
Live Migration of Virtual Machines

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen†,

Eric Jul†, Christian Limpach, Ian Pratt, Andrew Warfield

University of Cambridge Computer Laboratory † Department of Computer Science

15 JJ Thomson Avenue, Cambridge, UK University of Copenhagen, Denmark

firstname.lastname@cl.cam.ac.uk {jacobg,eric}@diku.dk

Abstract

Migrating operating system instances across distinct phys-

ical hosts is a useful tool for administrators of data centers

and clusters: It allows a clean separation between hard-

ware and software, and facilitates fault management, load

balancing, and low-level system maintenance.

By carrying out the majority of migration while OSes con-

tinue to run, we achieve impressive performance with min-

imal service downtimes; we demonstrate the migration of

entire OS instances on a commodity cluster, recording ser-

vice downtimes as low as 60ms. We show that that our

performance is sufficient to make live migration a practical

tool even for servers running interactive loads.

In this paper we consider the design options for migrat-

ing OSes running services with liveness constraints, fo-

cusing on data center and cluster environments. We intro-

duce and analyze the concept of writable working set, and

present the design, implementation and evaluation of high-

performance OS migration built on top of the Xen VMM.

1 Introduction

Operating system virtualization has attracted considerable

interest in recent years, particularly from the data center

and cluster computing communities. It has previously been

shown [1] that paravirtualization allows many OS instances

to run concurrently on a single physical machine with high

performance, providing better use of physical resources

and isolating individual OS instances.

In this paper we explore a further benefit allowed by vir-

tualization: that of live OS migration. Migrating an en-

tire OS and all of its applications as one unit allows us to

avoid many of the difficulties faced by process-level mi-

gration approaches. In particular the narrow interface be-

tween a virtualized OS and the virtual machine monitor

(VMM) makes it easy avoid the problem of ‘residual de-

pendencies’ [2] in which the original host machine must

remain available and network-accessible in order to service

certain system calls or even memory accesses on behalf of

migrated processes. With virtual machine migration, on

the other hand, the original host may be decommissioned

once migration has completed. This is particularly valuable

when migration is occurring in order to allow maintenance

of the original host.

Secondly, migrating at the level of an entire virtual ma-

chine means that in-memory state can be transferred in a

consistent and (as will be shown) efficient fashion. This ap-

plies to kernel-internal state (e.g. the TCP control block for

a currently active connection) as well as application-level

state, even when this is shared between multiple cooperat-

ing processes. In practical terms, for example, this means

that we can migrate an on-line game server or streaming

media server without requiring clients to reconnect: some-

thing not possible with approaches which use application-

level restart and layer 7 redirection.

Thirdly, live migration of virtual machines allows a sepa-

ration of concerns between the users and operator of a data

center or cluster. Users have ‘carte blanche’ regarding the

software and services they run within their virtual machine,

and need not provide the operator with any OS-level access

at all (e.g. a root login to quiesce processes or I/O prior to

migration). Similarly the operator need not be concerned

with the details of what is occurring within the virtual ma-

chine; instead they can simply migrate the entire operating

system and its attendant processes as a single unit.

Overall, live OS migration is a extremelely powerful tool

for cluster administrators, allowing separation of hardware

and software considerations, and consolidating clustered

hardware into a single coherent management domain. If

a physical machine needs to be removed from service an

administrator may migrate OS instances including the ap-

plications that they are running to alternative machine(s),

freeing the original machine for maintenance. Similarly,

OS instances may be rearranged across machines in a clus-

ter to relieve load on congested hosts. In these situations the

combination of virtualization and migration significantly

improves manageability.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 273

We have implemented high-performance migration sup-

port for Xen [1], a freely available open source VMM for

commodity hardware. Our design and implementation ad-

dresses the issues and tradeoffs involved in live local-area

migration. Firstly, as we are targeting the migration of ac-

tive OSes hosting live services, it is critically important to

minimize the downtime during which services are entirely

unavailable. Secondly, we must consider the total migra-

tion time, during which state on both machines is synchro-

nized and which hence may affect reliability. Furthermore

we must ensure that migration does not unnecessarily dis-

rupt active services through resource contention (e.g., CPU,

network bandwidth) with the migrating OS.

Our implementation addresses all of these concerns, allow-

ing for example an OS running the SPECweb benchmark

to migrate across two physical hosts with only 210ms un-

availability, or an OS running a Quake 3 server to migrate

with just 60ms downtime. Unlike application-level restart,

we can maintain network connections and application state

during this process, hence providing effectively seamless

migration from a user’s point of view.

