from 
the available core descriptions. The classifier employs 
four distinct convolutional layers, indicated as ”Conv1,” 
”Conv2,” ”Conv3,” and ”Conv4,” with 240, 48, 48 and 240 

Table 2  Potential 
hyperparameters and the 
potential search space used 
in this work during the 
hyperparameter selection

 The �nal optimal values are shown in bold. Note that two numbers are bold for convolutional kernels 
since two convolutional layers have 48 kernels each, while the other two have 240 kernels each (Fig. 7)

Training hyperparameters Parameter space

Number of convolutional layers (1, 2, 3, 4 )

Number of convolutional kernels (�lters) (16, 48, 80, 112, 144, 176, 208, 240)

Kernel size (3, 5)

Learning rate (0.01, 0.001, 0.0001)

Number of neurons in the fully connected layer (32, 64, 96, 128, 160, 192, 224, 256)

Dropout rate (0, �.2, 0.4, 0.6)

Fig. 7  Proposed CNN architec-
ture for lithofacies classi�ca-
tion
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convolutional kernels, respectively. Note that here we 
employ a kernel size of 5 × 5 ; this speci�c dimension was 
indeed resulting as optimal from the hyperparameter tun-
ing process, and has been used in all our convolutional 
layers.

In order to preserve the original image size, we moreo-
ver applied a zero padding technique in each convolu-
tional layer; i.e., we added a layer of pixels with values 
of zero around the image edges. The convolution opera-
tion in each layer is in our scheme then performed using 
a stride of 1, and the resulted feature maps are passed 
through a ReLU activation function to introduce nonlin-
earity. In our context the stride is, basically, the number of 
pixel shifts when the kernels are moved throughout the 
input image. After applying the ReLU function, the feature 
maps are sent to the subsequent pooling layer, where they 
are downsampled using a max pooling layer with pooling 
window size of 2 × 2 and a stride of 1.

The pooled feature maps of the last convolutional layer 
are �attened into a one-dimensional vector that is con-
nected to the output layer in the fully connected layer. 
The proposed network contains one hidden layer with 256 
neurons. As mentioned before, the number of neurons in 
the hidden layer is a hyperparameter that was optimized 
during hyperparameter tuning. A ReLU function is also 
applied to the hidden layer followed by the dropout layer. 
Dropout is a regularization technique, where randomly 
selected neurons are discarded during training (i.e., they 
are temporarily removed from the network together with 
their incoming and outgoing connections). The dropped-
out neurons are not employed in the backpropagation 
phase [21, 48]. A dropout rate of 0.2 was applied in the 
proposed network meaning that one in 5 of the neurons 
in the hidden layer will be randomly ignored from each 

update iteration. As mentioned in Table 2, the dropout 
rate is a hyperparameter that, as the others, is optimized 
during the hyperparameter tuning phase. This regulariza-
tion scheme is meant to prevent over�tting, and can be 
interpreted as an attempt to optimize the bias-variance 
tradeo� of the overall estimator. For more details about 
the statistical interpretations of regularization see [44].

Another common regularization technique in deep 
learning is batch normalization. In batch normalization, the 
output of a convolutional layer is normalized before being 
used in the next one. This technique is known to have also 
a regularization e�ect, and it is empirically known to typi-
cally speedup the network training, plus make it less sensi-
tive to the initialization point [26]. We note that, however, 
this is not guaranteed in general settings—and indeed, 
in the current study, more accurate results were obtained 
without using batch normalization. The last layer in Fig. 7 
is the output layer with 20 nodes corresponding to the 
20 lithofacies labels. The proposed architecture provides 
1’628’612 trainable parameters.

4.2.3  Classifier evaluation

As mentioned previously, 20% of the training images were 
utilized as the validation set. The cross-entropy loss and 
accuracy were considered as training metrics to evaluate 
the performance of the CNN classi�er during training. Fig-
ure 8 shows how the accuracy and cross-entropy change 
over time during the training process. As one can see 
from the plots, the classi�cation accuracy increases with 
increasing number of epochs in both the training and 
validation sets. However, the cross-entropy loss decreases 
with increasing number of epochs. The training metrics 
start to converge at around 70 epochs.

