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Abstract. We present a strategy for automatic formal verification of
Live Sequence Chart (LSC) specifications against UML models in the se-
mantics of [7] employing the symmetry-based technique of Query Reduc-
tion [18, 34, 44] and the abstraction technique Data-type Reduction [34].
Altogether this allows for automatic formal verification without provid-
ing finite bounds on the numbers of objects created during a run of the
system.
Our presentation is grounded on a specific formal interpretation of LSCs
for the UML domain in terms of [7] which is rich enough to in particular
express properties about objects which are created only during activation
of the LSC.

1 Introduction

The increasing use of UML or specialised sublanguages thereof in the domain of
safety-critical systems design raises a need for formal verification techniques.

A necessary pre-requisite is on the one hand a formal semantics of a UML
sublanguage sufficiently rich for behavioural description as provided by [7] and
on the other hand a formal foundation of one of UML’s specification languages
for inter-object communication like Sequence or Collaboration Diagrams.

Previous efforts towards automatic formal verification of a significant sub-
language of UML concentrate on different subsets of the state-machine language
and consider only a single object or an explicitly given finite set of objects,
i.e. do not address dynamic creation or destruction of objects during runtime
[9, 27, 4, 40, 41, 39, 28] or don’t elaborate on this topic [12].

Recent achievements [43] implement object creation and destruction explic-
itly in the input language of the employed formal verification tool based on
“switching on and off” objects like in [7] or translate the UML model into an
intermediate language [37] which provides constructs for this kind of dynamics
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s.t. the problem of choosing a finite representation is shifted to the translation-
step from the intermediate language to the employed formal verification tool.
Both approaches presuppose a finite bound on the number of objects alive in
each snapshot of a run as long as the target is a finite-state formal verification
tool.1 In the following we present a technique which allows to overcome these
limitations under certain premises even for finite-state methods.

The specification languages used in previous approaches range from tempo-
ral logic expressions over variable names on the level of the underlying model-
checker’s input language [41, 39, 28] to temporal logic (resp. patterns) on the
UML model level [43, 12]. The tools presented in [27, 40] provide automatic
solving of “drive to collaboration” tasks, i.e. to verify for UML with real-time
information whether a given system is able to show the behaviour described by
collaboration diagrams.

We propose to adopt the language of Live Sequence Diagrams [5] (LSC) for
UML as the specification language for inter-object communication. The LSC
language is a superset of UML’s Sequence Diagram language – thus appealing
for the UML designer – and explicitly designed to overcome the limitations in
expressiveness of Sequence Diagrams as discussed in [5].

Our definition of LSCs for UML is in particular designed to express properties
over instances which are created during a run of the system, and even during the
activation of the LSC, by interpreting instance lines as universally or existentially
quantified logical variables, thus a system satisfies an LSC if all runs satisfy all
instantiations of the quantification resp. if there exists a run which satisfies an
instantiation. Hence the whole specification can be discharged by carrying out
numerous separate concrete verification tasks, each a binding of concrete object
instances to instance lines [25, 42].

The observable communication comprises events and so called triggered op-
erations, i.e. operations whose behaviour is defined by a state-machine, and is
integrated into the fully abstract LSC semantics of [24, 26].

The authors of [30] present an alternative approach to explain binding of
instances to instance lines with the same underlying intuition, but in addition
allow to quantify single instance lines. The description is tailored for the appli-
cation in their play-in/play-out tool [14], that is, for observing or “playing-out”
a complete system. Our presentation is in contrast chosen to be able to apply
the theory of symmetry reduction and data-type reduction to consider only a
reduced system for automatic formal verification.

The most closely related approach for temporal logic patterns in the domain
of object-oriented systems is the (textual) Bandera Specification Language [3]
of the Bandera Java verification toolset, which allows to express similar quan-
tifications.

1 Note that these obstacles are raised by aiming at automatic formal verification, they
naturally do not apply in general to proposals for formal semantics of UML, which
in contrast use methods which intentionally do not require finite bounds and don’t
explicitly represent “not existing” objects, e.g. [15, 23, 36, 35].
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The numerous verification tasks obtained by binding objects to instance lines
in the system are a prominent application of a technique for which the authors
of [44] coined the term “Query Reduction”, since not the state-space of the
verified transition system is reduced, but the number of concrete bindings to
be proven. A small representative set implies the (possibly infinite) whole set of
properties by symmetry.

This way to exploit symmetry was first demonstrated by the author of [31, 34]
for general temporal-logic properties of the form of a universal quantification
over a symmetric type. Then it is sufficient to prove only a representative set of
concrete bindings since all other bindings are implied by symmetry.

This technique applies to systems where the state of replicated components
is kept in an array data-structure indexed by a symmetric type and to properties
which claim that for all indices i a property φ 0(i) holds, thus in particular to
our interpretation of LSCs.

The idea to exploit in formal verification the symmetries of a system caused
by replicated components, like processors in a cache-coherency protocol, actually
dates back to 1993, when the authors of [10] and [18] independently discovered
that symmetries of transition systems can be exploited to prove certain prop-
erties on the quotient graph by the equivalence relation induced by symmetry
instead of on the full transition system. The authors of [18] even provided a set
of criteria which allows to declare and syntactically check symmetric data types
in the system description language of the MurΦ model-checker [19].

A disadvantage of the quotient graph approach is that the set of proper-
ties is restricted to safety properties independent from individual identities like
“none of the symmetric components of the system runs into a deadlock” [18]
or to properties which are itself symmetric, e.g. identical under permutation of
indices [10].

The dSPIN [16] variant of the SPIN model-checker is an application of this
kind of symmetry reduction in software-verification exploiting heap symmetries
— system states which differ only in the allocation of objects into memory
places on the heap are equivalent on the program level in languages like Java —
and analogously process (allocation) symmetries [17]. The published results yet
comprise only checking for absence of deadlock.

As mentioned before, the direct effect of query reduction is just not a reduc-
tion of the transition graph, although indirectly a reduction may be obtained by
standard techniques like cone-of-influence reduction which apply more effectively
on the concretely bound properties and may render tasks feasible, which are far
too complex in the original form.

Yet cone-of-influence reduction alone does not address the problem that the
state-space of a UML model is in general infinite if there are no finite bounds on
the number of objects. Therefore we propose to apply the over-abstraction tech-
nique Data-type Reduction [34] which by heuristics abstracts away all objects
which are not explicitly referenced in the concrete binding of object instances to
LSC instance lines from the view of the bound objects s.t. these remaining ob-
jects can in particular not determine the actual number of objects in the system.
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Thus there is no requirement for a finite bound on the number of simultaneously
alive objects.

This technique also supports reasoning about parameterised systems: if a
property can be proven for an abstraction constructed for an arbitrary concrete
choice of parameters, than for any choice of larger parameters the abstraction
also satisfies the property since it is also an abstraction for the larger parameters.

Note that the length of the event queue is a priori still unbounded in a
UML design, thus for the scope of this paper we assume a finite upper bound
on the length of event queues to reach the domain of automatic techniques for
finite state verification. For the category of so called mode separated models,
[6] presents an exact abstraction which eliminates queues from the model and
yields a finite representation.

The remainder of the paper is organised as follows. In section 2 we introduce
signatures, expressions, and interpretations to be able to define symbolic transi-
tion systems (STS) [29], our computational model, and to define linear temporal
logic (LTL) over expressions which provides the ground for the presentation of
the general semantics of LSCs and the specialisation of the LSC language for
the context of UML in terms of [7] in Section 3. In section 4, we provide the
theory of query reduction, contribute the yet missing proofs, show how it ap-
plies to LSCs in the context of UML, and briefly introduce a running example
for the subsequent sections. Section 5 presents the theory of data-type-reduction
together with yet missing proofs and discusses the common class of “interfer-
ence” false-negatives caused by the data-type-reduction abstraction. Section 6
discusses briefly how interference could be avoided by separately proving and
then assuming non-interference lemmata derived from information in the UML-
model, based on the methodology of [34], and section 7 concludes.

2 Preliminaries

As our computational model, we take symbolic transition systems [29], which
allow a purely syntactical description of a transition system by first-order-logic
expressions over a signature.

Section 2.2 defines a symbolic transition systems as two first-order-logic pred-
icates over a signature, so we first introduce signatures, predicate- and first-order-
logic expressions and their interpretation in section 2.1.

Section 2.3 defines linear temporal logic and the satisfaction of LTL formu-
lae by a symbolic transition system to be able to explain the semantics of live
sequence charts in the following section and to provide the formal foundation of
the proofs in Sections 4 and 5.

All definitions are standard, hence the reader may safely skip this section on
the first reading.
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2.1 First-order-logic Expressions

Definition 1 (Predicate-logic expressions). Let V be a set of typed variables
and Ω a set of typed constants. The pair B = (V, Ω ) is called signature. The set
Expr(B) of typed expressions over B is defined inductively as follows:

• Let v ∈ V be variable of type τ . Then v is an expression over B of type τ ,
type(v) =df τ .

• Let f ∈ Ω be a constant of type τ1 × · · · × τn → τ , n ∈ IN0. Let expri ∈
Expr(B), type(expri) = τ i, for 0 < i ≤ n. Then expr = f(expr1, . . . , exprn)
is an expression over B of arity n, type(expr) =df τ .
A constant with range type τ = IB is called predicate.

We use TB to denote the set of types used by B. The elements of the set
ExprPL(B) =df {expr ∈ Expr(B) | type(expr) = IB} are called predicate-logic
expressions over B. �

In the following, we assume Ω ⊇ {true, ∨ ,¬, false, ∧ , ˙∨ , =⇒ , ⇐ ⇒ } for
each signature, where the symbols “false”, “ ∧ ”, “ ˙∨ ” (exclusive or), “ =⇒ ”, and
“ ⇐ ⇒ ” are used as abbreviations with the conventional definition for brevity.

Definition 2 (First-order-logic expressions). Let B = (V, Ω ) be a signa-
ture. The set ExprFO(B) of first-order-logic (FOL) expressions over B is defined
inductively as follows:

• Let expr ∈ ExprPL(B) be a predicate-logic formula. Then ‘expr’ is a first-
order-logic expression.

• Let expr ∈ ExprPL(B) be a first-order-logic formula and τ a type. Then
∃ x ∈ τ : expr is a first-order-logic expression of type IB. Every occurrence
of the variable x ∈ V in ‘expr’ is called bound.

