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Littlewood-Richardson Coefficients via Yang-Baxter Equation

Oleg Gleizer and Alexander Postnikov

1 Introduction

This paper presents an interpretation for the Littlewood-Richardson coefficients in terms

of a system of quantum particles. Our approach is based on a certain scattering matrix

that satisfies aYang-Baxter-type equation.The corresponding piecewise-linear transfor-

mations of parameters give a solution to the tetrahedron equation.These transformation

maps are naturally related to the dual canonical bases for modules over the quantum

enveloping algebra Uq(sln). A byproduct of our construction is an explicit description

for Kashiwara’s parametrizations of dual canonical bases. This solves a problem posed

by Berenstien and Zelevinsky.We present a graphical interpretation of the scatteringma-

trices in terms of web functions, which are related to honeycombs of Knutson and Tao.

The aim of this paper is to further investigate the Grothendieck ring KN of poly-

nomial representations of the general linear groupGL(N). LetVλ be the irreducible repre-

sentation ofGL(N)withhighestweight λ.The structure constants cνλµ of theGrothendieck

ring in the basis of irreducible representations are given by

Vλ ⊗ Vµ =
∑
ν

cνλµVν.

We also mention several alternative interpretations for the numbers cνλµ. These numbers

are

• the structure constants of the ring of symmetric polynomials in the basis of

Schur polynomials;

• the coefficients of the decomposition into irreducibles of representations of
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symmetric groups induced from parabolic subgroups;

• the structure constants of the cohomology ring of a Grassmannian in the basis

of Schubert classes.

The celebrated Littlewood-Richardson rule (see, e.g., [8]) is an explicit combi-

natorial description of the coefficients cνλµ. Several variations of this rule are known,

including Zelevinsky pictures and Berenstein-Zelevinsky triangles [2].

In this paperwe present a new interpretation of theGrothendieck ringKN and the

Littlewood-Richardson coefficients cνλµ. Our construction is based on the scattering ma-

trix R(c) that acts in the tensor square of the linear space Ewith the basis e0 , e1 , e2 , . . . by

R(c) : ex ⊗ ey �−→



ey+c ⊗ ex−c if c ≥ x− y,

0 otherwise.

(We assume that ex = 0 whenever x < 0.)We denote by Rij(c) the operator acting on E⊗m

as R(c) on the ith and jth copy of E and as an identity elsewhere. The tensor product of

two irreducible representations Vλ and Vµ can be written as a certain combination of

the operators Rij(c).

Using the operators Rij(c) we define a new bilinear operation “∗” on the tensor

algebra T(E) that corresponds to the operation of the tensor product of representations

of GL(N). It is straightforward that a Pieri-type formula holds for the ∗-product of any
basis element in T(E) with ek. The proof of the statement that tensor product Vλ ⊗ Vµ is

given by the ∗-product easily follows from this fact and the fact that “∗” is an associative
operation.

The associativity of the ∗-multiplication is obtained from the following Yang-

Baxter-type relation for the scattering matrices. The operators R12 (c12 ), R13 (c13 ), and

R23 (c23 ) acting on E⊗3 satisfy the relation

R23 (c23 )R13 (c13 )R12 (c12 ) = R12 (c
′
12 )R13 (c

′
13 )R23 (c

′
23 ),

where c12 , c13 , and c23 are arbitrary parameters and c ′
12 , c ′

13 , and c ′
23 are given by the

following piecewise-linear formulas:

c ′
12 = min

(
c12 , c13 − c23

)
,

c ′
13 = c12 + c23 ,

c ′
23 = max

(
c23 , c13 − c12

)
.

(1.1)

Surprisingly, the same piecewise-linear transformations arise in the theory of

dual canonical bases for the modules over the quantum enveloping algebra Uq(sln)
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(see [3], [4]). For a fixed reduced decomposition of the longest element wo in the sym-

metric group Sn, elements of the dual canonical basis (also known as the string basis)

are parameterized by
(
n
2

)
-tuples of integers (strings) that belong to a certain string

cone (Kashiwara’s parametrization). Two parametrizations that correspond to reduced

decompositions related by a Coxeter move are obtained from each other by the formu-

las (1.1).

The string cone was described in [3] for a certain reduced decomposition of wo.

The core of our construction lies in an explicit description of the string cone for any

reduced decomposition. Thus we solve a rather nontrivial problem posed in [3].

We also present a graphical (or “pseudophysical”) interpretation of the scattering

matrices and their compositions in the language of web functions and “systems of quan-

tum particles.”Web functions are closely related to honeycombs of Knutson and Tao [7]

and Berenstein-Zelevinsky triangles [2]. It is shown in [7] that integral honeycombs are in

one-to-one correspondence with Berenstein-Zelevinsky patterns. We establish a simple

“dual” correspondence between integral web functions and Berenstein-Zelevinsky pat-

terns. This reveals the “hidden duality” of the Littlewood-Richardson coefficients under

the conjugation of partitions.

We briefly outline the structure of the paper. In Section 2 we give some back-

ground on the representation theory of general linear groups, the Littlewood-Richardson

coefficients, and the combinatorics of symmetric groups and reduced decompositions.

In Section 3 we define the scattering matrices Rij(c) and formulate our rule for the

Littlewood-Richardson coefficients. Section 4 is devoted to the Yang-Baxter-type rela-

tion for the scattering matrices. In Section 5 we define and study principal cones for any

reduced decomposition of a permutation. In the case of the longest permutation, these

cones are exactly the string cones of parametrizations of dual canonical bases. The as-

sociativity of the ∗-product is deduced in Section 6. In Section 7 we define web functions
and establish their relationship with the scattering matrices and Berenstein-Zelevinsky

patterns.

2 Preliminaries

In this section we remind the reader of the basic notions and notation related to sym-

metric groups and representations of general linear groups.

2.1 Representations of general linear groups

Let us recall the basics of the representation theory of the general linear group GL(N).
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The general linear group GL(N) is the automorphism group of theN-dimensional

complex linear space C
N. A complex finite-dimensional linear representation V of GL(N)

is called polynomial if the corresponding mapping GL(N)→ Aut(V) is given by polyno-

mial functions. An arbitrary holomorphic finite-dimensional representation is obtained

by tensoring a polynomial representationwith a determinant representation g �→ detk(g)

for suitable negative k.

An irreducible polynomial representation of GL(N) is uniquely determined by

its highest weight λ = (λ1 , . . . , λN), which can be any integer element of the dominant

chamber given by λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0.We denote by Vλ the irreducible representation

with highest weight λ. Its degree is |λ| = λ1 + · · ·+ λN.

The collection of polynomial representations of GL(N) equipped with the op-

erations of direct sum and tensor product has the structure of an abelian category.

Let KN = K(GL(N)) be the Grothendieck ring of this category. Degree of representa-

tions provides a natural grading on the ring KN. Slightly abusing notation, we identify

a representation with its image in the Grothendieck ring KN.

The irreducible representations Vλ form a Z-basis of KN. Our primary interest is

in the structure constants of KN. In other words, we investigate the coefficients cνλµ of

the expansion of the tensor product of two irreducible representations into a direct sum

of irreducibles:

Vλ ⊗ Vµ =
∑
ν

cνλµVν.

The weights ωk = (1, . . . , 1, 0, . . . , 0) (with k ones) are called the fundamental

weights. By convention,ω0 = (0, . . . , 0). Every dominantweight λ can bewritten uniquely

as a sum of fundamental weights λ = ωx1 +· · ·+ωxm , 1 ≤ x1 ≤ · · · ≤ xm ≤ N. Actually, the

numbers xi are just parts of the partition λ ′ conjugate to λ; that is,λ ′ = (xm, xm−1 , . . . , x1).

The fundamental representation Vωk is the kth exterior power of the tautological

representation of GL(N). Pieri’s formula gives an explicit rule for the tensor product

of Vωk with an irreducible representation Vλ.

Proposition 2.1 (Pieri’s formula). For λ = ωx1 + · · · +ωxm , 1 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ N,

we have

Vωk ⊗ Vλ =
∑

Vµ, (2.1)

where the sum is over all µ = ωy1 + · · · + ωym+1 satisfying the following interlacing

conditions:

0 ≤ y1 ≤ x1 ≤ y2 ≤ x2 ≤ · · · ≤ ym ≤ xm ≤ ym+1 ≤ N,
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y1 − x1 + y2 − x2 + · · ·+ ym − xm + ym+1 = k. �

The Grothendieck ring KN is generated by the fundamental representations Vωk .

This implies the following statement that is handy afterward.