Fig. 8  Model performance on the training and validation set. The plot to the left shows the accuracy results by increasing the number of 
epochs, whereas the plot to the right shows loss results by increasing the number of epochs
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5  Results

The lithofacies classi�cation results acquired by using the 
trained classi�er on a set of unseen images will be pre-
sented and discussed in the following sections.

5.1  Lithofacies prediction

To evaluate the performance of the trained CNN classi�er 
on unseen data, the model was used to predict lithofacies 
in another part of the well, previously denoted as the test 
set. For consistency, the test images are passed through 
the same processes of image preprocessing and rescaling 
before being actually classi�ed. The corresponding predic-
tion accuracy metrics and confusion matrix calculated by 
cross-classifying the lithofacies classes from core descrip-
tion (classi�cation groundtruth) and CNN prediction are 
summarized in Table 3 and Fig. 9. Here, accuracy is de�ned 
as the sum of true positives divided by total number of 
samples in the test set (i.e., probability of correct classi�ca-
tion). Precision is quanti�ed as the sum of true positives 
divided by the sum of true positives and false positives 
across all the lithofacies classes in the test set. In other 
words, precision represents the probability that the pre-
dicted lithofacies class, given the classi�cation results for 

individual images, actually belongs to that class. Recall 
is calculated as the sum of the true positives divided by 
the sum of true positives and false negatives across all the 
lithofacies classes. Precision and recall results are com-
bined into a single measurement, i.e., the f1-score, through 
the following formula:

The confusion matrix provides information on the simi-
larity of the lithofacies classes in the confusion space. If 
we consider each row in the confusion matrix as a vector 
representing a particular class, the ith coordinate in that 
row vector shows the degree of misclassi�cation of the 
considered class with the ith class [16]. In other words, the 
diagonal values of the confusion matrix represent the 
recall, while the o�-diagonal values correspond to the 
degree of misclassi�cations. All the row vectors in the com-
puted confusion matrix are normalized to one. Therefore, 
in the case of 100% accuracy, the ith coordinate of the ith 
row vector will be 1, while all the o�-diagonal coordinates 
will be 0.

Looking at the confusion matrix in Fig. 9, we observe 
that the proposed classi�er is able to predict some of the 
lithofacies classes with recall values above 0.7. More spe-
ci�cally, granule-rich medium-grained sandstones with 
dispersed calcite cementation record the highest recall 
(0.92), followed by very �ne-grained sandstones with hori-
zontal lamination (0.75), massive �ne-grained sandstones 
(0.72) and poorly cemented granule-rich medium-grained 
sandstones (0.71). However, the classi�er misclassi�es the 
other lithofacies into another class or a set of classes with 
di�erent degrees of confusion.

In particular, the classi�er misclassi�es very �ne-grained 
lithofacies classes, i.e., marl, marl with caliche cementation, 
mudstone, mudstone with high density minerals, muddy 
�ne-grained sandstone, cemented very �ne-grained green 
sandstone, massive very �ne-grained green sandstone, 
and continental mudstone. Examples of these misclassi-
�ed lithofacies classes are illustrated in Fig. 10, from which 
we can see that these lithofacies classes actually show sim-
ilar texture and grain sizes, therefore similar gray-scale val-
ues, with no distinct features. This explains the di�culties 
that the classi�er encounters in doing its designed task. 
As lithofacies with similar grayscale and textural proper-
ties are expected to exhibit similar transport properties, 
porosity and permeability data from core analysis meas-
urements were used to investigate the transport proper-
ties of the classi�ed lithofacies. Figure 11 shows the poros-
ity–permeability cross-plot for core plug samples from 
the same core data as in our CT images, where di�erent 
colors correspond to the di�erent lithofacies that have 

(6)f1-score =
2 × precision × recall

precision + recall
.

