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Abstract

With the wide deployment of face recognition systems in

applications from border control to mobile device unlock-

ing, the combat of face spoofing attacks requires increased

attention; such attacks can be easily launched via printed

photos, video replays and 3D masks. We address the prob-

lem of facial spoofing detection against replay attacks based

on the analysis of aliasing in spoof face videos. The appli-

cation domain of interest is mobile phone unlock. We ana-

lyze the moiré pattern aliasing that commonly appears dur-

ing the recapture of video or photo replays on a screen in

different channels (R, G, B and grayscale) and regions (the

whole frame, detected face, and facial component between

the nose and chin). Multi-scale LBP and DSIFT features

are used to represent the characteristics of moiré patterns

that differentiate a replayed spoof face from a live face (face

present). Experimental results on Idiap replay-attack and

CASIA databases as well as a database collected in our lab-

oratory (RAFS), which is based on the MSU-FSD database,

shows that the proposed approach is very effective in face

spoof detection for both cross-database, and intra-database

testing scenarios.

1. Introduction

With the widespread use of smartphones, biometric sys-

tems, such as face and fingerprint recognition, are becom-

ing increasingly popular to use as an authentication method.

Two of the most popular mobile operating systems, An-

droid and iOS, use face and fingerprint, respectively to

authenticate users. With the release of Android 4.0 (Ice

Cream Sandwich), Android allows users to unlock their

smartphone via facial recognition (FR) technology; on all

iPhones released after the iPhone 5c, iOS allows users to

unlock their smartphone with their fingerprint (Touch ID).

As the use of biometrics for smartphone unlocking and user

authentication continues to increase, capabilities to detect

Figure 1. A face recognition (FR) with spoofing detection module.

Most FR systems either do not currently have this module or this

module does not perform effectively.

spoof biometric attacks are needed to alleviate user con-

cerns. Spoof biometric attacks launched against a smart-

phone’s authentication system may allow malicious users

to gain access to the smartphone. These attacks may lead

to dire consequences, including the leakage of sensitive pri-

vate data such as bank information via apps like Google

Wallet and Apple Pay.1

Given the prevalence of high resolution face images

shared, (often publicly) through social media, it is relatively

easy to obtain a spoof face of a user and launch a spoof

attack against FR systems (see Fig. 12). Compared to at-

tacks against fingerprint recognition systems, the ubiquitous

nature of image acquisition devices, such as cameras, and

smartphones, allows attackers to acquire facial images of a

user easily and discretely. Spoof attacks against FR systems

mainly consist of (i) printed photo attack, (ii) replay attack,

and (iii) 3D facial mask attack.

In this paper, we focus on video replay attacks (display

a video or photo on a screen) because these attacks are eas-

ier to launch than either printed photo attack or 3D facial

mask attack. Printed photo attacks require the use of high

quality 2D printers and 3D facial mask attacks require high

150% of McDonald’s tap-to-pay transactions are done with Apple

Pay: www.ubergizmo.com/2014/11/apple-pay-accounts-

for-50-of-mcdonalds-tap-to-pay-transactions/
2Images from: www.oulu.fi/infotech/annual_report/

2013/cmv
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Table 1. A summary of published methods on face spoof detection.

Method Strength Limitation Replay state of the art performance (HTER)†

Face image analysis

[4, 13, 11, 2, 6, 9]

Some of the methods have

low computational cost and

fast response

Poor generalizability,

Requires face and/or

landmark detection

Idiap (Intra-DB, Cross-DB)

(1.3% [4], 47.1% [14])

CASIA (Intra-DB, Cross-DB)

(11.8% [18], 48.3% [14])

Image quality analysis

[7], [Proposed]

Good generalizability,

Low computational cost,

Fast response time,

Face and/or landmark

detection not required

Some of the image quality

measures can be device

dependent

Idiap (Intra-DB, Cross-DB)

[7]: (15.2%, n/a)

Proposed: (3.3%, 18.0%)

CASIA (Intra-DB, Cross-DB)

Proposed: (0.0% , 49.0%)

RAFS (Intra-DB, Cross-DB)

Proposed: (10.9% , 11.4%)

†Half Total Error Rate = (False Acceptance Rate + False Rejection Rate)/2.

resolution fabrication capturing the 3D shape and texture in-

formation of the live user’s face. By contrast, replay video

attacks can be easily launched simply using a smartphone

to obtain a photograph or video of the target subject.

