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1 Introduction

The mysterious threefold replication of the fermion generations is one important open
issue of the Standard Model (SM) at the heart of the flavour problem. The most promising
solution are symmetries that relate the generations, known as family symmetries or flavour
symmetries. Recent reviews include [1–3].

The idea of modular invariance [4, 5] has been suggested as key ingredient in solutions
to the flavour problem [6]. In these promising scenarios, a modular symmetry associated
with transformations of a modulus field can lead to very predictive models of flavour. We
will focus on the modular S4 group and its double cover, which have been used in interesting
flavour models [7–9]. Nevertheless, in order to apply the methodology of residual flavour
symmetries, it is relevant to consider all their fixed points or stabilizers [10, 11]: special
values for the modulus field where part of the modular transformations are preserved.1

Furthermore, if multiple residual symmetries are desired, multiple modular symmetries,
each with its respective modulus, can be employed — as proposed in [13] and expanded
upon in [14–16].

1The issue of moduli stabilisation which brings the moduli to these special values is an open problem,
and beyond the scope of the present work. We note that this topic has been discussed recently in [12].
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Modular symmetries can further be exploited to explain the mass hierarchy of the
fermions by use of an extra field referred to as a weighton [17]. While similar to the
Froggatt-Nielsen mechanism, the weighton explicitly relies on modular invariance and does
not require extra symmetry.

Another mass hierarchy that is puzzling is the lightness of neutrino masses. Although
the type I seesaw mechanism can qualitatively explain the smallness of neutrino masses
through the heavy right-handed neutrinos (RHNs), if one doesn’t make other assumptions,
it contains too many parameters to make any particular predictions for neutrino mass and
mixing. The sequential dominance (SD) [18, 19] of right-handed neutrinos proposes that the
mass spectrum of heavy Majorana neutrinos is strongly hierarchical, i.e. Matm � Msol �
Mdec, where the lightest RHN with mass Matm is responsible for the atmospheric neutrino
mass, that with mass Msol gives the solar neutrino mass, and a third largely decoupled
RHN gives a suppressed lightest neutrino mass. It leads to an effective two right-handed
neutrino (2RHN) model [20, 21] with a natural explanation for the physical neutrino mass
hierarchy, with normal ordering and the lightest neutrino being approximately massless,
m1 = 0.

A very predictive minimal seesaw model with two right-handed neutrinos and one
texture zero is the so-called constrained sequential dominance (CSD) model [22–31]. The
CSD(n) scheme assumes that the two columns of the Dirac neutrino mass matrix are
proportional to (0, 1,−1) and (1, n, 2 − n) respectively in the RHN diagonal basis, where
the parameter n was initially assumed to be a positive integer, but in general may be a
real number. For example the CSD(3) (also called Littlest Seesaw model) [24–28], CSD(4)
models [29, 30] and CSD(−1/2) [32] can give rise to phenomenologically viable predictions
for lepton mixing parameters and the two neutrino mass squared differences ∆m2

21 and
∆m2

31, corresponding to special constrained cases of TM1 lepton mixing. As was observed,
modular symmetry remarkably suggests CSD(1 −

√
6) ≈ CSD(−1.45) [10, 33], although

such a model would require multiple moduli and so far there is no complete model of this
kind in the literature.

In this paper, we construct the first complete model of the Littlest Modular Seesaw
(LMS), based on CSD(1−

√
6) ≈ CSD(−1.45), within a consistent framework based on mul-

tiple modular symmetries. We also propose a new related possibility based on CSD(1+
√

6)
≈ CSD(3.45), intermediate between CSD(3) and CSD(4). In each case, three S4 modular
symmetries are introduced, each with their respective modulus field at a distinct stabi-
lizer, leading to three separate residual subgroups, thus dispensing with vacuum alignment
mechanisms. The result, in the symmetry basis, is a diagonal charged lepton mass matrix
and a LMS scenario of a particular kind. In order to account for the hierarchy of the
charged lepton masses, we subsequently introduce a weighton field, where this model is
implemented by upgrading the modular symmetries to the respective double covers S′4.
Using a semi-analytical approach, we perform a χ2 analysis of each case and show that
good agreement with neutrino oscillation data is obtained, for both possible octants of
atmospheric angle, including predictive relations between the leptonic mixing angles and
the ratio of light neutrino masses, which non-trivially agree with the experimental values.
It is noteworthy that in this very predictive setup, all the models fit the experimental data
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Field SA4 SB4 SC4 2kA 2kB 2kC
L 1 1 3 0 0 0
ec 1 1 1′ 0 0 −6
µc 1 1 1′ 0 0 −4
τ c 1 1 1′ 0 0 −2
N c
A 1′ 1 1 −4 0 0

N c
B 1 1′ 1 0 −2 0

ΦAC 3 1 3 0 0 0
ΦBC 1 3 3 0 0 0

Yuk/Mass SA4 SB4 SC4 2kA 2kB 2kC
Ye(τC) 1 1 3′ 0 0 6
Yµ(τC) 1 1 3′ 0 0 4
Yτ (τC) 1 1 3′ 0 0 2
YA(τA) 3′ 1 1 4 0 0
YB(τB) 1 3′ 1 0 2 0
MA(τA) 1 1 1 8 0 0
MB(τB) 1 1 1 0 4 0

Table 1. Transformation properties of fields and modular forms (Yuk/Mass) under the modular
symmetries.

remarkably well, depending on the choice of stabilizers and data set, in one case to within
approximately 1σ.