Table 3  Prediction accuracy metrics on the test set using the 
trained CNN classi�er. Support shows the number of predicted 
samples for each class

Lithofacies labels Precision Recall F1-score Support

Marl 0.23 0.39 0.29 542

CalMarl 0.27 0.52 0.36 918

SpiculiteSS 0.50 0.64 0.56 1835

Mudstone 0.53 0.61 0.56 6684

WCemBelSS 0.19 0.16 0.17 160

GraMSSDispC 0.83 0.92 0.87 4498

PCemGraMSS 0.84 0.71 0.77 1491

WCemMSS 0.82 0.65 0.72 1161

MudsHighDens 0.26 0.50 0.34 187

ArgFineSS 0.48 0.52 0.50 3774

RippleFineSS 0.36 0.53 0.43 2879

MassFineSS 0.86 0.72 0.78 3522

CrossFineSS 0.68 0.44 0.53 5096

MudFineSS 0.30 0.28 0.29 1979

BioFineSS 0.79 0.31 0.44 824

WCemFineSS 0.72 0.64 0.68 653

ContMud 0.44 0.33 0.38 3489

MassVeryFineSS 0.36 0.28 0.32 2121

CemVeryFineSS 0.54 0.52 0.53 2906

VeryFineSSHorizontal 0.86 0.75 0.80 1192
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been derived from the manual core description. Here, we 
can see that the aforementioned misclassi�ed lithofacies 
fall into the same region with porosity and permeability 
values less than 0.20 and 10 mD, respectively (marked by 
red ellipsoid in Fig. 11).

Likewise, �ne-grained sandstones with horizontal lami-
nation, ripple cross-lamination and cross-strati�ed lami-
nation are not classi�ed with satisfying performance. The 
porosity–permeability cross-plot shows that these lithofa-
cies, together with massive �ne-grained sandstones, fall in 
the same region in the porosity–permeability cross-plot. 
More speci�cally, they exhibit porosity values above 0.28 
and permeability values ranging from 100 mD to approxi-
mately 30 Darcy (represented by the blue ellipsoid).

Granule-rich medium-grained sandstone samples 
(P-CemGraMSS, GraMSSDispC) spread out in the regions 
with permeability values ranging from 30 mD up to 50 

Darcy (the green ellipsoid). However, most of the samples 
belonging to these classes exhibit porosity and perme-
ability values above 0.20 and 1 Darcy, respectively. The 
prediction results shown in Fig. 9 indicate that poorly 
cemented granule-rich sandstone (PCemGraMSS) litho-
facies are mainly misclassi�ed as granule-rich sandstone 
with dispersed calcite cementation. The spiculite sand-
stone samples exhibit porosity values ranging from 0.20 
to 0.28 and permeability values from 1 mD to 20 mD. The 
spiculite lithofacies is mostly misclassi�ed as argillaceous 
�ne-grained sandstone, showing similar porosity values. 
However, some of the measurements belonging to the 
argillaceous �ne-grained lithofacies class exhibit higher 
porosity and permeability values, similar to the other �ne-
grained sandstones, and fall in the blue ellipsoid in Fig. 11.

Here, we see that even though most of the core meas-
urements can be separated by the identified clusters in 

Fig. 9  Confusion matrix for the test set prediction
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Fig. 10  Examples of very �ne-grained lithofacies classes with simi-
lar textures and grain sizes with no distinct features. This type of 
images confuse the trained classi�er and result in misclassi�cations 
and model de�ciencies. a Marl, b Marl with caliche cementation, c 

Mudstone, d Mudstone with high-density minerals, e Cemented 
very �ne-grained sandstone, f Massive very �ne-grained green 
sandstone, g Muddy �ne-grained sandstone, h Continental mud-
stone. The size of images is 64 × 64 pixels

Fig. 11  Porosity–permeability cross-plot from available core meas-
urements for the studied well. The lithofacies derived from core 
description are shown in di�erent colors. The misclassi�ed lithofa-

cies exhibit similar porosity–permeability relationship marked by 
ellipsoids with di�erent colors
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Fig. 11, some of the measurements exhibit a wide range 
of porosity and permeability values falling into more 
than one cluster, e.g., mudstone, cemented very fine-
grained sandstone and argillaceous fine-grained sand-
stone samples.