Each type of spoof attack requires a different strategy to

safe guard the system. Hence an input, face video/image

to a FR system should go through several modules (mix-

ture of experts), each one focusing on detecting a sin-

gle type of spoofing attack [8]. Additionally, most of the

published methods on face spoof detection are based on

databases (CASIA and Idiap, both released in 2012) in

which the spoof videos were captured using either low reso-

lution (USB camera) or very high-resolution (DLSR) cam-

eras [5, 13]. The CASIA and Idiap databases did not con-

sider mobile phone unlock scenario.

The contributions of this paper are as follows:

• Collection of a new face spoof database3 to replicate

the scenario of smartphones unlock (Nexus 5) by re-

playing face videos on a MacBook laptop.

• Use of moiré patterns for detecting replay attacks.

• Performance evaluation using different color channels.

• State of the art spoof detection performance for cross-

database testing scenarios.4

2. Related Work

2.1. Literature Review

We provide a short summary of published spoof detec-

tion methods and give a brief analysis of their results. Over

the years, a number of methods have been proposed for

face spoofing detection for print attacks [2, 11, 13] and for

replay-attacks [4, 6, 19]. Since our focus is on replay at-

tacks, we briefly review the published methods by grouping

them into two categories (Table 1): (i) methods based on

3Portions of the RAFS database (where subjects have given approval)

will be made available to interested researchers.
4Cross-database testing involves, training on database A and testing on

a database B, collected in a different setting from database A and with dif-

ferent subjects. This is in contrast to the easier, but, not realistic protocol of

intra-database testing where cross-validation is used on a specific database,

say A.

face analysis and (ii) methods based on image quality anal-

ysis.

Face spoofing detection methods based on face analy-

sis extract face-specific characteristics (physiological or be-

havioral) such as eye blink [13], lip or head movement [4],

texture [11], and 3D shape [2, 6, 9]. Some methods used a

fusion of multiple physiological or behavioral clues to de-

tect spoof faces [16]. Although these methods report favor-

able results for intra-database testing, they require accurate

face and/or landmark (eye) detection. Additionally, these

studies did not provide evaluations in cross-database testing

scenarios, which is more representative of real applications.

Biometic spoofing detection methods based on image

quality analysis have been shown to have good general-

ization ability to different scenarios [7]. However, studies

on face spoofing detection based on image quality analysis

are limited. In [7], 25 image quality measures, including

21 full-reference measures and 4 non-reference measures,

were used to detect spoof faces, which were also used for

fingerprint and iris spoof detection. But the authors did not

show how their method generalizes to cross-database test-

ing scenarios. On a related note, while there are a number

of studies on face image quality assessment [3, 15], their

utility for face spoofing detection have not been explored.

2.2. Replay Attack Spoof Databases

In this section, we discuss two well-known and com-

monly used public-domain face spoof databases for replay

attacks as well as a database we extended upon. Addition-

ally, we will discuss how these databases were collected and

their limitations.

The Idiap REPLAY-ATTACK database,5 consists of

1, 200 video clips of photo and video replay attacks for 50

subjects [5]. Live face videos of subjects were captured us-

ing the webcam on a MacBook. Replay attacks for each

subject were captured using a Cannon PowerShot SX 150 IS

camera that records 720p video clips. The high-resolution

camera captured replay attacks displayed on an iPhone 3GS

(480× 320 resolution) and iPad 1 (1024× 768 resolution).

5www.idiap.ch/dataset/replayattack
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Table 2. A summary of public-domain replay attack spoof databases.

