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SUMMARY 
An approach is formulated by which the theoretical admittance can be evaluated for the 
flexure of a multi-layered elastic plate overlying an inviscid fluid. The multi-layered elastic 
and compressible plate is subjected to well-posed boundary conditions. Gravitational body 
force, elastic compressibility and elastic coupling at the interfaces with elastic modulus 
contrast are fully accounted for. The elastic field solution was obtained by the propagator 
matrix technique. The contribution to gravity change from local density perturbation within 
the compressible plate is also included. Our calculation shows that the density perturbation 
component is smaller than the Bouguer component by at least an order of magnitude over the 
compensated waveband. The thin-plate approximation can be used with an effective flexural 
rigidity evaluated from the thickness-averaged values of the elastic moduli. If there is 
significant elastic coupling between the crust and the mantle, the discrepancy between our 
results and the incompressible, thick-plate model can be quite appreciable due to the different 
isostatic compensation mechanisms operative within the crust. Preliminary calculations show 
that similar conclusions would apply to the response functions for the sub-surface loading 
case. Our technique can also be used to compute the stress distribution in a multilayered 
plate. The numerical results show that the stresses can be appreciably different from that in a 
homogeneous plate. 

Key words: admittance, Bouguer, density perturbation, flexure, stress 

1 INTRODUCTION 

It is a well-known phenomenon that over mountain ranges 
the Bouguer gravity anomaly has an inverse correlation with 
the topography. The principle of isostasy was introduced to 
explain this phenomenon. Two main isostatic compensation 
models were proposed by Pratt (1855) and Airy (1855). 
Both models are local compensation models based on the 
assumption that above a certain ‘depth of compensation’ the 
masses of all columns are approximately equal. In these 
models the lithosphere is treated as a set of blocks floating 
on an inviscid fluid. No block can hold a neighbouring block 
either up or down by exerting a vertical traction on the 
side-walls. This implies that there are no vertical shear 
stresses within a continuous system in local isostatic 
equilibrium (Dahlen 1981). 

A more realistic approach is to treat the lithosphere as an 
elastic plate. Surface loads cause flexure of the lithosphere 
and isostatic compensation then occurs on a regional scale. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A powerful way to understand the compensation mechanism 
is to analyse theoretically the linear transfer function 
resulting from the flexural process (Dorman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Lewis 1970), 
and to compare the theoretical results with observations. 
Both the admittance and the isostatic response function 

have been used. The admittance is originally defined as the 
spectral ratio of the free air gravity anomaly to the 
bathymetry observed in an oceanic region (McKenzie & 
Bowin 1976). If the Bouguer gravity anomaly is used, then 
the spectral ratio is usually referred to as the isostatic 
response function (Dorman & Lewis 1970; Banks et al. 
1977). 

Banks et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. (1977) calculated the isostatic response 
function for the thin-plate model (Vening Meinesz 1941) 
assuming that the wavelength of the flexure is long 
compared with the thickness of the plate. This problem can 
be treated analytically, and most of the results can be 
parameterized in terms of the ‘flexural rigidity’ from which 
the ‘effective elastic thickness’ of the plate can be inferred. 

A thick-plate model has to be considered when the 
flexure wavelength (A) and the thickness of the plate ( H )  
are of the same order or A<<H, i.e. except when A>>H. 
McKenzie & Bowin (1976) treated a 2-D, thick elastic plate 
model to obtain the theoretical admittance function. The 
plate was assumed to be incompressible for the sake of 
mathematical convenience. Comer (1983) later treated the 
2-D, thick elastically-compressible plate model, neglecting 
body force in the solid. He obtained analytic expressions for 
all the elastic fields. Based on an incompressible model 
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identical to that of McKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Bowin (1976), Wolf (1985) 
suggested that the neglect of the body force (such as in 
Comer’s study) can result in physically unreasonable 
singularities in the solution as the product of the shear 
modulus and the wave number vanishes. Comer (1986) 
commented on the limitations of Wolf‘s (1985) conclusion, 
and suggested that an analysis taking into account both 
elastic compressibility and body force could be performed. 

The gravity anomaly associated with any deformation 
within an elastic medium has two components (Savage 
1984). One is the Bouguer component related to the mass 
transport caused by the vertical displacement at an interface 
between two layers of different densities, and the other 
component is due to the density perturbation within the 
plate caused by the elastic deformation. Although Banks et 
al. (1977) have discussed the contribution to gravity change 
from the density perturbation caused by lithosphere flexure, 
they neglected the density perturbation component in their 
final results. This is justified because of the approximate 
nature of the thin-plate model. McKenzie & Bowin (1976) 
assumed incompressibility, and hence density perturbation 
within the plate was neglected. Walsh (1982) suggested that 
the contribution to gravity from density perturbation can be 
significant for the plate flexure problem. 

In this study a multilayered, elastic plate model is 
considered. The plate is compressible and can have any 
value of Poisson’s ratio. Only 1-D, harmonic loading will be 
considered. The basic equations of equilibrium for the 
multilayered gravitating model were derived by Love 
(1911). In the analysis of the deformation field, we follow an 
approach similar to that of Cathles (1975) and Ward (1984) 
with a solution procedure based on the propagator matrix 
technique (Haskell 1953). 

The general solutions for both the Bouguer component 
and the density perturbation component of the gravity 
change are obtained. We computed the theoretical 
admittance and isostatic response function as a function of 
wavelength. We analysed systematically the dependence of 
the compensation behaviour on the plate thickness, as well 
as on the density contrast and elastic mismatch of the layers. 
A preliminary analysis of the sub-surface loading problem 
and the stress distribution was also made. 

2 FLEXURE OF A MULTILAYERED, 
ELASTIC PLATE 

The problem that concerns us in this study is the flexure of 
the lithosphere whose thickness is much smaller than the 
radius of the Earth. Therefore the flat Earth model is 
considered. For the case that the density vanes only in the z 
axis (pointing vertically downward), the governing equations 
for equilibrium in an elastic medium under hydrostatic 
pre-stress and constant uniform gravitation are (Love 1911; 
Cathles 1975): 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg are the density and gravitational acceleration 
in the absence of the deformation, U is the displacement 
vector, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu is the stress perturbation tensor, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$1 is the 
gravitational potential perturbation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG is the universal 

gravitational constant and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe, is a unit vector along the 
positive z-axis. The stress is related to the displacement 
gradient by Hooke’s law. The first term on the right-hand 
side of equation (1) represents the body force perturbation 
due to dilatation, and the second term represents 
contribution from the hydrostatic pre-stress. Following 
previous studies (Cathles 1975; Ward 1984), we will assume 
constant gravitation, i.e. g is constant and hence the 
perturbation of body force (due to a term given by pVG1) 
should be of second order and is neglected in equation (1). 

We will consider the deformation of a plate in a state of 
plane strain with a normal load q exp ( ikx )  applied at the 
top. If the density and elastic moduli are a function of z 
only, then the stress and displacement can be expressed as: 

U,(x, z) = u,(z) exp ( ikx )  

(3) 
%,(% z )  = L,(Z) exp ( ikx) .  