In order to investigate the acquired classi�cation results 
more quantitatively, we �t a log-linear regression line to 
map the porosity–permeability relationships of di�erent 
lithofacies with more than �ve measurements. The com-
puted intercepts can be used as an indication of similarity 
in transport properties between di�erent lithofacies. The 
resulted intercept values are presented in Fig. 12; from 
this we can clearly infer that most of the lithofacies with 
similar transport properties tend to group into similar sets 
of intercept values. However, argillaceous �ne-grained 
sandstone samples exhibit similar intercept values to the 
samples in the blue ellipsoid, which is expected due to 
the presence of argillaceous samples with higher range 
of porosity and permeability falling into the blue ellipsoid 
in Fig. 11. The colors in Fig. 12 correspond to the lithofa-
cies clusters identi�ed by ellipsoids in Fig. 11. Considering 
the similarities in transport properties of the misclassi�ed 
lithofacies, it is not unreasonable to expect classi�cation 
confusion amongst these classes.

In addition to the aforementioned similarities in texture 
and grayscale values, there are other issues that can create 
uncertainties and a�ect the training process and generaliza-
tion capability of the trained classi�er. One issue is related 
to the dipping and interchanging lithofacies. As an exam-
ple, �ne-grained argillaceous sandstones, ripple cross-lam-
inated and cross-strati�ed sandstones interchange within 
the studied intervals creating di�culties in assigning a clear 
boundary during core description. Moreover, in the intervals 
with dipping lithofacies it is not easy to de�ne a horizontal 
bed boundary. Another important point is related to the 
groundtruth labels derived from manual core description. 
These labels are assigned by visual inspection of the whole 
cores (or core photos), and they do not have pixel-wise reso-
lution creating inconsistencies during training phase.

Figure  13 shows a section of the predicted test set 
together with the 2D whole core CT image and expert-
derived core description. The classi�er is able to predict the 
granule-rich (PCemGraMSS and GraMSSDispC) and well-
cemented medium-grained sandstone lithofacies with fair 
accuracy. However, mudstone and �ne-grained sandstone 
lithofacies (ripple cross-laminated and cross-strati�ed) are 
confused with other similar lithofacies.

Fig. 12  Intercept values computed from the porosity–permeability cross-plot for misclassi�ed lithofacies. Similar lithofacies, misclassi�ed by 
the classi�er, are presented with similar colors corresponding to the lithofacies clusters identi�ed in Fig. 11
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6  Post-classi�cation processing

In the previous section, we mentioned that the confu-
sion matrix can provide invaluable information about the 
similarities and relationships between di�erent lithofacies 
classes, and then we showed that the confused lithofa-
cies classes exhibit similar porosity–permeability trends. 
In fact, in Fig. 11 we see that the misclassi�ed lithofacies 
group into four di�erent rock classes based on their poros-
ity and permeability relationships. This guides us to con-
sider if the lithofacies classi�cation task can be coarsened 
with respect to the number of lithofacies classes. For this 
end inspired by Godbole [16], we use the information 
acquired from the confusion matrix to generate lithofa-
cies hierarchies based on the degree of confusion for the 
di�erent lithofacies classes.

6.1  Automatic generation of lithofacies hierarchies

Hierarchical clustering is a method in clustering analysis 
that aims at building a hierarchy of clusters based on a 
predefined similarity metric. Generally, two approaches 
are considered in performing hierarchical clustering 
analysis, i.e., agglomerative and divisive clustering [27]. 
Agglomerative clustering, also called the ”bottom-up” 
approach, starts with each element in a singleton clus-
ter and pairs of clusters being merged successively until 
a specific stopping criterion is satisfied. The divisive, 