Database† # Subs.
# Videos

(Live, spoof)

Live face

acq. device
Spoof medium

Spoof

acq. device
Subject race

Idiap REPLAY-

ATTACK [5]
50 (200, 1000)

MacBook webcam

(320 × 240)

iPad 1 (1024 × 768)

iPhone 3GS (480 × 320)

Cannon PowerShot

SX 150 IS (1280 × 720)

Caucasian 76%,

Asian 22%,

African 2%

CASIA [19] 50 (200, 450)
Sony NEX-5 (1280x720)

USB camera (640x480)
iPad 1 (1024x768)

Sony NEX-5 (1280x720)

USB camera (640x480)
Asian 100%

RAFS (this paper) 55 (55, 110) Nexus 5 (frontal, 720 × 480) MacBook (1280 × 800)
iPhone6 (rear: 1920 × 1080)

Nexus5 (rear: 1920 × 1080)

Caucasian 44%,

Asian 53%,

African 3%

†We also generated 100 spoof videos for each of the Idiap and CASIA databases.

Figure 2. Sample images of live and spoof faces from Idiap (top),

CASIA (middle) and RAFS (bottom) databases. (a) Live faces; (b)

Original spoof faces; (c) Spoof faces generated by Google Nexus 5

using a MacBook for replay; (d) Spoof faces generated by iPhone

6 using a MacBook for replay.

The CASIA Face AntiSpoofing Database,6 consists of

600 video clips of 50 subjects [19]. Out of the 600 video

clips, 150 clips represent video replay attacks. Compared to

the Idiap database, the CASIA DB used a variety of cameras

(Sony NEX-5-HD, two low quality USB) to capture replay

attacks displayed on an iPad.

A key drawback of the Idiap and CASIA databases is that

they capture replay video attacks using either low-quality

cameras or DSLR cameras that are expensive. In real world

scenarios, many devices that are equipped with FR systems

such as smartphones can capture replay attacks using their

built-in cameras instead of an external camera. DSLR cam-

eras with advanced features and hardware such as 35mm

full frame sensor size cannot accurately portray the video

quality of a smartphone’s average 8.67 mm frame sensor.7

To the best of our knowledge, no public domain database is

available where the replay attack videos are captured using

smartphones. To study the effects of using such videos for

spoof attacks, we have extended upon the Michigan State

University Mobile Face Spoofing Database (MSU MFSD)

to better represent replay attacks against smartphones [17].

The smartphone face spoofing database collected in our

lab called RAFS (Replay-Attack for Smartphones), con-

tains 165 videos from 55 subjects. RAFS extends the MSU

6www.cbsr.ia.ac.cn/english/

FaceAntiSpoofDatabases.asp
7www.techspot.com/guides/850-smartphone-camera-

hardware/page4.html

Figure 3. Demonstration of how replay attack videos are collected,

using a laptop screen as the spoof medium and a smartphone as a

acquisition device. This simulates how a user may launch an attack

against a FR system by using a video/image found online.

MFSD by capturing replay attacks using smartphones. Of

these 165 videos, 55 videos are live face videos from the

MSU MFSD that are captured using the front facing cam-

era on a Google Nexus 5 in a controlled background envi-

ronment. The remaining 110 (2× 55) videos are spoof face

videos which are captured by showing the live face videos

on a MacBook screen (1280×800), and recapturing the face

videos using the built-in rear camera of Google Nexus 5 and

built-in rear camera of iPhone 6, respectively (see Fig. 3).

At the time of this writing, Google Nexus 5 and iPhone 6

were state of the art models.

In addition to the smartphone face spoofing database that

was collected in our lab, we have also used 100 additional

subjects from the CASIA and Idiap databases. For each

subject in these two databases, one live face video is dis-

played on the MacBook screen, and two spoof videos are

recorded using the same two smartphone cameras (Google

Nexus 5 and iPhone 6) as used to capture the RAFS spoof

database8. Therefore, we have 50 live face videos and 100
spoof face videos for both the Idiap REPLAY-ATTACK and

CASIA databases. This allows us to evaluate the proposed

face spoofing detection approach in cross-database scenar-

ios.

Both the Google Nexus 5 and iPhone 6 are used to cap-

ture HD 1080p video at 30fps of live client videos being

replayed on a MacBook screen (1280 × 800) to generate

video replay attacks. The average standoff of the smart-

phone camera from the screen of the MacBook was 15 cm.