Let expr ∈ ExprFO(B). A variable x ∈ V occurring in ‘expr’ is called free in
‘expr’ if not all occurrences are bound.
We call a first-order-logic expression over B = (V ∪ V ′ , Ω ), that is, an expression
referring to both unprimed and primed versions of the variables in V , a first-
order logic transition predicate over B. �

In the following, we use the conventional definition of the symbol “ ∀ ” in
first-order-logic expressions for brevity.

Definition 3 (Interpretation). Let B = (V, Ω ) be a signature, D =
⋃

τ ∈ TB
Dτ

a domain for all types used in B, and I an interpretation of the constants which
assigns to each constant f ∈ Ω of type τ a value I(f) ∈ Dτ . Then the tuple
M = (D, I) is called a structure of B.
A function s : V → D is called (type-consistent) valuation of V if it assigns
each variable v ∈ V a value s(v) ∈ Dτ . The set of valuations is called Σ . We
use M[[expr]](s) to denote the canonical interpretation of the first-order-logic
expression ‘expr’ in the valuation s. �
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The interpretation M[[expr]](s, s ′ ) of a transition predicate is defined analo-
gously letting s provide the interpretation of unprimed and s ′ the interpretation
of primed variables in expr.

In the following, we consider only interpretations M which gives the canon-
ical interpretation to the constants “true”, “ ∨ ”, and “¬”.

2.2 Symbolic Transition Systems

Definition 4 (STS). A symbolic transition system (STS) S = (B, Θ , ρ ) con-
sists of B = (V, Ω ), a signature with a finite set V of variables, Θ ∈ ExprFO(B),
and ρ , a FOL transition predicate over B. The set of variables v ∈ V which are
free in Θ or ρ are called system variables of S. �

An STS induces a transition system on the set of valuations of its system
variables as follows:

Definition 5 (Runs of an STS). Let S = (B, Θ , ρ ) be an STS and M a
structure of B.

(i) A valuation of the system variables of S is called snapshot of S.
(ii) A snapshot s ∈ Σ of S is called initial, iff M[[Θ ]](s) = true.
(iii) Let s, s ′ ∈ Σ be snapshots of S. Snapshot s ′ is called S-successor of s, iff

M[[ρ ]](s, s ′ ) = true.
(iv) A computation or run of S is an infinite sequence of snapshots,

r = s0 s1 s2 . . . , satisfying the following requirements:
• Initiation: s0 is initial.
• Consecution: Snapshot sj+1 is an S-successor of sj, for each j ∈ IN0.

(v) The set of all computations of S is called runs(S). We use r(i) to denote the
i-th snapshot of a run r ∈ runs(S) and

r/i =df r(i) r(i + 1) r(i + 2) . . .

to denote the infinite sequence starting at r(i), i ∈ IN0. �

2.3 Linear Time Logic

In section 3, we assume a formalisation of the temporal properties expressed
within an LSC in the well-known temporal logic LTL (linear time logic):

Definition 6 (LTL). Let B be a signature. An LTL formula over B is defined
inductively as follows:

(i) expr ∈ ExprPL(B) is an LTL formula.
(ii) ¬f and f ∨ g are LTL formulae if f and g are LTL formulae, and
(iii) X f (“next f”), G f (“globally f”), and f U g (“f until g”) are LTL formulae

if f and g are LTL formulae. �
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In the following we define what it means for a run to satisfy an LTL formula
and in addition introduce the orthogonal notions of existential vs. universal and
initial vs. invariant satisfaction of an LTL formula as the foundation for the
semantics of life sequence charts.

Definition 7 (Satisfaction of an LTL formula). Let S = (B, Θ , ρ ) be an
STS, φ an LTL formula over B, and M a structure of B.

Let r = s0 s1 s2 . . . be a (suffix of a) run of S. We say the run r satisfies φ
wrt. M, denoted by r |=M φ , iff:

(i) φ ≡ expr and M[[expr]](r(0)) = true, or
(ii) φ ≡ f ∨ g and r |=M f or r |=M g, or
(iii) φ ≡ ¬f and r 6|=M f , or
(iv) φ ≡ X f and r/1 |=M f , or
(v) φ ≡ G f and ∀ i ∈ IN0 : r/i |=M f , or
(vi) φ ≡ f U g and ∃ i ∈ IN0 : r/i |=M g ∧ ∀ 0 ≤ j < i : r/j |=M f .

The STS existentially satisfies φ invariantly, denoted by S |=M, ∃ φ , iff

∃ r ∈ runs(S) ∃ i ∈ IN0 : r/i |=M φ,

and initially, denoted by S |=M, ∃ ,0 φ , iff ∃ r ∈ runs(S) : r/0 |=M φ.

The STS universally satisfies φ invariantly, denoted by S |=M, ∀ φ , iff

∀ r ∈ runs(S) ∀ i ∈ IN0 : r/i |=M φ,

and initially, denoted by S |=M, ∀ ,0 φ , iff ∀ r ∈ runs(S) : r/0 |=M φ. �
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3 Live Sequence Charts

Live Sequence Charts (LSC) are an extension of Messsage Sequence Charts
(MSC), introduced to overcome serious deficiencies of the MSC language wrt.
formal verification, so we begin with a short overview of the MSC language and
the MSC dialect of UML Sequence Diagrams. We recall the deficiencies of both
formalisms, followed by a brief introduction of the subset of the LSC language
which we propose to use as a specification language for formal verification of
UML models.

3.1 From Message Sequence Charts and Sequence Diagrams to
LSCs

The MSC language is a well-known visual formalism to describe behaviour of a
system by visualising the inter-entity communication basically as arrows (rep-
resenting asynchronous messages) between vertical instance lines (representing
entities within the system). Intuitively, the semantics of MSCs is a (partial) or-
dering in time of the observations of messages which is derived from the relative
positions of message arrows and their beginning or ending at instance lines.

The MSC language is standardised in different versions [20, 21, 22] which
extend the core language by means to structure and compose MSCs, to express
loops and branches, by different annotations for timers and timing-constraints,
by means to explicitly state ordering informations, and by different kinds of
messages, e.g. synchronous messages to express method calls and replies.

Although the MSC language was originally formalized in the telecommuni-
cation domain to match this domain’s system specification language, it is not
inherently bound to a particular domain, design-language, or paradigm, but the
kind of entities represented by an instance line can be chosen when giving se-
mantics for a particular domain. Typical kinds of entities are processes in the
context of process-oriented languages and objects in the object-oriented domain.

The Sequence Diagram language [38] of UML is an adoption of MSCs for
UML where instance lines are in fact restricted to represent objects and where
concrete message types are provided to represent event based resp. method call
communication.

The main deficiencies of MSCs and SDs wrt. their use in formal verification
are that they are meant to show only a sample run of the system – one scenario
– where one would rather like to express that the system always behaves as
depicted in the MSC, and that MSCs do not allow to express liveness properties,
i.e. to distinguish whether progress is enforced or not.

Furthermore, the MSC versions except for MSC-2000 do not allow to specify
an activation time thus it is left open when a system has to show the behaviour
described by the MSC in order to fulfil it. The intention of an MSC describing
the behaviour in case of erroneous input, for example, is typically meant to be
observed only after a particular error-condition holds. No MSC version allows
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to express this activation in terms of a sequence of messages, for example to
express that error handling takes place after a sequence of a particular number
of error-events have been observed.

Other major drawbacks are the facts that conditions annotated to locations
on instance lines (which are not even present in SDs) are merely comments up
to MSC-2000, i.e. it is not possible to e.g. specify that the system should be in a
particular state when sending an event, and that simultaneity of items like mes-
sages and conditions cannot be expressed. Only MSC-2000 provides simultaneity
but restricted to pairs of messages and timers.

Aside these concerns of expressiveness, MSC-2000 and SD are not directly
usable for formal verification since they are not provided with an official formal
semantics. For a complete discussion of the sequence charts dialects and their
shortcomings see [24].

Note that although LSCs also provide a more sophisticated semantical treat-
ment of timers and time-annotations in comparison to MSCs or SDs, we don’t
consider timers and time-annotations at all in the following since the UML se-
mantics of [7] which our presentation is based on, is an un-timed semantics.

LSC were introduced in [5] to overcome the deficiencies of MSCs and SDs
named above employing the basic idea to distinguish mandatory and possible
behaviour per LSC element and for the whole LSC.

Intuitively, a possible or existentially quantified LSC is meant as a scenario,
just like MSCs, i.e. it expresses that there is a run of the system which complies
to the LSC, while a mandatory or universally quantified LSC requires that,
whenever the LSC is activated, the system shows the behaviour depicted in the
LSC.

The activation point of an LSC can be specified by giving a boolean acti-
vation condition and a so called pre-chart which is itself a restricted LSC. The
LSC is then activated whenever the activation condition holds and then the
(possibly empty) behaviour depicted in the pre-chart is observed. Additionally,
the activation of an LSC depends on the activation mode of “initial”, “initial
first”, “invariant”, or “iterative”. In the following we only consider the activation
modes which directly correspond to our Definition 7: “initial”, i.e. the LSC is
activated at most once per run and only if its pre-chart is observed from the
initial step of a run on, and “invariant”, i.e. the LSC may be activated multiple
times during a run, there may even be overlapping activations.

Within the LSC, each location, i.e. each place of an element on an instance
line, e.g. a message start or end, is equipped with a temperature. A mandatory
or hot location enforces progress, that is, eventually the next location has to be
reached. A possible or cold location allows to stay at the location forever, that
is, the behaviour following a cold location need not be observed.

A possible or cold condition is a legal exit point of an LSC, i.e. if a run of the
system adheres to the prefix of an LSC up to a cold condition and the condition
does not hold, then the run is said to satisfy the LSC, since the LSC “exits”
and is no longer activated. Reaching a location with a hot condition which does
not hold is considered to be a violation of the specification. As an extension
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of conditions, LSCs also provide (possible or mandatory) local invariants, i.e.
conditions which are not bound to a single location but to a start and end
location.

The concrete graphical representation of LSCs generally follows MSCs, but in
the following we use a concrete syntax more similar to UML sequence diagrams.
The mandatory elements are, as usual for LSCs, depicted by solid lines and
possible elements by dashed lines (cf. Fig. 1). For a complete presentation of the
LSC features, see [24].

