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Little evidence for dynamic divergences in
ultraviscous molecular liquids
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The physics of the ultraviscous liquid phase preceding glass formation continues to pose major problems that remain unsolved. It is
actively debated, for instance, whether the marked increase of the relaxation time reflects an underlying phase transition to a state
of infinite relaxation time. To elucidate the empirical evidence for this intriguing scenario, some of the most accurate relaxation-
time data available for any class of ultraviscous liquids—those obtained by dielectric relaxation experiments on organic liquids
just above the glass transition—were compiled. Analysis of data for 42 liquids shows that there is no compelling evidence for the
Vogel–Fulcher–Tammann (VFT) prediction that the relaxation time diverges at a finite temperature. We conclude that theories with a
dynamic divergence of the VFT form lack a direct experimental basis.

All liquids may be supercooled. In some cases, the liquid crystallizes
spontaneously. In other cases, a marked increase in viscosity and
relaxation time is observed on continued cooling, and the liquid
eventually solidifies into a glass—a frozen liquid. Which of the
two scenarios that prevails depends on the cooling rate. The
ultraviscous liquid phase preceding glass formation has universal
physical properties, independent of the nature of the chemical
bonds involved: metal bonds, ionic bonds, covalent bonds, van der
Waals bonds or hydrogen bonds. The universalities and the lack
of understanding of the basic phenomenology continue to make
this research field attractive to physicists, chemists and materials
scientists alike.

The universal features1–7 that characterize ultraviscous
supercooled liquids relate, in particular, to the time dependence
of relaxation functions and to the temperature dependence of the
relaxation time. The former is not our focus here; it is reflected
in the fact that relaxation functions are generally well fitted by the
so-called stretched exponential function. The focus below is on
the relaxation time, which increases markedly on cooling into the
ultraviscous phase, sometimes by more than a factor of ten when
temperature is lowered by just 1%. Figure 1 shows the relaxation
time as a function of temperature for some typical molecular
liquids. This figure raises the question: Does the relaxation time
diverge at finite temperatures or only as T → 0?

The average relaxation time τ is generally non-Arrhenius. That
is, on cooling, τ almost always increases faster than predicted
by the well-known Arrhenius equation. This is the mathematical
expression that characterizes, for example, the temperature
dependence of a chemical reaction time in terms of an activation
energy. For ultraviscous liquids, if the temperature-dependent
activation energy 1E(T) is defined by the Arrhenius expression

τ(T) = τ0 exp

(
1E(T)

kBT

)
, (1)

it is generally found that 1E(T) increases significantly on cooling.
To the best of our knowledge, there are no liquids where 1E
decreases, which is in itself a striking fact.
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Figure 1 Relaxation time as a function of temperature for typical organic
liquids supercooled into the ultraviscous phase. The relaxation time was
determined as the inverse dielectric loss-peak frequency, identified by fitting data in
a log–log plot around the maximum with a parabola. If a linear scale were used, the
relaxation time would increase almost vertically on cooling; even on a log scale, the
increase is marked. The question investigated in this article is whether or not there
is reason to believe that the relaxation time diverges at some finite temperature. The
full lines are drawn as guides to the eye. Table 1 explains the liquid abbreviations.

THE VFT EQUATION

The function most widely used to fit relaxation-time data is the
Vogel–Fulcher–Tammann (VFT) equation dating back to the 1920s
(refs 8–10):

τ = τ0 exp

(
A

T −T0

)
(T0 < T). (2)
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Figure 2 Relaxation time data identified from dielectric loss peaks for all of the
42 organic ultraviscous liquids used in the analysis. Both panels show the
logarithm of the dielectric relaxation time as a function of inverse temperature. A
straight line in this plot signals an Arrhenius temperature dependence. The liquids all
exhibit the non-Arrhenius temperature dependence of the relaxation time that
characterizes ultraviscous liquids. The symbols are explained in Table 1.

This corresponds to an activation energy that increases on cooling
as 1E ∝ T/(T − T0). Although the VFT equation has few
adjustable parameters, it generally gives quite good fits to data.
The coefficients of the VFT equation were considered in the
landmark paper published in 1955 by Williams, Landel and Ferry11

that discussed the non-Arrhenius problem in terms of the free-
volume model. In the 1970s, there were reports that the VFT
equation breaks down at temperatures with long relaxation times
(large viscosities)12,13. These ‘early warnings’ were to some extent
forgotten or repressed, perhaps because probing the relaxation
time accurately through viscosity measurements is difficult at
high viscosities.