This 15 cm standoff distance assured that replay videos did

not contain the bezels (edges) of the MacBook screen. The

8Videos were not deliberately captured to include moiré patterns, most

videos were captured using only a single attempt
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Figure 4. Examples of moiré patterns in natural images: (a) an

overlay of two patterns generates moiré patterns, (b) moiré pat-

terns exist in color printing with halftoning, and (c) moiré patterns

appear while capturing the screen of digital devices.

average duration of the replay attack video in the database is

4 seconds.9 A major desirable property of capturing spoof

videos with smartphone devices, is that it simulates input

videos that may be presented to devices that contain FR

systems, such as the Google Nexus 5. These face spoof-

ing databases are summarized in Table 2. Example live and

spoof face video frames are shown in Fig. 2.

For collecting the database, we did not use the front fac-

ing cameras on the Google Nexus 5 and iPhone 6 as they

both lack autofocus capabilities and hence tend to provide

blurry replay attack videos. In future evolutions of the

smartphone, capabilities of the front facing camera will ri-

val that of rear camera. For example, a phone developed by

HTC, called Desire Eye10, contains identical rear and front

cameras (13-megapixel) and both include autofocus, a fea-

ture necessary to capture moiré pattern. Other devices en-

compass front facing cameras with autofocus as well. Such

as the 8-megapixel frontal camera of the IQXA developed

by i-mobile11. However at the time of this study, these de-

vices were not released to the public.

Many DSLR cameras come equipped with anti-aliasing

filters that sit immediately above the photo sensor (CCD ar-

ray in most cameras) to reduce the occurrence of moiré pat-

terns.12 These filters reduce the sharpness of an image by

smoothing the transitions between pixels, in turn reducing

moiré patterns (but not completely eliminating them). Low

quality webcams often lack autofocus capability or have rel-

atively slow autofocus speed. Because of these reasons, we-

bcams often capture blurry images when shooting a digital

screen, and will not produce sharp images, showing little or

no moiré patterns. These two types of cameras also do not

replicate the real application scenarios of interest, namely

user authentication on smartphone.13

9We did not record spoof videos with longer durations because a face

spoofing detection system is expected to provide a quick response. (e.g.,

less than 1 sec.)
10www.htc.com/us/smartphones/htc-desire-eye/
11www.malaysianwireless.com/2013/08/i-mobile-iq-

xa-malaysia/
12www.lifepixel.com/blog/anti-aliasing-low-

pass-filter-removal
13Smartphone users worldwide will total 1.75 billion in 2014:

www.emarketer.com/Article/Smartphone-Users-

3. Moiré Pattern Analysis

3.1. Moiré Pattern Aliasing

Moiré patterns are an undesired aliasing of images pro-

duced during various image display and image acquisition

processes [1]. Aliasing refers to an effect in which recon-

structed signals do not well represent the original signal.

Moiré patterns appear when two or more patterns are over-

laid on top of each other, resulting in a third new pattern

(Fig. 4 (a)).14 In color printing with CMYK (cyan, yel-

low, magenta, and black) halftoning model, moiré patterns

are often inevitable (Fig. 4 (b)).15 Moiré patterns are also

observed in the screen shooting photography (Fig. 4 (c)).16

The use of aliasing and the appearance of moiré patterns

go hand and hand. Images with moiré pattern do not ac-

curately represent real world scenes. Cameras that cap-

ture sharp images of a digital screen not only have more

information, but also capture the information more pre-

cisely, leading to moiré patterns. The fundamental reason

for moiré patterns in screen shooting photography is be-

cause of the spatial frequency differences between the dis-

play and the acquisition devices. For example, when the

scene (on the display of a replay device) contains repetitive

details that exceed the resolution of a camera, moiré pat-

terns are observed.

The display of digital devices (laptops, mobile devices,

and tablets) exhibit a naturally occurring fixed repetitive

pattern created by the geometry of color elements that are

used for color displays. Therefore, whenever a video of

a digital screen is recorded, moiré patterns will naturally

present themselves. Analyzing the 310 replay attack videos

that we have generated from the three databases (Idiap, CA-

SIA and RAFS), a distinct moiré pattern can be recognized

across the replay attack video frames (see Fig. 5).

3.2. Moiré Pattern Representation

By comparing the spoof face videos and the live face

videos, we find that moiré patterns often exist in the en-

tire spoof video frame, which appear as a distinct texture

pattern overlaid on a live video frame. This inspired us to

capture moiré patterns using a number of well known tex-

ture descriptors, such as MLBP [12] and SIFT [10] to use

for spoof detection.