In [5], the LSC language is introduced as a conservative extension of MSCs,
thus LSCs are as domain, design-language, and paradigm independent as MSCs.
In particular, [24, 26] give the formal semantics of LSCs independent from the
mapping, abstracting from what “sending a message” actually means in a con-
crete system from a particular domain, only the ordering and temporal con-
straints expressed in the LSC are considered.

Thus for an application of the LSC language in the UML domain, we have to
provide the concrete syntax for e.g. message and condition annotations and the
derivation of a mapping, that is a characterisation of the points in time when
we want to consider a message to be sent and received, resp., and we have to
explain a binding of instance lines to entities in the system.

The topic of binding of instance lines goes beyond the presentation of a spe-
cialisation of LSCs for the domain of Statemate-designs as presented in [24] where
the author requires an explicit static binding of instance lines to Statemate-
activities, which is possible since Statemate designs have a static structure, i.e.
there is no dynamic creation or destruction of “system entities” as there is in
the UML domain.

The rest of this chapter is structured as follows. In section 3.2 we provide
a definition of general (yet domain-independent) LSCs which abstracts from
syntactical aspects and from the elements which don’t need a mapping, e.g.
simultaneous regions for simultaneity, and we briefly report their abstract formal
semantics as given by [24, 26]. That is, we do not elaborate on the temporal
properties induced by the relative position or partial ordering of the parts of
an LSC but take for granted that [24, 26] (indirectly) provide us with an LTL
formula which expresses just these temporal properties.

In section 3.3 we define LSCs for UML models (in the sense of [7]) by giving
constraints on the annotations of LSC elements s.t. we can construct a so-called
observer extension for a UML model. The satisfaction of an LSC by the UML
model is then defined in terms of the model’s observer extension, binding objects
to instance lines, thus taking objects as the kind of entities to be bound.

3.2 Live Sequence Charts

In general and independent from the design-language domain, the intuition of an
instance line within an LSC is the denotation of an entity of the system the LSC
refers to, where it of course depends on the domain what is considered an entity.
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If there are multiple instances of the same type of entity, then we take an LSC
as an abbreviation for all possible bindings of concrete system entity instances
to instance lines, thus instance lines can be seen as free or logical variables of
the specification which are quantified over the entity type.

In the following, we technically formalise this intuition by relating instance-
lines to 0-ary constants from the given signature. A concrete binding is then
given by the structure which interprets the LSC’s signature.

In addition to these constants for instance-lines, we allow to refer to a general
set of constants called specification variables in the LSC which are also intended
to be bound to concrete values.

Definition 8 (LSC).
Let B = (V, Ω ) be a signature and Msg a set of message names. A live sequence
chart L = (`, ac, pch, m, X, actmode, quant) over B and Msg consists of the fol-
lowing components:

• ` : The finite body of the LSC, comprising the following body elements: in-
stance lines, synchronous and asynchronous message sending and reception,
conditions, and local invariants.

• ac: The activation condition.
• pch: The possibly empty body of the pre-chart.
• m: The annotation of body elements as defined below.
• X = {x1, . . . , xn} ⊆ Ω : A finite set of 0-ary logical variables.
• actmode: The activation mode from {initial, invariant}.
• quant: The (chart-)quantification from {existential, universal}.

The bodies ` and pch of L together define the sets inst(L) of instance lines,
send(L) and recv(L) of synchronous and asynchronous message sendings resp.
receptions, and cond(L) of conditions and local invariants including the activa-
tion condition. Message sendings and receptions are required to be pairwise re-
lated, i.e. there exists a bijection between send(L) and recv(L), and to be uniquely
related to an instance line.

The annotation m is a partial function which maps instance lines, messages,
and conditions of L to an expression obeying the following restrictions:

(i) If p ∈ inst(L), then m(p) = x : τ where x ∈ X is a 0-ary constant of type τ .
(ii) If p ∈ send(L) ∪ recv(L), then m(p) = msg(expr1, . . . , exprn), n ∈ IN0, where

msg ∈ Msg and expri ∈ Expr(B).
(iii) If p ∈ cond(L), then m(p) = expr ∈ Expr(B) of boolean type or m(p) =

¬dest.msg(expr1, . . . , exprn), n ∈ IN0, where dest ∈ X, msg ∈ Msg, and
expri ∈ Expr(B).
The latter case is used to assume the absence of messages in a local invariant.

(iv) If p = ac, then m(p) = expr or m(p) = dest.msg(expr1, . . . , exprn) ∧ expr,
n ∈ IN0, where dest ∈ X, msg ∈ Msg, and expri ∈ Expr(B), and expr ∈
Expr(B) is of boolean type.
The latter case is used to activate on messages. �
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Fig. 1. LSC: A graphical representation of the LSC L with body ` = {inst1,2,3,
async snd3,4, async rcv3,4, sync snd1,2, sync rcv1,2, cond1,2, locinv1}, activation condi-
tion ac = cond0, pre-chart pch = {inst1,2,3, async snd1,2, async rcv1,2}, actmode =
invariant, and quantification quant = universal as indicated by the solid line around
the body of the LSC. The LSC is yet unmapped, i.e. the annotation m is empty.

Independent from the mapping, the LSC L is satisfied by all runs in which, any time af-
ter the two asynchronous messages in the pre-chart have been observed, a synchronous
communication takes place between inst1 and inst2, and eventually – since the loca-
tion between sync rcv1 and async snd3 is hot – an asynchronous communication takes
place between inst2 and inst3 with the restriction that at the same point in time,
when async snd3 is observed, cond1 is supposed to hold. cond1 is a cold condition as
indicated by the dashed border, thus if cond1 does not hold, then the LSC is “exited
successfully”, i.e. the run satisfies the LSC.
Below async rcv3, there is a cold cut, i.e. the current position on each instance line lies
on a cold location hence the following communication need not take place as long as
the local invariant locinv1 holds. locinv1 is mandatory (as indicated by the solid line),
thus if the condition locinv1 is violated after async rcv3 but before async snd4, the
whole LSC is not satisfied.
The condition cond2 is a mandatory condition, i.e. if async rcv4 is observed and cond2

does not hold at the same point in time, then the run does not satisfy L.
Since the subsequent locations are hot, both sync snd2 and sync rcv2 have to be ob-
served in order to exit the LSC successfully.

Note that L may be activated multiple times in a run and even overlapping. The run
satisfies the LSC only if it is not violated in any activation.
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The semantics of an LSC over signature B = (V, Ω ) and message set Msg is
explained symbolically by [24, 26] in terms of a Timed Büchi Automaton (TBA).
Using the annotation m, the TBA can be translated into an LTL formula Φ (L)
over B using the constant function symbols send and receive which act as place-
holders for the domain-dependent definition of message sending and reception.

By definition, the TBA and hence the formula Φ (L) depend on the chart-
quantification of L: for an existential L it is principally the sequential composition
of pre- and main-chart, while for an universal L it states that an observation of
the prechart implies the main-chart.

For example consider the message arrow (async snd3, async rcv3) in the LSC
body in Fig. 1 between instance lines inst2 and inst3. An annotation

m(async snd3) = m(async rcv3) = msg(expr1, . . . , exprn)

results in both, send(msg, m(inst2), m(inst3), expr1, . . . , exprn) and receive(msg,
m(inst2), m(inst3), expr1, . . . , exprn), occurring in Φ (L), the former observing
the sending and the latter observing the reception of msg.

Note that synchronous and asynchronous messages are not distinguished on
this level of predicates but the distinction is incorporated into the LTL formula:
for synchronous messages, sending and reception is observed in the same snap-
shot whereas for asynchronous messages, reception has to be observed at least
one snapshot later than sending.

When explaining LSCs for a particular application domain, it is often a mat-
ter of choice which of the domain’s “observable events” are better mapped to
synchronous and which to asynchronous messages of the LSC.

Definition 9 (Satisfaction of an LSC).
Let L = (`, ac, pch, m, X, actmode, quant) be an LSC over signature B = (VB , Ω B)
and messages Msg. Let Φ ′ (L) be the LTL formula representation of L over B with
all occurrences of ‘send’ and ‘receive’ replaced by boolean predicate-logic expres-
sions over B. Let S = ((V, Ω ), Θ , ρ ) be an STS with V = VB and Ω ⊇ Ω B \ X,
and M a structure of B.
Then the model S satisfies the LSC wrt. M, S |=M L, iff
• quant = existential and

- actmode = initial and

∃ x01 : Dtype(x1), . . . , x0n : Dtype(xn) : S |=M ′ , ∃ ,0 ac ∧ X Φ ′ (L), or

- actmode = invariant and

∃ x01 : Dtype(x1), . . . , x0n : Dtype(xn) : S |=M′ , ∃ ac ∧ X Φ ′ (L), or

• quant = universal and
- actmode = initial and

∀ x01 : Dtype(x1), . . . , x0n : Dtype(xn) : S |=M′ , ∀ ,0 ac =⇒ X Φ ′ (L), or

- actmode = invariant and

∀ x01 : Dtype(x1), . . . , x0n : Dtype(xn) : S |=M ′ , ∀ ac =⇒ X Φ ′ (L),

where M ′ = (D, I ∪ {xi 7→ x0i | 1 ≤ i ≤ n}). �
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3.3 LSCs for UML

In the following we elaborate on ideas already outlined in [25]. We refer to UML
models in the definition of [7], i.e. a UML model is a tuple

M = (T,F,Sig, <, C, croot, A),

with T a set of basic types, F a set of predefined primitive functions, e.g. arith-
metic operations on T, Sig a finite set of signals, < ⊂ Sig × Sig a generalisation
relation on signals, C a finite non-empty set of (further structured) classes,
croot ∈ C the class of the root object, and A ⊂ C the set of active classes
(for the details the reader is referred to the companion paper [7]). In order to
explain syntactical transformations on the transition predicate of STS(()M) in
Section 5, in the following we assume F to contain =: τ ×τ → IB, the comparison
for equality on all types, and ( · ? · : · ) : IB × τ 2 → τ , the if-then-else function.

We denote by Tc the type of references to objects of class c ∈ C and by TC

the set of all Tc. For each class c ∈ C, Oc denotes the semantic type or domain
of Tc and OC the union of all Oc.