The indexes m and n can have values equal to x or z. 

set of four first-order differential equations: 
Substituting (3) into (1) and using Hooke’s law, we have a 

V’(z) = M(k, z)V(z), (4) 

where V‘(z) is the derivative (with respect to z )  of the 
solution column vector V(z): 

V(Z) = (iU,(Z), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,(Z). i L ( Z h  L(z))T.  

M(k, z )  is a 4 x 4 matrix containing the depth-dependent 
elastic constants and densities (Appendix I). 

For the case that the elastic moduli and density are 
constant between z and zo, then M(k, 2) = M(k) and the 
general solution of (4) is: 

V(z) = exp [M(k)(z - zo)lV(zo) = P(k, z ,  zo)V(zo). (5) 

Here P(k, z, zo) is the propagator matrix which can be 
expressed as a polynomial of the matrix M(k) (Appendix I), 
the evaluation of which requires only a few matrix 
multiplications. 

The elastic plate is composed of n layers at 0 < z < H ,  and 
each layer is homogeneous and isotropic (Fig. 1). Within the 
jth layer of thickness h,, the Poisson’s ratio is uJ, the 
Young’s modulus is El and the density is p,. The elastic 
lithosphere floats on an inviscid fluid of density pm and 
deforms due to a vertical load of thickness 1 exp ( ikx )  and 
density pb on the top surface ( z  = 0), all being submerged 
beneath sea-water of density pw in an oceanic region. The 
depth of seawater is d. 

According to equation (5 ) ,  we have: 

V(Z,-I) = P(k, ,?,-I, H)V(H) 

V(2,-2) = P(k, z,-2, Z,-~)V(z,-,) 

YO) = P(kt O,Z1)V(Zl). 

(6) . . .  . . .  

It is required that the displacement and traction be 
continuous across the solid-solid boundaries. Therefore we 
can relate the solution vector V(0) at the surface of the 
elastic lithosphere to V(H) at the bottom of the plate from 
(6): 

V(0) = P,V(H), (7) 
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Figure 1. Sketch of a multilayered elastic plate floating on an 
inviscid fluid of density pm with a harmonic load on its upper 
surface. All are submerged beneath sea-water of density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApw for an 
oceanic region and pw = 0 for a continental region. v,, E,, p, and h, 
(j = 1, 2, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn) are the Poisson’s ratio, Young’s modulus, density 
and thickness of j th layer, respectively. 

where P, is the product of the propagator matrices of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 
layers, which depends on the material properties ul, E,, p,, 
the thicknesses hl (j = 1,2, . . . , n)  and the wave number k. 

There are two vertical forces acting on the top of the 
plate: one is due to the loading material of the density pb 
with thickness lexp(ikx) (1<0), another one is the 
buoyancy force from the sea-water acting on the loading 
material in the direction opposite to the first one. Hence: 

%,(O> = Pb@ + P W g 4  (8) 
where A = - (1 + u,(O)) is the topography at sea-floor. The 
minus sign arises because topography is measured positive 
upwards and z positive downwards. 

At the bottom of the plate, the normal stress is equal to 
the buoyancy force from the fluid due to the vertical 
displacement: 

Since no shear stress is applied on the top and the shear 
stress within a liquid layer vanishes, continuity of stress 
requires that: 

By substituting (8), (9) and (10) into (7), we obtain a set 
of four linear equations with four unknowns (iux(0), u,(O), 
iu,(H) and u,(H))  when the densities and elastic moduli of 
the elastic layers are given. We can solve for these four 
unknowns and hence V(0) and V(H)  are determined. It is 
then easy to obtain V(z) (0 < z < H) through (6). By setting 
pw = 0, we can also obtain the solution of the stress and 
displacement for a continental region. 

The solution procedure for the elastic fields outlined 
above is identical to that of Cathles (1975) and the boundary 
conditions here are identical to Mckenzie & Bowin’s (1976). 
We have checked that our results for the single-layer case 
(n = 1) with Poisson’s ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = 0.5 agree with McKenzie & 
Bowin’s (1976). Similarly, if we neglect body force (g = 0) in 
the elastic solid medium and set pw=O, then the results 
reduce to those of Comer (1983). 

3. GRAVITY CHANGE AND TRANSFER 
FUNCTION D U E  TO THE FLEXURE OF A 
THICK PLATE 

The perturbation of the gravitational potential satisfies 
Laplace’s equation in a free space and Poisson’s equation 
(equation 2) in a region subjected to density perturbation. 
The solution can be expressed formally by Poisson’s 
integral: 

where R(x - x‘) is the distance between field point X’ and 
source point x. The volume integral is evaluated throughout 
the region experiencing density change. 

The numerator of the integrand can be expressed as: 

v * ( P U )  = p’(z)U, + p(z) v * u ,  (12) 

where the first convective term represents the mass 
transport at an interface with density contrast (vertical 
density gradient p ’ ( z )  # 0) caused by the vertical displace- 
ment, and the second term is the local density perturbation 
due to elastic compressibility (V. U f  0) at a fixed point in 
space. We will consider the two terms separately in the 
following analysis, and refer to the gravity change from the 
first term as the Bouguer component (6gB) and the second 
one as the density perturbation component (6gd). In 
general, any deformation-induced gravity change can be 
considered as the sum of these two components. 

3.1 Bouguer component 

The density distribution for our multilayered model is shown 
in Fig. 1. 

The theoretical admittance for the Bouguer component 
(2”) is related to the Bouguer component of the gravity 
change (measured at the sea-surface: z = -d )  and the 
surface topography A ( = - ( 1  + u,(O))) by the following 
relationship: 

Sgs = ZBA exp ( i k x ’ ) .  (13) 

We show in Appendix I1 that ZB for our multilayered 
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model is given by: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJiaxiang Zhang and Teng-fong Wong zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ZB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2xG exp ( - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk d )  

theorem, we obtain: 

+ (Pm - pn)uz(H) exp ( - k ~ ) ] / ( 1  + U z ( 0 ) ) )  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14) 

The above is analogous to the result of Banks et al. 
(1977). For the continental situation, there is no 
contribution from the sea-water and hence p, and d can be 
set to zero. If we are only interested in the Bouguer gravity 
anomaly, the topographical contribution given by 2xGp1 A 
has to be subtracted from equation (13). Consequently, the 
isostatic response function for the continental case is given 
by: 

QB = 2 x ~ [  c (P,+l- PJ>uz(z,) exp ( - kzj) 

n - I  

, = I  

3.2. Density perturbation component 

Except for some preliminary results for a homogeneous 
elastic half-space obtained by Farrell (1972) and Walsh 
(1982), and for point-loading in an elastic-gravitational 
plate overlying a fluid-gravitational half-space by Rundle 
(1982,1983), we are not aware of any analysis of the density 
perturbation component of the gravity change for the plate 
flexure problem. It is therefore useful to outline our 
theoretical results in a systematic manner. We will first treat 
the case with g = 0 in the solid and then generalize the result 
to the case with a constant g in the solid. 

