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Abstract - Littoral tracking refers to the tracking of
targets on land and in sea near the boundary of the two
regions. A ground-moving target continues to move on
land and can not enter the sea. Similarly, a sea-moving
target moves in the sea and the land serves as an
infeasible region. Enforcing infeasible regions or hard
constraints in the framework of the Kalman filter or
interacting multiple model (IMM) estimator is not
natural. However, these hard constraints can be easily
enforced using the particle filter algorithm. We
formulate the littoral tracking problem as a joint
tracking and classification problem, where we assign a
target class for each isolated land or water region. We
use a reflecting boundary condition to enforce the
region constraint. We demonstrate this concept for a
single target using the airborne ground moving target
indicator measurements. Numerical results show that
the proposed algorithm produces robust classification
probabilities using kinematic measurements.

Keywords: Littoral tracking, Ground moving target
indicator (GMTI) measurements, Joint tracking and
classification (JTC), Particle Filter (PF), Constrained
tracking.

1 Introduction
Tracking of targets on land and in sea near the boundary
between the two regions is known as littoral tracking. In
the ground-, air-, or sea- target tracking problem, the
targets are assumed to belong in a given region only.
Either no constraint is imposed or constraints specific to
a given region are imposed on the target motion. For
example in the ground-target tracking problem, targets
are constrained to lie on the surface of the Earth. No
specific constraints are usually imposed on the target
motion in the air-target tracking problem. For the sea-
target tracking problem explicit constraints can be
imposed for surface ships and submarines. The littoral
tracking problem is challenging due to two reasons.

Firstly, given measurements in the first scan, we do not
know the origin of the measurements (land- or sea-target)
even in the absence of false alarms. Secondly, we need to
address constrained tracking for the land- and sea-
targets. Previous researchers have addressed the
constrained tracking problem using the pseudo-
measurements [5], [19] projection algorithm in the
Kalman filter (KF) framework [4], and sampling with
rejection using the particle filter (PF) [13]. Challa and
Bergman [13] studied the constrained tracking problem
of an aircraft where flight envelopes on speed and
acceleration provide the necessary constraints. They used
sampling importance resampling (SIR) with rejection
(WR) in the PF. This approach is known as the SIR-WR
algorithm. Their results show that the PF with SIR-WR
gives improved results over a standard KF without
constraints. A fairer approach would be to compare the
KF with pseudo-measurements and PF with SIR-WR.
However, imposing non-equality constraints in the KF is
difficult, whereas equality constraints are easy to
enforce.

In this paper, we address the single target tracking
problem in the littoral region using kinematic
measurements only (no feature measurements are used).
The ground moving target indicator (GMTI)
measurements [17]-[19] represent the kinematic
measurements for our problem. For a land- or sea-target,
the GMTI report location can be on land or sea due to
measurement error. Therefore, given GMTI
measurements alone, the target class (land- or sea-type)
is unknown. This problem can be viewed as a joint
tracking and classification (JTC) problem using
kinematic measurements. Our objectives are to estimate
the kinematic state and conditional target classification
probabilities for the land- and sea-type targets using a
Bayesian framework.

The PF [1], [2], [10]-[12], [14] has been shown to be a
powerful algorithm for problems with nonlinear
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dynamics and measurement models and non-Gaussian
distributions. In recent years, the PF has been
successfully applied to the JTC problem  [7], [15], [16].
It is now established that the PF algorithm is far superior
compared with the grid-based algorithms that solve the
Fokker-Plank equation [20]. Gordon, Maskell, and
Kirubarajan have recently analyzed existing PF based
JTC algorithms and proposed a new robust JTC
algorithm [15]. We use this PF based JTC algorithm for
the littoral tracking problem. According to this
algorithm, a bank of PFs is used with one PF for each
target class. We do not use the SIR-WR approach in the
PF since this requires generation of a large number of
particles due to rejection. For manageable computational
complexity, we employ a reflecting boundary with SIR.
We refer to this approach as the SIR-RB algorithm. Our
numerical results show that this proves to be a
reasonable method for the littoral tracking problem. The
kinematic state for each target class is estimated using a
PF where the state is constrained to the appropriate
region. We compute the likelihood of each target class
using all available measurements and then compute the
target classification probabilities using the likelihoods
from all PFs at a given observation time.  The kinematic
state of the target is determined by a linear combination
of the individual PF estimated states.