Experimentalists often regard the VFT equation as just a
convenient fit to data12. Many theorists, on the other hand, were
inspired by the VFT equation to develop theories predicting a phase
transition at T0 to a state with infinite relaxation time14. The first
such approach was the famous Adam–Gibbs entropy model from
1965 predicting a second-order phase transition at T = T0 to a state
of zero configurational entropy and infinite relaxation time15,16, a
unique ‘ideal glass’. A number of simplifying assumptions go into
the Adam–Gibbs formalism, and in 1997 it was argued by DiMarzio
and Yang17 that even if the Adam–Gibbs idea of an underlying
phase transition is accepted, the relaxation time remains finite at
the transition temperature. Very recently, mathematically rigorous
theorems derived by Eckmann and Procaccia18 show that for
two-dimensional soft-sphere mixtures, at least, the configurational
entropy stays positive for T > 0.

Leading theorists such as Edwards19,20, Anderson21 and, more
recently, Bouchaud and Biroli in 2004 (ref. 22) and Lubchenko
and Wolynes in 2007 (ref. 23) have developed dynamic divergence
scenarios far beyond Adam and Gibbs’. Although there are differing
opinions from other famous theorists24–27, it remains a popular idea
that the marked slowing down on cooling reflects an underlying
phase transition to a state of infinite relaxation time. The fact that
data are usually well fitted by the VFT equation has reinforced
this idea over many years28. Our aim is to provide an in-depth
investigation of the evidence for dynamic divergences of the VFT
form. Before detailing the data analysis, it should be noted that

Table 1 Liquids included in the analysis. The name of each liquid, its abbreviation
and the symbol used in the figures are listed. More details (including references,
temperature, frequency intervals and some further information) are provided in
the Supplementary Information.

Liquid Abbreviation Symbol

1,2-propandiol (propylene-glycol) PG
2-ethyl-hexylamine EH
2-methyl-tetrahydrofurane MTHF
2-phenyl-5-acetomethyl-5-ethyl-1,3-dioxocyclohexane AFEH
3,3,4,4-benzophenonetetracarboxylic dianhydride BPC
3-fluoro-aniline FAN
3-phenyl-1-propanol 3Ph1P
3-styrene 3Sty
5-polyphenyl-ether 5-PPE
benzophenone BePh
biphenyl-2yl-isobutylate BP2IB
butyronitrile BN
cresolphthalein-dimethylether KDE
decahydroisoquinoline DHIQ
di-iso-butyl-phtalate dIBP
dibutyl-ammonium-formide dBAF
dibutyl-phtalate DBP
dicyclohexyl-methyl-2-methylsuccinate DCHMMS
diethyl-phtalate DEP
diglycidyl-ether-of-bisphenol A (epoxy-resin) ER
dimethyl-phtalate DMP
dioctyl-phtalate DOP
dipropylene-glycol DPG
dipropylene-glycol-dimethyl-ether DPGDME
glycerol Gly
isopropyl-benzene Cum
m-tricresyl-phosphate mTCP
m-toluene mTol
o-terphenyl OTP
perhydroisoquinoline PHIQ
phenolphthalein-dimethylether PDE
phenyl-salicylate (salol) Sal
polypropylene-glycol PPG
pyridine–toluene mixture PT
squalane Sqa
sucrose-benzonate SB
tetraphenyl-tetramethyl-trisiloxane DC704
tricresyl-phosphate TCP
triphenyl-ethylene TPE
tripropylene-glycol TPG
trisnaphthylbenzene tNB
xylitol Xyl

support for the idea of a dynamic divergence traditionally came
from several papers reporting near equality of the VFT fitting
parameter T0 and the Kauzmann temperature TK, the temperature
where the liquid phase entropy by extrapolation below the glass
transition becomes identical to the crystal phase entropy29–31. In
2003, however, Tanaka presented a compilation of data showing
that T0 = TK is not confirmed by experiment32.

As is evident from the above, an important question of
contemporary glass science is the following: Is there experimental
evidence for the dynamic divergence predicted by the VFT
equation? Answering this is important, because if there is an
underlying dynamic divergence, this obviously explains the marked
relaxation-time increase on cooling. By its very nature the question
is subtle, however, because if the equilibrium liquid relaxation time
diverges at some finite temperature, it is impossible to equilibrate
the liquid at or close to that temperature. This means that no
experiment can conclusively prove the existence of a dynamic
divergence. To cut this science–philosophical Gordian knot, we take
the following pragmatic viewpoint: the conjecture of a diverging
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Figure 3 The VFT and Avramov equations compared with data. a, Examples of fits with the VFT equation (solid lines) and the Avramov equation (dashed lines).
b, Standard deviation from fits to data of the two equations. The x axis represents the 42 liquids sorted in descending order of standard deviation for each of the two fitting
functions; thus, a given position on the x axis generally corresponds to two different liquids. On average, the VFT equation fits data better than does the Avramov equation.

relaxation time of VFT form will be regarded as probably correct
if—and only if—the VFT equation fits data considerably better
than do other mathematically simple functions with the same
number of fitting parameters and no dynamic divergence. To
investigate this, data for a large number of liquids are needed.