We achieve this by using a pre-copy approach in which

pages of memory are iteratively copied from the source

machine to the destination host, all without ever stopping

the execution of the virtual machine being migrated. Page-

level protection hardware is used to ensure a consistent

snapshot is transferred, and a rate-adaptive algorithm is

used to control the impact of migration traffic on running

services. The final phase pauses the virtual machine, copies

any remaining pages to the destination, and resumes exe-

cution there. We eschew a ‘pull’ approach which faults in

missing pages across the network since this adds a residual

dependency of arbitrarily long duration, as well as provid-

ing in general rather poor performance.

Our current implementation does not address migration

across the wide area, nor does it include support for migrat-

ing local block devices, since neither of these are required

for our target problem space. However we discuss ways in

which such support can be provided in Section 7.

2 Related Work

The Collective project [3] has previously explored VM mi-

gration as a tool to provide mobility to users who work on

different physical hosts at different times, citing as an ex-

ample the transfer of an OS instance to a home computer

while a user drives home from work. Their work aims to

optimize for slow (e.g., ADSL) links and longer time spans,

and so stops OS execution for the duration of the transfer,

with a set of enhancements to reduce the transmitted image

size. In contrast, our efforts are concerned with the migra-

tion of live, in-service OS instances on fast neworks with

only tens of milliseconds of downtime. Other projects that

have explored migration over longer time spans by stop-

ping and then transferring include Internet Suspend/Re-

sume [4] and µDenali [5].

Zap [6] uses partial OS virtualization to allow the migration

of process domains (pods), essentially process groups, us-

ing a modified Linux kernel. Their approach is to isolate all

process-to-kernel interfaces, such as file handles and sock-

ets, into a contained namespace that can be migrated. Their

approach is considerably faster than results in the Collec-

tive work, largely due to the smaller units of migration.

However, migration in their system is still on the order of

seconds at best, and does not allow live migration; pods

are entirely suspended, copied, and then resumed. Further-

more, they do not address the problem of maintaining open

connections for existing services.

The live migration system presented here has considerable

shared heritage with the previous work on NomadBIOS [7],

a virtualization and migration system built on top of the

L4 microkernel [8]. NomadBIOS uses pre-copy migration

to achieve very short best-case migration downtimes, but

makes no attempt at adapting to the writable working set

behavior of the migrating OS.

VMware has recently added OS migration support, dubbed

VMotion, to their VirtualCenter management software. As

this is commercial software and strictly disallows the publi-

cation of third-party benchmarks, we are only able to infer

its behavior through VMware’s own publications. These

limitations make a thorough technical comparison impos-

sible. However, based on the VirtualCenter User’s Man-

ual [9], we believe their approach is generally similar to

ours and would expect it to perform to a similar standard.

Process migration, a hot topic in systems research during

the 1980s [10, 11, 12, 13, 14], has seen very little use for

real-world applications. Milojicic et al [2] give a thorough

survey of possible reasons for this, including the problem

of the residual dependencies that a migrated process re-

tains on the machine from which it migrated. Examples of

residual dependencies include open file descriptors, shared

memory segments, and other local resources. These are un-

desirable because the original machine must remain avail-

able, and because they usually negatively impact the per-

formance of migrated processes.

For example Sprite [15] processes executing on foreign

nodes require some system calls to be forwarded to the

home node for execution, leading to at best reduced perfor-

mance and at worst widespread failure if the home node is

unavailable. Although various efforts were made to ame-

liorate performance issues, the underlying reliance on the

availability of the home node could not be avoided. A sim-

ilar fragility occurs with MOSIX [14] where a deputy pro-

cess on the home node must remain available to support

remote execution.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association274

We believe the residual dependency problem cannot easily

be solved in any process migration scheme – even modern

mobile run-times such as Java and .NET suffer from prob-

lems when network partition or machine crash causes class

loaders to fail. The migration of entire operating systems

inherently involves fewer or zero such dependencies, mak-

ing it more resilient and robust.

3 Design

At a high level we can consider a virtual machine to encap-

sulate access to a set of physical resources. Providing live

migration of these VMs in a clustered server environment

leads us to focus on the physical resources used in such

environments: specifically on memory, network and disk.

This section summarizes the design decisions that we have

made in our approach to live VM migration. We start by

describing how memory and then device access is moved

across a set of physical hosts and then go on to a high-level

description of how a migration progresses.

3.1 Migrating Memory

Moving the contents of a VM’s memory from one phys-

ical host to another can be approached in any number of

ways. However, when a VM is running a live service it

is important that this transfer occurs in a manner that bal-

ances the requirements of minimizing both downtime and

total migration time. The former is the period during which

the service is unavailable due to there being no currently

executing instance of the VM; this period will be directly

visible to clients of the VM as service interruption. The

latter is the duration between when migration is initiated

and when the original VM may be finally discarded and,

hence, the source host may potentially be taken down for

maintenance, upgrade or repair.