In order to keep the numerical computation simple, we
assume that the target moves in the XY plane with a
nearly constant velocity model (NCVM) and the GMTI
sensor moves with constant velocity at a fixed height
above the XY plane. We use a land- and sea-region
separated by a straight-line boundary in our numerical
simulation.

The outline of the paper is as follows. Sections 2 and 3
present the kinematic model and GMTI measurement
model, respectively. Section 4 describes the Bayesian
JTC algorithm for the littoral tracking problem using
kinematic measurements only. Section 5 presents the
detailed steps of the PF based JTC algorithm applicable
to littoral tracking. Finally, Sections 5 and 6 present
numerical results and conclusions.

2 Kinematic Model
Let n

kx ℜ∈  denote the target state at time ktk =: . The
state consists of two-dimensional position and velocity:

[ ] ,:)12( ′=− kykxkykxk vvppx

where ),(: kxkx tpp = ),(: kyky tpp = ),(: kxkx tvv = and

).(: kyky tvv =  Here, ),( kykx pp  and ),( kykx vv  represent

the position and velocity at time k , respectively. The
discrete-time kinematic model derived from the

continuous-time dynamics of the state for the NCVM is
described by [3], [5], [13]

),1,()1,(Φ)22( 1 −+−=− − jjwxjjx jj

where ),(Φ:)1,(Φ 1−=− jj ttjj  is the state transition matrix

and ),(:)1,( 1−=− jj ttwkjw  is the integrated process
noise [3], [13]. The state transition matrix and integrated
process noise for the NCVM are given by [3], [5]
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)∆( jQ  is the covariance of the integrated process noise
with the following form [3], [5]
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where 1q  and 2q are the power spectral densities of the
continuous-valued process noise along the X and Y
directions, respectively [13].

3 GMTI Measurement Model
A GMTI radar sensor measures the range )(r , azimuth

)(α , and range-rate )(r&  of a target [17]-[19]. The GMTI
measurement model at time j is described by [18], [19]

,),()13( jjjj vsxhz +=−

where 3ℜ∈js  and 3ℜ∈jv  are sensor position and

measurement noise at time j, respectively:

[ ] ,:)23( ′=− jzjyjxj ssss

[ ] .:)33( ′=− rjjjrj vvvv &α
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We assume that the sensor position js  is error-free. In

addition, we assume that jv is a zero-mean independent

Gaussian noise with diagonal covariance jR :
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Dropping the subscript j, the GMTI measurement model
for range, azimuth, and range-rate is described by [18]
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4 Bayesian JTC Algorithm using
Kinematic Measurements

A number of JTC algorithms are presented in [7], [9],
[15], [16]. We summarize the Bayesian JTC algorithm
using only the kinematic measurements.

We assume that M possible target classes exist, where
{ }McccC ...,, 21=  represents the set of target

classes.  Let the discrete random variable Cc ∈  denote
the class of a target. Let },...,,{: 21 k

k zzzZ =  be the
cumulative set of kinematic measurements at time k. Our
objective is to estimate the continuous state kx  and the

posterior classification probabilities CcZcP k ∈),|(

using kZ .  Formally, we need the posterior joint state-
class probability density

,),|,()14( CcZcxp k
k ∈−

where
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k
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k
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represents the probability for target class c. Our goal is
to estimate kx  and CcZcP k ∈),|( . We assume that
the prior density for each class
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is known before any measurement is available. Suppose
we know ),|,( 1

1
−

−
k

k Zcxp .Cc ∈ Then ),|,( k
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Cc ∈ can be computed from CcZcxp k
k ∈−

− ),|,( 1
1

using the prediction and the measurement update steps.
Since kx  does not depend explicitly on 1−kZ , using the
prediction step, the prior density at time k is given by
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where ),|( 1 cxxp kk −  is the state transition for the  class

c. The prior density of the state-class )|,( 1−k
k Zcxp can

be updated at time k by Bayes� rule using the
measurement kz :
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where ),|( cxzp kk  is the likelihood for the class c. We
observe from (4-4) and (4-5) that the prediction and
measurement update steps of the state-class density for
each class can be determined independent of the other
classes.  This implies that we need a filter (e.g. EKF or
PF) for each target class. In the PF approach we need a
bank of C particle filters.