DATA ANALYSIS

Accurate data are required to assess whether or not the VFT
prediction of a diverging relaxation time is confirmed by
experiment. Dielectric relaxation measurements give the most
precise relaxation-time data, far more accurate than data from
other relaxation processes or from viscosity measurements. For
practical reasons, the best dielectric data for ultraviscous liquids are
for organic liquids; such liquids are often easily supercooled and
quite convenient to work with. Monoalcohols were omitted from
the analysis because their dominant dielectric relaxation process
does not relate to the calorimetric glass transition33.

To quantify how well the VFT equation fits data, we compared
the VFT equation with another popular fitting function34–39 that is
now known as the Avramov equation:

τ(T) = τ0 exp

(
B

T n

)
. (3)

Like the VFT equation, the Avramov equation has two parameters
in addition to the prefactor τ0, but it has no dynamic divergence.
The prefactor is usually regarded as a free parameter, but we chose
to fix it to τ0 = 10−14 s (ref. 40). The below conclusions are not
sensitive to the exact value of τ0 if it is insisted that it should have
a physically reasonable value, that is, be in (or just slightly outside)
the range 10−14–10−13 s.

At any given temperature, from the dielectric loss as a function
of frequency, we define the liquid relaxation time τ as the inverse
loss-peak frequency. The last of these is identified by fitting loss
data as a function of log frequency close to the maximum loss
with a parabola. Figure 2 shows all data analysed. All liquids exhibit
the characteristic non-Arrhenius behaviour with a relaxation time
that increases stronger on cooling than predicted by the Arrhenius
equation (that is, equation (1) with temperature-independent
activation energy). A list of all liquids included in the analysis and
their corresponding symbols is given in Table 1; more details are
provided in the Supplementary Information.

The fitting region was restricted to relaxation times between
1 µs and 1,000 s. This was done to avoid comparing different
types of dynamic behaviour—otherwise there is the risk that we
ultimately test the two equations’ ability to interpolate between
two different dynamics. The lower limit (1 µs) was chosen to
ensure that the dynamics are well within the ‘landscape dominated’
domain41,42. The upper limit (1,000 s) was chosen to ensure that
all data are true equilibrium data. A further requirement was that
only data sets covering at least four decades in time measured at
five or more temperatures were included in the analysis. Out of
an initial collection of data for 62 liquids, 42 met these demands.
The liquids represent some of the most commonly studied organic
glass formers; their dielectric properties were measured by leading
groups in the field. These data were supplemented by some new
measurements of ours.

Equations (2) and (3) were fitted to data using the least-squares
method. The procedures for selecting data and the subsequent
fitting procedures were automated through MatLab routines.
Examples of fits are shown in Fig. 3a with VFT fits as solid
lines and Avramov fits as dashed lines. Both equations fit well
with little visible difference. For a quantitative comparison of the
two fitting functions, we used the standard deviation formula,
σ2

= 1/(N − n)
∑

i(log10(τfit,i) − log10(τdata,i))
2, where N is the

number of data points and n = 2 is the number of degrees of
freedom. Figure 3b shows σVFT and σAvramov for all liquids, where
the σ values for clarity are sorted in descending order for both
fits. The VFT equation generally fits data better than does the
Avramov equation.

Inspecting the fits closely—in Fig. 3a as well as those not
shown—reveals that deviations are systematic. Thus, highly non-
Arrhenius liquids, that is, data sets with large curvature, are
generally poorly fitted by the Avramov equation. Apparently, the
Avramov equation is not able to ‘bend’ enough to capture the
curvature of these data sets. Is that a signal of the dynamic
divergence predicted by the VFT equation? To investigate this
possibility, we calculated how the activation energy changes with
temperature using the temperature index defined43 by

I = −
dln1E

dlnT
. (4)

The temperature index quantifies the activation-energy
temperature dependence in a way that is independent of the
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Figure 4 Temperature indices. This quantity (equation (4)) measures how fast the
activation energy increases on cooling; it is plotted as a function of temperature.
a, Temperature indices for all liquids. With few exceptions, the temperature index
increases with decreasing temperature. This explains why the VFT equation fits data
better than does the Avramov equation, which predicts a temperature-independent
index. b, Temperature indices for the eight liquids where the Avramov equation
(upper panel), respectively the VFT equation (lower panel), fits best. The full lines
give the VFT-predicted temperature indices (equation (5)), the dashed–dotted and
dashed lines, respectively, give the predictions of the two fitting functions FF1 and
FF2 that do not have dynamic divergences (equations (6) and (7)). In both
subfigures, the black circles mark the glass-transition temperature for each liquid.

unit system, like the Grüneisen parameter of solid-state physics
quantifies the effects of thermal expansion. If for instance the
temperature index is four, lowering the temperature by 1% leads
to a 4% increase of the activation energy. If the glass transition
temperature is defined by τ(Tg) = 100 s, the temperature index
is related to Angell’s fragility m ≡ d log10(τ)/d(Tg/T)|Tg by
m = c(1+ I(Tg)), where c = log10(τ(Tg)/τ0) = 16 (ref. 43).