3.2.1 
From equations (11) and (12), the contribution to the 
gravitational potential from density perturbation within the 
jth layer is: 

The case g = 0 in the solid 

where the volume integral is taken throughout the jth layer. 
Using Green’s theorem, it can be shown that if a function 
can be expressed as the Laplacian of another function, e.g. 
f(x) = V2F(x) ,  the volume integral below can be simplified 
to a surface integral in the following manner: 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx # x‘ so that V ’ ( l / R )  = 0. Here n is the outward unit 
normal vector of the surface s which encloses the volume V.  

For this case, we can obtain the following simple relation 
(see Appendix I, (1-11)) for the local dilatation: 

V . U = [( l  - 2v)/k] V’[iux exp (ikx)]. (18) 

Since the field point x’ is in free space, we can use equation 
(17). By substituting (18) into (16), and using Green’s 

(2’ - z , - l ) iux(z , - l )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiu&) + +- 
R Y l  R, 

where R, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ ( x ’  - x)’ + (y‘ - y)’ + (z’  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,)’]~’’. 
The integral in equation (19) can be differentiated to 

obtain the vertical component of the gravity change at x’ 
which has a closed form as follows: 

- - 2nGpi(1 - 2vi) exp (kz ’ )  exp ( ikx’){[ iu;(z j - l )  
k 

+ i k ~ ~ ( z , - ~ ) ]  exp ( -  k z J - l )  

- [iu:(zj) + ikux(zj)] exp ( - kz j ) }  (20) 

From equation (4) we know that iu:(z) ( z , - ~  z G z,) is 
the first element of vector MjV(z) and iu,(z) is the first 
element of vector V(z). Therefore, we can write (20) in the 
following form: 

2nGpj(l - 271.) 
W,? exp ( k z ’ )  exp ( ikx’)  

k 
6gf = 

where Wj is the first element of vector W, given by: 

Wj = (Mi + k1)[V(zj-,)  exp ( - k z j - l )  - V(z,) exp ( - kzj)] 

and I is the identity matrix. 
The total gravity change 6gd due to the density 

perturbation from all the elastic layers is found by summing 
(21) over all j :  

6gd = Z d A  exp ( i kx ’ )  

(22) 

(23) 
2nG exp (kz ’ )  exp (ikx‘) - - 2 p,(l - 2vj)w; 

k j=1  

where Z d  is the theoretical admittance corresponding to the 
density perturbation component, and A is the surface 
topography given by - (1 + ~ ~ ( 0 ) ) .  

3.2.2. 
For the plate with a constant g,we obtain the following 
relation through (1-9) of Appendix I: 

Plate subjected to constant gravitation 

v * u =  - v)E’ V4[(iku, + uk) exp (ikx)]. (24) 
2[pgk(l+ v)]’(l - 2v) 

Using equation (17) and the above expression for the 
local dilatation, the volume integral in equation (16) can 
again be reduced to a surface integral. The integrand of the 
surface integral for this case involves V2[(iku, + 
u:) exp ( ikx ) ] ,  and after a considerable amount of algebra, 
we obtained explicit expressions for the density perturbation 
component of the potential. By differentiating the potential, 
we obtain the following results for the density perturbation 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/9
2
/1

/7
3
/6

5
1
3
7
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Lithospheric flexure and gravity changes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
component of gravity change: 

6gd = Z d A  exp ( ikx ’ )  

and 

(1 - v j )  E; 2 - 2nG exp (kz’) 
Z d  = 

(1 + u,(0))(gk)2 j=1 2Pj(1 + U j y ( 1  - 2Vj) 

x (kA: + Bf), (25) 

where A,’ is the first element of vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAj and Bf is the 
second element of vector Bj in which; 

Aj = (Mj - kI)(Mj + kI)2[V(z,-,) exp ( - kz,- ,)  

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV Z , )  exp ( - 4 1  (26) 

Bj = MIAj 

and Z d  is the theoretical transfer function corresponding to 
density perturbation component for the case with a constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g in the solid. 

When the admittance is considered, we will set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ‘ =  - d  
(at sea-surface) with density of seawater pw for (23) and 
(25). The isostatic response function corresponds to z‘ = 0, 
and pw = 0. 

4 NUMERICAL EXAMPLES A N D  
DISCUSSION 

4.1 Comparison with the incompressible thick plate 
model 

A common model used to interpret quantitatively the 
tectonic implications of observed gravity, bathymetry and 
admittance has been that of McKenzie & Bowin (1976) as 
modified by Watts (1978). It has been applied in the analysis 
of isostasy in sea-mount chains (Watts 1978; Cazenave & 
Dominh 1984), mid-ocean ridges (Cochran 1979; Kogan & 
Kostoglodov 1981; Tamsett 1984) and aseismic ridges 
(Detrick & Watts 1979). This model considers a 
three-layered plate overlying an inviscid fluid. The top two 
layers have densities and thicknesses comparable to those of 
layers 2 and 3 of an oceanic crust, whereas the third layer 
has density and elastic properties representative of the 
upper mantle. The theoretical admittance is given by: 

Z ( k )  = 2nG(P2 - PW) exp ( - kd)l[ l- [(PS - P2) exp ( - kt2) 

+ ( ~ r n  - ~ 3 )  ~ X P  ( - ktc)l/[(~m - PJ 
+ 4(p, - pw)Mk2hzAB-’]], (27) 

where t2 is the thickness of layer 2; t ,  is the mean thickness 
of the crust; p3 is the density of layer 3; pw is the density of 
the sea-water; pm is the density of the upper mantle; 
M = E/3gh(pm - pw), where E is Young’s modulus and the 
thickness of the upper mantle is 2h; A = 
[(sinh 2kh)/2khI2 - 1; and B = [(sinh 4kh)/4khIz + 1. 

One assumes in the derivation of the above expression 
that the two crustal layers are in local isostatic equilibrium 
by a mechanism such as Airy’s. The third layer in the upper 
mantle is elastic and incompressible, and isostatic 
compensation is regional via flexure of this sub-crustal layer. 
In the quantitative analysis of observed admittances, the 
thicknesses and densities of the top two layers are inferred 
from seismic and core data. The Young’s modulus of the 

third layer is usually assigned a value comparable with that 
inferred from seismic data. The thickness of the third layer 
in the upper mantle is not fixed a priori-it is a free 
parameter to be estimated by comparison of the 
observations with the theoretical admittances corresponding 
to various thickness values. The thickness so determined for 
the sub-crustal layer is usually referred to as the ‘elastic 
thickness’. 

This approach assumes that the rheological properties and 
mechanical response are such that the oceanic crust and the 
upper mantle have drastically different isostatic compensa- 
tion mechanisms. It has been suggested (McKenzie & Bowin 
1976) that the oceanic crust (especially at localities close to 
the ridge axis) is not elastic because it is broken by faults 
and probably undergoing metamorphism. However, rock 
mechanics studies indicate that crustal rocks, even in a 
highly fractured state, would have appreciable mechanical 
strength and elasticity (Byerlee 1978; Goetze & Evans 
1979). 