also called the ”top-down” approach, starts instead with 
all the elements in a single cluster; splitting is then per-
formed recursively by moving down in the hierarchy. 
In hierarchical clustering similar clusters are grouped 
successively using a similarity metric, which is often a 
distance measure defined on the feature space [27]. The 
most common similarity metrics are Euclidean distance, 
Mahalanobis distance and Kullback-Leibler distance 
measure. There are different methods to measure dis-
tance between clusters; among these, the single-link-
age [46], the complete-linkage [28], and the minimum 
variance (Ward)  [51] methods are the most popular 
ones. More specifically, the single linkage (or nearest 
neighbor) clustering method looks for pairs of elements 
from two clusters that have minimum distance. In other 
words this approach basically considers recursively the 
closest pairs of elements from two clusters to measure 
the distance. In the complete linkage method, instead, 
the distance between two clusters is computed as the 
distance between the farthest elements of the two clus-
ters. In both cases, the clusters with minimum distance 
measure are merged to form a larger cluster. The single-
link algorithm is simple to implement, but it is known to 
suffer from chaining effects [35] that produce elongated 
clusters and long chains. By contrast, the complete link 
algorithm forces consistent diameter and spherical clus-
ters. The Ward’s clustering method is then a special case 
of an objective function approach that looks for aggre-
gate deviations of the elements. In fact, this method 
pretends to merge two clusters, and then estimates 
a centroid for the resulting cluster and calculates the 
sum of the squared deviations of all the elements from 
the new centroid. This algorithm then picks the merge 
with minimum within cluster variance or the merge with 
smallest deviation from the new centroid. The output of 
the hierarchical clustering is presented in a dendrogram 
representing the nested clustering of the elements and 
their similarity levels.

In this study, we perform hierarchical clustering using 
the empirical confusion matrix from the classi�er as the 

Fig. 13  Lithofacies prediction results from a section of the test set. 
a 2D whole core CT image, b Lithofacies classes from manual core 
description, c Lithofacies prediction using the trained CNN classi�er

Table 4  Confusion matrix of four classes. Here, we consider four 
classes for simplicity

GraMSS-
DispC

PCem-
GraMSS

RippleFi-
neSS

CrossFineSS

GraMSS-
DispC

0.92 0.02 0 0

PCem-
GraMSS

0.26 0.71 0 0

RippleFi-
neSS

0 0 0.53 0.19

CrossFineSS 0.02 0 0.42 0.44
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quantitative measure of distance between the various 
lithofacies. This corresponds to use an Euclidean distance 
as the inter-class similarity metric between lithofacies 
class vectors in the confusion space. More precisely, the 
Euclidean distance is, in our work, calculated by sum-
ming up the absolute di�erences in the coordinate values 
of two class vectors. To exemplify the process, consider 
the confusion matrix in Table 4, where for simplicity we 
show only the results relative to four classes. Each class 
is represented by a vector in the confusion space, i.e., 
�����������������������⃗GraMSSDispC = {0.92, 0.02, 0, 0} represents GraMSSDispC 
lithofacies class. The Euclidean distances mentioned above 
are then calculated by summing up the absolute di�er-
ences in the coordinate values of the class pairs. In this 
way it is possible to compute an upper triangular similar-
ity matrix as the one shown in Table 5. This, in particular, 
clearly shows that RippleFineSS and CrossFineSS classes 
are the most similar ones among the set of classes consid-
ered in this sub-confusion matrix used to exemplify the 
process.

The computations and considerations in the example 
above are then performed and observed in the original 
complete confusion matrix; the resulting similarity matrix 
is then used as the input for the hierarchical agglomerative 
clustering step.

The dendrogram resulting from this clustering step 
is presented in Fig.  14 and shows the overall result of 

clustering similar lithofacies classes together. It is worth 
mentioning that various clustering methods result in dif-
ferent dendrogram structures. In this work, we started by 
performing hierarchical agglomerative clustering using all 
the three methods mentioned above, i.e., single-linkage, 
complete-linkage and Ward’s method; we then observed 
that, among these approaches, the Ward’s method 
returned the clustering structure that is the most coher-
ent in terms of keeping lithofacies with similar transport 
properties together.