Lemma 2.2. Suppose that 	 is a bilinear associative multiplication operation on the

linear space KN such that for any fundamental weight ωk and any dominant weight λ

the product Vωk	Vλ is given by Pieri’s formula (2.1) and V(0,...,0) is the identity element.

Then	 is the usual multiplication in KN,which is the tensor product of representations.

�

Proof. We show that Vλ 	 Vµ = Vλ ⊗ Vµ by induction on the degree |λ| of Vλ. First,

V(0,...,0) 	Vµ = Vµ by the condition of the lemma. Suppose that the statement is true for

any Vλ with |λ| < d. For |λ| = d,we can express Vλ via the generators Vωk as
∑

Vωk ⊗Wk,

where the Wk are degree d− 1 elements of KN. Then, by the inductive hypothesis,

Vλ 	 Vµ =
(∑

Vωk 	 Wk

)
	 Vµ

=
∑

Vωk 	 (Wk 	 Vµ
)

=
∑

Vωk ⊗ Wk ⊗ Vµ

= Vλ ⊗ Vµ. �

2.2 Symmetric group

Our constructions rely strongly on the combinatorics of reduced decompositions in the

symmetric group Sn. This section is devoted to a brief account of this theory.

Let sa ∈ Sn be the adjacent transposition that interchanges a and a + 1. Then

s1 , . . . , sn−1 generate the symmetric group Sn. The generators sa satisfy the following

Coxeter relations:

s2a = 1,

sasb = sbsa, for |a− b| ≥ 2,

sasa+1sa = sa+1sasa+1 .

(2.2)

For a permutation w ∈ Sn, an expression w = sa1 sa2 · · · sal of minimal possible
length l is called a reduced decomposition, and l = !(w) is the length of w. The corre-

sponding sequence a = (a1 , a2 , . . . , al) is called a reduced word for w. Let R(w) denote

the set of all reduced words for w. A pair (i, j), 1 ≤ i < j ≤ m, is called an inversion

in w if w(i) > w(j). By I(w) we denote the set of all inversions of w. The number |I(w)| of

inversions in w is equal to its length !(w).
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Let wo be the longest permutation in Sn given by wo(i) = n+ 1− i. Then I(wo) is

the set of all pairs 1 ≤ i < j ≤ n. A total ordering “<” of inversions (i, j) in I(wo) is said

to be a reflection ordering if for any triple i < j < k we have either

(i, j) < (i, k) < (j, k) or (j, k) < (i, k) < (i, j).

Also, for any w ∈ Sn, we say that a total ordering of inversions in I(w) is a reflection

ordering if it is a final interval of some reflection ordering of I(wo).

The set of all reflection orderings of I(w) is in one-to-one correspondence with

the set of reduced decompositions ofw (cf. [6 , Proposition 2.13]). Explicitly, for a reduced

decomposition w = sa1 sa2 · · · sal , the sequence of pairs (i1 , j1) < · · · < (il, jl) such that

ir = salsal−1 · · · sar+1 (ar) and jr = salsal−1 · · · sar+1 (ar + 1), r = 1, . . . , l, is a reflection

ordering of I(w). Moreover, every reflection ordering of I(w) arises in this fashion.

Graphically,we represent a reduced decomposition by itswiring diagram,which

is also called a pseudoline arrangement. For instance, the reduced decomposition

s3 s2 s1 s2 of an element in S4 is depicted by the diagram in Figure 1.

3 2 4 1

1 2 3 4

14

12

13

23

s3

s2

s1

s2

Figure 1

The nodes of this diagram correspond to the adjacent transpositions. On the other hand,

each node is a crossing of ith and jth pseudolines,where (i, j) forms an inversion. Reading

these pairs in the wiring diagram from bottom to top gives the corresponding reflection

ordering of the inversions. In the example of Figure 1, the associated reflection ordering

is (1, 4) < (1, 2) < (1, 3) < (2, 3).

Applying the Coxeter relations to reduced decompositions results in the local

transformations that are called 2- and 3-moves. Namely, 2-moves correspond to the
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second equation in (2.2) and 3-moves to the third equation in (2.2). Two reduced de-

compositions of the same permutation are always connected by a sequence of 2- and

3-moves. Graphically, 2- and 3-moves can be represented by the local transformations

of wiring diagrams in Figures 2 and 3, where i < j < k < l.

i j k l i j k l

2-move

Figure 2

i j k i j k

3-move

Figure 3

3 Scattering matrix

Let E be the linear space with a basis ex, x ∈ Z+.We always assume that ex = 0 for x < 0.

Definition 3.1. For c ∈ Z, the scattering matrix R(c) is the linear operator that acts on

the space E ⊗ E by

R(c) : ex ⊗ ey �−→



ey+c ⊗ ex−c if c ≥ x− y,

0 otherwise.
(3.1)

The spaceE canbe viewed as the space of states of a certain quantumparticle.The

basis vector ex corresponds to a particle with energy level x. We think of the scattering
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matrix R(c) as the result of the interaction of two particles with energy levels x and y.

Pictorially, we can represent it by the following “Feynman diagram” in Figure 4.

Notice that the energy conservation law holds in our model, since the sum of

energies of particles after the interaction (y + c) + (x − c) is the same as before the

interaction.

ex

ex−c ey+c

ey

R(c) or simply

x y

x− c y+ c

c

Figure 4 Operator R(c).

By Rij(c) we denote the linear endomorphism of E⊗m = E ⊗ · · · ⊗ E which acts

as the transformation R(c) on the ith and the jth copies of E and as an identity operator

on other copies. Let a = (a1 , . . . , al) be a reduced word for w ∈ Sn, which is associated

with the reduced decomposition w = sa1 sa2 · · · sal , and let (i1 , j1) < · · · < (il, jl) be the

corresponding reflection ordering of the inversion set I(w). For a collection C = (cij),

(i, j) ∈ I(w), of integer parameters, we define an endomorphism Ra(C) of E⊗m as the

composition of scattering matrices

Ra(C) = Ri1 j1 (ci1 j1 )Ri2 j2 (ci2 j2 ) · · ·Riljl(ciljl). (3.2)

It is clear that Rij(cij) commutes with Rkl(ckl) provided that all i, j, k, and l are distinct.

Thus the composition Ra(C) stays invariant when we apply a 2-move to the reduced

word a.

For positive integersm and n, letw(m,n) be the permutation from Sm+n given by

(
1 2 · · · m m+ 1 m+ 2 · · · m+ n

n+ 1 n+ 2 · · · n+m 1 2 · · · n

)
.

All reduced decompositions of the permutation w(m,n) are related by 2-moves (cf. the

diagram in Figure 5). Thus the map Ra(C) does not depend upon any particular choice of

a reduced word a for w(m,n).We denote by R(m,n) (C) this endomorphism of E⊗m⊗E⊗n.

It depends upon the collection of mn parameters C = (cij), 1 ≤ i ≤ m < j ≤ m+ n.

Let T(E) denote the tensor algebra of the linear space E.We define a new bilinear

operation M : T(E) ⊗ T(E) → T(E) whose restriction Mm,n : E
⊗m ⊗ E⊗n → E⊗(m+n) is
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z1 z2 z3 z4 z5 z6 z7

x1 x2 x3 x4 y1 y2 y3

c45

c35

c25

c15

c46

c36

c26

c16

c47

c37

c27

c17

Figure 5 Operator R(4, 3).

given by

Mm,n =
∑
C

R(m,n) (C), (3.3)

where the sum is over all collections C of nonnegative integer parameters cij, 1 ≤ i ≤
m < j ≤ m+ n, such that

cij ≥ ckl whenever k ≤ i < j ≤ l. (3.4)

We use the notation A ∗ B for M(A,B), where A,B ∈ T(E), and occasionally call this

multiplication operation ∗-product. Although the sum in (3.3) involves infinitely many

terms, only a finite number of them are nonzero in the expansion for A ∗ B.

Let us remark that a collection C of nonnegative integers that satisfy (3.4) is

usually called a rectangular-shaped plane partition.

The composition of scattering matrices R(m,n) can be represented by the wiring

diagram shown in Figure 5 (for m = 4 and n = 3). The summation in (3.3) is over all

collections of nonnegative integer parameters cij that weakly decrease downward along

the pseudolines of this diagram.