We decided to investigate the effect of mechanical 
coupling between the crust and the mantle on the flexural 
behaviour. For comparison with Watts’ (1978) model, we 
also considered a three-layered plate as shown in Fig. 2, the 
physical parameters for which are compiled in Table 1. We 
have assigned representative elastic modulus values as 

d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR water 
.I 

---- 

R E , ?  
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa%!&/ I I ------ 

h2 

h3 

1 I I 

I 
1 P, fluid 
I 

I 
I 

1 

iZ 
Figure 2. Sketch of a three-layered model used to calculate the 
admittance 2 and isostatic response function Q. The parameters are 
shown in Table 1. 
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Table 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAParameters of Fig. 2. Depth of seawater zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd = S km, density 
of seawater zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApw = 1030 kgm-' and density of the inviscid fluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pm = 3400 kg m-3 
The j th layer first second third 

Poisson's ratio u, 0.2s 0.28 0.36 
Young's modulus E, (GPa) so 80 100 

Density p, (lo3 kg m-3) 2.6 2.9 3.4 
Thickness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh, (km) 2 3 5-50 

inferred from seismic data to the three layers (Birch 1966; 
Christensen 1982). 

Our numerical results for the theoretical admittance using 
the full theory are shown by the solid lines in Fig. 3. For 
very short wavelengths, the theoretical admittance we 
calculated approaches the uncompensated admittance 
2nG(p, - pw)  exp ( - k d )  which is solely due to the 
water-rock density contrast at the sea-floor. As the 

WAVELENGTH , km 
100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA90 80 70 

,07 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA500 300 200 150 

WAVENUMBER, k 6 '  

WAVELENGTH, krn 
,07 500 300 200 150 100 90 80 70 

I 

WAVENUMBER. k n i  

Figure 3. Theoretical admittances calculated from the full theory 
(solid lines) and incompressible plate model with equation (27) 
(dashed lines) for a three-layered plate as shown in Fig. 2 with 
parameters compiled in Table 1. The elastic moduli of the top two 
layers are not accounted for by the incompressible plate model. The 
chain line is the uncompensated admittance 2nG(p, - p,) exp ( - 
kd). (a) The admittances plotted with the thickness of the third 
layer vary from 5 to 45 km. (b) The admittances plotted with the 
elastic thickness of the plate varying from 10 to 50 km which are the 
sum of the thicknesses of the three layers (full theory) or just that of 
the sub-crustal layer (incompressible plate model). 

wavelength increases, the admittance begins to deviate from 
the uncompensated value, indicating the onset of regional 
compensation by plate flexure. For relatively long 
wavelengths, the admittance approaches that due to Airy's 
mechanism. Our computations show that the wavelength for 
the onset of regional compensation increases as a function of 
plate thickness. 

There is appreciable discrepancy between the theoretical 
admittance we calculated and that from equation (27) 
(dashed lines in Fig. 3) for thicknesses of the sub-crustal 
layer ranging up to 45 km. The implication of such a 
discrepancy on data interpretation can be clarified referring 
to Detrick & Watts' (1979) data for the western 
Walvis Ridge (Fig. 4a) and Watts' (1978) data for the 
Hawaiian-Emperor seamount chain (Fig. 4b). The dashed 
lines in these figures are best-fit theoretical admittances 

WAVELENGTH, krn 

500 300 200 150 100 90 80 70 
,071 I I 1 1 1  I I 

.06t .05 

- .04t .03 
N .021 

,011 t 

-- Solid Dashed 

hi 2 2 

h. 3 3 

ha 4 7 5  

Elastic thickneat. 
9 7 5  (h) 

.oo I I 1 I 1 
.oo .02 .04 .06 .08 .I 

WAVENUMBER, km'  

WAVELENGTH, km 

100 90 80 70 .07 500 300 200 150 
.' 

.06- 

. 05 -  

5 
E .04- 

- .03- 

.02- 

N 

O i l  

h, 1.5 1.5 

ha 3.5 3.5 
ha 23 25 

Elastic thicknest: 
28 25 (km) 

I I I I I 1 
.02 .04 .06 .08 .I 

WAVENUMBER, kml 

Figure 4. Observed admittance data (solid circles) and those from 
theoretical models: multilayerd model (solid line), incompressible 
plate model (dashed line) and thin-plate model (chain lines). (a) 
Observed data from the western Walvis Ridge (Detrick & Watts 
1979). The parameters used to calculate the theoretical admittances 
are similar to Table 1 except that d = 4 km, pI = 2700 kg m-3. (b) 
Observed data from the Hawaiian-Emperor sea-mount chain (Watts 
1978). The parameters used to calculate the theoretical admittances 
are similar to Table 1 except that d =4.5 km, h l =  1.5 km, 
h,  = 3.5 km and p1 = 2800 kg m-3. 
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incompressible. Strictly speaking, Kogan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Kostoglodov's 
(1981) solution does not satisfy the equilibrium conditions 
for an elastic plate with body force included. Furthermore, 
they did not include the density perturbation component in 
their final solution of gravity anomaly. 

It is more convenient in the following discussion to focus 
on only that part of the gravity anomaly which is directly 
related to isostatic compensation by the flexure process. In 
this sense, the isostatic response function Q (Dorman & 
Lewis 1970; Banks et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1977) is more suitable because the 
gravitational attraction due to both the topography and the 
water-rock interface has been removed. 

The computations shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 are all for the 
three-layered plate with physical parameters as specified in 
Table 1. The isostatic response functions for three elastic 
thicknesses (10, 30 and 55km) are shown in Fig. 5(a). 
Typically the response function vanishes for short 
wavelengths over which the topography is uncompensated. 
As wavelength increases, Q decreases with the onset of 

(b) . 

from the original references calculated using equation (27). 
Our computation in solid lines shows that almost identical 
admittance curves can be obtained with our model if a 
relatively thin sub-crustal layer is used. If elastic coupling is 
significant, a mechanical lithosphere extending 4 km (at 
western Walvis ridge) and 23 km (along the Hawaiian- 
Emperor sea-mount chain) into the upper mantle are 
implied by the observed admittances. If the crustal layers 
are decoupled from the upper mantle with local isostatic 
equilibrium within the crust, then the mechanical litho- 
sphere is expected to extend further into the upper mantle 
(7.5 and 25 km, respectively.) 

It should be kept in mind that since the crust and the 
upper mantle are mechanically coupled in our model, the 
elastic thickness is the sum of the thicknesses of the three 
layers (Fig. 3b) whereas the elastic thickness for Watts' 
(1978) model is just that of the sub-crustal layer. In other 
words, the elastic thicknesses implied by our theoretical 
admittances are 9km (Fig. 4a) and 28km (Fig. 4b) 
respectively. 