Using Bayes� theorem, the general recursive equation for
target classification probability )|( kZcP  is
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We have the prior target classification probabilities

∑
∈

=∈−
Cc

cPCccP .1)(with,),()84( 00

Each filter first computes

,),|(),|()|()94( 11 CcZcPZczpZcL kk
k

k ∈=− −−

independently and then from M filters, we obtain the
classification probabilities
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5 Littoral Tracking using PF
In this section, we present an algorithm for the littoral
tracking of a single moving target using the PF. In
general, the area interest (AOI) in the littoral region
consists of multiple land and water regions as shown in
Figure 1.  We restrict our analysis to a single target.
Future work will address the littoral tracking of multiple
targets. The total number of target classes M is equal to
the total number of land and water regions in the AOI.

L1

L2

L4

L3

W2

W3

L: Land Region

W: Water Region

T3

T1

T2

True Target Location

Report Location

0.99 Probability Ellipse

Figure 1. Multi-target littoral tracking scenario with
multiple land and water regions.

For simplicity, we assume that the probability of
detection is unity and false alarms are absent. GMTI
measurements are available from one or more sensors.
Given that the target is a land-target, the GMTI report
location can lie in the land or water region due to large
cross-range error. Therefore, it is not possible to
determine the region in which the target moves from the
location of GMTI reports. We assume that prior
probability of the target type (land- or sea-type) is
proportional to the area of the region. Let iA ,

Mi ,...,2,1= be area of the thi   region . Then the prior
probability of target class is

.,...,2,1,/)()15(
1

0 MiAAcP
M

l
lii ==− ∑

=

We use a bank of M particle filters, one corresponding to
each region. The operation of each filter in the bank is
similar to a conventional unconstrained PF except two
differences:
•  Each individual PF imposes the region constraint

such that the position of each particle lies inside the
region.

•  Each individual PF computes )|( kZcL .

Let ji
kw ,  and ji

kw , be the unnormalized and normalized

weights for the thj  particle in the thi  PF at time k,
respectively.  Using the optimal proposal distribution
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k xxp −≈ , which is valid for small process noise,
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Using the PF approach [15]
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Two possible methods can be used to impose the region
constraints in a PF. The simplest approach is the
rejection sampling. While generating the particles, if a
particle falls outside the desired region, then the particle
is rejected. This process is repeated until all particles fall
inside the region. This approach can be computationally
intensive. The second approach is the use of a reflecting
boundary such that the particle position lies inside the
region. The direction of the component of velocity
perpendicular to the boundary is also reversed. We
present the detailed steps of the PF based littoral tracking
algorithm below.

•  Select the number of particles (N) to be generated
and the threshold for resampling )( thresN  [1], [2],
[11]
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•  Initialization
        For class i =1,2,�, M
             Set measurement scan index k = 0.
             Generate N samples N

j
jix 1

,
0 } { =  from the prior

density )( 00
ixp  for class i.

 Set initial weights: N
j

ji Nw 1
,

0 }/1 { == .

Set prior class probabilities { } M
iiP 10 )( = using (5-1).

         End
•  Process Measurements
       For class i =1,2,�, M
           Set measurement index k = 0
           I. Increment k: k = k + 1.
           For j =1,2,�. , N
              If k > 1
                  Prediction
                  Generate )).1,(,0(~)1,(, −− kkQNkkw ji

      Generate ).1,()1,(Φ ,,
1

. −+−= − kkwxkkx jiji
k

ji
k

                   If the position of ji
kx ,  lies outside the region

                  Apply the reflecting boundary condition
                        to ji

kx , .
                   EndiIf
              EndIf
              Update state with measurement kz