Theorem 3.2. The space T(E) equipped with the multiplication operation M is an asso-

ciative ring. �

Recall that ω1 , . . . ,ωN are the fundamental weights of GL(N). By convention,

ω0 = 0.
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Theorem 3.3. The projection pN : T(E)→ KN defined on the basis elements by

pN : ex1 ⊗ · · · ⊗ exm

�−→



Vλ, λ = ωx1 + · · ·+ωxm , provided x1 ≤ x2 ≤ · · · ≤ xm ≤ N,

0, otherwise,

is a homomorphism from the ring (T(E),M) to the Grothendieck ring KN of polynomial

representations of GL(N). In otherwords, if pN(A) = Vλ and pN(B) = Vµ, then pN(A∗B) =
Vλ ⊗ Vµ, the tensor product of representations. �

Summarizing the above assertions anddefinitions,we can formulate a rule for the

Littlewood-Richardson coefficients. Let us denote by ex1···xm the element ex1 ⊗· · ·⊗exm ∈
T(E).

Corollary 3.4. Let λ = ωx1 +· · ·+ωxm , µ = ωy1 +· · ·+ωyn , andν = ωz1 +· · ·+ωzm+n ,where

x1 ≤ · · · ≤ xm, y1 ≤ · · · ≤ yn, and z1 ≤ · · · ≤ zm+n. The Littlewood-Richardson coefficient

cνλµ is equal to the number of collections C of nonnegative integers cij, 1 ≤ i ≤ m,

m+ 1 ≤ j ≤ m+ n, such that

cij ≥ ckl, for i ≤ k < l ≤ j;

and

R(m,n) (C) ·
(
ex1···xm ⊗ ey1···yn

)
= ez1···zm+n . �

Proposition 3.5. (1)We have ex1···xm ∗ ey1···yn = 0 unless x1 ≤ · · · ≤ xm and y1 ≤ · · · ≤ yn.

(2) The product ex1···xm ∗ ey1···yn involves only terms ez1···zm+n with z1 ≤ · · · ≤
zm+n. �

Proof. (1) First, we show that applying R13 (c13 )R23 (c23 ) to ex1 ⊗ ex2 ⊗ ey1 always results

in zero, provided c23 ≥ c13 and x1 > x2 . Indeed, we have R13 (c13 )R23 (c23 ) · (ex1 ⊗ ex2 ⊗
ey1 ) = R13 (c13 ) · (ex1 ⊗ ey1+c23 ⊗ ex2−c23 ) (or zero). This expression is nonzero only if

c13 ≥ x1 − (x2 − c23 ), that is, c13 − c23 ≥ x1 − x2 , which is a contradiction.

In general, suppose that, say, xi > xi+1 . The composition of operators R(m,n) (C)

with C satisfying (3.4) involves the fragment Ri+1m+1 (ci+1m+1 )Rim+1(cim+1), where

ci+1m+1 ≥ cim+1 . By the above argument, applying these operators gives zero.

(2) This statement follows by induction on m from Proposition 3.6. �

Let us verify the statement of Theorem 3.3 for the ∗-product of ex with an arbi-

trary ex1···xm . This product is given by the following Pieri-type formula.
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Proposition 3.6. For 0 ≤ x1 ≤ · · · ≤ xm, we have

ex ∗ ex1 ···xm =
∑

ey1 ···ym+1 ,

where the sum is over all y1 , . . . , ym+1 satisfying the following interlacing conditions:

0 ≤ y1 ≤ x1 ≤ y2 ≤ x2 ≤ · · · ≤ ym ≤ xm ≤ ym+1 ,

y1 − x1 + y2 − x2 + · · ·+ ym − xm + ym+1 = x.
(3.5)

�

Proof. Bydefinition,ex∗ex1 ···xm =
∑

R1m+1 (cm)R1m(cm−1) · · ·R12 (c1)·(ex⊗ex1⊗· · ·⊗exm),

where the sum is over c1 ≥ c2 ≥ · · · ≥ cm ≥ 0. Each nonvanishing summand in the

previous sum is equal to ex−c1 ⊗ ex1+c1−c2 ⊗ ex2+c2−c3 ⊗ · · · ⊗ exm−1+cm−1−cm ⊗ exm+cm ,

provided c1 ≥ x − x1 , c2 ≥ (x1 + c1) − x2 , c3 ≥ (x2 + c2) − x3 , and so on. Let us denote

y1 = x−c1 , y2 = x1+c1−c2 , y3 = x2+c2−c3 , . . . , ym = xm−1+cm−1−cm, ym+1 = xm+cm.

Then all the above inequalities are equivalent to the interlacing conditions (3.5). �

Due to Lemma 2.2 and Proposition 3.6, Theorem 3.3 and Corollary 3.4 would

follow from Theorem 3.2, which says that M is an associative operation. The proof of

associativity given in Section 6 is based on aYang-Baxter-type relation for the scattering

matrices Rij(c) (see Section 4) and on the construction of certain polyhedral cones in the

space of the parameters cij (see Section 5).

4 Yang-Baxter equation and tetrahedron equation

As we mentioned before, for distinct i, j, k, and l, the endomorphism Rij(cij) commutes

with Rkl(ckl).Thus Ra(C) does not changewhenwe apply a 2-move to the reducedworda.

The relations that involve 3-moves are less trivial.

Theorem 4.1. The operators R12 (c12 ), R13 (c13 ), and R23 (c23 ) acting on E⊗3 satisfy the

relation

R23 (c23 )R13 (c13 )R12 (c12 ) = R12 (c
′
12 )R13 (c

′
13 )R23 (c

′
23 ), (4.1)

where c12 , c13 , and c23 are arbitrary parameters and c ′
12 , c ′

13 , and c ′
23 are given by

c ′
12 = min

(
c12 , c13 − c23

)
,

c ′
13 = c12 + c23 ,

c ′
23 = max

(
c23 , c13 − c12

)
.

(4.2)
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Moreover, for fixed c12 , c13 , and c23 , the collection c ′
12 , c ′

13 , and c ′
23 defined by (4.2) is a

unique collection of parameters such that (4.1) holds identically. �

In Figure 6, the two wiring diagrams related by a 3-move illustrate the statement

of the theorem.

y1 = x3 + c13 = x3 + c ′
23 + c ′

12 ,

y2 = x2 + c12 − c13 + c23 = x2 − c ′
23 + c ′

13 − c ′
12 ,

y3 = x1 − c12 − c23 = x1 − c ′
13 .

y3 y2 y1 y3 y2 y1

x1 x2 x3 x1 x2 x3

c12

c23

c ′
13

c ′
23

c ′
12

c13

Figure 6

Remark 4.2. If c13 = c12 + c23 , then c ′
12 = c12 , c ′

13 = c13 , and c ′
23 = c23 . In this case,

equation (4.1) becomes the famous quantumYang-Baxter equationwith twoparameters,

which is well known in the form R12 (u)R13 (u+ v)R23 (v) = R23 (v)R13 (u+ v)R12 (u).

Proof of Theorem 4.1. The operator R23 (c23 )R13 (c13 )R12 (c12 )maps the basis vector ex1 ⊗
ex2 ⊗ ex3 either to ex3+c13 ⊗ ex2+c12 −c13 +c23 ⊗ ex1−c12 −c23 if




c12 ≥ x1 − x2 ,

c13 ≥ (x2 + c12
)
− x3 ,

c23 ≥ (x1 − c12
)
−
(
x2 + c12 − c13

) (4.3)

or to zero otherwise. Likewise, the operator R12 (c
′
12 )R13 (c

′
13 )R23 (c

′
23 )maps ex1 ⊗ex2 ⊗ex3

either to ex3+c ′
23 +c

′
12

⊗ ex2−c ′
23 +c

′
13 −c

′
12

⊗ ex1−c ′
13
if




c ′
23 ≥ x2 − x3 ,

c ′
13 ≥ x1 −

(
x2 − c ′

23

)
,

c ′
12 ≥ (x2 − c ′

23 + c ′
13

)
−
(
x3 − c ′

23

) (4.4)
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or to zero otherwise. These two operators are equal if and only if

c13 = c ′
12 + c ′

23 ,

c12 − c13 + c23 = −c ′
23 + c ′

13 − c ′
12 ,

c12 + c23 = c ′
13

(4.5)

(the second identity is the difference of two others), and for any x1 , x2 , x3 the condi-

tion (4.3) is equivalent to the condition (4.4).We can write these two sets of inequalities

in a more compact form as



min

(
c12 , c23 + 2c12 − c13

) ≥ x1 − x2 ,

c13 − c12 ≥ x2 − x3 ,

which is equivalent to




c ′
13 − c ′

23 ≥ x1 − x2 ,

min
(
c ′
23 , c12 + 2c ′

23 − c ′
13

) ≥ x2 − x3 .

Thus

min
(
c12 , c23 + 2c12 − c13

)
= c ′

13 − c ′
23 ,

c13 − c12 = min
(
c ′
23 , c12 + 2c ′

23 − c ′
13

)
.