An LSC over M is basically an LSC over a signature derived from M and
the set of events and triggered operations in M as set of messages Msg together
with a number of well-formedness rules:

Definition 10 (LSC over UML model).
Let M = (T,F,Sig, <, C, croot, A) be a UML model. An LSC over M is an LSC
over B = (∅ ,F ∪ X ∪ {.}), where each x ∈ X is of a type from T ∪ TC and “.”
is the binary navigation operator, and the message set

Msg = Sig ∪ {createc | c ∈ C} ∪ {destroy} ∪ {replyτ | τ ∈ T ∪ TC} ∪
⋃
c ∈ C

c.ops

which obeys the following well-formedness rules:

(i) If p ∈ inst(L), then m(p) ∈ X is of a reference type Tc for c ∈ C.
All m(p) ∈ inst(L) are pairwise different.

(ii) If p ∈ send(L) is an asynchronous message sending or reception and m(p) =
msg(expr1, . . . , exprn), then msg = ev ∈ Sig and either n = 0 or n matches
the number of parameters of ev and type(expri) matches the type of the i-th
parameter of ev.2

An ev ∈ Sig may not occur more than once in the whole LSC since the used
underlying semantics does not provide identities of events.

(iii) If p ∈ send(L) is a synchronous message sending or reception from instance
line i1 to i2 and m(p) = msg(expr1, . . . , exprn), then msg ∈ Msg \ Sig.
If p1 and p2 are the related synchronous message sending and reception, then
m(p1) = m(p2).

2 providing only means to restrict either all or none of the parameters in the LSC is a
matter of choice for brevity. The generalisation to restriction of only some parameters
is straightforward in case practical evaluation reveals a demand.
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If msg = op and m(i2) is of type Tc, c ∈ C, then op ∈ c.ops and either n = 0
or n matches the number of parameters of op and type(expri) matches the
type of the i-th parameter of msg.
If msg = replyτ , then n ≤ 1 and there is a uniquely identified synchronous
message sending p ′ from i2 to i1, i.e. in the opposite direction, with msg(p ′ ) ∈
c.ops for a c ∈ C and τ = typer(msg(p ′ )). That is, a reply has to be related
to an operation call.
If msg = createc, then n = 0 and p is the first message or condition of the
destination instance line and p is the only message annotated by creation.
If msg = destroy, then n = 0 and p is the last message or condition of the
destination instance line and p is the only message annotated by destruction.

(iv) For each creation p ∈ send(L) to instance line i, there exists a cold condition
q ∈ cond(L) with m(q) ≡ justcreated(i), yet another placeholder which will
allow us to legally exit the LSC in each run, where the creation operation did
not create the object bound to i.

(v) If p ∈ cond(L) is not the activation condition and not a local invariant, then
m(p) ∈ Expr of boolean type.

(vi) If p ∈ cond(L) is the activation condition or a local invariant and m(p) =
dest.msg(expr1, . . . , exprn) resp. m(p) = ¬dest.msg(expr1, . . . , exprn), then
dest is of type Tc ∈ TC and msg ∈ c.ops ∪ Sig and either n = 0 or n matches
the number of parameters of msg and type(expri) matches the type of the i-th
parameter of msg. �

Note that c.ops comprises only triggered operations of class c ∈ C, i.e. op-
erations whose behaviour is defined by c’s state-machine. So called primitive
operations which are defined by a method are no longer visible on the semantics
level of [7].

As outlined in section 3.2, we obtain an LTL formula Φ (L) for an LSC over a
UML model which uses for example for an asynchronous message sending from
instance i1 to i2 the placeholder send(ev, m(i1), m(i2), expr1, . . . , exprn).

To explain what it means for a UML model M to satisfy an LSC L, we
use the STS semantics of M , STS(M), according to [7]. The placeholders for
the message send and receive are replaced by predicates over system variables
including new system variables which are introduced to explicitly observe events
and triggered operation based communications

We need to introduce new system variables, since predicates over the un-
changed model can only refer to the valuation of a single snapshot while we
want to observe e.g. sending of an event E ∈ Sig from object o1 to object o2 in
a snapshot r(i + 1) of a run r ∈ runs(STS(M)) only if the transition from r(i)
to r(i + 1) in STS(M) corresponds to o1 taking a transition which is annotated
by an event sending action which enters an E into the event queue of o2’s active
object.

To observe the intended relation between two subsequent snapshots, we con-
struct an observer extension of STS(M) by introducing five new system vari-
ables justsend, justrecv and justcall, justret, and justcreated. whose value has to
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be defined by the transition relation s.t. for example justsend becomes valid in
snapshot r(i+1) and holds the type and parameter values of the event sent when
taking the transition from r(i) to r(i + 1). The first component of the former
variables is a boolean flag which indicates that the variable’s value is valid. A
single flag is sufficient due to the strictly interleaving and atomic nature of the
underlying semantics [7].

All of the first four variables carry sender, destination, and all parameters
since e.g. the return value of a triggered operation is actually no longer visible in
r(i + 1) in the pending-request-table. The variable justcreated is just an object
reference which, if non-nil, contains the identity of the object created in the
transition to the current state.

Definition 11 (Observer extension). Let M = (T,F,Sig, <, C, croot, A) be a
UML model, and S = STS(M) = (B, Θ , ρ ) its semantics according to [7].
The observer extension of S, So = (Bo, Θ o, ρ o), with Bo = (Vo, Ω o) is obtained
from S as follows:

(i) V is extended by variables to observe events

justsend, justrecv : IB× Sig×OC ×OC ×
⋃

ev ∈ Sig

Ttypepar(ev)
,

to observe triggered operation calls

justcall : IB × (
⋃
c ∈ C

c.ops)×OC ×OC ×
⋃
c ∈ C

op∈ c.ops

Ttypepar(op),

to observe completion of triggered operations

justret : IB× (
⋃
c ∈ C

c.ops)×OC ×OC ×
⋃
c ∈ C

op∈ c.ops

Ttyper(op),

and to observer object creation justcreated : OC .
(ii) Θ is changed s.t. the first four variables’ first components get the value false

initially.
(iii) ρ non op action which formalises taking a transition annotated with a non-

operation call action is conjoined with the following predicate:

(γ ≡ “r.send(ev, expr1, . . . , exprn)”
∧ ¬sysfail ′ =⇒ justsend ′ := (true, o, o.r, ev, (expr1, . . . , exprn)))

where γ denotes the considered transition and o the object taking the transi-
tion (cf. [7] for the full set of used abbreviations).
Effectively, “justsend” observes the enqueueing of an event of type ev with
destination o.r when object o takes a transition. It holds a valid value in the
first snapshot where ev shows up in the queue.
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(iv) ρ get event and ρ discard event which formalise dispatching resp. discarding of an
event are conjoined with

(¬sysfail′ =⇒ justrecv′ := (true, nil, o, head(o.my ac.eq).ev, o.ev′p))

where nil is used as the sender, since the sender is not retained with the
event, and o is the destination object. head denotes the first entry in the
event queue of o’s active object and o.ev ′p the attributes of o holding copies
of the event parameters.
“justrecv” observes the dequeuing of an event of type ev with destination o.
It holds in the first snapshot where ev has disappeared from the queue.

(v) ρ init opcall or create which formalises calling a triggered operation is conjoined
with

(¬sysfail ′ =⇒ justcall ′ := (true, o, r, prt(o).op ′ , prt(o).op ′p))

where o is the object initiating the call and r the destination.
“justcall” observes the operation call op when the caller changes status from
executing to suspended and writes op with receiver r into its pending request
table entry.
It holds in the first snapshot where o is suspended due to the call.

(vi) ρ pick up result which formalises picking up the result of a triggered operation
call by the caller is conjoined with

(¬sysfail ′ =⇒ justret′ := (true, o, prt(o).dest, prt(o).op, prt(o).op ′p))

“justret” observes return from operation call op when the caller o changes
status from suspended back to executing or idle. It holds in the first snapshot
where o is no longer suspended due to the call.

(vii) ρ non op action is also conjoined with the following first-order predicate:

(γ ≡ “destroy(expr)” ∧ ¬sysfail ′ =⇒ justcall′ := (true, o, expr))

Thus destruction is observed just like a triggered operation call.
(viii) ρ is finally changed s.t.

(¬sysfail ′ =⇒
([∀ o ∈ OC , o 6= nil :

(o.status = dormant ∧ o.status ′ = executing) =⇒ justcreated = o]
∨ justcreated = nil))

and s.t. for each other observer variable the first component gets the value
false if the observer variable is not “assigned” to in a step. �

Note that in the above definition we chose to consider triggered operation
calls as synchronous and observe only the call and picking up the result, although
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they are actually asynchronous since a call can soonest be accepted one step after
the call. It is still to be assessed whether it is a better choice to consider triggered
operation calls as asynchronous (in the sense of LSCs).

The following definition builds the predicates characterising message sending
and reception from a system extended with observer variables and thereby defines
the semantics of LSCs for UML.

Definition 12 (Satisfaction of an LSC for UML).
Let M = (T,F,Sig, <, C, croot, A) be a UML model, and So = (Bo, Θ o, ρ o) the
observer extension of its semantics. Let L be an LSC over M , Φ (L) the LTL
formula representation of L and M a structure of Bo.
The UML model M satisfies the LSC L wrt. M, M |=M L, iff STS(M) |=M L
where Φ ′ (L) is obtained as follows:

(i) For an event ev ∈ Sig, o1, o2 ∈ OC , and expressions expr1, . . . , exprN , N = 0
or N = n, we set:

send(ev, o1, o2, . . . ) ≡ df

∨
ev≤ êv

justsend = (true, êv, o1, o2, . . . ),

receive(ev, o1, o2, . . . ) ≡ df

∨
ev≤ êv

justrecv = (true, êv, nil, o2, . . . ).

If send resp. receive do not refer to expressions, then the parameter values
of justsend resp. justrecv are not considered. Otherwise the i-th parameter
value of justsend resp. justrecv is to be compared with the i-th parameter
expression of send resp. receive.

(ii) For a triggered operation, creation, or destruction,
op ∈ c.ops ∪ {createc, destroy}, c ∈ C, o1, o2 ∈ OC , we set:

send(op, o1, o2, . . . ) ≡ df receive(op, o1, o2, . . . )
≡ df justcall = (true, op, o1, o2, . . . ).