We also note that the vertical axis in a dendrogram is 
used as a reference distance that shows the similarity of 
the lithofacies classes. This means that the plot shows 
not only how di�erent the classes are, but also the order 
by which lithofacies clustering occurs. We note that the 
obtained dendrogram clearly re�ects the semantic similar-
ity of the lithofacies classes in the confusion space. Indeed, 
for example, the plot shows that mudstone and massive 
very fine-grained green sandstone (MassVeryFineSS) 
classes are grouped before any other lithofacies classes; 
this is in line with the fact that these facies are, from a litho-
logical perspective, the most similar ones within the set 
of classes we considered. The second most similar lithofa-
cies classes are ripple cross-laminated (RippleFineSS) and 
cross-strati�ed �ne-grained sandstone (CrossFineSS). As 
it should be, they form in the obtained dendrogram the 
second cluster in the hierarchy. The third cluster instead 
forms by merging the muddy �ne-grained sandstones and 
well-cemented sandstones with Belemnite fossils. Then, 
this newly formed cluster is merged with the �rst cluster 
at a higher level of similarity distance. Moreover, argilla-
ceous �ne-grained sandstone (ArgFineSS) class clusters 
with spiculite sandstone. These lithofacies classes show a 
high degree of confusion with each other in the confusion 
space, as con�rmed by Fig. 9.

As we explore the dendrogram upward, the similar-
ity of lithofacies classes that are clustering together 
decreases. We indeed can note that the hierarchical clus-
tering derived from similarity of lithofacies classes in the 

Table 5  Similarity matrix computed using the confusion matrix in 
Table 4

GraMSS-
DispC

PCem-
GraMSS

RippleFineSS CrossFineSS

GraMSS-
DispC

0 1.35 1.66 1.78

PCem-
GraMSS

– 0 1.69 1.81

RippleFineSS – – 0 0.38

CrossFineSS – – – 0

Fig. 14  Dendrogram of the 
process of clustering the 
lithofacies classes together 
using as a distance metric the 
confusion matrix that has been 
calculated by the proposed 
CNN classi�cation algorithm
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confusion space mostly results in grouping of lithofacies 
with similar grain sizes, textures and transport properties. 
However, as an example, we notice that the well-cemented 
medium-grained sandstone (WCemMSS) class is first 
merged with the poorly cemented granule-rich sand-
stone class (PCemGraMSS), and at a slightly higher level 
they merge with granule-rich sandstone with dispersed 
cementation (GraMSSDispC). Recall then that it was previ-
ously shown that the granule-rich lithofacies core meas-
urements spread out in the regions with high permeability 
values ranging from 30 mD up to 50 Darcy (i.e., the green 
ellipsoid in Fig. 11), where the majority of samples exhibit 
porosity and permeability values above 0.20 and 1 Darcy, 
respectively. On the other hand, the well-cemented sand-
stone samples (WCemMSS) are characterized by porosity 
and permeability values less than 0.10 and 5 mD, respec-
tively. Therefore, merging these classes, with completely 
di�erent transport properties, does not seem reasonable.

6.2  Lithofacies prediction using the Coarsened CNN 
classifier

As mentioned in the previous subsection, the current litho-
facies classi�cation task can be coarsened with respect to 
the number of classes by merging similar misclassi�ed 
lithofacies classes. More speci�cally, based on the poros-
ity–permeability relationships and hierarchical clustering 
results, we propose grouping the lithofacies classes into 
four rock classes, as presented in Table 6.

Following this classification, the groundtruth labels 
derived from manual core description can be modi�ed so 
to re�ect the four superclasses above instead of the origi-
nal 20 ones. This implies that one can retrain the original 
CNN classi�er proposed above using this new set of labels 
and also perform a new round of testing. The resulting 
confusion matrix is shown in Fig. 15, from which we see 
that the classi�er is able to predict rock classes 1, 2, and 4 
with high recall values.

However, rock class 3 is still predicted with a relatively 
low recall (0.65), and it is mostly confused with rock classes 

1 and 4. To inspect why, consider the corresponding rock 
classes, shown in Fig. 16. The plot shows that the coars-
ened classi�er generalizes well and predicts individual 
rock classes with high accuracy. The classi�er even shows 
higher pixel-wise precision in detecting thin layers and 
bed boundaries to the point that it is able to detect thin 
layers that are not picked by the manual core description. 
As an example, in Fig. 16, the 2D CT image cross section 
shows a clear change in the gray scale values in the section 
marked by the green rectangle in Fig. 16A. Here, we see 
that the more porous and permeable layer (characterized 
by darker grayscale values) is underlain by a tighter layer 
marked by the red rectangle. The tight layer is character-
ized by brighter gray scale values compared to the layers 
above and below, but this was not picked during manual 
core description. At the same time, this layer is accurately 
detected by the CNN classi�er. More investigation of this 