These two identities together with (4.5) are equivalent to the relations (4.2). �

It follows for Theorem 4.1 that, for i < j < k, the operators Rij(cij), Rik(cik), and

Rjk(cjk) acting onE⊗n satisfy the relationRjk(cjk)Rik(cik)Rij(cij)=Rij(c
′
ij)Rik(c

′
ik)Rjk(c

′
jk),

where

c ′
ij = min

(
cij, cik − cjk

)
,

c ′
ik = cij + cjk,

c ′
jk = max

(
cjk, cik − cij

)
.

(4.6)

The inverse transformation (c ′
ij, c

′
ik, c

′
jk)→ (cij, cik, cjk) is given by similar formulas

cij = max
(
c ′
ij, c

′
ik − c ′

jk

)
,

cik = c ′
ij + c ′

jk,

cjk = min
(
c ′
jk, c

′
ik − c ′

ij

)
.

(4.7)
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We denote by Z
I(w) the set of all collections of integer parameters C = (cpq)with

(p, q) ∈ I(w), p < q. For i < j < k such that (i, j), (i, k), (j, k) ∈ I(w), we denote by Tijk the

local transformation of parameters

Tijk : Z
I(w) −→ Z

I(w) ,

Tijk : (cpq) �−→ (
c ′
pq

)
,

where the c ′
pq are given by formulas (4.6) for p, q ∈ {i, j, k} and c ′

pq = cpq otherwise.

For any two reduced words a,b ∈ R(w) of a permutation w ∈ Sn, we define a

transition map Tba : Z
I(w) → Z

I(w) as a composition of local transformation maps Tijk.

If a = (. . . , a, b, . . . ) and a ′ = (. . . , b, a, . . . ), |a − b| ≥ 2, are two reduced words for w

related by a 2-move, then Ta
′
a is the identity map. If a = (. . . , a, a + 1, a, . . . ) and a ′ =

(. . . , a+1, a, a+1, . . . ) are two reducedwords related by a 3-move, then the corresponding

reflection orderings of I(w) differ only in three places: · · · < (j, k) < (i, k) < (i, j) < · · ·
and · · · < (i, j) < (i, k) < (j, k) < · · · for certain i < j < k. In this case, we define Ta

′
a = Tijk

and Taa ′ = T−1ijk . In general, we choose a chain of reduced words a,a
1 ,a2 , . . . ,ak,b ∈ R(w)

that interpolates between a and b such that any two adjacent words are related by a 2-

or 3-move. Then we define Tba = Tb
ak

· · · Ta2
a1

Ta
1

a .

It follows from the uniqueness part of Theorem 4.1 that the transition map Tba

does not depend upon a choice of path of 2- and 3-moves joining the reducedwords a and

b. Let us remark that this property amounts to verifying that the local transformation

maps Tijk satisfy the following tetrahedron equation.

Theorem 4.3 (Tetrahedron equation). Letwo be the longest element in S4 .The following

identity for the compositions of maps Z
I(wo) → Z

I(wo) holds:

T123 T124 T134 T234 = T234 T134 T124 T123 . �

It is left as an exercise for the reader to verify directly that the local transforma-

tion maps Tijk satisfy the tetrahedron equation.

Recall that Ra(C) is the composition of scattering matrices defined by (3.2). It is

immediately clear from Theorem 4.1 that Ra(C) = Ra ′(Ta
′
a (C)) if a and a

′ are related by

a 2- or 3-move. Thus, in general, we have

Ra(C) = Rb
(
Tba (C)

)
(4.8)

for any two reduced words a and b for w and any collection of parameters C ∈ Z
I(w) .
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5 Principal cones

Let a be a reduced word of a permutationw ∈ Sn. In this section we construct and study

a certain polyhedral cone Ca in the space Z
I(w) . In the case when w = wo is the longest

permutation in Sn, the cone Ca is exactly the cone of Kashiwara’s parametrizations of

dual canonical bases for Uq(sln). It is the string cone in the terminology of Berenstein

and Zelevinsky [3]. The explicit description of Ca gives an answer to a question posed

in [3].

5.1 Rigorous paths and statements of results

Let us fix a reduced word a ∈ R(w) and an integer 0 ≤ s ≤ n. We construct an oriented

graph G(a, s) from the wiring diagram corresponding to a as follows. Denote by vij the

vertex of the wiring diagramwhich is the intersection of the ith and jth pseudolines.The

vertex set of the graph G(a, s) is composed of the vertices vij together with 2n boundary

vertices: U1 , . . . , Un, which mark the upper ends of pseudolines from left to right, and

L1 , . . . , Ln, which mark the lower ends of pseudolines from left to right. Notice that Ui is

the upper end of the ith pseudoline.We orient downward the s pseudolines of the wiring

diagram whose lower ends are labeled L1 , . . . , Ls, and we orient upward the remaining

n− s pseudolines whose lower ends are labeled Ls+1 , . . . , Ln. Two vertices are connected

by an edge in the graph G(a, s) if they are adjacent vertices on the same pseudoline.

Directions of edges in G(a, s) agree with directions of the corresponding pseudolines.

For example, the graph G(121, 2) is shown in Figure 7.

G(121, 2)

U1 U2 U3

v12

v23

v13

L1 L2 L3

Figure 7
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An oriented path in the graphG(a, s) is a sequence of vertices v0 , . . . , vl connected

by the oriented edges v0 → v1 , v1 → v2 , . . . , vl−1 → vl. Notice that the graph G(a, s) is

acyclic; that is, there is no closed oriented cycle in the graph.Thus there are finitelymany

oriented paths inG(a, s).We say that an oriented path v0 → v1 → · · · → vl is rigorous if it

satisfies the following condition: There are no three adjacent vertices va → va+1 → va+2

in the path such that va, va+1 , and va+2 belong to the same ith pseudoline, va+1 is the

intersection of the ith and jth pseudoline,and either i < j andboth ith and jth pseudolines

are oriented upward, or i > j and the ith and jth pseudolines are oriented downward. In

other words, a path is rigorous if and only if it avoids the two fragments in Figure 8.

Figure 8

In Figure 8, the thick lines show path fragments and the thin lines show the pseudolines

they intersect.

For example, in the graphG(121, 2) shown in Figure 7 all paths connecting bound-

ary vertices are rigorous except the following two paths: L3 → v13 → v23 → L1 and

U3 → v13 → v23 → L1 .

Let P = (v0 → v1 → · · · → vl) be a rigorous path connecting two boundary vertices

v0 and vl. Suppose that the edge vr−1 → vr is on the irth pseudoline, for r = 1, . . . , l. We

denote by cP the expression

cP = ci1 i2 + ci2 i3 + · · ·+ cil−1 il , (5.1)

where we assume that cii = 0 and for i > j the coefficients cij are given by cij = −cji.

Definition 5.1. For a reduced word a ∈ R(w), we define the principal cone Ca as the

polyhedral cone in the integer lattice Z
I(w) of collections C = (cij) given by the inequal-

ities cP ≥ 0 for all rigorous paths P in the graph G(a, s) from the vertex Ls+1 to Ls, for

1 ≤ s ≤ n− 1.

Theorem 5.2. For any two reduced words a,b ∈ R(w), the transition map Tba bijectively

maps the cone Ca to the cone Cb. �
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c12

c13

c23

U1 U2 U3

L1 L2 L3

c ′
23

c ′
13

c ′
12

U1 U2 U3

L1 L2 L3

C121 = {c12 ≥ 0, c13 ≥ c23 ≥ 0} C212 = {c ′
23 ≥ 0, c ′

13 ≥ c ′
12 ≥ 0}

Figure 9

Example 5.3. To illustrate Definition 5.1 and Theorem 5.2, we describe in Figure 9 the

principal cones for two reduced decompositions ofwo in S3 . Indeed, for a = 121we have

the rigorous paths L2 → v23 → L1 , L3 → v13 → v23 → L2 , and L3 → v13 → v12 → v23 → L2 .

Analogously, for a = 212 we have the rigorous paths L2 → v12 → v23 → v13 → L1 ,

L2 → v12 → v13 → L1 , and L3 → v12 → L2 . One can easily verify that the transformation

map T123 maps the cone C121 into the cone C212 .

In the case when a ∈ R(wo) is a reduced word for the longest permutation in Sn,

there are two alternative descriptions of the principal cone Ca.

Theorem 5.4. For a reduced word a ∈ R(wo), the principal cone Ca is the set of all

collections C = (cij) ∈ Z
I(wo) such that, for any reduced word b ∈ R(wo), all entries c ′

ij

of the collection C ′ = (c ′
ij) = Tba (C) ∈ Z

I(w) are nonnegative. �

For a reduced word b ∈ R(wo), let low(b) denote the pair (i, j), 1 ≤ i < j ≤ n, such

that the lowest node of the wiring diagram of b is the crossing of ith and jth pseudolines.