We first decode each video into individual frames using

the FFmpeg library.17 Given an input frame (can also be the

detected face or a face region), it is first divided into 32 ×
32 patches with an overlap of 16 pixels between every two

Worldwide-Will-Total-175-Billion-2014/1010536
14www.ishootshows.com/2012/04/09/understanding-

moire-patterns-in-digital-photography/
15users.ecs.soton.ac.uk/km/imaging/course/moire.

html
16blog.ishback.com/?cat=132
17www.ffmpeg.org

4



Figure 5. Examples of live video frames (top row) and spoof video frames we collected (bottom row) for one subject from the Idiap

database. Video frames are shown using the (a) RGB image, (b) grayscale image, (c) red channel, (d) green channel, and (e) blue channel,

respectively. To show the moiré patterns clearly, we magnify the bottom portion of a face (below the nose), however moiré patterns exist

in the entire spoof video frames as well.

Figure 6. Examples of multi-scale LBP (MLBP) and densely sam-

pled SIFT (DSIFT) features extracted from (a) a frame of live face,

and (b) a frame of spoof face. The differences in histogram distri-

bution allow us to differentiate a live face from a spoof face. The

horizontal and vertical axes are histogram bins and bin frequency

counts, respectively.

successive patches. For each image patch, we use multi-

scale LBP (MLBP) to capture the characteristics of moiré

patterns. The MLBP features are calculated as

fMLBP (I) = {LBPP,R}(P,R)∈{(8,1),(24,3),(40,5) , (1)

where R and P define the individual scales (radii) and num-

bers of sampling points, respectively; LBPP,R follows the

standard definition of a single scale LBP [12]

LBPP,R =

P−1∑

p=0

sign (I(p)− I(c)) 2p, (2)

where I(c) and I(p) are the intensities of the current pixel

c and the sampling point p, respectively. The MLBP fea-

tures from individual patches are concatenated together to

construct a histogram.

To show the robustness of the proposed approach against

different texture descriptors, we also used densely sampled

SIFT (DSIFT) features in our experiments. The DSIFT fea-

tures from each image patch are calculated using 8 orienta-

tion bins and 16 segments. Examples of MLBP and DSIFT

histograms from a frame of live face, and a frame of spoof

face are shown in Fig. 6.

In most FR literature, the MLBP and SIFT features

are usually extracted from the grayscale (intensity) images.

Figure 7. Examples of three different image regions that are used

for moiré pattern analysis: (a) the whole video frame, (b) the de-

tected face image, and (c) the bottom half of the face image.

Table 3. Dimensionality of feature vectors using different image

regions and descriptors.

Whole Frame Whole Face Bottom Face

MLBP 62,776 11,328 3,540

SIFT 191,808 34,560 9,600

Fusion 254,584 45,888 13,140

However, for the face spoof detection using moiré patterns,

we observe that, the moiré patterns in one of the channels

(red, green and blue) of an input image can be more dis-

criminative than the other two channels or the intensity im-

age (see Figs. 5 (b-e)). The possible reason is that some

of the color channels may not retain the facial texture de-

tails very well, accentuating the moiré patterns with higher

contrast for spoof video frames.

As pointed out earlier, moiré patterns exist not only in the

facial region but also in the whole video frame containing

the face. This make it possible to detect spoof face with-

out first performing face detection operation. This can be

very useful for face spoof detection under less-cooperative

scenarios (non-frontal face), where face detection may be

challenging. In the experimental section, we show the ro-

bustness of the proposed face spoof detection method by us-

ing the (i) whole video frame, (ii) detected face image, and

(iii) bottom part of the face image. Examples of the three

image regions are shown in Fig. 7. The feature vectors used

in our experiments include MLBP, DSIFT, and the concate-

nation of MLBP and DSIFT extracted from three different

regions. Individual histogram bins are used as features.
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3.3. Multiframe Based Classification with Voting

Given a texture feature vector (Table 3), we train a SVM

classifier with a RBF kernel (using optimized parameters)

as a live or spoof classifier.18 In order to classify a video as

live or as a spoof, we utilize multiple frames in the video.