Table 6  Proposed rock classes resulted from merging similar lithofacies classes

Rock classes Clustered lithofacies Description

Rock class 1 Marl, CalMarl, ContMud, WCemFineSS, Mudstone, MudsHigh-
Dens, MudFineSS, WCemBelSS, WCemMSS, CemVeryFineSS, 
MassVeryFineSS

Very �ne- to medium-grained sandstones, well-cemented very 
�ne- to medium-grained sandstones, marl and mudstones

Rock class 2 GraMSSDispC, PCemGraMSS Medium-grained granule-rich sandstones, poorly cemented /
with dispersed calcite cementation

Rock class 3 SpiculiteSS, ArgFineSS Fine-grained spiculite sandstones and �ne-grained argilla-
ceous sandstones

Rock class 4 RippleFineSS, CrossFineSS, BioFineSS, MassFineSS, VeryFi-
neSSHorizontal

Fine-grained sandstones with di�erent types of laminations

Fig. 15  Confusion matrix on the test set using the coarsened clas-
si�er, where the original 20 lithofacies classes are merged into four 
rock classes
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interval reveals that the tight layer is actually a big cal-
cite nodule encapsulated within the massive �ne-grained 
sandstone lithofacies (Fig. 17). This calcite nodule is clas-
si�ed as rock class 1 that contains lithofacies classes with 
high amount of calcite cementation, most probably due 
to similar grayscale values.

7  Conclusions

In this study, the capability of CNN to classify lithology, 
based on the 2D whole core CT image slices, was inves-
tigated, and its performance was characterized in detail.

A CNN classi�er was trained to learn features associated 
with 20 various lithofacies classes derived from manual 
core descriptions. The trained classi�er was then used to 
predict lithofacies on the unseen test set images.

The preliminary results revealed that the trained clas-
si�er showed lithofacies-dependent performance and it 
misclassi�ed, to various degrees, speci�c lithofacies classes 
with similar grain size, gray-scale values, and transport 
properties.

The obtained prediction confusion matrix was then 
utilized as a valuable tool to understand the performance 
limits of the CNN classi�er and to combine the similar 
lithofacies into rock classes using an automatic hierarchi-
cal clustering approach.

Applying the CNN classi�er on these clustered classes 
shows that the new approach generalizes well and pre-
dicts the rock classes with high recall values. Moreover, it 
shows higher pixel-wise precision, in detecting thin lay-
ers, compared to expert-derived core description, thereby 
providing higher resolution information than the one 
extracted during the manual labeling process.

The proposed classi�er is trained based on data from 
a single well with imbalanced distribution of lithofacies 
classes. This might result in lower prediction performance 
on the classes with lower proportions. Adding more train-
ing images for those classes, preferable from other wells 
with similar lithology, might have a positive impact on the 
performance of the classi�er.

As expected, uncertainties associated with manual core 
description, interchanging and dipping lithofacies can also 
a�ect the training process and generalization capability of 
the trained classi�er.

It is worth to mention that the network architecture 
might a�ect the results, but it is not expected to change 
the conclusions in this study. For comparison purposes, 
the VGG16 architecture [45] was tested out and its 

Fig. 16  Predicted rock classes on the test section of the well 
(approximately 21 meters) (c), shown with actual rock classes (b) 
and the 2D cross section of the input CT images (a). The scaled-up 
classi�er is predicting the rock classes with high accuracy

Fig. 17  Zoomed interval of the test set (approximately 1.2 meters), 
where the CNN classi�er is able to pick the calcite nodule. a 2D 
cross section of the input CT images, b Rock classes from manual 
core description, c Predicted rock classes using the scaled-up clas-
si�er
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performance was compared with the proposed architec-
ture. However, this change of the CNN architecture had 
minor impact on the acquired results.
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