(It is clear that j = i+ 1.) For example, low(121) = (2, 3) and low(212) = (1, 2).

The principal cone can be described by a weaker set of conditions as follows.

Theorem 5.5. For a reduced word a ∈ R(wo), the principal cone Ca is the set of all col-

lections C = (cij) ∈ Z
I(wo) such that, for any reduced word b ∈ R(wo), the lowest entry

c ′
low(b) of C ′ = (c ′

ij) = Tba (C) is nonnegative. �

Remark 5.6. In the case ofwo,we can choose either of the descriptions fromTheorems 5.4

or 5.5 as the definition of the principal cone. Then Theorem 5.2 would become trivial.

But this would obscure the fact that the principal cone is actually a polyhedral cone.



758 Gleizer and Postnikov

Before we proceed, let us consider several examples of principal cones.

Example 5.7. Let ao = (1, 2, 1, 3, 2, 1, . . . , n− 1, n− 2, . . . , 1) ∈ R(wo) be the lexicographi-

cally minimal reduced word for the longest permutation. By Definition 5.1, the principal

cone Cao is given by the inequalities

c12 ≥ 0,

c13 ≥ c23 ≥ 0,

c14 ≥ c24 ≥ c34 ≥ 0,

c15 ≥ c25 ≥ c35 ≥ c45 ≥ 0, . . . .

(5.2)

Indeed, in this case all inequalities cP ≥ 0 in Definition 5.1 are of the form cs s+1 ≥ 0 and

csi − cs+1 i ≥ 0 for i > s+ 1.

Berenstein andZelevinsky [3] studied the string cone ofKashiwara’s parametriza-

tions of dual canonical basis for Uq(sln). This is a cone C̃a in the
(
n
2

)
-dimensional space

of stringsC = (cij) that depends upon a choice of reduced word a ∈ R(wo) for the longest

permutation. It follows from the definitions that if a and a ′ differ by a 2- or 3-move, then

C̃a ′ = Ta
′
a (C̃a). Thus string cones C̃a transform according to the transition maps Tba . The

string cone was explicitly calculated in [3] for the lexicographically minimal reduced

word ao. In this case C̃ao is given by the inequalities (5.2). Theorem 5.2 and Example 5.7

imply the following statement.

Corollary 5.8 (String cones). For a reduced word a ∈ R(wo), the principal cone Ca is

exactly the string cone C̃a. �

Definition 5.1 gives an explicit description of the string cone C̃a. This settles the

problem of describing the string cones for any reduced word a ∈ R(wo).

Example 5.9. This example is related to our construction of the ∗-product in Section 3.
Recall that the permutation w(m,n) : i �→ i + n (modm+ n) in Sm+n has a unique

reduced decomposition up to 2-moves. For example, for m = 4 and n = 3 we have the

wiring diagram in Figure 10.

By Definition 5.1, the corresponding principal cone C(m,n) = Ca is given by the

inequalities−cik+cij ≥ 0 for i ≤ m < j < k, c1m+n ≥ 0, and cjk−cik ≥ 0 for i < j ≤ m < k.

These are exactly the conditions (3.4) on the parameters in the sum (3.3). Thus the ∗-
product in T(E) can be written as the sum

ex1 ···xm ∗ ey1 ···yn =
∑

C∈C(m,n)

R(m,n) (C) ·
(
ex1 ···xm ⊗ ey1 ···yn

)
.
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c17

c16

c15

c27

c26

c25

c37

c36

c35

c47

c46

c45

U1 U2 U3 U4 U5 U6 U7

L1 L2 L3 L4 L5 L6 L7

Figure 10

Example 5.10. Let us also illustrate the definitions by the example in Figure 11 for the

reduced decomposition s2 s1 s2 s3 s2 s1 of the longest element wo ∈ S4 .

U1 U2 U3 U4

L1 L2 L3 L4

v12

v13

v14

v34

v24

v23

Rigorous paths Inequalities

s = 1

L2 → v23 → v34 → v24 → L1 c34 ≥ 0

L2 → v23 → v24 → L1 c32 + c24 ≥ 0

s = 2

L3 → v23 → L2 c23 ≥ 0

s = 3

L4 → v14 → v13 → v12 c12 ≥ 0

→ v24 → v23 → L3

L4 → v14 → v13 → v34 c13 + c32 ≥ 0

→ v23 → L3

L4 → v14 → v13 → v34 c13 + c34 + c42 ≥ 0

→ v24 → v23 → L3

L4 → v14 → v34 → v23 → L3 c14 + c43 + c32 ≥ 0

Figure 11
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In more conventional notation the inequalities defining the cone C212321 can be

written as

C212321 =




c12 ≥ 0

c13 ≥ c23 ≥ 0

c13 + c34 ≥ c24 ≥ c23

c14 ≥ c23 + c34

c34 ≥ 0




.

To proveTheorems 5.2, 5.4, and 5.5,we need some extra notation. For two bound-

ary vertices B and E in {U1 , . . . , Un, L1 , . . . , Ln}, let

Ma,s
B,E =Ma,s

B,E(C) = min cP

be the minimum of expressions (5.1) over all rigorous paths P in the graph G(a, s) from

the vertex B to the vertex E, here C = (cij). (Note that there are finitely many such paths.)

If there are no rigorous paths from B to E in G(a, s), then we set Ma,s
B,E = +∞.

Using this notation, Definition 5.1 of the principal cone can be written as

Ca =
{
C ∈ Z

I(w)
∣∣Ma,s

Ls+1 ,Ls
(C) ≥ 0, for s = 1, . . . , n− 1

}
. (5.3)

Theorem 5.2 is an immediate corollary of the following more general statement.

Theorem 5.11. For any two reduced words a,b ∈ R(wo), an integer 0 ≤ s ≤ n, and two

boundary vertices B and E, we have Ma,s
B,E(C) = Mb,s

B,E(C
′), where C ′ = Tba (C). In other

words, the expressions Ma,s
B,E(C) are invariant under the transition maps Tba . �

5.2 Proofs

Proof of Theorem 5.11. Let us first verify the statement of the theorem for the symmetric

group S3 . In this case we have only two reduced words 121 and 212 forwo. There are four

possible cases: s = 0, s = 1, s = 2, and s = 3.

Let us start with the case s = 3when all pseudolines are oriented downward.The

graphs G(121, 0) and G(212, 0) are given in Figure 12. We also give the transition maps

T212121 and its inverse T121212 for a quick reference (cf. (4.2) and (4.7)).
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c ′
12 = min(c12 , c13 + c32 )

c ′
13 = c12 + c23

c ′
23 = max(c23 , c21 + c13 )

c12 = max(c ′
12 , c

′
13 + c ′

32 )

c13 = c ′
12 + c ′

23

c23 = min(c ′
23 , c

′
21 + c ′

13 )

U1 U2 U3 U1 U2 U3

L1 L2 L3 L1 L2 L3

c ′
23

c ′
12

c ′
13

c12

c23

c13

Figure 12

Enumerating rigorous paths in these graphs, we obtain




M121 ,3
U1 ,L1

M121 ,3
U1 ,L2

M121 ,3
U1 ,L3

M121 ,3
U2 ,L1

M121 ,3
U2 ,L2

M121 ,3
U2 ,L3

M121 ,3
U3 ,L1

M121 ,3
U3 ,L2

M121 ,3
U3 ,L3


 =




c12 + c23 min
(
c12 , c13 + c32

)
0

+∞ c21 + c13 + c32 c21

+∞ +∞ c31


 ,




M212 ,3
U1 ,L1

M212 ,3
U1 ,L2

M212 ,3
U1 ,L3

M212 ,3
U2 ,L1

M212 ,3
U2 ,L2

M212 ,3
U2 ,L3

M212 ,3
U3 ,L1

M212 ,3
U3 ,L2

M212 ,3
U3 ,L3


 =




c ′
13 c ′

12 0

+∞ c ′
23 + c ′

31 + c ′
12 min

(
c ′
21 , c

′
23 + c ′

31

)
+∞ +∞ c ′

32 + c ′
21


 .

It is immediate from the formulas for the transition maps T212121 and T121212 that these two

matrices are equal to each other.

In the next case (s = 2) the pseudolineswith the lower ends L1 and L2 are oriented

downward, and the pseudoline with the lower end L3 is oriented upward as shown in

Figure 13.