Parameter expressions in send resp. receive are treated as explained above.
Creation and destruction don’t have parameters.

(iii) For a reply op = replyτ , o1, o2 ∈ OC we set:

send(op, o1, o2, . . . ) ≡ df receive(op, o1, o2) ≡ df justret = (true, op, o1, o2, . . . ).

The optional parameter expression in send resp. receive is treated as ex-
plained above.

(iv) Each occurence of justcreated(i) is replaced by

justcreated = m(i).

(v) And or each oi whose instance line does not begin with a creation, the acti-
vation condition is conjoined with

oi.status ∈ {idle, executing, suspended},

to require that the object denoted by oi is alive at the time of activation. �
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4 Query Reduction

Consider the LSC specification of the ARCS system [13] depicted in figure 2
(for brevity we don’t present the UML-model of the ARCS , but only implicitly
introduce the classes relevant for our discussion; for details the reader is referred
to the description in [13]).

By the LSC semantics of Section 3 it can be checked whether the system
satisfies the specification by checking all concrete bindings of Car and Terminal
objects to instance lines. But intuitively, it should be sufficient to check a single
concrete binding for the Car identity car0 since if the instance with this identity
always behaves as required, then every Car behaves like that, since they are all
instances of the same class with the same behaviour. The reason is that new
objects are chosen non-deterministically at creation time, thus if an object car1

would violate the specification in a run of the system, then there existed a run
which choses car0 instead of car1 at creation time and thus there existed a run
where car0 violates the property, too.

In the following, we provide a formal basis for the just outlined intuition in
full generality referring to the work of Ip and Dill [18] and McMillan [34] in
Sections 4.1–4.3. In Section 4.4 we demonstrate the application of these results
to the UML domain and in particular the example of figure 2.

Terminal

EntryExit

CarHandler

Car

|=?

car:Car

arrivReq

RIP

arrivAck

term:Terminal

hnd:CarHandler

car.alert100(term)AC:

hnd.itsCar == car

Fig. 2. LSC over ARCS : Whenever car (an instance of class Car) is 100 units ahead
of a Terminal term, then it starts the entering protocol by sending an arrivReq event to
term whose identity it obtained from one of its sensors.
The terminal then creates an instance of a class CarHandler which subsequently man-
ages the whole entering and leaving procedure, i.e. it reserves and frees platforms and
exits within term and sets the switches.
Once the car-handler obtained a platform and set the switch, it sends an arrivAck event
back to the car which then enters the terminal. The car stores the identity of the send-
ing car-handler for the further communication.
When the car is about to leave the terminal, it sends another request to its car-handler
which sends back a granting event once the switches of the desired exit are set and free
(not shown in the LSC).
After having left the terminal, car sends an event RIP to its CarHandler which causes
hnd to free the reserved platform and exit and finally to destroy itself.
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4.1 Introduction

By a result of [34], queries over quantified variables of a “symmetric” or scalar-
set [18] type are implied by a finite set of representative cases.

If the representative cases are proven separately, there is not only an antic-
ipated benefit from the smaller size of the formulae compared to the original
quantification. The representative formulae are also more specialised than the
original in that they refer to only a concrete binding of the quantified variables,
thus standard model-reduction techniques like cone-of-influence reduction [2] can
be applied more effectively.

Hence the reduction is at first not at all a model reduction – which would also
be possible based on symmetric types by building the quotient of the transition
relation wrt. the equivalence relation induced on the snapshots by symmetry [18,
10, 1, 19] as discussed in the introduction in Section 1 – but only a decomposition
of formulae s.t. standard model-reduction techniques yield better results. The
split into seperate tasks for the representative formulae may yet render proofs
feasible, for which proving the whole property is not possible due to space or
time complexity. be feasible.

The quotient graph approach to symmetry-based model-reduction is in gen-
eral not applicable for LSCs since it applies only to a subset of LTL [10] which
is not expressive enough for LSCs.

In this section we first introduce the general theory for special LTL formulae
over STSs and then demonstrate that the semantics of LSCs for a UML model
according to Def. 12 is a formula of the form the theory applies to.

The remainder of this section is structured as follows. In Section 4.2 we
briefly provide the concept of automorphisms and the observation of [18] that
permutations on a certain type – called scalarset – induce automorphisms on
the state-space, thus allow to infer properties of the shape of the state-space.
Section 4.3 concludes that LTL formulae which are quantifications over scalarset
types can be proven by considering only a finite, representative set, yielding
the general theory of query reduction. Section 4.4 demonstrates LSCs in the
interpretation of Section 3 over the STS-semantics of UML [7] as a prominent
application domain for these results.

4.2 Permutations and Automorphisms

Definition 13 (Permutation and Automorphism). Let A be a finite set.
A bijection π : A → A is called permutation on A. The set of all permutations
on A is called Sym(A).

Let S = (B, Θ , ρ ) be an STS and M a structure of B. A permutation π ∈
Sym(Σ ) is called an automorphism of S iff

(i) ∀ s ∈ Σ : M[[Θ ]](s) =⇒ M[[Θ ]](π (s))

(ii) ∀ s, s′ ∈ Σ : M[[ρ ]](s, s ′ ) =⇒ M[[ρ ]](π (s), π (s′ )) �
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A central ingredient for the theory of query-reduction is the following notion
of a relation between a permutation on the domain of an STS’s system variable’s
type and the STS’s state-space.

Definition 14 (Induced Permutation). Let B = (V, Ω ) be a signature and
M a structure of B. Let S = (B, Θ , ρ ) be an STS. A permutation π : Dτ s → Dτ s

on the domain of type τs induces the permutation π̃ ∈ Sym(Σ ) defined inductively
pointwise for each snapshot s ∈ Σ of STS by

• M[[v]](π̃ (s)) = π̂ (M[[v]](s)),
• M[[a[expr]]](π̃ (s)) = π̂ (M[[a]](s)(M[[expr]](π̃ (s)))),
• M[[expr.x]](π̃ (s)) = π̂ (M[[expr]](s).x),
• M[[expr0.a[expr1]]](π̃ (s)) = π̂ (M[[expr0.a]](s)(M[[expr1]](π̃ (s)))),
• M[[expr]](π̃ (s)) = M[[expr]](s), otherwise,

where π̂ is π on Dτ s , π̂ |Dτ s
= π , and the identity otherwise, π̂ |{Dτ s

= id. �

In the following we are in particular interested in so called scalarset types,
i.e. types s.t. every permutation on their domain induces an automorphism.

Note that [18] use the term scalarset for a type which obeys the set of syn-
tactical rules given in Lemma 1 below, but the rules are sufficient but obviously
not necessary criteria for scalarsets in the sense of the following definition:

Definition 15 (Scalarset). A type τ with at most one special element nil ∈ Dτ

is called scalarset iff for every permutation π ∈ Sym(Dτ ) with π (nil) = nil the
induced permutation π̃ ∈ Sym(Σ ) is an automorphism. �

In the following, we simply translate the results of [18] for abstract transition
programs – that a particular set of syntactic criteria is sufficient for the scalarset
property – into the domain of STSs:

Lemma 1 (Automorphism). Let S = (B, Θ , ρ ) be an STS, τ a type of vari-
ables in B. The type τ is a scalarset if the predicates Θ and ρ obey the following
syntactical rules [18]:

S1 Scalarset values are not used literally, except for the special element nil.
S2 Scalarset terms may be compared for equality. In a comparison, both sides

must be terms of exactly the same scalarset type.
S3 If the left hand side of an assignment is of scalarset type, then the right hand

side must be of exactly the same type.
S4 A scalarset type τs may be used as the index-type of arrays. Such arrays are

only indexed by terms of type τs.
S5 A variable of scalarset type τs may be used as the running index of a for-loop

if the body of the loop is independent from the order of the iterations.
S6 Other operations are not allowed, in particular may scalarsets not be used as

operands of “+” or “casted” into an integer type. �
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Proof. Analogous to [18]. ut

The following Lemma 2 states that the truth-value of a property over scalar-
set constants oi in a π -permuted interpretation and evaluated in snapshot π (s)
can be obtained by evaluating the property in the original interpretation and
original snapshot s.

Lemma 2 (Substitution). Let B = (V, Ω ) be a signature with o1, . . . , on ∈ Ω ,
n ∈ IN0, 0-ary constants of scalarset type τs. Let φ ∈ ExprPL(B) be an expression
over B.
Let o1i , o2i ∈ Dτ s \ {nil} for 1 ≤ i ≤ n. Let M1 = (D1, I1) be a structure of B
with I1(oi) = o1i and M2 = (D2, I2) a structure of B with I2(oi) = o2i , and
I1(f) = I2(f), f ∈ Ω , otherwise. Set

π = {o1i 7→ o2i , o2i 7→ o1i | 1 ≤ i ≤ n} ∈ Sym(Dτ s)

and let s ∈ Σ be a valuation of V. If φ obeys the scalarset rules (S1)–(S6), then

M1[[φ ]](s) = M2[[φ ]](π̃ (s)). �

Proof. (By induction over the structure of φ .)
Since φ obeys the scalarset rules, a constant oi, 1 ≤ i ≤ n, can without loss of
generality only appear in in the following places:

• Comparison against another constant:
φ ≡ oi = oj :

M1[[φ ]](s) = M1[[oi = oj ]](s) = eq(o1i , o1j )
!= eq(o2i , o2j ) = M2[[oi = oj ]](π̃ (s)) = M2[[φ ]](π̃ (s)),

since o1i = o1j ⇐ ⇒ o2i = o2j and o1i 6= o1j ⇐ ⇒ o2i 6= o2j by definition of
π .

• Comparison against a variable x of type τs:
φ ≡ x = oi:

M1[[φ ]](s) = M1[[x = oi]](s) = eq(s(x), o1i )
!= eq(π (s(x)), o2i ) =

Def.14
M2[[x = oi]](π̃ (s)) = M2[[φ ]](π̃ (s)),

since s(x) = o1i ⇐ ⇒ π (s(x)) = o2i and s(x) 6= o1i ⇐ ⇒ π (s(x)) 6= o2i by
definition of π .