                  Compute the likelihood )|( , ji
kk xzp .
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•  Resample a new set N
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with  replacement N times from the discrete
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    Calculate class probabilities:
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6 Simulation and Numerical Results
Figure 2 shows the littoral tracking AOI with one land
and one sea region and the trajectory of the GMTI sensor
used in our simulation. We generated the truth target
trajectory in two dimensions using the NCVM. We
consider three different trajectories of the target. Table 1
presents parameters for the truth target trajectories. The
target trajectories in Cases 1 and 3 are well inside the
land and sea regions, respectively. The trajectory in Case
2 is in the land region near the boundary.  Sensor
trajectory parameters and GMTI measurement error
standard deviations are presented in Table 2. We assume
that the sensor trajectory is error-free. We generate 50
GMTI measurements for the target and use 5,000
particles for each PF. Target truth trajectory and GMTI
report locations are shown in Figure 3 from a single
Monte Carlo run for Case 1. We observe in Figure 2 that
the report locations lie both on land and sea due to large
cross-range error, although the true target trajectory lies
on land. This property of the data makes it difficult to
determine the target type (land- or sea-type) from GMTI
report locations.

Sensor
trajectory

Littoral tracking
AOI

Speed= 600 km/hr
Height = 10 Km

100 km

Land Sea

45°

Figure 2. Littoral tracking area of interest (AOI) and
GMTI sensor trajectory.
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Table 1. Target truth trajectory parameters.
Parameter Value
Initial position (x, y) for Case 1 (-40, -800)    (m)
Initial position (x, y) for Case 2 (-20, -800)    (m)
Initial position (x, y) for Case 3 ( 50, -800)    (m)
Initial speed   40    (km/hr)
Azimuth of initial velocity   90    (deg)
Power spectral density of
acceleration-x process noise, 1q

    0.002 (m2/s3)

Power spectral density of
acceleration-y process noise, 2q

    0.002 (m2/s3)

Table 2. Sensor trajectory parameters and measurement
error standard deviations.

Parameter Value
Sensor ground range 100    (km)
Sensor height   10    (km)
Sensor speed 600    (km/hr)
Sensor revisit time     2    (s)
Range standard deviation   20    (m)
Azimuth standard deviation     1    (milli-radian)
Range-rate standard deviation     1    (m/s)
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Target truth
trajectory A GMTI

report
location

Figure 3. Target truth trajectory and GMTI report
locations for Case 1.

Figures 4, 7, and 10, present the target classification
probabilities for Cases 1, 2, and 3 respectively. Results in
these figures indicate that after processing five to eight
measurements, the classification algorithm achieves a
probability of unity for the correct target type. Figures 5,
8, and 11, present the true trajectory and estimated
trajectories for land- and sea-type targets for Cases 1, 2,
and 3, respectively. The true trajectory and combined PF
trajectories for the three cases are presented in Figures 6,
9, and 12.
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Figure 4. Probability of land- and sea-type target
for Case 1.

-300 -200 -100 0 100 200 300
-1000

-500

0

500
True & Estimated Trajectories

X (m)

Y 
(m

)

True
PF-Land Est.
PF-Sea Est.

Land-region Sea-region

Boundary
between land-

and sea-
regions

Figure 5. True, land- and sea-type target trajectories
for Case 1.
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Figure 6. True and combined PF trajectories for Case 1.

940



0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Time (s)

Ta
rg

et
 T

yp
e 

Pr
ob

.
Land
Sea

Figure 7. Probability of land- and sea-type target
for Case 2.
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Figure 8. True, land- and sea-type target trajectories
for Case 2.
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Figure 9. True and combined PF trajectories for Case 2.
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Figure 10. Probability of land- and sea-type target
for Case 3.
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Figure 11. True, land- and sea-type target trajectories
for Case 3.
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7 Conclusions
In this paper we have developed a littoral target tracking
and classification algorithm using the particle filter (PF).
This algorithm is based on the previous work presented
in [15] for the joint tracking and classification problem
using the PF. We have used a reflecting boundary
condition to impose the region constraint for a land or
sea type target. The numerical results show that the
algorithm determines the target class in a robust manner
after processing five to eight GMTI measurements. We
plan to extend the current approach to the multi-target
littoral tracking problem with realistic data.
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