In this case we have


M121 ,2
L3 ,U1

M121 ,2
L3 ,L2

M121 ,2
L3 ,L1

M121 ,2
U2 ,U1

M121 ,2
U2 ,L2

M121 ,2
U2 ,L1

M121 ,2
U3 ,U1

M121 ,2
U3 ,L2

M121 ,2
U3 ,L1


 =




0 min
(
c12 , c13 + c32

)
c12 + c23

c21 0 c23

c31 min
(
c32 , c31 + c12

)
c31 + c12 + c23


 ,




M212 ,2
L3 ,U1

M212 ,2
L3 ,L2

M212 ,2
L3 ,L1

M212 ,2
U2 ,U1

M212 ,2
U2 ,L2

M212 ,2
U2 ,L1

M212 ,2
U3 ,U1

M212 ,2
U3 ,L2

M212 ,2
U3 ,L1


=




0 c ′
12 c ′

13

min
(
c ′
21 , c

′
23 + c ′

31

)
0 min

(
c ′
23 , c

′
21 + c ′

13

)
c ′
32 + c ′

21 c ′
32 c ′

32 + c ′
21 + c ′

13


.

Again, it is clear that these two matrices are equal to each other.
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The cases s = 0 and s = 1 are completely symmetric to the cases s = 3 and s = 2,

respectively.

We can now verify the statement of the theorem for an arbitrary n. This general

statement reduces to the case of S3 (n = 3) as follows. Clearly, it is enough to prove

the statement for two reduced words a and a ′ related by a 3-move. The corresponding

reflection orderings of inversions differ only in three terms: · · · < (j, k) < (i, k) < (i, j) <

· · · and · · · < (i, j) < (i, k) < (j, k) < · · · for some i < j < k. The transition map Ta
′
a is the

map Tijk that transforms cij, cik, and cjk into c ′
ij, c

′
ik, and c ′

jk according to formulas (4.6)

and does not change other variables.

The intersection points of the pseudolines labeled i, j, and k form a subdiagram S

in thewiring diagramofa (resp.,a subdiagram S ′ in thewiring diagramofa ′) isomorphic

to a wiring diagram for S3 . Let us add six auxiliary vertices u1 , u2 , u3 and l1 , l2 , l3 to the

graph G(a, s) (resp., in G(a ′, s)) that mark the upper and lower ends of the pseudolines

i, j, and k in this subdiagram.

If a path P in the graph G(a, s) does not pass through any of the vertices vij, vik,

and vjk, then the expression (5.1) for cP does not change under the transformation map

Ta
′
a . Otherwise, the path P arrives to the subdiagram S via one of the six auxiliary points

u1 , . . . , l3 and leaves the subdiagram via another of these six points.

Let us fix two vertices b and e of the six auxiliary vertices and two rigorous paths

P1 (from B to b) and P2 (from e to E). And let M̄a,s
b,e,P1 ,P2

(C) (resp., M̄a ′,s
b,e,P1 ,P2

(C ′)) be the

minimum of the expressions cP over rigorous paths P in G(a, s) (resp., in G(a ′, s)) which

are obtained by concatenation of the path P1 , a rigorous path in S (resp., in S ′) from b to

e, and the path P2 . Then, by our definitions,

Ma,s
B,E = min

b,e,P1 ,P2
M̄a,s
b,e,P1 ,P2

and Ma ′,s
B,E,s = min

b,e,P1 ,P2
M̄a ′,s
b,e,P1 ,P2

.

L1 L2 L3 L1 L2 L3

U1 U2 U3 U1 U2 U3

c ′
23

c ′
12

c ′
13c13

c23

c12

Figure 13
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It follows from the case of S3 considered above that M̄a
b,e,P1 ,P2

(C) = M̄a ′
b,e,P1 ,P2

(C ′).

Therefore,Ma,s
B,E(C) =Ma ′,s

B,E (C
′). This proves the theorem. �

Proof of Theorem 5.5. Suppose that low(b) = (i, j), the lower end of ith pseudoline is

Ls+1 , and the lower end of jth pseudoline is Ls. (In the case of wo we have i = n − s and

j = n − s + 1.) Then there is only one rigorous path in G(b, s) from Ls+1 to Ls, namely,

Ls+1 → vij → Ls. In this case Mb,s
Ls+1 ,Ls

(C ′) = c ′
ij. Thus Ma,s

Ls+1 ,Ls
(C) = Mb,s

Ls+1 ,Ls
(C ′) =

c ′
ij = c ′

low(b) , where C ′ = Tba (C).

For any s = 1, . . . , n−1, there is a reduced decomposition b of the longest permu-

tationwo such that low(b) = (n−s, n−s+1).Thus the inequalityMa,s
Ls+1 ,Ls

(C) ≥ 0 is equiv-

alent to saying that, for any reduced word b ∈ R(wo) such that low(b) = (n− s, n− s+1),

the lowest entry c ′
low(b) of C ′ = Tba (C) is nonnegative. The statement follows. �

Proof of Theorem 5.4. We deduce this theorem from Theorem 5.5. Let us fix a ∈ R(wo).

It is enough to show that if C = (cij) has a negative entry, then there is a reduced word

b ∈ R(wo) such that the lowest entry c ′
low(b) of C ′ = Tba (C) is negative.

Suppose not. Let us pick a reduced word b such that C ′ = Tba (C) has a negative

entry c ′
pq < 0 located on the lowest possible level. The pair (p, q) �= low(b) does not

correspond to the lowest crossing in the wiring diagram of b. Thus (possibly, after sev-

eral 3-moves that do not affect c ′
pq) we can make a 3-move transforming three entries

(c ′
ij, c

′
ik, c

′
jk)→ (c ′′

ij, c
′′
ik, c

′′
jk) by the rule (4.6) such that (p, q) ∈ {(i, j), (i, k), (j, k)}, but (p, q)

is not the lowest pair (j, k) among these three. By our assumption, c ′
jk is nonnegative.

Then c ′′
ij = min(c ′

ij, c
′
ik−cjk) is negative, and c ′′

ij is located on a lower level in the resulting

wiring diagram than the level of c ′
pq in b. This is a contradiction. �

6 Associativity

In this section we prove Theorem 3.2, which claims that the ∗-product defined by (3.3)

is an associative operation.

Proof of Theorem 3.2. We need to verify that

(
ex1 ···xm ∗ ey1 ···yn

) ∗ ez1 ···zk = ex1 ···xm ∗ (ey1 ···yn ∗ ez1 ···zk
)
, (6.1)

for any positive m,n, k and x1 ≤ · · · ≤ xm, y1 ≤ · · · ≤ yn, z1 ≤ · · · ≤ zk.

Let Idk be the identity permutation in Sk.The permutationw(m,n)×Idk ∈ Sm+n×
Sk is canonically embedded into Sm+n+k. Likewise, the permutation Idm×w(n, k) ∈ Sm×
Sn+k is canonically embedded into Sm+n+k. Thenw(m+n, k) · (w(m,n)× Idk) = w(m,n+

k) · (Idm×w(n, k)). We denote this permutation by w(m,n, k).
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Note that the permutations w(m + n, k) and w(m,n) × Idk have unique (up to

2-moves) reduced decompositions. Let a1 be a reduced word for w(m,n, k) obtained by

concatenation of reduced words forw(m+n, k) andw(m,n)× Idk. Analogously, let a2 be

a reducedword forw(m,n, k) obtained by concatenation of reducedwords forw(m,n+k)

and Idm×w(n, k).

The inversion set I(w(m,n, k)) of the permutation w(m,n, k) is the union of the

following three sets of pairs: [1,m] × [m + 1,m + n], [1,m] × [m + n + 1,m + n + k], and

[m+ 1,m+ n]× [m+ n+ 1,m+ n+ k], where [a, b] = {a, a+ 1, . . . , b}.

By the definition of ∗-product, the left-hand side of the expression (6.1) is equal to
the sum

∑
Ra1 (C) · (ex1 ···xm⊗ey1 ···yn⊗ez1 ···zk) over all collections C = (cij) ∈ Z

I(w(m,n,k))

with nonnegative integer entries such that

cij ≥ cpq whenever 1 ≤ p ≤ i ≤ m, m+ 1 ≤ j ≤ q ≤ m+ n,

cij ≥ cpq whenever 1 ≤ p ≤ i ≤ m+ n, m+ n+ 1 ≤ j ≤ q ≤ m+ n+ k

(cf. (3.4)). These are exactly the inequalities defining the principal cones Ca1 (cf. Exam-

ple 5.9). Thus the left-hand side of (6.1) can be written as

∑
C∈C

a1

Ra1 (C) ·
(
ex1 ···xm ⊗ ey1 ···yn ⊗ ez1 ···zk

)
.