In section 2.1 we present the model with the respective fields and their assignments un-
der the multiple modular symmetries. The charged-lepton structure is shown in section 2.2,
and the neutrino seesaw matrix is shown in section 2.3. Analytical results for the leptonic
mixing angles and the neutrino masses are given in section 2.4 and a numerical analysis is
done in section 2.5. We conclude in section 3. Appendix C gives two alternative models
where the charged-lepton hierarchies are naturally explained by including a weighton.

2 The model

2.1 Symmetries and stabilizers

The model we are building features three commuting S4 modular symmetries, which we
label as SA4 , SB4 , SC4 . At low energies, due to the VEVs of fields ΦAC and ΦBC , they are
broken down to the diagonal subgroup, as described in [13]. Table 1 contains the transfor-
mation properties (representations and modular weights) under the modular symmetries
of the fields and of the relevant modular forms, where we also take usual SU(2) doublets
Hu,d to transform trivially under all flavour symmetries, and so we omit them from table 1.
These assignments are very similar to those used in [13].2

Our goal is to achieve a CSD(3.45) [10] structure from the multiple modular sym-
metries. To that end, the desired directions of the modular forms are obtained for these
representations and weights at specific stabilizers [10, 11, 13]. Namely, following the basis
of [13], we compute the modular forms:3

τA = 1
2 + i

2 : Y
(4)

3′ (τA) = (0,−1, 1) , (2.1)

2We note there is a typo in [13] where RH leptons and the respective modular forms should have primes,
as the modular form Yτ (τC) (weight 2) only exists as a 3′.

3This choice is not unique, and τ ′A = (−3 + i)/2 also gives the same modular form.
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for one of the Dirac mass matrix columns, and

τB = 3
2 + i

2 : Y
(2)

3′ (τB) = (1, 1−
√

6, 1 +
√

6) , (2.2)

or
τB = −1

2 + i

2 : Y
(2)

3′ (τB) = (1, 1 +
√

6, 1−
√

6) , (2.3)

for the other. These specific modular forms lead to the desired CSD structure. In the same
basis, we want to enforce a diagonal structure for the charged-lepton Yukawa coupling
matrices. This can be easily achieved through the weights 2, 4, and 6 modular forms
transforming as 3′, for τC = ω≡ e2πi/3:

Y
(2)

3′ (τC) = (0, 1, 0) (2.4a)

τC = ω : Y
(4)

3′ (τC) = (0, 0, 1) (2.4b)

Y
(6)

3′ (τC) = (1, 0, 0) (2.4c)

A subtlety should be noted here. Indeed, for weight 6, there are two independent 3′ modular
forms, which could spoil the diagonal arrangement of the charged-leptons. Nevertheless,
for τ = ω, one of them vanishes, introducing no further parameters.

In appendix B it is shown that τA and τ ′A are stabilisers of U , and that τB (either
version) is a stabiliser of SU in our chosen basis. It is also shown that the respective
modular forms we are using are eigenvectors of the 3′ representation matrices.

For clarity, we note that the basis in which the modular forms are computed in the
present work follows reference [13], which is different from [10]. To be precise, although
the S4 basis used here and [13] is the same as that in [10], the basis of modular generators
is different, and hence the modular forms differ also. However the physics should be and
is basis independent, and indeed the Yukawa alignments shown above can be achieved for
different values of the modulus field in the two different bases. It useful to present the
different stabilisers for both cases which lead to the desired modular forms, which is shown
in table 2.4

2.2 Charged leptons

With the fields and assignments of the previous subsection, we write the respective lepton
sector superpotential as

w` = 1
Λ [LΦACYA(τA)N c

A + LΦBCYB(τB)N c
B]Hu

+ [LYe(τC)ec + LYµ(τC)µc + LYτ (τC)τ c]Hd (2.5)

+1
2MA(τA)N c

AN
c
A + 1

2MB(τB)N c
BN

c
B +MAB(τA, τB)N c

AN
c
B .

4Note that with multiple moduli, transforming under a diagonal S4 subgroup, it is meaningful to have
fixed points outside the fundamental domain. This can be understood for a case with two moduli, one
inside and one outside the fundamental domain, the relative difference in residual subrgroups is relevant —
the transformation of the diagonal S4 subgroup that brings one inside takes the other one outside.
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Y
(4)

3′ (τ) =
(

0 −1 1
)

Y
(2)

3′ (τ) =
(

1 1−
√

6 1 +
√

6
)

Y
(2)

3′ (τ) =
(

1 1 +
√

6 1−
√

6
)

Basis 1 τ = 1+i
2 , τ = −3+i

2 τ = 3+i
2 τ = −1+i

2

Basis 2 τ = 2 + i, τ = −2+i
5 τ = −8+i

13 τ = i

Table 2. Relevant stabilisers to obtain the desired modular forms to achieve either a CSD(3.45)
or a CSD(-1.45) model, both for basis 1 (used throughout this paper), and basis 2 used in [10]. For
both cases, the charged leptons are at the left cusp: τC = ω. Note that the convention of 3 and 3′
is exchanged.