Our parametric study indicates that the following general 
statement can be made: if elastic coupling among the crustal 
layers and the upper mantle is significant, then McKenzie & 
Bowin's (1976) model as modified by Watts (1978) will 
underestimate the elastic thickness, and at the same time it 
overestimates the extent of the mechanical lithosphere in 
the upper mantle. The discrepancy can be up to 5 km (the 
crustal thickness) for the three-layered plate model. 
Probably this is still within the reported uncertainties 
associated with elastic thickness values so estimated, 
although it is possible that such a systematic underestima- 
tion of the elastic thickness may bias the quantitative 
interpretation of the mechanical thickness versus age 
relation (Watts et al. 1980; McNutt 1984). 

It is not easy to explain the discrepancy further on a 
rigorous mechanical basis. The stress distribution for a 
situation corresponding to equation (27) cannot be specified 
easily. Although a local isostatic mechanism such as Airy's 
apparently only requires vertical forces to balance, the true 
stable position of the crust equilibrates the vertical forces, 
horizontal forces and all moments locally at all points. Local 
isostasy over all wavelengths necessarily would require an 
unrealistically anisotropic mechanical response (McKenzie 
1977; McNutt 1980; Dahlen 1981) and a highly heteroge- 
neous stress distribution (Artyushkov 1973). Our model is 
based on a complete elasticity theory with well-posed 
boundary conditions. However, it involves a number of 
physical processes (including gravitational body force, 
elastic compressibility and elastic coupling among layers) the 
individual contribution of which is hard to sort out. We 
attempt to address this question in the next section. 

4.2 Effect of elastic compressibility and gravitational 
body force on isostatic response function 

Kogan & Kostoglodov (1981) gave an analytic expression 
for the theoretical admittance allowing for the compres- 
sibility of the elastic plate and the action of body force. 
Their biharmonic function approach is analogous to that of 
McKenzie (1976). However, we show in Appendix I that a 
biharmonic function can be found only if either the body 
force in the solid is neglected or the elastic medium is 

WAVELENGTH, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm 

too 

' -1 
-.,bw- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-r-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 . 

- 12c 

WAVENUMBER, km' 

- .03 t / \  \ 

WAVE N IJ M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB E R, km" 

Figure 5. Isostatic response functions based on the three-layered 
model shown in Fig. 2 with d = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApw = 0. The thickness of the third 
layer vanes from 5 to 50 km. (a) Isostatic response function which is 
the sum of the Bouguer component QB and density perturbation 
component Qd. (b) Bouguer component QB. (c) Density 
perturbation component Qd. (d) The absolute value of the ratio 
edieB. 
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WAVELENGTH, km 
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. (b) 
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f . O o 9 i  
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. , ----- 1000 
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Figure 5. (c) and (d) (see previous page). 

regional compensation, ultimately attaining a value given by 
-2zGp, for very long wavelengths corresponding to local 
compensation by Airy's mechanism. 

The individual contributions for the Bouguer component 
(equation 15) and the density perturbation component 
(equation 25) are shown in Fig. 5(b) and (c) respectively. 
In general, the two components have opposite signs. 
Localized compression in the vicinity of the topography 
results in an increase in density and consequently an 
enhancement of gravity. The ratio of the two components is 
plotted in Fig. 5(d). At wavelengths for which isostatic 
compensation is appreciabIe, the density perturbation 
component is smaller than the Bouguer component by at 
least an order of magnitude and hence is negligible. 
Therefore the omission of this term in previous models does 
not introduce significant error into the interpretation of 
measurements of admittance or isostatic response function. 

Recent theoretical analyses have shown that the density 
perturbation component can be significant for certain 
tectonic processes (Savage 1984). Numerical computation by 
Kundle (1978) (which was then confirmed by the analytic 
results of Walsh & Rice 1979) showed that the density 
perturbation component for a dilatational source in an 
elastic half-space should exactly cancel the Bouguer 
component. This conclusion is now routinely used in the 
quantitative interpretation of gravity anomaly associated 

with volcanic activity (e.g. Jachens & Eaton 1980; Jachens 
& Roberts 1985). In contrast, our numerical results show 
that the density perturbation component for the flexure 
process is negligible except within the uncompensated 
waveband for which the results approach the half-space 
solution (Farrell 1972; Walsh 1982; Rundle 1982). 

The effect of gravitational body force on the isostatic 
response function is illustrated in Fig. 6(a) and (b). Again 
the computations are for a three-layered plate with physical 
parameters as specified in Table 1. For comparison, we have 
also computed the Bouguer component (Fig. 6a) and the 
density perturbation component (Fig. 6b) of the isostatic 
response function for the case with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg = O  in the solid 
medium, as shown in dashed lines. The solid lines are for 
the case with the plates subjected to constant gravitation. It 
can be seen from Fig. 6(a) that the Bouguer component is 
basically the same whether the gravitational body force is 
included or not. A small difference can be detected only for 
wavelengths beyond several thousands of kilometres. 

WAVELENGTH, km 

1000 100 

-9----7r ' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'7 
t 

i m,--.06 

- .03 

WAVENUMBER, kn? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.006 

WAVENUMBER, kni' 

Figwe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6; Illustratinn of the effect of gravitational body force on the 
isostatic response function: (a) Bouguer component QB and (b) 
Density perturbation component Q". The solid lines in (a) and (b) 
are calculated with the body force included. The dashed and chain 
lines in (a) and (b) are obtained by ignoring the body force in the 
solid. The computations are for a three-layered model (Fig. 2) with 
d = 0 and pw = 0. 
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Figure 6(b) shows that the density perturbation compon- 
ent by itself can have quite different values corresponding to 
the constant gravitation and non-gravitation in the solid. The 
effect of the body force seems to be important over a broad 
range of wavelengths. This is not surprising in light of the 
recent observation by Ward (1984) that the stress field with 
a gravitational body force included can be significantly 
different from that of a plate not subject to body force. 
Since the density perturbation component of the isostatic 
response function is related to the trace of the stress tensor, 
one should expect the density perturbation component to be 
also sensitive to body forces. 

However, since the contribution from the density 
perturbation component to the total gravity anomaly is 
negligible within the ‘compensated’ waveband (Fig. Sd), 
the omission of body force (such as in the ‘thin plate’ 
approximation and in Comer’s study (1983)) is not expected 
to introduce significant error in the interpretation of 
observed isostatic response functions or admittances. 