• Array index and comparison against indexed value:
φ ≡ a[oi] = oj :

M1[[φ ]](s) = eq(s(a)(o1i), o1j )
!= eq(π (s(a)(o1i )), o2j )) = eq(π (s(a)(π (o2i ))), o2j )
=

Def.14
M2[[a[oi] = oj ]](π̃ (s)) = M2[[φ ]](π̃ (s)),

since π (s(a)(s(o1i ))) = o2j iff s(a)(o1i) = o1j by definition of π .
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• Comparison against structure component of type τs:
φ ≡ expr.x = oi:

M1[[φ ]](s) = eq(M1[[expr]](s).x, o1i )
!= eq(π (M1[[expr]](s).x), o2i )

=
ind.

eq(π (M2[[expr]](π̃ (s)).x), o2i ) =
Def.14

M2[[expr.x = oi]](π̃ (s))

= M2[[φ ]](π̃ (s)),

since π (M1[[expr]](s).x) = o2i iff M1[[expr]](s).x = o1i by definition of π .

• Comparison against a general array expression of type τs:
φ ≡ expr0.a[expr1] = oi:

M1[[φ ]](s) = eq(M1[[expr0.a[expr1]]](s), o1i)
!= eq(π (M1[[expr0.a[expr1]]](s)), o2i )
= eq(π (M1[[expr0.a]](s)(M1[[expr1]](s))), o2i )
=

ind.
eq(π (M2[[expr0.a]](π̃ (s))(M2[[expr1]](π̃ (s)))), o2i )

=
Def.14

M2[[expr0.a[expr1] = oi]](π̃ (s)) = M2[[φ ]](π̃ (s))

by definition of π . ut

4.3 Query Reduction

If a quantified property uses only a single quantification constant of scalarset
type τs, then it is sufficient to prove one particular binding. But if there are two
quantification constants in the property, we need at least two concrete bindings:
one which represents all bindings which bind the same value to both constants
and one which represents the bindings with different values.

Def. 16 introduces the concept of a representative set and Lemma 3 claims
that a finite representative set exists for every finite property over a scalarset
type.

Definition 16 (Representative Set).
Let τs be a scalarset-type. A set R ⊂ (Dτ s \{nil})n, n ≥ 1, is called representative
set for τ n

s iff

∀ (o1, . . . , on) ∈ Dn
τ s
∃ r0 = (o01 , . . . , o0n) ∈ R, π ∈ Sym(τs) :

(π (o01 ), . . . , π (o0n)) = (o1, . . . , on).

R is called minimal representative set if all proper subsets R ′ ( R are not
representative. �

Lemma 3 (Representative Set). Let τs be a scalarset-type and n ≥ 1. Then
there exists a finite representative set R for τ n

s . �

Proof. Choose o1, . . . , on ∈ Dτ s \ nil pairwise different.
Set R = {o1} × {o1, o2} × · · · × {o1, . . . , on}. ut
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Note that the R constructed in Lemma 3 is in general not minimal, since e.g.
(o1, o1, o2) and (o1, o1, o3) are equivalent in case of n = 3 but both are in R.

Lemma 4 (Query Reduction). Let φ be an LTL expression over signature
B = (VB , Ω B) with 0-ary constants o1, . . . , on ∈ Ω B , n ∈ IN0, of type τs, and
0-ary constants x1, . . . , xm ∈ Ω B , m ∈ IN0, not of type τs. Let S = ((V, Ω ), Θ , ρ )
be an STS with V = VB and Ω B \ {oi, xj | 1 ≤ i ≤ n, 1 ≤ j ≤ m} ⊆ Ω . Let M
be a structure of B. If R is a representative set for τ n

s then

( ∀ (o01 , . . . , o0n) ∈ R

∀ x01 ∈ Dtype(x1), . . . , x0m ∈ Dtype(xm) : S |=M′ ,q φ )
(1)

⇐ ⇒ ( ∀ o01 ∈ Dtype(o1), . . . , o0n ∈ Dtype(on)

∀ x01 ∈ Dtype(x1), . . . , x0m ∈ Dtype(xm) : S |=M ′ ,q φ ).
(2)

for q ∈ {∃ ; ∃ , 0; ∀ ; ∀ , 0} and M ′ constructed as in Def. 12. �

Proof. Let q = ∃ .
In order to prove direction (1) =⇒ (2), choose o′1, . . . , o

′
n ∈ Dτ s . Since R is

representative, there exists (or1 , . . . , orn) ∈ R and π ∈ Sym(τs) s.t. o′i = π (ori).
By premise, S |=M′ ,q φ , where M ′ = M ∪ {oi 7→ ori | 1 ≤ i ≤ n}, i.e. ∃ r ∈
runs(S) ∃ i ∈ IN : r/i |=M′ ,q φ .
Set rπ = π (r(0)) π (r(1)) . . . and M ′′ = M ∪ {oi 7→ o′i | 1 ≤ i ≤ n}. Then
rπ ∈ runs(S) by Lemma 1 and rπ /i |=M ′′ ,q φ by induction over the structure of
φ :

• φ ≡ expr: M ′′ [[φ ]](rπ (i)) =
Lem.2

M ′ [[φ ]](r(i)) = true by premise.

• φ ≡ f ∨ g: Then r |=M′ ,q f or r |=M ′ ,q g.
Thus by induction hypothesis rπ |=M′′ ,q f or rπ |=M ′′ ,q g.

• φ ≡ ¬f : analogously to the previous case.
• φ ≡ X f : Then r/i + 1 |=M′ ,q f , thus rπ /i + 1 |=M ′′ ,q f by induction

hypothesis.
• φ ≡ G f : Then for all j ≥ i, r/j |=M′ ,q f , thus also rπ /j |=M′′ ,q f by

induction hypothesis.
• φ ≡ f U g: Then exists k ≥ i s.t. r/k |=M′ ,q g, thus also rπ /k |=M′′ ,q g by

induction hypothesis. For all i ≤ j < k, r/j |=M′ ,q f thus also rπ /j |=M ′′ ,q f
by induction hypothesis.

The case q = ∃ , 0 is obtained analogous, the cases q = ∀ and q = ∀ , 0 similar by
contradiction. The direction (2) =⇒ (1) holds trivially. u t

4.4 Verifying LSCs against UML Models

The basis for query reduction in the domain of UML is the following observa-
tion that in the UML semantics of [7] the object reference types Oc are in fact
scalarset types:
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Lemma 5 (Scalarsets in UML).
Let M = (T,F,Sig, <, C, croot, A) be a UML-Model and STS(M) = (B, Θ , ρ ) its
semantics according to [7].

(i) All object reference types Tc, c ∈ C are scalarsets with special element nil.
(ii) For all unordered association ends a, the index type τa is a scalarset without

special element.
(iii) For all unordered behavioral features f , the index type τf is a scalarset with-

out special element. �

The proof of 5.(i) is by syntactically checking Θ and ρ against the rules
(S1)–(S6).3 The proof of 5.(ii) and (iii) cannot be obtained as directly since
iterators over associations and behavioural features are not present in Θ and
ρ because iteration is supposed to take multiple steps of the transition system
in the semantics. Although, they are visible on a higher language level, thus
the property of rule (S5) has to be checked on this higher level and then to be
preserved by the preprocessing steps of [7].

According to Section 3, the semantics of an LSC wrt. a UML model is an LTL
formula quantified over constants of types Oc, hence Lemma 4 directly applies.

A representative set may be obtained as demonstrated in the proof of Lem-
ma 3. By taking into account the activation condition, some of the representative
cases may already be found to trivially fulfil the requirement. For example if
the specification contains two instances of the same type which the activation
condition requires to be different at activation time.

From a technical point of view, all verifications of representative cases form
completely independent tasks thus may be carried out fully parallel thus allow
for further reductions of completion time for the whole task.

Back to the example from the beginning of the section, we find that we refer
to only one instance of classes Car, Terminal, and CarHandler in the LSC, thus
the set

R =df {(Car, 0), (Terminal, 0), (CarHandler, 0)} ⊂ C × IN0

is a (minimal) representative set (assuming (c, 0) 6= nilc for classes c ∈ C). Thus
it is sufficient to verify only this single case of concrete bindings (see figure 3).

5 Model Abstraction by Data-Type-Reduction

As suggested by figure 3, there is a priori no model reduction due to the ap-
plication of query reduction. Unfortunately, the standard technique of cone-
of-influence reduction may not work well for UML models due to the indirect
3 The typing in the presentation of [7] and even in Section 3 is actually too weak

to fulfil the syntactical criteria “as is”: for brevity both refer to OC which is the
union of all object reference types. It is straightforward to obtain a representation
which separates the object reference types s.t. we can obtain their scalarset property
directly by syntactical criteria.
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Fig. 3. Query Reduction: The focus is on only the single Car 0, Terminal 0, and
CarHandler 0. The model itself is a priori not reduced.

addressing of array places. Thus intuitively, we want to refer to “all other cars”
by a single object reference (Car, ⊥ ) and over-approximate “their” behaviour.

It is obviously not sufficient to only change the unbounded array to a width
of two in the example s.t. (Car, ⊥ ) denotes the second entry whose values are
freed, i.e. may take all possible values during a run, since an expression may
refer to two “other cars” at once, for example p.speed + q.speed would always
yield the even value 2 · p.speed if p and q refer to “an other car”, which is not
necessarily the case in the original implementation where p and q might refer to
different other cars.

An abstraction technique, which yields the desired result, is the data-type
reduction introduced by McMillan [34]. It can be made explicit by a syntactical
transformation of the system description which modifies the “places” of objects
referring to an other object in the sense that every reference which possibly reads
a value of an other object is modified. For the above example expression it would
yield

(p = ⊥ ? guess1(τ ) : p.speed) + (q = ⊥ ? guess2(τ ) : q.speed)

where τ is the type of attribute speed and ‘guessi’ are new free variables (unre-
stricted system inputs) of type τ .

This expression can evaluate to every possible value allowed by the typing of
attribute speed, thus it over-approximates the valuations observed in the original
model.

The following definitions of section 5.1 introduce the notion of data-type re-
duction and how the initial snapshot and transition predicate have to be changed
to implement a data-type reduction. Lemma 6 claims, based on the notion of a
projection, that for every predicate holding in a snapshot of the original system
there exists a snapshot of the abstracted system in which the predicate holds.

In section 5.2 we show that the data-type reduced system simulates the orig-
inal system and thus is in fact an over-approximation of the original system.
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5.1 Data-Type-Reduction

Definition 17 (Data-type reduction). Let τs be a scalarset type. A subset
dtr(τs) ⊆ Dτ s of its domain is called a data-type reduction (DTR) on τs.