Expanding the superpotential of eq. (2.5), we can find the mass matrices for the fields
after the electroweak symmetry breaking, where we are assuming the minimal form of the
Kähler potential.5 Due to the nature of the S4 tensor products in our chosen basis, and
the particular structure chosen for the bi-triplets VEVs, the 3 ⊗ 3 tensor products are
non-diagonal:

(a ⊗ b)1 = a1b1 + a2b3 + a3b2, (2.6)
(a ⊗ 〈Φ〉 ⊗ b)1 ∝ a1b1 + a2b3 + a3b2. (2.7)

Hence, the charged-lepton mass matrix is simply given by

Ml = vd

(Ye)1 (Yµ)1 (Yτ )1
(Ye)3 (Yµ)3 (Yτ )3
(Ye)2 (Yµ)2 (Yτ )2

 , (2.8)

where we omit the τc dependency for clarity, and vd stands for 〈Hd〉. Plugging in the
specific shapes of the modular forms given in eqs. (2.4a)–(2.4c) we arrive at a diagonal
charged-lepton mass matrix when τC = ω:

Ml = vd

ye 0 0
0 yµ 0
0 0 yτ

 , (2.9)

where vd ye,µ,τ are the electron, muon, and tau masses respectively. In this model, the
hierarchical masses of the charged-leptons are not addressed. In order to naturally deal with
this issue, we present two modifications of this model in the appendix C, where a weighton
is responsible for the hierarchy of the masses, without affecting the remaining predictions
of the model. Other mechanisms to address the hierarchies rely on small displacements
from the fixed points [35–38]. However, our set-up relies on residual symmetries that are
preserved in the fixed point to make the model predictive.

5The choice of the minimal Kähler potential is common in modular flavour constructions, as a generic
Kähler potential compatible with modular invariance would reduce the predictive power of the model [34].
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2.3 Neutrinos

We now turn to the Majorana mass terms for the neutrinos, N c
A and N c

B. From table 1, we
see that N c

AN
c
A as well as N c

BN
c
B are SA4 ×SB4 ×SC4 singlets. As such, we just need to cancel

out the weight with a singlet Yukawa form. From [8, 39]6 we see that the Yukawa modular
forms of weight 4 do have a singlet representation, needed for the MA(τA) term. Due
to the properties of the modular terms, this implies that there is also a singlet modular
form of weight 8, required for MB(τB). Conversely, as N c

AN
c
B transforms non-trivially

under both SA4 and under SB4 , there are no one-dimensional modular forms of weight 2 and
the respective term is forbidden by the symmetries, and the RH neutrino mass matrix is
diagonal:

MR =
(
MA(τA) 0

0 MB(τB)

)
. (2.10)

Finally, we need to check the shape of the Dirac mass matrices. Given the VEVs for
the bi-triplets ΦAC ,ΦBC , the tensor products after SSB will mimic those of the usual S4
(the diagonal S4 preserved by the bi-triplets symmetry breaking), as explained in [13–16].
This feature is preserved also in the weighton versions of the model, that are using S′4. The
Dirac mass matrix is then given by:

MD = vu

(YA)1 (YB)1
(YA)3 (YB)3
(YA)2 (YB)2

 , (2.11)

where, as usual, vu denotes the Hu VEV, and the 3×2 structure comes from the CSD with
just two RH neutrinos. Choosing specific stabilisers for the two remaining moduli fields,
we can achieve a new CSD(3.45) structure with n = 1 +

√
6:

MD = vu


0 b

a b
(
1 +
√

6
)

−a b
(
1−
√

6
)
 , τA = −3

2 + i

2 , τB = 3
2 + i

2 . (2.12)

We can similarly achieve the case CSD(−1.45) with n = 1−
√

6 already discussed in [10]:

MD = vu


0 b

a b
(
1−
√

6
)

−a b
(
1 +
√

6
)
 , τA = −3

2 + i

2 , τB = −1
2 + i

2 . (2.13)

6Although we use a different basis, the assignments of the representations are identical, as can be
seen by the weight 2 modular forms. Furthermore, we have explicitly checked that the tensor product of(
Y

(2)
3′ ⊗ Y (2)

3′

)
1
does not vanish for the relevant τA nor any of τB . This ensures a non-zero MA and MB .
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The type-I seesaw mechanism will lead to an effective mass matrix for the light neu-
trinos:

mν = MD ·M−1
R ·M

T
D = v2

u



b2

MB

b2n

MB

b2(2− n)
MB

.
a2

MA
+ b2n2

MB
− a2

MA
+ b2n(2− n)

MB

. .
a2

MA
+ b2(2− n)2

MB


, (2.14)

where n = 1 +
√

6 ≈ 3.45 or n = 1−
√

6 ≈ −1.45.

2.4 Analytic results

The effective mass matrix for the light neutrinos can be split into two contributions,

mν = v2
u

MA
|a|2

0 0 0
0 1 −1
0 −1 1

+ v2
u

MB
|b|2eiβ

 1 n 2− n
n n2 n(2− n)

2− n n(2− n) (2− n)2

 . (2.15)

It is worth noting that the above neutrino mass matrix in the diagonal charged lepton
mass basis is determined effectively by two real parameters, ma = v2

u
|a|2
MA

, mb = v2
u
|b|2
MB

,
one phase β and a discrete choice of n = 1 ±

√
6. For a given choice of n, the remaining

three real parameters determine all the parameters in the neutrino sector, namely all the
neutrino masses and the entire PMNS matrix.

These two terms above can be simultaneously block-diagonalized by the following Tri-
bimaximal mixing matrix,

UTBM =


−
√

2
3

√
1
3 0√

1
6

√
1
3

√
1
2√

1
6

√
1
3 −

√
1
2

 , (2.16)

leading to

m′ν = UTTBM ·mν · UTBM = v2
u

MA
|a|2

0 0 0
0 0 0
0 0 2

+ v2
u

MB
|b|2eiβ

0 0 0
0 3

√
6(n− 1)

0
√

6(n− 1) 2(n− 1)2

 .
(2.17)

We diagonalize the remaining (2, 2) block through the matrix

Uα =

1 0 0
0 cα eiγsα
0 −e−iγsα cα

 , (2.18)

such that
UTα ·m′ν · Uα = diag(0,m1,m2). (2.19)
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To ensure that m1,m2 are real and positive, we use the phase matrix, Pν , such that:

UTν ·mν · Uν = diag(0, |m1|, |m2|), (2.20)

where

Uν ≡ (UTBM Uα Pν) =


−
√

2
3

cα√
3

eiγ
sα√

3√
1
6

cα√
3
− e−iγ sα√

2
cα√

2
+ eiγ

sα√
3√

1
6

cα√
3

+ e−iγ
sα√

2
− cα√

2
+ eiγ

sα√
3


·

1 0 0
0 eiφ2 0
0 0 eiφ3

 . (2.21)

As this is effectively a 2 × 2 diagonalization, it is possible to find analytical relations
for α. Namely, by requiring a vanishing

(
UTαm′νUα

)
23

element we find [25]:

t ≡ tan 2α = 2y
z cos (ϕ− γ)− x cos γ , (2.22)

tan γ = z sinϕ
x+ z cosϕ, with ϕ = φz − β, (2.23)

where we defined

m′ν =

0 0 0
0 xeiβ yeiβ

0 yeiβ zeiφz

 , (2.24)

with

x = 3mb, y =
√

6(n−1)mb, z = |2(ma+eiβ(n−1)2mb)|, ma = v2
u

|a|2

MA
, mb = v2

u

|b|2

MB
.

(2.25)
To relate this to the PMNS matrix in its standard parametrization, we must also

take into account the charged-lepton rotation. In our specific realisation, the modular
representations of the charged-leptons were chosen in such a way that its mass matrix is
already diagonal. As such, the LH rotation is, in general, a diagonal phase matrix

U` =

e
iδe 0 0
0 eiδµ 0
0 0 eiδτ

 , (2.26)

which can be used to match the standard parametrization [40]:7

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23
s12s23 − c12s13c23e

iδ −c12s23 − s12s13c23e
iδ c13c23

 ·
e

iη1 0 0
0 eiη2 0
0 0 1

 , (2.27)
which has the measured mixing angles and CP-violating phase, and sij (cij) denotes sin θij
(cos θij).

7Indeed, the RH fields rotate away the possible phases of Ml and, as such, when we write down mν we
are already in a basis where Ml is diagonal and positive. The LH rotation was used to enforce the reality
of a. In general, this won’t be the basis where the light neutrino masses are real. Ul is then required to
rotate into the standard parametrization basis.
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Now, we can relate our Unitary matrix Uν to UPMNS and find out the relations between
the measured neutrino data, and our model’s parameters. The resulting relations are

sin θ13 = sinα√
3

= 1√
6

√√√√1−
√

1
1 + t2

, (2.28)

tan θ12 = cosα√
2

= 1√
2

√
1− 3 sin2 θ13, (2.29)

tan θ23 = |1 + εα|
|1− εα|

, (2.30)

where
εα =

√
2
3e

iγ tanα =
√

2
3e

iγ

√
1 + t2 − 1

t
. (2.31)

Note that the mixing angles depend only on two parameters, with θ13 and θ12 depend-
ing only on t. Since the mixing is unaffected by an overall factor, we can factorise mb in
eq. (2.24), leading to

m′ν = mb

0 0 0
0 x′eiβ y′eiβ

0 y′eiβ z′eiφz

 , (2.32)

where

x′ = 3, y′ =
√

6(n− 1), z′ =
∣∣∣∣2(1

r
+ eiβ(n− 1)2

)∣∣∣∣ , (2.33)

φz = arg
(1
r

+ eiβ(n− 1)2
)
, r = mb

ma
, (2.34)

where we note how φz and z′ depend on r and β. For fixed n, the mixing angles themselves
will depend solely on r and β.

To obtain the neutrinos masses, we proceed as in [25] by taking the trace and determi-
nant of the hermitian combination H ′ν = m′ν

†m′ν , and equating it to the sum and product of
the squared masses, respectively. Given that the LS paradigm forcibly leads to a massless
light neutrino and thus, to Normal Ordering, the obtained masses can be readily equated
to the ∆m2

21 and ∆m2
31 observables. Defining the combinations of parameters, that depend

on those of eqs. (2.23) and (2.33)–(2.34),

Σ ≡ m2
b

2
(
x′

2 + 2y′2 + z′
2
)
, (2.35)

δM ≡ m2
b

2

√
x′2(4y′2 − 2z′2) + x′4 + 8x′y′2z′ cosϕ+ 4y′2z′2 + z′4, (2.36)

then

∆m2
21 = m2

2 = Σ− δM, (2.37)
∆m2

31 = m2
3 = Σ + δM, (2.38)

which are functions of r and β, and with the overall factor given by mb, which cancels out
in the ratio. As such, ∆m2

21/∆m2
31, the 3 mixing angles, and the CP-phase are all functions

of just two effective parameters.
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N
or
m
al

O
rd
er
in
g

without SK atmospheric data with SK atmospheric data

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.304+0.013
−0.012 0.269→ 0.343 0.304+0.012

−0.012 0.269→ 0.343

θ12/
◦ 33.44+0.77

−0.74 31.27→ 35.86 33.45+0.77
−0.75 31.27→ 35.87

sin2 θ23 0.573+0.018
−0.023 0.405→ 0.620 0.450+0.019

−0.016 0.408→ 0.603

θ23/
◦ 49.2+1.0

−1.3 39.5→ 52.0 42.1+1.1
−0.9 39.7→ 50.9

sin2 θ13 0.02220+0.00068
−0.00062 0.02034→ 0.02430 0.02240+0.00062

−0.00062 0.02060→ 0.02435

θ13/
◦ 8.57+0.13

−0.12 8.20→ 8.97 8.62+0.12
−0.12 8.25→ 8.98

δ/◦ 194+52
−25 105→ 405 230+36

−25 144→ 350
∆m2

21

10−5 eV2 7.42+0.21
−0.20 6.82→ 8.04 7.42+0.21

−0.20 6.82→ 8.04

∆m2
3`

10−3 eV2 +2.515+0.028
−0.028 +2.431→ +2.599 +2.510+0.027

−0.027 +2.430→ +2.593

Table 3. Normal Ordering NuFit 5.1 values [42, 43] for the neutrino observables.