Analogously, the right-hand side of (6.1) can be written as

∑
C∈C

a2

Ra2 (C) ·
(
ex1 ···xm ⊗ ey1 ···yn ⊗ ez1 ···zk

)
.

The equality of these two expressions follows from (4.8) and Theorem 5.2.

This proves Theorem 3.2 and thus completes the proof of our main statement

concerning the ∗-product (see Theorem 3.3). �

7 Web functions, Berenstein-Zelevinsky triangles, and hidden duality

In this section we give a geometric interpretation of the scattering matrix (3.1) in terms

of certain web functions as well as a “physical” motivation for it. Then we establish a

relationship between integral web diagrams and fillings of Berenstein-Zelevinsky tri-

angles. We also discuss the “hidden duality” of the Littlewood-Richardson coefficients

under conjugation of partitions: cνλµ = cν
′
λ ′µ ′ .
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7.1 Web functions

It is convenient to use the baricentric coordinates in R
2 . Namely, we represent a point

in R
2 by a triple (α,β, γ) such that α + β + γ = 0. We say that a line in R

2 is of the first

(resp., second, or third) type if its first (resp., second, or third) baricentric coordinate is

fixed. We denote by (a, ∗, ∗) the first-type line given by {(α,β, γ) | α + β + γ = 0, α = a}.

Analogously, we denote by (∗, b, ∗) and (∗, ∗, c) the lines of the second and third types

given by {(α,β, γ) | α+β+γ = 0, β = b} and {(α,β, γ) | α+β+γ = 0, γ = c}, respectively.

Each of the two pictures in Figure 14 represents a union of three rays of first, second,

and third type originating at the same point.

(a, ∗, ∗)

(∗, b, ∗)

(∗, ∗, c)

(a ′, ∗, ∗)

(∗, b ′, ∗)

(∗, ∗, c ′)

Figure 14

Notice that in both cases we have a + b + c = 0 and a ′ + b ′ + c ′ = 0. We say

that these two types of sets are left and right forks. The central point of a fork is called

its node. The node of the left (resp., right) fork shown in Figure 14 is the point (a, b, c)

(resp., (a ′, b ′, c ′)) in the baricentric coordinates. We say that a function f : R2 → R is a

fork function (left or right) if there is a fork such that f is equal to 1 on three rays of the

fork, to 3/2 on its node, and zero everywhere else.

Definition 7.1. A web function is a function f : R2 → R+ such that for every point in R
2

there exists an open neighborhood U of the point, for which the restriction f|U is either

zero, or the characteristic function of a line of one of three types, or a fork function (left

or right), or a finite sum of several such functions.We say that a web function is integral

if all its lines are of the form (a, ∗, ∗), (∗, b, ∗), or (∗, ∗, c) with integers a, b, and c.

Geometrically, we represent a web function by a picture (called aweb diagram)

composed of rays and line segments of one of three types, and left or right forks (possibly

doubled, tripled, and so on). See below for examples of web diagrams.

We say that a web function is generic if it only takes values 0, 1, and 3/2. In

other words, the diagram of a generic web function is composed of noncrossing rays,

line segments, and forks. An arbitrary web diagram can be obtained by degeneration of a
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generic web diagram, that is, by merging several lines, line intervals, and nodes together.

For example, in Figure 15 the diagram on the left-hand side presents a generic web

function. The diagram of a nongeneric web function on the right-hand side is obtained

bymerging three nodes together.The double line shows the locuswhere theweb function

is equal to 2.

Figure 15

Each web diagram consists of several nodes, line intervals, semi-infinite rays, and/or

infinite lines. We are only interested in web functions whose diagrams have finitely

many nodes. We refer to semi-infinite rays in a web diagram as boundary rays. It is

possible that the boundary rays are doubled (as in the example of Figure 15), tripled,

and so on.The possible directions for boundary rays are North-West and South-East (for

type-1 rays),North-East and South-West (for type-2 rays), andWest and East (for type-3

rays), as shown in Figure 16.

SW SE

NW NE

W E
6-point

compass

Figure 16
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Recall that we defined the scattering matrix R(c) by

R(c) : ex ⊗ ey �−→



ey+c ⊗ ex−c if c ≥ x− y,

0 otherwise

(see Definition 3.1). Here (unlike Section 3) we allow x, y, and c to be any real numbers.

The first-type line (−x, ∗, ∗) can be thought of as the trajectory of a certain left

particle of energy x. We denote this particle by l(x). Analogously, the second-type line

(∗, y, ∗) represents the trajectory of a right particle of energy y, denoted by r(y). In both

cases the trajectories go downward (from left to right for left particles and from right

to left for right particles). Then the scattering matrix R(c) represents an interaction of a

left particle of energy x with a right particle of energy y. The web diagram in Figure 17

visualizes the scattering matrix R(c). The horizontal segment in this diagram lies on the

l(x) r(y)

r(x− c) l(y+ c)

R(c)

Figure 17

third-type line (∗, ∗, c). Thus the interaction R(c) happens on the level c. The condition

c ≥ x− y means that the interaction happens before the trajectories of the particles l(x)

and r(y) cross each other.

Recall that in Section 3 we defined the operator R(m,n) ((cij)) as a composition of

the scattering matrices Rij(cij), 1 ≤ i ≤ m, m+ 1 ≤ j ≤ m + n. The operator R(m,n) ((cij))

applied to the vector ex1 ⊗· · ·⊗exm⊗ey1 ⊗· · ·⊗eyn andproducing the vector ez1 ⊗· · ·⊗ezn+m

can be represented by a web diagram, which is a combination of several pieces similar

to the one shown in Figure 17. In our pseudophysical lexicon, this diagram represents an

interaction of m left particles with n right particles. An example of such a web diagram

for m = 4 and n = 3 is given in Figure 18.

In general, such a web diagram need not be as regular as the one shown in Figure 18.

The edge lengths can be arbitrarily deformed.
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r(z1) r(z2) r(z3) l(z4) l(z5) l(z6) l(z7)

l(x1) l(x2) l(x3) l(x4) r(y1) r(y2) r(y3)

c45

c36

c27

c26

c46

c47

c37

c17

c26

c35

c25

c16

c15

Figure 18

This web diagram has the following boundary rays: North-West rays, corre-

sponding to incoming particles l(x1), . . . , l(xm); North-East rays, corresponding to in-

coming particles r(y1), . . . , r(yn); South-West rays, corresponding to outgoing particles

r(z1), . . . , r(zn); South-East rays, corresponding to outgoing particles l(zn+1), . . . , l(zn+m);

and no East orWest boundary rays. The ith left particle interacts with the jth right par-

ticle on the level ci j+m. In the web diagram, this interaction is represented by an interval

that lies on the line (∗, ∗, ci j+m). Such a web diagram is integral if and only if all xi, yj,

zk, and cij are integers.

Using the language of web diagrams, we derive the following statement from

Corollary 3.4.

Corollary 7.2. Let λ = ωx1+ · · ·+ωxm , µ = ωy1 + · · ·+ωyn , and ν = ωz1 + · · ·+ωzm+n be

three dominant weights in GL(N), where 1 ≤ x1 ≤ · · · ≤ xm ≤ N, 1 ≤ y1 ≤ · · · ≤ yn ≤ N,

and 0 ≤ z1 ≤ · · · ≤ zm+n ≤ N. The Littlewood-Richardson coefficient cνλµ is equal to the

number of integral web diagrams that have the following fixed boundary rays:

• the North-West rays (−x1 , ∗, ∗), . . . , (−xm, ∗, ∗);
• the North-East rays (∗, y1 , ∗), . . . , (∗, yn, ∗);
• the South-West rays (∗, z1 , ∗), . . . , (∗, zn, ∗);
• the South-East rays (−zn+1 , ∗, ∗), . . . , (−zn+m, ∗, ∗);
• no East or West boundary rays. �

Independently of our work a notion of a honeycomb tinkertoy recently appeared

in [7] in relation to Klyachko’s saturation hypothesis. It is similar, though not quite

identical, to our web diagram. (The origin of the term “honeycomb” should be clear from
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Figure 18.) This tinkertoy is given along with a statement reminiscent of Corollary 7.2.

In our notation this statement can be reformulated in the following theorem.