In summary, both the density perturbation component of 
the gravity change and the body force contribution can be 
neglected without serious consequences for the interpreta- 
tion of the isostatic response function or the admittance. 
This implies that the discrepancy (Figs 3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) between our 
computations using the full theory and the theoretical 
admittances calculated for the thick, incompressible plate 
model (equation 27) is principally due to differences in the 
boundary conditions at the Moho and in the isostatic 
compensation mechanism operative within the crust. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.3 Comparison with the thin-plate model 

Another common model to interpret the spectral data of 
gravity and bathymetry or topography is the thin-plate 
model (e.g. Walcott 1970; Banks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1977; McNutt 1979). 
If the density structure within an elastic plate is that shown 
in Fig. 1, but the plate is elastically homogeneous, which is 
required in the thin-plate approximation, the theoretical 
admittances can be calculated thus: 

where p,, Pb and pm are the densities of sea water, loading 
material and inviscid fluid respectively; pi is the density of 
the j-th layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(j = 1, 2, 3, . . . , n) ;  H is the elastic thickness 
which is the sum of the thicknesses of the n layer, and D is 
the flexural rigidity. If the plate is continuous, homogeneous 
and elastic, then the flexural rigidity D can be expressed 
unambiguously in terms of the plate thickness and elastic 
moduli: 

D = ~ ~ ~ / 1 2 ( 1 -  V*), 

where E is Young’s modulus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu is Poisson’s ratio and H is 
the ‘elastic thickness’. Elastic compressibility is accounted 
for in the thin-plate approximation, although the density 
perturbation component of the gravity change is usually 

neglected (Banks et af. 1977) and gravitational body force is 
not considered. Young & Hill (1986) gave a theoretical 
admittance (equation 10 in their paper) for a three-layered 
model which, except for a typographical error, is identical to 
equation (28) for the case n =3. If there is elastic 
heterogeneity within the plate, it has never been very clear 
how the flexural rigidity should be interpreted. One may 
conjecture that there exists a homogeneous elastic plate 
whose flexural response is similar to that of the 
heterogeneous elastic plate as a whole, and the effective 
elastic moduli have values somewhere between the lowest 
and highest elastic moduli of the heterogeneous plate. When 
the elastic modulus contrast within our three-layered plate 
model is comparable with that inferred from seismic data 
with representative values such as in Table 1, by comparing 
our numerical results using the full theory with theoretical 
admittances obtained from the thin-plate approximation 
equation (28), with n = 3, we have established empirically 
that the thin-plate model is a reasonable approximation if 
the flexural rigidity is calculated using the following 

WAVELENGTH, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm 

WAVENUMBER, kr6’ 

WAVELENGTH, km 

WAVENUMBER, kr6’ 

Figure 7. Comparison between the multilayered model (solid lines) 
and thin-plate model with the averaging scheme (dashed lines) for a 
three-layered plate as shown in Fig. 2 with parameters compiled in 
Table 1. (a) Isostatic response functions with thickness of the third 
layer varying from 5 to 50 km, d = 0 and pw = 0. (b) Admittances 
with thickness of the third layer varying from 5 to 25 km. 
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Figure 8. Admittances from the full theory (solid lines) and 
thin-plate approximation (dashed lines) with the averaging scheme 
for the large contrasts of the elastic moduli: (a) E, = lOGPa, 
E,  = 50 GPa and E,  = 100 GPa and the thickness of the third layer 
varies from 5km to 25km. (b) El=20GPa, E2=50GPa, 
E, = 100 GPa and h, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 km. (c) El  = 30 GPa, E, = 60 GPa, 
E,  = 100GPa and h, = 5 km. Other parameters are the same as 
shown in the Table 1. 

thickness-averaged elastic moduli: 

(29) 

where E,, uJ, hi are the Young's modulus, Poisson's ratio 
and the thickness of the jth elastic layer, respectively, and n 
is the total number of the elastic layers (here n = 3). 

The good agreement between the full theory and the 
thin-plate approximation for the three-layered plate model 
is illustrated for the isostatic response function (Fig. 7a) 
and the theoretical admittance (Fig. 7b). The agreement is 
also shown in Fig 4(a) and (b) (solid lines and chain lines) 
in comparison with observed admittance data. We have also 
tried other averaging schemes, but the above seems to 
provide the best agreement with the full theory. There 
seems to be no systematic way to find the effective elastic 
moduli to simulate the behaviour of the heterogeneous 
elastic plate with an arbitrary distribution of the elastic 
moduli using the thin-plate approximation. Our parametric 
study indicates that when the contrasts of elastic moduli at 
interfaces are up to or above one order of magnitude, the 
empirical averaging scheme above will introduce appreciable 
errors in the evaluation of the theoretical admittance by 
overestimating the effective flexural rigidity. It can be seen 
from the numerical examples in Fig. 8(a), (b) and (c) that 
the error introduced by the empirical averaging scheme is 
also a function of the plate thickness. Therefore, when the 
contrasts of the elastic moduli at interfaces are above one 
order of magnitude (which is probably unrealistically high) 
and the thickness of the upper mantle portion of the 
mechanical lithosphere is the same order as the thickness of 
the crust, we recommend that the full theory should be 
used. Otherwise, the thin-plate model using the above 
thickness-averaged physical properties would be quite 
adequate. 

4.4 State of stress in a multilayered elastic plate 
subjected to flexure 

The stress difference in a thin-plate model is linearly 
proportional to distance from the neutral axis and reaches 
maxima at the surface of the plate ( z  = 0) and at its base 
located at z = H as sketched in Fig. 9(a). However, our 
current understanding of the rheological behaviour from 
experimental rock mechanics (Goetze & Evans 1979; Kirby 
1980) indicates that such a linear distribution of stress within 
the lithosphere is physically unrealistic. As elaborated by 
McNutt & Menard (1982) and Watts et al. (1980), the 
mechanical response of the flexed lithosphere probably 
involves three separate regimes (Fig. 9b): a brittle regime 
in the uppermost, cool regions of the lithosphere where the 
rocks fail by movement along localized fractures, an elastic 
regime near the neutral plane and an underlying, ductile 
regime in which the rock deforms by thermally activated 
plastic flow. 

Goetze & Evans (1979) formulated a scheme by which 
one can use the topography profile and constraints on failure 
behaviour from rock mechanics experiments to infer bounds 
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principally because it is based solely on equilibrium 
considerations and hence the interpretation is independent 
of rheology. However, for precisely the same reason it 
provides no information on the displacement field or the 
deformation-induced gravity change. 

Our technique can be used to compute the stress field in a 
multilayered plate. To illustrate the response of a 
heterogeneous plate with elastic modulus contrast, we first 
consider the three-layered model for an oceanic plate with 
parameters specified in Table 1. The stress field is a function 
of the wavelength of loading. We have chosen wave number 
k = 0.02 km-' in Fig. lO(a), (b) and (c) with a response 
representative of wavelengths within the 'compensated' 
band. 

In response to a normal sinusoidal loading on the surface, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a,, and a,, are out of phase with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAox,. The latter vanishes at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
kr = nn (n = 0, 1, 2, . . .) and therefore, at these locations, 
the principal stress difference is given by axx - u,,. The two 
stress components at such locations are plotted in Fig. lO(a) 
and (b). (The computed results represent stress perturbation 
in a hydrostatically, pre-stressed medium. The ambient 

0 
N l  

0. 