The SVM classifier outputs a confidence score for each

video frame (live or spoof). Therefore, we keep track of

how many frames in each video are labeled as live or as a

spoof. In essence, the class that has more than 50% of the

votes determines the class of the video.19

4. Experimental Results

4.1. Testing Protocols

We evaluate the proposed approach under both cross-

database and intra-databases testing scenarios. It is now

generally accepted that intra-database testing (training and

test images/video, while distinct, were captured in the same

environment and possibly of the same subjects) does not

represent real world scenarios, as they lack generalization

ability [14]. We use the Idiap, CASIA and RAFS (col-

lected in our lab) databases to conduct the cross-database

testing (training and test sets contain different subjects and

were captured in different locations and imaging environ-

ments). For the testing on each of the three databases, the

other two databases are used to train the proposed moiré

patterns based approach.

We also conduct intra-database experiments on each of

the three databases using the following two protocols: (i) 5-

fold cross validation, and (ii) the protocols provided with

the Idiap and CASIA databases, so that we can provide

comparisons with the published methods.

4.2. Crossdatabase Testing

• Influence of the number of frames. We evaluated the

performance of the proposed approach by using the

first 1, 5, 10 and 20 frames of each (live and spoof)

video. A concatenation of the MLBP and DSIFT fea-

tures extracted from the intensity face image was used.

Figure 8 shows that the proposed approach achieves

relatively better performance with the first 5 frames.

Due to continuous autofocus in smartphones, moiré

patterns present themselves in frames with sharp fo-

cus. In practice, a live vs. spoof decision must be

made quickly and reliably. Using the first 5 frames

(< 0.2 sec.) is a good tradeoff between accuracy and

speed.

• Influence of different color channels. We analyzed

the grayscale, and red, green and blue channels of the

18LIBSVM is used: www.csie.ntu.edu.tw/˜cjlin/libsvm
19We also tried the score level fusion of all the frames, but it gives worse

performance than the proposed voting scheme.

Figure 8. Number of frames vs. the performance of moiré pattern

based approach for replay attack detection under cross-database

testing. A concatenation of the MLBP and DSIFT features from

the detected face image is used.

Table 4. Color channels (grayscale, red, green and blue) vs. perfor-

mance of the moiré pattern based approach under cross-database

testing. One database is used for testing on a classifier trained on

the other two databases.

Database Grayscale Red Green Blue

Idiap 91.3% 96.7% 91.3% 86.0%

CASIA 68.0% 68.0% 68.0% 67.3%

RAFS 69.1% 76.4% 69.7% 80.0%

detected face image using 5 frames for voting and a

concatenation of MLBP and DSIFT features. Table

4 shows that different color channels capture differ-

ent amount of texture to represent moiré patterns. Red

channel gives better results because it has a higher con-

trast between the moiré pattern and the facial texture.

• Influence of different image regions. We study the

effect of different image regions (whole video frame,

detected face image, and bottom half of a face), from

where moiré pattern features are extracted. Again, the

concatenation of MLBP and DSIFT features are used,

and 5 frames are used for each live and spoof video.

Table 5 shows that the detected face image and the

bottom half of the face lead to the same average per-

formance (76.1%) on the three databases. The bottom

half of the face minimizes hair style variations among

different subjects, and also provides a lower dimen-

sional feature vector.

• Influence of different descriptors. We use three dif-

ferent features (MLBP, DSIFT and the concatenation

of MLBP and DSIFT) to represent moiré patterns. Fig-

ure 9 shows that using any one of these descriptors re-

sults in state of the art performance for cross-database

testing. However, the MLBP descriptor gives simi-

lar performance as the concatenation of MLBP and

DSIFT, but MLBP has a lower dimensional feature

vector.

• Overall accuracy. We now report the accuracy of

the proposed approach on the three databases by us-

ing MLBP features to represent moiré pattern from

the red channel of the bottom part of the face using
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Figure 9. Performance of the moiré pattern based approach under cross-database and intra-database testing. (a-c) shows the robustness

of the proposed approach to different features (MLBP, DSIFT, and feature-level fusion of MLBP and DSIFT) on the Idiap, CASIA, and

RAFS databases. (d) performance of the proposed approach on the three databases under intra-database testing.