Theorem 7.3 [7,Theorem 1]. Let λ = (λ1 , . . . , λN), µ = (µ1 , . . . , µN), and ν = (ν1 , . . . , νN)

be three dominant weights of GL(N). The Littlewood-Richardson coefficient cνλµ is equal

to the number of integral web diagrams with the following fixed boundary rays:

• the North-West rays (λ1 , ∗, ∗), . . . , (λN, ∗, ∗);
• the South-West rays (∗, µ1 , ∗), . . . , (∗, µN, ∗);
• the East rays (∗, ∗,−νN), . . . , (∗, ∗,−ν1). �

In a sense, these two statements are dual to each other. The proof of Theorem 7.3

is based on a simple one-to-one correspondence (see [7 , appendix]) between integral

honeycomb tinkertoys (in our notation, web diagrams satisfying the conditions of The-

orem 7.3) and Berenstein-Zelevinsky patterns [2]. This correspondence just assigns to

such a web diagram the triangular array filled by lengths of edges of the diagram.

The Berenstein-Zelevinsky interpretation of the Littlewood-Richardson coeffi-

cients, among its many other virtues, makes it clear that these coefficients are symmet-

ric with respect to the action of S3 by permuting the three weights. Nevertheless this

construction obscures the invariance of the Littlewood-Richardson coefficients under

the conjugation of partitions: cνλµ = cν
′
λ ′µ ′ . This “hidden duality” can be observed from

another even simpler bijection between web diagrams and Berenstein-Zelevinsky pat-

terns, which is “dual” to the one given in [7 , appendix]. To formulate the correspondence

we have to rigorously define these patterns.

7.2 BZ-functions and BZ-triangles

We say that BZ-lattice LBZ is the set ((1/2)Z × (1/2)Z) \ (Z × Z). Using the baricentric

coordinates we can describe LBZ as the set of points (α,β, γ), α+β+γ = 0, such that 2α,

2β, and 2γ are integers but at least one α, β, or γ is not an integer.

Every integer point (a, b, c), a + b + c = 0, has six neighbours in LBZ that form

the vertices of the hexagon in Figure 19.

Definition 7.4. A function f : LBZ → {0, 1, 2, . . . } is called a BZ-function if for any hexagon,

as in Figure 19, it satisfies the following hexagon condition:

f(A) + f(B) = f(D) + f(E),

f(B) + f(C) = f(E) + f(F),

f(C) + f(D) = f(F) + f(A).
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(a, b, c)

E = (a+ 1/2, b, c− 1/2) D = (a, b+ 1/2, c− 1/2)

A = (a, b− 1/2, c+ 1/2) B = (a− 1/2, b, c+ 1/2)

F = (a+ 1/2, b− 1/2, c) C = (a− 1/2, b+ 1/2, c)

Figure 19

Proposition 7.5. Integral web functions are in one-to-one correspondence with BZ-func-

tions. This correspondence κ is given by restricting a web function f : R2 → R+ to the

BZ-lattice LBZ:

κ :
{
integral web functions

}
,−→ {

BZ-functions
}
,

κ : f �−→ f|LBZ . �

Proof. Restrictions of first-, second-, and third-type lines and of left and right forks to a

hexagon are in Figure 20. It is clear that all five functions in Figure 20 satisfy the hexagon

0 1

0

01

0

1 0

0

10

0

0 0

1

00

1

1 0

1

01

0

0 1

0

10

1

Figure 20

condition. It is also not hard to verify that any nonnegative integer function on a hexagon

that satisfies the hexagon condition is a linear combination of these five functions with

nonnegative integer coefficients. Thus restrictions of integral web functions to the BZ-

lattice are BZ-functions, and every BZ-function can be obtained in such a way. On the

other hand, an integral web function is determined by its values on LBZ. For example, the

values in the center of the hexagon are equal to 1 for the first three functions in Figure

20 and equal to 3/2 for the remaining two functions. �

Let us fix an integer N ≥ 1. The BZ-triangle TN is the triangular subset in LBZ

given by the inequalities α > −N, β > 0, and γ = −α − β > 0. A Berenstein-Zelevinsky

pattern (BZ-pattern) of size N is the restriction of a BZ-function to the triangle TN.
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For example, a BZ-pattern of size 4 is an array of nonnegative integer numbers

a1 , . . . , a18 (arranged in a triangle as shown in Figure 21) such that the numbers in any

of the three hexagons satisfy the hexagon condition.

a1 a2 a3 a4 a5 a6

a7 a8 a9

a10
a11 a12

a13

a14 a15

a16 a17

a18

Figure 21 BZ-triangle T4 .

For a BZ-pattern of size N, let a1 , . . . , a2N−2 be the number in the lower row, let

b1 , . . . , b2N−2 be the numbers on its left side, and let c1 , . . . , c2N−2 be the numbers on its

right side (in all cases we count the numbers from left to right). For the triangle in Figure

21, b1 = a1 , b2 = a7 , b3 = a10 , b4 = a14 , b5 = a16 , b6 = a18 , and c1 = a18 , c2 = a17 , c3 =

a15 , c4 = a13 , c5 = a9 , c6 = a6 .

Berenstein and Zelevinsky [2] found the following interpretation of the

Littlewood-Richardson coefficients in terms of BZ-patterns.

Theorem 7.6 [2]. Let λ, µ, and ν be three dominant weights for GL(N) such that |λ|+ |µ| =

|ν| and λ = l1ω1 + · · ·+ lNωN, µ = m1ω1 + · · ·+mNωN, and ν = n1ω1 + · · ·+nNωN. Then

the Littlewood-Richardson coefficient cνλµ is equal to the number of BZ-patterns of size

N with the following boundary conditions:

l1 = b1 + b2 , l2 = b3 + b4 , . . . , lN−1 = b2N−3 + b2N−2 ,

m1 = c1 + c2 , m2 = c3 + c4 , . . . , mN−1 = c2N−3 + c2N−2 ,

n1 = a1 + a2 , n2 = a3 + a4 , . . . , nN−1 = a2N−3 + a2N−2 . �

Proposition 7.5 says that web functions are essentially BZ-patterns of infinite

size. Let us fix a set of boundary rays that satisfy the conditions of Corollary 7.2. Then

an integral web function with these boundary rays is determined by its restriction to
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TN, which is a BZ-pattern. The conditions on the rays of such web functions transform

into the boundary conditions for the BZ-patterns from Theorem 7.6. Thus Corollary 7.2

is equivalent to Theorem 7.6.

Proposition 7.7. Let λ, µ, and ν be three dominant weights for GL(N) such that |λ|+ |µ| =

|ν|. The integral web functions that satisfy the conditions of Corollary 7.2 are in one-to-

one correspondence with the BZ-patterns of size N that satisfy the boundary conditions

ofTheorem7.6.This correspondence κN is given by restricting aweb function f : R2 → R+

to the BZ-triangle TN:

κN : f �−→ f|TN . �

Figure 22 illustrates the statement of Proposition 7.7. It shows a web diagram

and the BZ-triangle T11 . In this case the corresponding BZ-pattern has 1’s at the points

that belong to the web diagram and it has 0 ’s everywhere else.

Figure 22 Web diagram and corresponding BZ-pattern.

8 Remarks and open questions

There are several questions that remained outside the scope of this paper. We briefly

mention them here, and they will be properly illuminated in subsequent publications.

First of all, an open problem of interest is to describe explicitly the transforma-

tion maps Tba for any two reduced words for w (see Section 4).
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There is an analogy between piecewise-linear transformations Tijk given by (4.6)

and the transformations for Lusztig’s parametrization of the canonical basis in U+q (sln).

Lusztig’s transformationswere thoroughly investigated in [1].The combinatorial essence

of this work lies in a certain chamber ansatz. It would be interesting to find analogues

of the results of [1].

In a recent paper [5] , Berenstein and Zelevinsky investigated string cones and

relations between Lusztig’s and Kashiwara’s parametrizations. It would be interesting

to find a relationship between our combinatorial description of the string cone in terms

of rigorous paths and their construction.

Following [1] , it is possible to formulate the transition maps Tijk and Tba in the

language of the tropical semiring—a kind of algebraic system where one is allowed

to add, multiply, and divide, but not subtract. Taking the presentation of the tropical

multiplication by the usual addition, tropical division by the usual subtraction, and

tropical addition by the operation min, we can recover piecewise-linear combinatorics.

On the other hand, taking the more natural presentation of the tropical multiplication

by the usual multiplication, tropical division by the usual division, and tropical addition

by the usual addition, we can move to the area of rational mathematics. Hopefully, the

rational expressions corresponding to the piecewise-linear transition maps Tba can be

presented by some determinant-like creatures.

Knutson andTao [7] defined honeycombs as certain embeddings of certain graphs

intoR
2 .They used honeycombs in the proof of Klyachko’s saturation conjecture. Our web

functions are related to honeycombs, but they are defined in a different way by means

of local conditions. Sometimes this definition is more convenient. It is possible to give

a proof to the saturation conjecture in terms of web functions which is simpler than

Knutson and Tao’s proof.
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