Let t = {T | T type} ⊇ {τs} be a set of types. The data-type reduction dtr induces
a data-type reduction d on the domains of the (structured) types constructed
from t inductively as follows:

(i) If τ ∈ t is an unstructured type,
then d(Dτ ) = dtr(τs) ∪ {⊥ }, if τ = τs, and d(Dτ ) = Dτ otherwise.

(ii) If τ = τ1 × · · · × τn is a record type, then d(Dτ ) = d(Dτ 1)× · · · × d(Dτ n).
(iii) If τ = τ1 → τ2 is an array type, then d(Dτ ) = d(Dτ 1) → d(Dτ 2). �

If multiple data-type reductions are applied, multiple distinct symbols ⊥
representing “all other values”, one for each type, have to be introduced. In the
following it is clear by context, of which type ⊥ is.

The following definition describes how we obtain a “data-type reduced ex-
pression” which implements the over-approximation as a prerequisite for data-
type reduction of STSs.

Definition 18 (Data-type reduction for Expressions). Let ‘expr’ be a
FOL expression over signature B. The data-type reduced expression d(expr)
(or exprd) over Bd (as defined below) is obtained from ‘expr’ by applying the
following syntactical transformations:

(i) Indexing an array a with scalarset index-type τs at index ‘expr’ not on the left
hand side of an “assignment” is changed s.t. it yields non-deterministically
a value from the component-type T of a if the index expression has value ⊥ :

a[expr] (expr = ⊥ ? guess(T ) :a[expr]),

Every guess(T ) stands for a fresh system variable g ∈ Vd \ V which is not
restricted by Θ or ρ and thus for each snapshot s and each value x ∈ T
there exists a snapshot s′ which coincides with s on all other variables and
evaluates guess(T ) to x.
We set exprg ≡ df a[expr], i.e. exprg denotes the expression g was introduced
for.

(ii) Two transformed expressions expr1, expr2 of the data-type reduced scalarset
type τs which are compared for equality are changed s.t. the comparison yields
a non-deterministic truth-value if both expressions have value ⊥ :

expr1 = expr2  (expr1 = expr2 = ⊥ ? guess(IB) : expr1 = expr2).

Set exprg ≡ df expr1 = expr2.
(iii) Indexing an array a with scalarset index-type τs at index expr1 on the left

hand side of an “assignment” (cf. [7]) is changed s.t. it is considered only if
the index expression does not have value ⊥ :

a[expr1]sel
′ := expr2  (expr1 6= ⊥ =⇒ a[expr1]sel

′ := expr2)
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Here ‘sel’ denotes a possibly empty selection if the values of a are again of
a structured type.

The signature Bd is
Bd = (Vd , Ω d) = (V ∪ G, Ω )

where v ∈ Vd is associated with domain d(Dtype(v)). The set G denotes all fresh
system variables introduced into exprd above. �

Note that in the general case of Def. 20, a value from the component domain
of an array is “guessed” which might be a large structure like in the UML
semantics. If parts of the structure are subsequently selected in the expression,
a trivial optimisation consists of “guessing” only a value of the selected part’s
type.

Furthermore, there need not be an actual storage-place for the ⊥ -th entry of
a data-type reduced array a. If there would be an actual place addressed by ⊥ ,
then its value would never be visible in any expression, since every expression
using a is changed according to rule (i) which does not actually read a[⊥ ] but
provides that any value can be taken.

The following Lemma 6 states, based on the notion of a projection from
Def. 19, that the data-type reduced expression can evaluate to every value ob-
servable for the original expression if the valuation is chosen appropriately. This
is the main building block for the claim of Section 5.2, that the data-type reduced
STS simulates the original one.

Definition 19 (Projection). Let B = (V, Ω ) be a signature, dtr(τs) a data-
type reduction on the scalarset type τs, and s ∈ Σ a valuation of the variables in
V.
The projection of s onto d, π d(s), is defined inductively as follows:

(i) If v ∈ V is a variable of basic type T , then

π d(s)(v) =

{
s(v) , if s(v) ∈ d or T 6= τs

⊥ , otherwise

(ii) If v ∈ V is a variable of record type T1 × · · · × Tn and s(v) = (x1, . . . , xn)
then π d(s)(v) = (π d(s)(x1), . . . , π d(s)(xn)).

(iii) If v ∈ V is a variable of array type T1 → T2 and s(v)(i) = x, i ∈ T1 then
π d(s(v))(i) = π d(x). �

Lemma 6 (Satifiability). Let B = (V, Ω ) be a signature, d a data-type reduc-
tion on the scalarset type τs, M a structure of B, and s a valuation of variables
in V. Let ‘expr’ be a predicate-logic expression over B which obeys the scalarset
rules (S1)–(S6).
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Let Vd and exprd be the result of the operations of Def. 18 applied. Let the val-
uation s̄ of variables in Vd be defined pointwise as follows:

s̄(v) =

{
π d(s(v)) , if v ∈ V

π d(M[[exprg ]](s)) , if v = g ∈ G

Then M[[expr]](s) = M[[exprd ]](s̄). �

Proof. (By induction over the structure of expr.)
Let s be a valuation of variables in V. The data-type reduction affects only the
following cases:

• expr ≡ a[expr1], with expr1 an expression of type τs and a with components
of boolean type:
Then expr has been changed to

exprd ≡ (expr1 = ⊥ ? guess(IB) : a[expr1]).

where guess(IB) denotes a variable g ∈ Vd , thus

M[[exprd ]](s̄) = M[[(expr1 = ⊥ ? g : a[expr1])]](s̄)
= I(? :)(M[[expr1]](s̄) = ⊥ , s̄(g),M[[a[expr1]]](s̄))
= M[[a[expr1]]](s).

since M[[expr1]](s̄) = ⊥ implies s̄(g) = M[[a[expr1]]](s) by construction of s̄.
Analogously for structured array values from which a component of boolean
type is selected.

• expr ≡ expr1 = expr2, both expr1, expr2 of type τs:
Then expr has been changed to

exprd ≡ (expr1 = expr2 = ⊥ ? guess(IB) : expr1 = expr2).

where guess(IB) denotes a variable g ∈ Vd , thus

M[[exprd ]](s̄) = M[[(expr1 = expr2 = ⊥ ? g : expr1 = expr2)]](s̄)
ut= M[[expr1 = expr2]](s).

5.2 Simulation

Given an STS over a signature with a scalarset type, the data-type reduced STS
is obtained as follows:

Definition 20 (Data-type reduced STS). Let S = (B, Θ , ρ ) be an STS. The
data-type reduced STS is

d(S) =df Sd =df (Bd , Θ d , ρ d)

where Bd , Θ d , and ρ d are obtained from Θ and ρ by applying the transformations
of Def. 18. �
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The following lemma claims, that the data-type reduced system is in fact a
simulation of the original system in the sense of Def. 21 below, i.e. for every run
in the original system there is a related run in the abstract system.

Definition 21 (Simulation). Let S1 = (B1, Θ 1, ρ 1) and S2 = (B2, Θ 2, ρ 2) be
STSs, M1 and M2 structures of their signatures, and Σ 1 and Σ 2 the sets of
their snapshots.
We say S1 simulates S2, S1  S2, iff there exists a relation % ⊆ Σ 1 × Σ 2 s.t.

(i) ∀ s2 ∈ Σ 2 : M2[[Θ 2]](s2) =⇒ ∃ s1 ∈ Σ 1 : M1[[Θ 1]](s1) ∧ (s1, s2) ∈ %

(ii) ∀ (s1, s2) ∈ % ∀ s′2 ∈ Σ 2 :

M2[[ρ 2]](s2, s
′
2) =⇒ ∃ s ′1 ∈ Σ 1 : M1[[ρ 1]](s1, s

′
1) ∧ (s ′1, s

′
2) ∈ %

The relation % is called simulation relation. �

Lemma 7 (DTR Simulation). Let S = (B, Θ , ρ ) be an STS and d a data-
type reduction on the scalarset type τs and Sd the data-type reduced STS. Let M
be a structure of S and Sd. Then Sd  S. �

Proof. Define % ⊆ Σ × Σ d for snapshots s, s ′ s.t. s ′ is the projection of s onto
d for variables in B and assigns the value M[[exprg ]](s) to every variable g ∈ G
introduced during construction of Sd as in Lemma 6:

% =df {(s, s̄) | s ∈ Σ }.

% is a simulation relation:

(i) Let s2 ∈ Σ s.t. M[[Θ ]](s2) = true.
Choose s1 = s̄2 as in Lemma 6. Then (s1, s2) ∈ % and M[[Θ d ]](s1) = true by
Lemma 6, since Θ d is obtained from the boolean expression Θ by applying
the transformations of Def. 20.

(ii) Let (s1, s2) ∈ % and s ′2 ∈ Σ s.t. M[[ρ ]](s2, s
′
2) = true. Choose s ′1 = s̄ ′2 as in

Lemma 6. Then (s1, s2) ∈ % and M[[ρ d ]](s1, s
′
1) = true by Lemma 6. ut

Putting it all together, the following Lemma shows that the relation chosen
in the proof of Lemma 7 provides us with the snapshots required as premise of
Lemma 6, hence yielding the desired result for LTL formulae.

Lemma 8 (Data-Type Reduction). Let S = (B, Θ , ρ ) be an STS and dtr(τs)
a data-type reduction on the scalarset type τs and Sd the data-type reduced STS.
Let M be a structure of S and Sd . Let φ be an LTL formula wrt. S which obeys
the scalarset rules (S1)–(S6) and where no subterm except for oi is of scalarset
type τs. Then

Sd |=M, ∀ (,0) φ =⇒ S |=M, ∀ (,0) φ and S |=M, ∃ (,0) φ =⇒ Sd |=M, ∃ (,0) φ . �

Proof. (By contraposition.)
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(i) Let S 6|=M, ∀ φ , i.e. ∃ r ∈ runs(S) ∃ i ∈ IN : r/i 6|=M φ . By (the proof of)
Lemma 7 exists a run rd ∈ runs(Sd) s.t. ∀ i ∈ IN : rd(i) = ¯r(i).
Then Sd 6|=M, ∀ φ follows by induction over the structure of φ :
• φ ≡ expr:

Then M[[expr]](r(i)) = false. By Lemma 6, M[[expr]](rd(i)) = false, thus
rd/i 6|=M φ .