It is easiest to consider the trade-offs between these require-

ments by generalizing memory transfer into three phases:

Push phase The source VM continues running while cer-

tain pages are pushed across the network to the new

destination. To ensure consistency, pages modified

during this process must be re-sent.

Stop-and-copy phase The source VM is stopped, pages

are copied across to the destination VM, then the new

VM is started.

Pull phase The new VM executes and, if it accesses a page

that has not yet been copied, this page is faulted in

(“pulled”) across the network from the source VM.

Although one can imagine a scheme incorporating all three

phases, most practical solutions select one or two of the

three. For example, pure stop-and-copy [3, 4, 5] involves

halting the original VM, copying all pages to the destina-

tion, and then starting the new VM. This has advantages in

terms of simplicity but means that both downtime and total

migration time are proportional to the amount of physical

memory allocated to the VM. This can lead to an unaccept-

able outage if the VM is running a live service.

Another option is pure demand-migration [16] in which a

short stop-and-copy phase transfers essential kernel data

structures to the destination. The destination VM is then

started, and other pages are transferred across the network

on first use. This results in a much shorter downtime, but

produces a much longer total migration time; and in prac-

tice, performance after migration is likely to be unaccept-

ably degraded until a considerable set of pages have been

faulted across. Until this time the VM will fault on a high

proportion of its memory accesses, each of which initiates

a synchronous transfer across the network.

The approach taken in this paper, pre-copy [11] migration,

balances these concerns by combining a bounded itera-

tive push phase with a typically very short stop-and-copy

phase. By ‘iterative’ we mean that pre-copying occurs in

rounds, in which the pages to be transferred during round

n are those that are modified during round n− 1 (all pages

are transferred in the first round). Every VM will have

some (hopefully small) set of pages that it updates very

frequently and which are therefore poor candidates for pre-

copy migration. Hence we bound the number of rounds of

pre-copying, based on our analysis of the writable working

set (WWS) behavior of typical server workloads, which we

present in Section 4.

Finally, a crucial additional concern for live migration is the

impact on active services. For instance, iteratively scanning

and sending a VM’s memory image between two hosts in

a cluster could easily consume the entire bandwidth avail-

able between them and hence starve the active services of

resources. This service degradation will occur to some ex-

tent during any live migration scheme. We address this is-

sue by carefully controlling the network and CPU resources

used by the migration process, thereby ensuring that it does

not interfere excessively with active traffic or processing.

3.2 Local Resources

A key challenge in managing the migration of OS instances

is what to do about resources that are associated with the

physical machine that they are migrating away from. While

memory can be copied directly to the new host, connec-

tions to local devices such as disks and network interfaces

demand additional consideration. The two key problems

that we have encountered in this space concern what to do

with network resources and local storage.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 275

For network resources, we want a migrated OS to maintain

all open network connections without relying on forward-

ing mechanisms on the original host (which may be shut

down following migration), or on support from mobility

or redirection mechanisms that are not already present (as

in [6]). A migrating VM will include all protocol state (e.g.

TCP PCBs), and will carry its IP address with it.

To address these requirements we observed that in a clus-

ter environment, the network interfaces of the source and

destination machines typically exist on a single switched

LAN. Our solution for managing migration with respect to

network in this environment is to generate an unsolicited

ARP reply from the migrated host, advertising that the IP

has moved to a new location. This will reconfigure peers

to send packets to the new physical address, and while a

very small number of in-flight packets may be lost, the mi-

grated domain will be able to continue using open connec-

tions with almost no observable interference.

Some routers are configured not to accept broadcast ARP

replies (in order to prevent IP spoofing), so an unsolicited

ARP may not work in all scenarios. If the operating system

is aware of the migration, it can opt to send directed replies

only to interfaces listed in its own ARP cache, to remove

the need for a broadcast. Alternatively, on a switched net-

work, the migrating OS can keep its original Ethernet MAC

address, relying on the network switch to detect its move to

a new port1.

In the cluster, the migration of storage may be similarly ad-

dressed: Most modern data centers consolidate their stor-

age requirements using a network-attached storage (NAS)

device, in preference to using local disks in individual

servers. NAS has many advantages in this environment, in-

cluding simple centralised administration, widespread ven-

dor support, and reliance on fewer spindles leading to a

reduced failure rate. A further advantage for migration is

that it obviates the need to migrate disk storage, as the NAS

is uniformly accessible from all host machines in the clus-

ter. We do not address the problem of migrating local-disk

storage in this paper, although we suggest some possible

strategies as part of our discussion of future work.

3.3 Design Overview

The logical steps that we execute when migrating an OS are

summarized in Figure 1. We take a conservative approach

to the management of migration with regard to safety and

failure handling. Although the consequences of hardware

failures can be severe, our basic principle is that safe mi-

gration should at no time leave a virtual OS more exposed

1Note that on most Ethernet controllers, hardware MAC filtering will

have to be disabled if multiple addresses are in use (though some cards

support filtering of multiple addresses in hardware) and so this technique

is only practical for switched networks.