The CP-phase of the PMNS matrix, as well as the physical Majorana phase (since
there is one massless neutrino, only η2 of eq. (2.27) is physical8) can be extracted through
careful combinations of the elements [41], and lead to

δ = −arg
(
sign(t)eiβ

(
4
(√

t2 + 1− 1
)

+
(
−2 + 3e2iγ

)
t2
))
, (2.39)

η2 = (−γ − δ − (φ3 − φ2)) . (2.40)

2.5 Numerical analysis

Using the analytical expressions, we plot the allowed experimental ranges for the lepton
mixing parameters in the (r, β) plane. We present both the case where τB = (3 + i)/2 and
τB = (−1 + i)/2, corresponding to the modular forms of Eqs (2.2) and (2.3). The results
shown correspond to the NuFit 5.1 values [42, 43] without SK atmospheric data in figure 1
and with SK atmospheric data in figure 2. We reproduce the ranges used in table 3. In
both figures, the top row displays the 3σ ranges, the bottom row the 1σ ranges, the left
column the n = 1 +

√
6 case and the right column the n = 1−

√
6 case.9

We note the significant differences between the two possibilities n = 1 +
√

6 and
n = 1−

√
6. This corresponds to a change of sign in the effective parameter t, which does

not affect the predictions for r, θ13, θ12, but does affect the prediction for θ23 and δ. This
can be understood as the change of sign corresponds to changing from the tangent to a
cotangent in the θ23 expression (2.30), and for δ (2.39) to adding π.

8This is made clear when computing mee. Alternatively, we can always rotate ν1 to absorb η1, but this
will not influence the second and third columns.

9The results for n = 1−
√

6 match the results of [10], as expected.
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Figure 1. Allowed 3σ (top) and 1σ (bottom) experimental ranges in the (r, β) plane using
NuFit 5.1 values without SK atmospheric data for the n = 1+

√
6 case (left) and for the n = 1−

√
6

case (right). The red circle indicates the best fit region.

While qualitatively both possibilities are similarly successful in reproducing the exper-
imental data at 3σ, it is visible from the plots how the 1σ range clearly favours different
cases. It is worth emphasising how the new case we are considering is able to fit all ob-
servables at 1σ, with the exception of θ12, for which the 1σ contour is just slightly above
the intersection of all other observables, which include the very narrow contours from θ13
and from the mass ratio. To better quantify this we define

χ2 =
∑
i

(
xpred
i − xexp

i

σi

)2

(2.41)

and list the respective χ2 values in table 4. For the n = 1 +
√

6 case, χ2 = 1.87 can be
obtained. Table 4 also gives the predictions for mee for the best-fit point in each case,
where [40]:

mee =
∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣ , (2.42)
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Figure 2. As in figure 1 but using the NuFit 5.1 values with SK atmospheric data. Left: n =
1 +
√

6, right: n = 1−
√

6, top: 3σ, bottom: 1σ.

which, in our case (since we are working in a basis where the charged-leptons are already
diagonal, positive, and ordered) can be extracted simply from

mee =
∣∣∣(mν)1,1

∣∣∣ . (2.43)

From eq. (2.14), we can see that this is identically mb.

3 Conclusion

In this paper, we have constructed the first complete model of the Littlest Modular See-
saw (LMS), based on CSD(1 −

√
6) ≈ CSD(−1.45), within a consistent framework based

on multiple modular symmetries. We also proposed a new related possibility based on
CSD(1 +

√
6) ≈ CSD(3.45). In each case, three S4 modular symmetries are introduced,

each with their respective modulus field at a distinct stabilizer, leading to three separate
residual subgroups, thus dispensing with vacuum alignment mechanisms. Of the three
moduli, two are responsible implementing the viable Littlest Seesaw leading to Trimaxi-
mal 1 mixing, which correlates non-trivially with the observed ratio of neutrino masses.
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Goodness of fit against NuFit 5.1 values without SK atmospheric data
n χ2 r β/π mb/10−3 m2

2/10−5 m2
3/10−3 θ12 θ23 θ13 δ

1 +
√

6 29.47 0.076 1.26 2.33 7.19 2.53 34.29 43.06 8.78 262
1−
√

6 4.96 0.073 0.76 2.23 7.45 2.51 34.34 48.26 8.55 284

Goodness of fit against NuFit 5.1 results with SK atmospheric data
n χ2 r β/π mb/10−3 m2

2/10−5 m2
3/10−3 θ12 θ23 θ13 δ

1 +
√

6 1.87 0.074 1.24 2.30 7.42 2.51 34.33 42.03 8.62 257
1−
√

6 25.79 0.077 0.74 2.33 7.15 2.52 34.28 46.76 8.82 277

Table 4. Our χ2 values for the different cases n = 1+
√

6 and n = 1−
√

6. Note that from eq. (2.14)
and the definition eq. (2.25), the output parameter mee is directly equal to the input parameter
mb. The neutrino squared-masses m2

2 and m2
3 are given in eV2.

The remaining modulus guarantees the charged lepton mass matrix is diagonal in the same
basis, preserving the predictive power of the model. The result, in the symmetry basis, is
a diagonal charged lepton mass matrix and a LMS scenario of a particular kind.