• φ ≡ f ∨ g: Then r/i 6|=M f and r/i 6|=M g.
By induction hypothesis, rd/i 6|=M f and rd/i 6|=M g.

• φ ≡ ¬f : Then r/i |=M f . By induction hypothesis rd/i |=M f .
• φ ≡ X f : Then r/i + 1 6|=M f . By induction hypothesis rd/i + 1 6|=M f .
• φ ≡ G f : Then ∃ j ∈ IN0 : r/i + j 6|=M f .

By induction hypothesis rd/i + j 6|=M f , thus rd/i 6|=M φ .
• φ ≡ f U g: Differentiate between two cases:

a) ∀ j ∈ IN0 : r/i + j 6|=M g. Then by induction hypothesis ∀ j ∈ IN0 :
rd/i + j 6|=M g, thus rd/i 6|=M φ .

b) For every j ∈ IN0 s.t. r/i+ j |=M g, exists 0 ≤ k < j s.t. r/i+k 6|=M
f . Let j ′ ∈ IN0 s.t. rd/i + j ′ |=M g. Then by induction hypothesis
exists k ′ < j ′ s.t. rd/i + k ′ 6|=M f , thus rd/i 6|=M φ .

Similar for |=M, ∀ ,0.
(ii) The cases |=M, ∃ and |=M, ∃ ,0 are obtained directly by construction of Sd and

Lemma 6. ut
The requirement on φ is not as strong as it seems since a boolean expression

with a subterm expr0 of type τs can easily be integrated into the model as an
auxiliary (or observer) variable, i.e. a boolean variable which is assigned the
value of expr0. Then φ references the auxiliary variable instead of expr0. Within
the model, expr0 undergoes the changes of Def. 18.

Note that for formal verification, only the former implication of Lemma 8
is of practical relevance: if we are able to prove the property for the abstract
system, then it holds in the original system. But if we are seeking for an example
run, there is no guarantee that a run found in the abstract system is also a run
of the concrete system.

5.3 Parameterised Designs

A direct corollary of the previous Section 5.2 is the following [34]:

Corollary 1. Let S = (B, Θ , ρ ) be an STS and dtr(τs) a data-type reduction on
the scalarset type τs and Sd the data-type reduced STS. Let φ be an LTL formula
over B which obeys the scalarset rules (S1)–(S6). Then

Sd |= ∀ (,0) φ =⇒ ∀ d′ ⊇ d : Sd ′ |= ∀ (,0) φ �

That is, if it can be proven that a property φ holds for some data-type
reduced system, then it holds for every larger system. This re-formulation of
Lemma 8 is in particular relevant for parameterised systems like the ARCS ,
which is parameterised in the number of terminals, platforms per terminal, and
cars.
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5.4 Data-type reduction for UML

In the domain of LSC verification for UML, data-type reduction is applied de-
pending on the specification analogous to the methodology proposed by McMil-
lan [34]:

For an LSC with instance lines annotated by N different types, we apply
N (orthogonal) data-type reductions as follows. Let ik1 , . . . , ikn , 1 ≤ k ≤ N ,
be the chosen concrete objects of type Ock

and dk = {ok1 , . . . , okn} a data-
type reduction. Then Sk =df dk(Sk−1), where S0 =df S. The overall data-type
reduced system is d(S) =df SN .

This yields a very coarse abstraction. For example in the ARCS , a specifi-
cation which requires that two cars don’t collide may refer to only two concrete
objects at first: two cars.

Since the position of a car depends on its speed which is measured by its
cruiser, there will be a false-negative if all cruiser objects are abstracted accord-
ing to the heuristic data-type reduction.

An iteration of the specification would introduce a cruiser instance for every
car relating them in the activation condition but not showing any communication
between cars and cruisers.4 Then the heuristics would yield a system with as
much concrete cruisers as needed for the cars s.t. the property might hold unless
there are further iterations necessary.

Another main source of false-negatives, so called interference, is discussed in
Section 6.

For the running example, we would apply the data-type-reductions,

dtr(Car) =df {(Car, 0)}, dtr(Terminal) =df {(Terminal, 0)},
dtr(CarHandler) =df {(CarHandler, 0)},

and yield a system as illustrated by figure 4.

CarHandler

Car 1

Terminal 1

"other Terminal"
"other CarHandler"

"other Car"

Terminal

Car

CarHandler

0

0

0

. . .

. . .

. . .

. . .

statusstatus exeexe

10 itsCarspeed

Fig. 4. Data-type Reduction: In the reduced system, the Car with identity 0 can
distinguish only itself and “some other car” at the Terminal with identity 0 or at “some
other terminal”.

4 This is the LSC equivalent to case splitting in the methodology of McMillan [34].
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Note that actually drawing the objects with index ⊥ is kind of misleading
since there is in fact no place to store attribute values of the object with ⊥ .
But from the point of view of someone holding a reference to ⊥ , it is a valid
reference value and behaves in terms of types as expected, i.e. it offers the same
set of attributes as every object of this class. It just behaves “strange” in the
sense that reading the same attribute over the same, unchanged reference may
yield different values due to the introduced over-approximation.

To illustrate the effect of the abstraction on the observable dynamic be-
haviour, in the following we briefly “play through” event sending and operation
calls; the effect on expressions has already been discussed above.

Consider class Car in the ARCS which has an association to a CarHandler
(cf. figure 6). The CarHandler is created by a Terminal and its identity is then
passed over to the Car.

By executing the create action, the Terminal may get a reference to a concrete
object or to “an other CarHandler”, ⊥ CarHandler.

In the following, assume it got the ⊥ CarHandler, passed it to the Car and the
Car now sends an event to this CarHandler.

The event is entered into the event queue responsible for the CarHandler,
which is in fact guessed, s.t. the event may end up in any event queue. In the
event queue of a concrete active object, the event will move to the top of the
queue and thus become ready to be dispatched.

The changed transition predicate causes the current state of the destination
⊥ CarHandler to be guessed. Thus the event may be discarded or accepted. If the
choice is for acceptance, the corresponding active object notes ⊥ CarHandler as the
currently processing object and as long as the predicate stable(⊥ CarHandler) is not
evaluated to true, all possible actions of the state-machine of class CarHandler
may be executed [7].

Whenever during the execution of actions the associations and attributes
of “ ⊥ CarHandler” are evaluated, the value is in fact guessed, hence if there is a
transition which for example sends an event back to an object of class Car, then
the execution might choose any object of class Car in the system as destination
(cf. Sec. 6).

Analogously, when a Car calls a triggered operation of ⊥ CarHandler, the ob-
ject reference ⊥ CarHandler is entered into the Car ’s pending-request table as the
receiver.

The transformed transition predicate again allows to execute arbitrary tran-
sitions or becoming stable. The pending-request table entry is then changed to
‘completed ’ and the caller continues. If there is a reply action on a transition of
the callee, then the caller may find any possible value as the reply; otherwise the
default will remain.

Note that the “other callee” in particular needs not become stable, thus we
can observe any number of steps between the call of the triggered operation and
its completion.
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6 Interference and Non-Interference Lemmata

Terminal

Car

CarHandler

0

0 1

0 1

. . .
. . .

. . .

. . .
. . .

. . .

status

status

status exeexe

10 itsCar

itsCar

EvQueue

speed

eq

waitEnter

arrivAck/...

C

ArrivAck

Fig. 5. False negative: When checking the property “two Cars will not crash when
entering the Terminal since their CarHandlers set the switches safely”, the heuristics of
Section 5 yields the depicted system. “An other CarHandler” sending an event arrivAck
to the concrete Car awaiting this event could cause the Car to enter the terminal
although all platforms are already occupied.

The discussion of event sending at the end of the previous section already
named a typical reason for false-negatives: “an other CarHandler” may send an
event to a Car although it not the CarHandler known by the Car (cf. figure 5).

In the original system, only a single CarHandler actually knows a Car and
sends events only when appropriate.

6.1 Non-interference Lemmata

In his SMV-tutorial [32], K.L. McMillan demonstrates how to address this prob-
lem by so called non-interference lemmata.

A non-interference lemma is a property of the following general form:

“If some entity sends something to me, then it is allowed to do so”.

The lemma is verified in a separate proof and taken as an assumption in the
proof of the main property to rule out unwanted interferences.

In general, it might be necessary to explicitly introduce auxiliary variables
which keep track of “the ones” who are allowed to send.

But in UML models, a binary associations a with association ends e1, e2, each
of multiplicity 0..1 or 1, are often intended to be “bi-directional”5, i.e. the navi-
gation forth and back along the association yields the identity: self.e1.e2 = self.
If furthermore communication in the model is closely related to associations in

5 although this interpretation is (reasonably) not enforced by the UML 2.0 proposals.
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the sense that an event’s destination is always given in terms of an association,
and if the modeller provides annotations of all such associations with a set of sig-
nals, which are intended to be sent “along” this association, we can heuristically
derive the non-interference lemma: sending an event to e2 implies e2.e1 = self.

0,1
1

itsCar

itsCarHandler
CarHandler Car

Fig. 6. Class diagram: Relation between Car and CarHandler.

In the above example, there exists only the single association between class
Car and class CarHandler depicted in figure 6. Thus we would derive

∀ o0 ∈ OCarHandler ∀ o1 ∈ OCar :
justsend.snd = o0 ∧ justsend.dest = o1 =⇒ o0.itsCarHandler = o1

which has to be proven separately. Note that again all symmetry reduction and
abstraction techniques apply to this property.

7 Conclusion

We have provided a formal semantics for LSCs in the domain of UML in terms
of the STS semantics of [7] and shown that LSCs in our interpretation are a
prominent application domain for query-reduction, since UML models span an
inherently symmetric state-space and LSCs are interpreted as quantifications
over object identifiers, and provided yet missing proofs.

We formally described the abstraction technique of data-type reduction, dis-
cussed its advantages of an anticipated significant reduction of complexity and
the possibility to prove properties without the need to provide finite bounds on
the number of objects created during a run. The methodology applies in particu-
lar to parameterised systems. Its disadvantages comprise the extensive introduc-
tion of new free variables (inputs) and the introduction of false-negatives, which
are possibly avoidable by automatically deriving non-interference lemmata from
information in the UML model.
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