5 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY' ' ' I ' * * . ' * ' ' ' 
DEPTH (km) 

Figure 9. Principal stress difference versus depth in a cross-section 
of flexed lithosphere. (a) Homogeneous elastic plate model (stress 
difference varies linearly with depth). (b) Brittle-elastic-ductile 
model. Stress difference is bounded at the top of the plate by 
frictional sliding on favourably-oriented fractures, and at the base of 
the plate by plastic flow which depends on the strain rate and 
temperature. 

on the state of stress within a flexed plate. Using this 
scheme, McNutt (1984) concluded that for plates bent to a 
relatively large curvature, the 'elastic thickness' estimated 
using previous approaches can be less than 75 per cent of 
the actual mechanical thickness. If the curvature is small, 
the discrepancy is negligible. 

Goetze- & Evans7-(i979) scheme has been very useful 

N 
30 

O J -  
5 10 15 20 25 

DEPTH (km) 

Figure 10. Distribution of stresses with depth for the wave number 
k = 0.02 km-'. The stresses have been normalized by lo5 1. I is the 
amplitude of loading. (a) horizontal stress a,, with kx =O.  (b) 
vertical stress a,, with kx = 0. (c) shear stress a,, with kx = ~ / 2 .  
The physical parameters for (a), (b) and (c) are compiled in Table 1 
with the thickness of the third layer being 25 km. (d) horizontal 
stress a,, with kx = 0 for which the parameters are the same as 
those for (a), except that E l =  lOGPa, E,=SOGPa and 
E,  = 100 GPa are used, 
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from that in a homogeneous plate. A similar conclusion was 
reached by Lambeck & Nakiboglu (1981) who specifically 
considered a parabolic and a circular load distribution on a 
three-layered thin-plate model. With suitable choices of 
elastic moduli as a function of depth, one may obtain stress 
distributions similar to those constrained by experimental 
rock mechanics results (Fig. 9b). However, our parametric 
study suggests that one would need to go to rather high 
contrast in elastic moduli to achieve this. Although 
laboratory studies show that the Young’s modulus of a 
highly stressed or fractured rock can be somewhat less than 
that for a specimen subjected to small stress perturbation 
(Brace 1969) and that anelastic relaxation may cause 
difference between the ‘dynamic’ and ‘static’ moduli, an 
increase of Young’s modulus within the crust ranging up to 
an order of magnitude or above is not very realistic. 

In other words, if ‘static’ elastic moduli, as inferred from 
the ‘dynamic’ seismic moduli and from the anelastic 
properties, are relevant to a deformation process associated 
with lithospheric flexure, then our computations suggest that 
elastic deformation by itself is not sufficient to induce a 
stress distribution such as that shown schematically in Fig. 
9(b). This implies that inelastic deformation plays an 
important role, and in order to fully characterize the 
internal displacement and the deformation-induced gravity 
change, one has to resort to an involved elastic-plastic 
analysis. 

___-- - - - - - -  - _ _ _ _ _  ___--------- -- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0. 
? 5 10 15 2 0  25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30 

DEPTH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(krn) 

4 
N i . , , , ,  

I 5 10 15 2 0  25 3 0  

DEPTH (krn) 

Figure 10. (c) and (d) (see previous page). 

vertical stresses shown are given by the sum of a,, and the 
lithostatic pressure.) We have also plotted, in Fig. lO(c), the 
shear stress a,., for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkx = (n + i)n, at which locations both 
a,, and a,, vanish and the principal stress difference is given 

It can be seen that in comparison with the other two stress 
components, the ‘fibre stress’ u,, is significantly larger in 
magnitude. Hence the depth variation of the differential 
stress is dominated by the variation of a, as a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz.  

Although a,, shows an essentially linear trend for the 
bottom layer, it undergoes discontinuous jumps at 
interfaces. 

The behaviour is even more dramatic if we increase the 
contrast in Young’s modulus to up to one order of 
magnitude (Fig. 10d). The fibre stress increases from a 
relatively low value to a maximum within the top two layers, 
and the trend is then reversed in a linear manner for the 
bottom layer. The differential stress distribution would 
therefore be analogous to that in a plate with extensive 
brittle faulting at the top and elastic behaviour below. 
Although we did not perform the computation, we would 
expect that if layers were introduced into the lower part of 
the plate with ‘relaxed’ elastic modulus values corresponding 
to anelastic behaviour due to thermally activated dislocation 
process in the upper mantle (Anderson & Minster 1980), the 
differential stress distribution would be similar to that 
schematically illustrated in Fig. 9(b). 

Our computations demonstrate that the stress distribution 
in a heterogeneous elastic plate can be significantly different 

by 20x2. 

4.5 Subsurface loading 

The estimates of flexural rigidity deduced from a linear 
transfer function with surface topographic loading are often 
lower than those obtained from analysis of individual 
features in continental regions. Forsyth (1981) has suggested 
that this discrepancy is caused by the neglect of density 
anomalies that load the plate within its interior or at its 
bottom. Based on the thin-plate theory, Louden & Forsyth 
(1982) and McNutt (1983) demonstrated that if loads are 
applied within the interior of the plate or at the bottom of 
the plate, the linear transfer function is dramatically 
different from the one with top-surface loading. In particular 
circumstances, the linear transfer function for sub-surface 
loading on a plate with high flexural rigidity may be similar 
to the one expected for a low-rigidity plate with top-surface 
loading. The multilayered model we developed here is 
applicable to such case with the sub-surface loading at the 
bottom of the plate. The boundary conditions for this case 
are: 

a,m = 0 

(30) 

The top surface of the plate is traction free. At the bottom 
of the plate, the shear stress is zero and the normal stress 
has two terms: buoyancy force due to the underlying fluid of 
density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, and sub-surface loading due to a density anomaly 
pI respectively. The displacement field can be determined 
with the propagator matrix technique, and the isostatic 
response function corresponding to the sub-surface loading 
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WAVELENGTH, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkrn 

.o 
,001 .01 .I 

WAVENUMBER, kml zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Theoretical isostatic response functions for a loading 
applied at the bottom of a two-layered elastic plate. Solid lines are 
from the full theory with the following parameters: p ,  = 
2600 kg p2 = pm = 3400 kg m-3; E l  = 80 GPa and E, = 
300 GPa; v, = 0.25 and v 2  = 0.36; h,  = 5 km and h, = 5-35 km. 
Dashed lines are from the thin-plate approximation using the 
averaging scheme to determine the flexure rigidity. 

is easy to obtain from equations (15) and (25)  in which the 
gravity effect of sub-surface load zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis included and the 
topography is the surface deflection caused by the 
sub-surface load. For purpose of illustration, we will 
considered a two-layered model [fig. 8 of McNutt’s (1983) 
paper] and compare our result with equation 6 of McNutt’s 
(1983) which is based on the thin-plate approximation. As 
shown in Fig. 11, the thin-plate approximation (dashed 
lines) is still very good for the sub-surface loading problem 
so long as the thickness-averaged elastic moduli are used. If 
we combine the loading effects from both top and bottom 
through the procedure described by Forsyth (1985), the 
expected isostatic response function for several different 

WAVELENGTH, km 

-.20‘”1 
-.I61 i 

WAVENUMBER, k m ‘  

Figure 12. Theoretical isostatic response functions for loadings 
applied at both the top and the bottom of a two-layered elastic plate 
simultaneously. f is  the ratio of the amplitude of the bottom load to 
the amplitude of the surface load. Solid lines are from the full 
theory with the following parameters: p, = 2600 kg m-3 and 
p2 = pm = 3400 kg m-3; El  = 80 GPa and E,  = 100 GPa; 2rl = 0.25 
and v 2  = 0.36; h,  = h, = 20 km; f = 0-5. Dashed lines are from the 
thin-plate approximation using the thickness averaged elastic 
moduli. 

ratios of bottom loading to top loading can be obtained as 
shown in Fig. 12 (solid lines). Again, a good agreement 
between the multi-layered model and thin-plate model 
(dashed lines) is arrived at if the thickness-averaged elastic 
moduli are used. 