Using a semi-analytical approach, we performed a χ2 analysis of each case and showed
that good agreement with neutrino oscillation data is obtained, for both possible octants
of atmospheric angle, including predictive relations between the leptonic mixing angles and
the ratio of light neutrino masses, which non-trivially agree with the experimental values.
It is noteworthy that in this very predictive setup, all the models fit the experimental
data very well, depending on the choice of stabilizers and data set, in one case to within
approximately 1σ. This is a remarkable achievement, given that the neutrino mass matrix
in the diagonal charged lepton mass basis is determined effectively by two real parameters,
ma, mb and one phase β together with a discrete choice of n = 1±

√
6. For a given choice

of n, the remaining three real parameters determine all the parameters in the neutrino
sector, namely all the neutrino masses and the entire PMNS matrix.

By extending the model to include a weighton and the double cover group Γ′4 ' S′4, we
are able to also account for the hierarchy of the charged leptons using modular symmetries,
without altering the neutrino predictions.

In summary, we have presented an extremely economical model of leptonic masses and
mixing, by combining multiple modular symmetries with the littlest seesaw, and optionally
adding a weighton. The latter accounts elegantly for the observed hierarchy of the lepton
masses without the need for additional Froggatt-Nielsen style symmetries.

We argue that this is a minimal model of leptonic mixing, as we do not count the
moduli as free continuous parameters given that we take them as stabilizers. As such, we
have 3 real parameters in the charged lepton sector to fit the 3 masses, 1 real parameter
that governs the overall neutrino mass scale, and just 2 effective parameters (the ratio
r = mb/ma and the phase β) which fit the remaining observables: the neutrino mass
ratio, the 3 PMNS mixing angles, the Dirac CP phase and a Majorana phase. The lightest
neutrino mass is predicted to be zero and the PMNS phases are predicted in terms of the
other observables. Within this predictive setup we are able to fit all the neutrino oscillation
data to within approximately 1σ.
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2
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2
3
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1
4
3

ρ(T ) ρ(S) ρ(U)
1 1 1 1
1′ 1 1 −1

2
(
ω 0
0 ω2

) (
1 0
0 1

) (
0 1
1 0

)

3


1 0 0
0 ω2 0
0 0 ω

 1
3


−1 2 2
2 −1 2
2 2 −1




1 0 0
0 0 1
0 1 0


3′


1 0 0
0 ω2 0
0 0 ω

 1
3


−1 2 2
2 −1 2
2 2 −1

 −


1 0 0
0 0 1
0 1 0


Table 5. In the basis used, the representation matrices for T , S and U , with ω = e2πi/3.
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A Group theory of S4

In this appendix we summarize some relevant group theoretical details of S4 (see [13] and
references therein). The products of irreps follow:

1′ ⊗ 1′ = 1, 1′ ⊗ 2 = 2, 1′ ⊗ 3 = 3′, 1′ ⊗ 3′ = 3,
2⊗ 2 = 1⊕ 1′ ⊕ 2, 2⊗ 3 = 2⊗ 3′ = 3⊕ 3′,
3⊗ 3 = 3′ ⊗ 3′ = 1⊕ 2⊕ 3⊕ 3′, 3⊗ 3′ = 1′ ⊕ 2⊕ 3⊕ 3′ . (A.1)

In the basis we are using, the representation matrices for T , S and U are shown in
table 5.

In this basis, the product of 3 dimensional irreps a and b:

(ab)1i = a1b1 + a2b3 + a3b2 ,

(ab)2 = (a2b2 + a1b3 + a3b1, a3b3 + a1b2 + a2b1)T ,
(ab)3i = (2a1b1 − a2b3 − a3b2, 2a3b3 − a1b2 − a2b1, 2a2b2 − a3b1 − a1b3)T ,
(ab)3j = (a2b3 − a3b2, a1b2 − a2b1, a3b1 − a1b3)T , (A.2)
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for

1i = 1 , 3i = 3 , 3j = 3′ for a ∼ b ∼ 3 , 3′ ,
1i = 1′ , 3i = 3′ , 3j = 3 for a ∼ 3 , b ∼ 3′ . (A.3)

The expressions for the product of 2 dimensional irreps a = (a1, a2)T and b = (b1, b2)T

are:

(ab)1 = a1b2 + a2b1 , (ab)1′ = a1b2 − a2b1 , (ab)2 = (a2b2, a1b1)T . (A.4)

B Stabilizers and residual symmetry

In the basis we work in, we can make the following mapping of modular generators [13]:

S = T 2
τ , T = SτTτ , U = TτSτT

2
τ Sτ , (B.1)

where Sτ and Tτ are the usual modular generators of the full modular group Γ:

Sτ =
(

0 1
−1 0

)
, Tτ =

(
1 1
0 1

)
(B.2)

which act on the modulus field as

γτ = aτ + b

cτ + d
, γ =

(
a b

c d

)
. (B.3)

With the requirement that τ = τ + 4, which must hold true for Γ4, we can compute the
corresponding γ for U and SU [13]:

γ(U) =
(

1 −1
2 −1

)
, γ(SU) =

(
5 −3
2 −1

)
. (B.4)

Now, due to T 4
τ = 1, the choice of γ(g) is not unique. Indeed, any element of S4, γ(g):

γ(g) =
(
a b

c d

)
, ad− bc = 1, a, b, c, d ∈ Z, (B.5)

is equivalent to

γ′(g)=(±1)
(

4ka + a 4kb + b

4kc + c 4kd + d

)
, 4kakd + akd + dka = 4kbkcbkc + ckd, kx ∈ Z (B.6)

where the constraint comes from requiring that γ′(g) also satisfies ad− bc = 1.
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By choosing the following sets of integers, we arrive at equivalent representations of
the γ(U) and γ(SU) matrices:

γ1(U) =
(

1 −1
2 −1

)
≡ γ(U), (B.7)

γ2(U) =
(
−3 −5
2 3

)
, ka = −1 kb = −1 kc = 0 kd = 1, (B.8)

γ1(SU) =
(
−1 −1
2 1

)
, ka = −1 kb = 1 kc = −1 kd = 0, (B.9)

γ2(SU) =
(
−3 5
−2 3

)
, ka = −2 kb = 2 kc = −1 kd = 1. (B.10)

Using these matrices, it is straightforward to show that

γ1(U)τA = τA, τA = 1 + i

2 (B.11)

γ2(U)τ ′A = τ ′A, τ ′A = −3 + i

2 (B.12)

γ1(SU)τB = τB, τB = −1 + i

2 (B.13)

γ2(SU)τB = τB, τB = 3 + i

2 . (B.14)

In other words, τA and τ ′A are stabilisers of the modular generator U , and that τB (either
version) is a stabiliser of the modular generator SU in our chosen basis.

To further corroborate that the stabilisers are leaving an unbroken subgroup, we can
check that the respective modular forms are eigenvectors of the appropriate representation
matrices. From appendix A, we have

ρ3′(S) = 1
3

−1 2 2
2 −1 2
2 2 −1

 , ρ3′(U) = −

1 0 0
0 0 1
0 1 0

 , ρ3′(SU) = 1
3

 1 −2 −2
−2 −2 1
−2 1 −2

 ,
(B.15)

from which is straightforward to arrive at

ρ3′(U) ·

 0
−1
1

 = (+1)

 0
−1
1

 , ρ3′(SU) ·

 1
1±
√

6
1∓
√

6

 = (−1)

 1
1±
√

6
1∓
√

6

 , (B.16)

agreeing with the expected results. We note that both modular forms
(
1 1±

√
6 1∓

√
6
)

have an eigenvalue −1, which is a consequence of [13]

(cτ + d)−2k = (2τSU + 1)−2k = (−1)k, (B.17)

where k = 1 for Y (2)
3′ . As such, we preserve a residual flavour symmetry U by the modular

form of τA (eigenvalue +1), whereas the modular forms of τB (eigenvalue −1) do not
preserve the residual flavour symmetry SU , but do preserve the corresponding residual
modular symmetry, taking into account the automorphy factor.
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Field S′
A
4 S′

B
4 S′

C
4 2kA 2kB 2kC

L 1 1 3 0 0 0
ec 1̂ 1̂ 1′ 0 0 −12
µc 1̂′ 1̂′ 1′ 0 0 −6
τ c 1 1 1′ 0 0 −2
N c
A 1′ 1 1 −4 0 0

N c
B 1 1′ 1 0 −2 0

ΦAC 3 1 3 0 0 0
ΦBC 1 3 3 0 0 0
φ 1̂ 1̂ 1̂ 0 0 +2

Yuk/Mass S′
A
4 S′

B
4 S′

C
4 2kA 2kB 2kC

Ye(τC) 1 1 3′ 0 0 6
Yµ(τC) 1 1 3′ 0 0 4
Yτ (τC) 1 1 3′ 0 0 2
YA(τA) 3′ 1 1 4 0 0
YB(τB) 1 3′ 1 0 2 0
MA(τA) 1 1 1 8 0 0
MB(τB) 1 1 1 0 4 0

Table 6. Assignments of fields for the weighton version of the model.

φ0 φ1 φ2 φ3 φ4

Lec
(

1̂0, 1̂0, 3̂′−12

)
(1′0,1′0,3−10)

(
1̂′0, 1̂′0, 3̂−8

)
(10,10,3′−6)

(
1̂0, 1̂0, 3̂′−4

)
Lµc

(
1̂′0, 1̂′0, 3̂−6

) (
10,10,3′−4

) (
1̂0, 1̂0, 3̂′−2

)
(1′0,1′0,30)

(
1̂′0, 1̂′0, 3̂+2

)
Lτ c (10,10,3′−2)

(
1̂0, 1̂0, 3̂′0

)
(1′0,1′0,3+2)

(
1̂′0, 1̂′0, 3̂+4

)
(10,10,3′+6)

Table 7. Irreps of the leptonic tensor products with different powers of the weighton. The invariant
combinations are highlighted in green.

C Weighton models

C.1 A minimal weighton model

We now modify the model presented in the main text to include a weighton field φ. In order
to preserve the features of the previous model (particularly the diagonal charged-lepton
mass matrix) we employ S′4 modular symmetries [8] instead of S4.

The assignments of the fields under the symmetries are listed in table 6. Notice that
this implementation of the weighton is distinguished from the standard one as the weighton
is assigned to non-trivial representations of S′A4 , S′

B
4 , and S′

C
4 . Due to this and the repre-

sentations of the charged leptons, the invariant terms have the desired modular forms Yτ ,
Yµ and Ye respectively for the field combinations Lτ c, Lµcφ and Lecφ3. This is shown (in
green) in table 7, where other possibilities are not invariant.

Since there are no charged leptons with weights under S′A,B4 , the charged-leptons
Yukawa modular forms must be singlets under S′A,B4 with weight 0 under these symmetries.

By having chosen the weighton to have a positive weight under S′C4 , there are no
additional contributions beyond the leading order ones, as the Yukawa modular forms also
have positive weight. An alternative solution, where the weighton has a negative weight
under S′C4 , is presented in appendix C.2.