For the Avramov equation, the temperature index is constant,
IAvramov = n−1. For the VFT equation, we find

IVFT =
T0

T −T0

. (5)

σ

VFT

FF1

FF2

τ0 = 10–13 s τ0 = 10–14 s 

0
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Worst fit Best fit Worst fit Best fit

Figure 5 Standard deviation from fits to data of the VFT equation and two
alternative fitting functions with the same number of parameters but no
dynamic divergence, FF1 and FF2 of equations (6) and (7). The x axis represents
the liquids sorted in descending order of standard deviation for each fitting function.
For both choices of physically reasonable prefactors, the three functions fit equally
well. The worst-fit outlier is perhydroisoquinoline, one of the most fragile
(non-Arrhenius) liquids in the collection (compare Fig. 1).

Thus, the VFT temperature index increases on cooling and diverges
at T = T0. Figure 4a shows temperature indices for all 42 liquids
as functions of temperature. For the vast majority of liquids,
the temperature index increases with decreasing temperature.
This explains why the VFT equation fits data better than the
Avramov equation.

The temperature index is also useful for shedding light on
how strong the evidence for a dynamic divergence is. Figure 4b
(upper panel) shows the actual and the VFT-predicted temperature
indices for the eight liquids that are best fitted by the Avramov
equation; the lower panel shows those liquids that are best
fitted by the VFT equation. The data are not inconsistent with
the dynamic divergence predicted by the VFT equation, but we
cannot reasonably say that there is compelling evidence for a
divergent temperature index as predicted by the VFT equation. The
dashed–dotted and dashed lines are the temperature indices of the
two below fitting functions.

We proceed to compare the VFT function to two alternative
fitting functions with temperature indices that increase on cooling,
but without divergence at a non-zero temperature. Fitting functions
one and two (FF1 and FF2) reflect the following temperature
indices: I = (T1/T)2 and I = (T2 − T)/T (T < T2), respectively.
Integrating these expressions via equation (4) leads to

1E(T) ∝ exp

[
T 2

1

2T 2

]
(FF1), (6)

1E(T) ∝ T exp

[
T2

T

]
(FF2). (7)

Figure 5 shows the standard deviations from fitting these two
functions to data compared with the VFT equation. The panels
show results from two different prefactors, τ0 = 10−13 s and
τ0 = 10−14 s. In both cases the three functions fit equally well.

OUTLOOK

The analysis was limited to non-polymeric systems because the
polymer glass transition may be fundamentally different from the
liquid–glass transition. The VFT equation was often used also
for the polymer glass transition, however, where it is generally
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known as the Williams–Landel–Ferry equation11. A clever way to
extend the range of relaxation times beyond those obtainable by
linear relaxation experiments is to consider results from ageing
experiments. Studies by McKenna, Simon, Plazek and co-workers
mainly on polymeric systems show that the VFT prediction is not
followed when systems are aged into equilibrium by annealing
for sufficiently long time slightly below the glass-transition
temperature44–47. Although the accuracy of these experiments is
not comparable to that of dielectric relaxation experiments on
the metastable equilibrium phase, it was nevertheless possible to
conclude that the relaxation times deviate from the VFT equation
by always increasing less markedly when lowering temperature than
predicted by the VFT equation. These results are fully consistent
with the above conclusion.

It is not possible to rule out that there is a dynamic divergence
of the VFT form, but our findings give no indications of such
a divergence. It is instructive to compare the situation to that
of a second-order phase transition. This is associated with a
dynamic divergence where the (maximum) relaxation time diverges
as an inverse power law of the temperature distance to the
transition temperature (critical slowing down). Thus, right at
the phase transition, the relaxation time is infinite. Although it
is not possible to experimentally definitively prove this dynamic
divergence, nobody doubts it. This is because (1) the predicted
mathematical form is supported by experiment, (2) the dynamic
critical exponents fit theoretical predictions and (3) there is
a fundamental understanding of what is going on and why
relaxations slow down when the transition is approached. For
ultraviscous liquids, there is no such generally agreed simple and
universal model. Here, the logic was traditionally reversed. The
observation that data are well fitted by the VFT equation was
used to justify a search for models with a dynamic divergence.
Our findings indicate that this is probably not a fruitful route.
Thus, with Occam’s razor in mind—‘it is vain to do with more
what can be done with fewer’—we suggest that in the search
for the correct theory for ultraviscous liquid dynamics, theories
not predicting a dynamic divergence of the VFT form should be
focused on.
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