Table 5. Classification accuracy of moiré patterns from different

regions (whole frame, detected face, and bottom part of face) on

the Idiap, CASIA and RAFS databases under cross-database test-

ing. Results are based on a concatenation of the MLBP and DSIFT.

Database† Whole frame Whole face Bottom face

Idiap 72.7% 91.3% 87.3%

CASIA 47.5% 68.0% 70.7%

RAFS 72.0% 69.1% 70.3%

†One of the three databases (shown in the first column) is used for testing while the

other two databases are used for training.

the first 5 frames for voting. Classification accura-

cies of 88.0%, 67.3% and 85.5% are obtained on the

Idiap, CASIA and RAFS database, respectively, under

cross-database testing scenarios. The performance on

the CASIA database is not as good as the other two

databases because the live face videos in the CASIA

database have a much higher resolution than the Idiap

and RAFS databases.

Examples of correct and incorrect classifications are

shown in Fig. 10. The examples in Fig. 10(c) are

misclassified because the subjects have beards which

MLBP may classify as having the same texture as

moiré patterns. Subjects in Fig. 10(d) are misclassified

due to blurry frames caused by the camera’s inability

to autofocus in time to capture sharp images.

The best reported performance on the Idiap and CA-

SIA databases under cross-database testing scenar-

ios have HTERs of 47.1% and 48.3%, respectively

[14]. The proposed approach achieves 18.0%, 49.0%

and 11.4% HTERs on the Idiap, CASIA and RAFS,

respectively, under cross-database testing scenarios.

While the proposed approach achieves similar perfor-

mance to [14] on the CASIA database, our method

significantly outperforms [14] on the Idiap database,

which shows a better generalization ability of the pro-

posed moiré pattern based method.

In terms of the computational cost of the proposed ap-

proach, MBLP feature extraction takes 0.09 seconds

per frame, and classification takes 0.02 seconds per

frame, which results in a decision for an input face

video in 0.47 seconds using the first 5 frames. All the

times are profiled with a Matlab implementation on a

Windows 7 platform with Intel Core 2 quad 3.0 GHz

CPU and 8GB RAM.

4.3. Intradatabase Testing

We also evaluate the proposed approach under the intra-

database testing scenarios on the Idiap, CASIA, and RAFS

databases, using 1 live video and 2 spoof videos (captured

by Google Nexus 5 and iPhone 6) for each subject. Table 1

and Figure 9(d) show that the proposed approach achieves

3.3%, 0.0%, and 11.3% HETRs on the Idiap, CASIA and

RAFS database, respectively. On the Idiap database, our

approach (3.3%) gives slightly larger HTER than the state

of the art method (1.3%) [4], but no cross-database testing

result was reported in [4]. On the CASIA database, our ap-

proach (0.0%) achieves much smaller HTER than the state

of the art (11.8%) [18]. Again, no cross-database testing

result was reported in [18].

5. Summary and Conclusions

Spoofing attacks are a menace to biometric systems in

terms of public perception and adoption. Face recognition

systems can be easily targeted due to the low cost in launch-

ing replay video attacks. We have proposed a robust replay

attack detection method for FR systems that can generalize

well, especially for cross-database testing which portrays

real world scenarios. We analyze the moiré pattern aliasing

that is observed during recapture of video or photo replays

on a digital screen. In order to analyze this phenomenon,

we collected a database, called RAFS, that contain replay

video attacks towards smartphones. The moiré patterns can

be detected using MLBP and DSIFT features. Evaluations

for intra-database test show that the proposed methods re-

turns state of the art accuracies in detecting replay video

attacks, however intra-database results do not portray real

world scenarios. Cross-database results show that the pro-

posed method generalizes well in detecting replay video at-
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Figure 10. Examples of correct and incorrect classifications by the proposed approach in cross-database testing on the Idiap (top row),

CASIA (middle row), and RAFS (bottom row) databases. Correct classifications for (a) live faces and (b) spoof faces, and incorrect

classifications for (c) live faces and (d) spoof faces.

tacks compared to published methods.

For future work, we plan to extend the moiré pattern

based method to detect replay photo attacks. Additionally,

we will generate new replay video attacks using a smart-

phone that contains autofocus ability on its front facing

camera and expand our experiments to include a variety of

spoofing mediums, such as smartphones and tablets.
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