C.2 An alternative weighton model

In this subsection we provide an alternative weighton model, that does not require assigning
large modular weights to the charged lepton fields.
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Field S′
A
4 S′

B
4 S′

C
4 2kA 2kB 2kC

L 1 1 3 0 0 0
ec 1̂ 1̂ 1′ 0 0 0
µc 1̂′ 1̂′ 1′ 0 0 −2
τ c 1 1 1′ 0 0 −2
N c
A 1′ 1 1 −4 0 0

N c
B 1 1′ 1 0 −2 0

ΦAC 3 1 3 0 0 0
ΦBC 1 3 3 0 0 0
φ 1̂ 1̂ 1̂ 0 0 −2

Yuk/Mass S′
A
4 S′

B
4 S′

C
4 2kA 2kB 2kC

Ye(τC) 1 1 3′ 0 0 6
Yµ(τC) 1 1 3′ 0 0 4
Yτ (τC) 1 1 3′ 0 0 2
YA(τA) 3′ 1 1 4 0 0
YB(τB) 1 3′ 1 0 2 0
MA(τA) 1 1 1 8 0 0
MB(τB) 1 1 1 0 4 0

Table 8. Assignments of fields for the alternative weighton version of the model.

φ0 φ1 φ2 φ3 φ4

Lec
(
1̂0, 1̂0, 3̂′0

)
(1′0,1′0,3−2)

(
1̂′0, 1̂′0, 3̂−4

)
(10,10,3′−6)

(
1̂0, 1̂0, 3̂′−8

)
Lµc

(
1̂′0, 1̂′0, 3̂−2

) (
10,10,3′−4

) (
1̂0, 1̂0, , 3̂′−6

)
(1′0,1′0,3−8)

(
1̂′0, 1̂′0, 3̂−10

)
Lτ c (10,10,3′−2)

(
1̂0, 1̂0, 3̂′−4

)
(1′0,1′0,3−6)

(
1̂′0, 1̂′0, 3̂−8

)
(10,10,3′−10)

LΦACN
c
A (3′−4,10,10)

(
3̂′−4, 1̂0, 1̂−2

)
(3−4,1′0,1′−4)

(
3̂−4, 1̂′0, 1̂′−6

)
(3′−4,10,1−8)

LΦBCN
c
B (10,3′−2,10)

(
1̂0, 3̂′−2, 1̂−2

)
(1′0,3−2,1′−4)

(
1̂′0, 3̂−2, 1̂′−6

)
(10,3′−2,1−8)

N c
AN

c
A (1−8,10,10)

(
1̂−8, 1̂0, 1̂−2

)
(1′−8,1′0,1′−4)

(
1̂′−8, 1̂′0, 1̂′−6

)
(1−8,10,1−8)

N c
BN

c
B (10,1−4,10)

(
1̂0, 1̂−4, 1̂−2

)
(1′0,1′−4,1′−4)

(
1̂′0, 1̂′−4, 1̂′−6

)
(10,1−4,1−8)

N c
AN

c
B (1′−4,1′−2,10)

(
1̂′−4, 1̂′−2, 1̂−2

)
(1−4,1−2,1′−4)

(
1̂−4, 1̂−2, 1̂′−6

)
(1′−4,1′−2,1−8)

N c
AΦACN

c
A (3−8,10,30)

(
3̂−8, 1̂0, 3̂−2

)
(3′−8,1′0,3′−4)

(
3̂′−8, 1̂′0, 3̂′−6

)
(3−8,10,3−8)

N c
BΦACN

c
B (30,1−4,30)

(
3̂0, 1̂−4, 3̂−2

)
(3′0,1′−4,3′−4)

(
3̂′0, 1̂′−4, 3̂′−6

)
(30,1−4,3−8)

N c
AΦACN

c
B (3′−4,1′−2,30)

(
3̂′−4, 1̂′−2, 3̂−2

)
(3−4,1−2,3′−4)

(
3̂−4, 1̂−2, 3̂′−6

)
(3′−4,1′−2,3−8)

N c
AΦBCN

c
A (1−8,30,30)

(
1̂−8, 3̂0, 3̂−2

)
(1′−8,3′0,3′−4)

(
1̂′−8, 3̂′0, 3̂′−6

)
(1−8,30,3−8)

N c
BΦBCN

c
B (10,3−4,30)

(
1̂0, 3̂−4, 3̂−2

)
(1′0,3′−4,3′−4)

(
1̂′0, 3̂′−4, 3̂′−6

)
(10,3−4,3−8)

N c
AΦBCN

c
B (1′−4,3′−2,30)

(
1̂′−4, 3̂′−2, 3̂−2

)
(1−4,3−2,3′−4)

(
1̂−4, 3̂−2, 3̂′−6

)
(1′−4,3′−2,3−8)

Table 9. Irreps of the leptonic tensor products with different powers of the weighton following the
new assignments. The invariant combinations are highlighted in green.

This allows fields (in particular charged lepton fields) to be assigned as distinct non-
trivial singlets of the underlying modular symmetries, as shown in table 8.

Table 9 shows the assignments of the different field combinations and clarifies how
the non-trivial singlet choices of the charged leptons allow only one coupling at leading
order of powers of φ, with the next leading order term appearing only with the insertion of
additional φ4.10 We estimate this suppression factor should to be around 10−5 by assuming
O(1) couplings for the charged leptons.11

10Since the weighton is charged under S′C4 , and the 1D irreps have at most r4 = 1, there will always be
corrections to the leading terms with 4 more weighton insertions. This is avoided by taking the weighton
model of appendix C.1.

11Namely, we take 〈φ〉/M = ε = 6.5× 10−2, to have mµ ∼ 0.92 εmτ and me ∼ 1.08 ε3 mτ .
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