CONCLUSIONS 

The deformation and gravity fields induced by the flexure of 
a 2-D multilayered elastic plate overlying an inviscid fluid 
have been calculated through the propagator matrix 
technique. The theoretical transfer function was evaluated 
and used to model the flexural response of the lithosphere 
under surface load. The model avoids some of the more 
restrictive assumptions previously used such as: (1) elastic 
incompressibility; ( 2 )  neglect of body force in the solid; (3) 
neglect of gravity change due to density perturbation within 
the lithospheric plate; (4) the thin-plate approximation; (5) 
neglect of elastic coupling among layers of different elastic 
moduli. 

Our numerical results showed that the errors introduced 
by first three assumptions above can be neglected within the 
‘compensated’ waveband. The thin-plate approximation is 
very good provided that flexural rigidity is evaluated using 
the thickness-averaged elastic moduli, unless the contrast in 
Young’s modulus within the mechanical lithosphere is 
unexpectedly high (above an order of magnitude). If there is 
significant elastic coupling between the crust and the mantle, 
the incompressible thick-plate model will underestimate the 
elastic thickness, while at the same time it overestimates the 
extent of the mechanical lithosphere in the upper mantle. 
Although we have focused on the flexural response to 
surface loading, our preliminary calculations indicate that 
most of our conclusions regarding the surface loading 
response can be carried over to the sub-surface loading case. 
A heterogeneous plate comprising layers with different 
elastic moduli has a stress distribution appreciably different 
from that of a homogeneous, thin plate. By choosing a 
certain depth variation for the elastic moduli, it is possible 
to obtain stress distribution similar to that constrained by 
experimental results on failure behaviour and by equilibrium 
considerations. However, our calculations showed that 
unrealistically high contrast in elastic moduli would be 
required. Hence the inelastic deformation cannot be 
neglected and a complete elastic-plastic analysis is 
necessary. 
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APPENDIX I 

1 The list of non-zero elements of matrix M 

M12= - M 4 3 = k  

2(1+ v) 
M I ,  =- 

E 

(1 + v)(l - 2v) 
((1 - v ) E )  

M24 = 

k 2 E  
M,, =- 

(1 - v 2 )  
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2 Propagator matrix P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For the elastic plate subjected to a constant gravitation, 
there are four solutions (eigenvalues) of the characteristic 
equation of matrix M: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 2k2A2 + k4 - (kS)’ = 0, (1-2) 

where 

S =  

The four eigenvalues are: 

E 

and 

p [ V ( z )  exp ( ikx)]  = (kS)‘V(z) exp ( ikx) .  (1-9) 

(1-9) shows that for a compressible elastic medium under 
the action of a body force, the stress and displacements are 
not biharmonic. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg = O  in the solid or if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv =0.5 
(incompressible case), the stress and displacement fields 
satisfy the biharmonic equation. For the special case that 
g = 0 in the solid, we can use (1-8) to obtain: 

A1,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (k2  + kS)lI2 

A3,4 = f (kZ - kS)1’2. 

Therefore the propagator matrix P [exp [M(k)(z - zo)]] 

can be expressed as a polynomial of the matrix M: 

under the assumption that material is homogeneous between 
z and z,. 

It can be observed from (1-3) that if gravitation is 
unimportant, i.e. g = O  in the solid or if the plate is 
incompressible (v = 0.5), there are only two eigenvalues 
(each of multiplicity two) of the matrix M: 
A,=k 

A 2 =  - k. 

The matrix P then takes the form: 

(1-5) 

3 Some equations used in this paper 

According to Hamilton-Cayley theorem, every square 
matrix M satisfies its characteristic equation. Therefore we 
have from (1-2): 

M4 - 2k2M2 + [k4 - (kS)’]I = 0. (1-7) 

Multiplication of (1-7) on the right by V ( z )  and from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4), we 
get 

V2[V(z) exp ( ikx)]  = (M2 - k21)V(z) exp (ikx) (1-8) 

(1-10) 

Using Hooke’s law to relate tzz to the displacement 
gradients, we have: 

APPENDIX I1 

(1-11) 

The derivation of equation (14) 

From Fig. 1, the distribution of the density for the 
multilayered model is: 

P ( Z >  = PWQ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 + (P1- P W ) W  
n-1  

+ C ( p j + l -  Pj)fiI(z -z j )  

+ (Pm - Pn> u ( z  - H )  

j=l 

(11-1) 

in the absence of the deformation. We assume the density of 
the first layer p1 to be equal to the density of the loading 
material pb, and 0 is the Heaviside step function. 

The derivative of (11-1) with respect to z has form 

P Y Z )  = PW@ + 4 + ( P 1 -  PW)6(Z) 
n-1  

+ C ( P j + l - P j ) S ( Z - z j ) +  (Pm-pn)6(z -H)  
j = l  

(11-2) 

where 6 is the Dirac delta. 
The Bouguer component of the gravity potential caused 

by the first term of (12) can be obtained through (11) and 
(11-2) : 

(11-3) 

where Rj is the distance between the field point and the 
source point which is on the j-th boundary surface Sj. The 
static deformation at sea surface is considered to be zero, 
and A is the topography on the seafloor as defined in 
equation (8). uz(zj) is the vertical deformation at zj. To 
arrive at the above, we have used the result that: 

+m 

j - , f(Z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6(z  - a )  dz =f(a). (11-4) 

The Bouguer component of the vertical component 
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gravity change is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJiaxiang Zhang and Teng-fong Wong zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6gB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - a+:/azt 

By using the integral: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2’  - 2,) exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ikx) dr dy ii R q12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-m I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I- 

= - 216 exp [ k ( z ’  - 2 / ) ]  exp (ikx’) ( 2 ’  - z, < 0) (11-6) 

where z’ - z, < 0 is satisfied for z, > 0 with field point at sea / = 1  
-m 

surface, equation (11-5) can be wiitten in a closed form with 
~I 

(” - H ) ( ~ m  - ~ n ) ~ z ( ~ )  exp ( ikx)  dy.  (11-5) + the field point at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ‘ =  - d  of the sea surface, which is 
equation (13) with ZB given by equation (14). 1 RY2 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/9
2
/1

/7
3
/6

5
1
3
7
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2