Stage 0: Pre-Migration
 Active VM on Host A

 Alternate physical host may be preselected for migration

 Block devices mirrored and free resources maintained

Stage 4: Commitment
 VM state on Host A is released

Stage 5: Activation
 VM starts on Host B

 Connects to local devices

 Resumes normal operation

Stage 3: Stop and copy
 Suspend VM on host A

 Generate ARP to redirect traffic to Host B

 Synchronize all remaining VM state to Host B

Stage 2: Iterative Pre-copy
 Enable shadow paging

 Copy dirty pages in successive rounds.

Stage 1: Reservation
 Initialize a container on the target host

Downtime

(VM Out of Service)

VM running normally on

Host A

VM running normally on

Host B

Overhead due to copying

Figure 1: Migration timeline

to system failure than when it is running on the original sin-

gle host. To achieve this, we view the migration process as

a transactional interaction between the two hosts involved:

Stage 0: Pre-Migration We begin with an active VM on

physical host A. To speed any future migration, a tar-

get host may be preselected where the resources re-

quired to receive migration will be guaranteed.

Stage 1: Reservation A request is issued to migrate an OS

from host A to host B. We initially confirm that the

necessary resources are available on B and reserve a

VM container of that size. Failure to secure resources

here means that the VM simply continues to run on A

unaffected.

Stage 2: Iterative Pre-Copy During the first iteration, all

pages are transferred from A to B. Subsequent itera-

tions copy only those pages dirtied during the previous

transfer phase.

Stage 3: Stop-and-Copy We suspend the running OS in-

stance at A and redirect its network traffic to B. As

described earlier, CPU state and any remaining incon-

sistent memory pages are then transferred. At the end

of this stage there is a consistent suspended copy of

the VM at both A and B. The copy at A is still con-

sidered to be primary and is resumed in case of failure.

Stage 4: Commitment Host B indicates to A that it has

successfully received a consistent OS image. Host A

acknowledges this message as commitment of the mi-

gration transaction: host A may now discard the orig-

inal VM, and host B becomes the primary host.

Stage 5: Activation The migrated VM on B is now ac-

tivated. Post-migration code runs to reattach device

drivers to the new machine and advertise moved IP

addresses.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association276

Elapsed time (secs)

0 2000 4000 6000 8000 10000 12000

N
u

m
b

e
r

o
f

p
a

g
e

s

0

10000

20000

30000

40000

50000

60000

70000

80000

Tracking the Writable Working Set of SPEC CINT2000

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Figure 2: WWS curve for a complete run of SPEC CINT2000 (512MB VM)

This approach to failure management ensures that at least

one host has a consistent VM image at all times during

migration. It depends on the assumption that the original

host remains stable until the migration commits, and that

the VM may be suspended and resumed on that host with

no risk of failure. Based on these assumptions, a migra-

tion request essentially attempts to move the VM to a new

host, and on any sort of failure execution is resumed locally,

aborting the migration.

4 Writable Working Sets

When migrating a live operating system, the most signif-

icant influence on service performance is the overhead of

coherently transferring the virtual machine’s memory im-

age. As mentioned previously, a simple stop-and-copy ap-

proach will achieve this in time proportional to the amount

of memory allocated to the VM. Unfortunately, during this

time any running services are completely unavailable.

A more attractive alternative is pre-copy migration, in

which the memory image is transferred while the operat-

ing system (and hence all hosted services) continue to run.

The drawback however, is the wasted overhead of trans-

ferring memory pages that are subsequently modified, and

hence must be transferred again. For many workloads there

will be a small set of memory pages that are updated very

frequently, and which it is not worth attempting to maintain

coherently on the destination machine before stopping and

copying the remainder of the VM.

The fundamental question for iterative pre-copy migration

is: how does one determine when it is time to stop the pre-

copy phase because too much time and resource is being

wasted? Clearly if the VM being migrated never modifies

memory, a single pre-copy of each memory page will suf-

fice to transfer a consistent image to the destination. How-

ever, should the VM continuously dirty pages faster than

the rate of copying, then all pre-copy work will be in vain

and one should immediately stop and copy.

In practice, one would expect most workloads to lie some-

where between these extremes: a certain (possibly large)

set of pages will seldom or never be modified and hence are

good candidates for pre-copy, while the remainder will be

written often and so should best be transferred via stop-and-

copy – we dub this latter set of pages the writable working

set (WWS) of the operating system by obvious extension

of the original working set concept [17].

In this section we analyze the WWS of operating systems

running a range of different workloads in an attempt to ob-

tain some insight to allow us build heuristics for an efficient

and controllable pre-copy implementation.

4.1 Measuring Writable Working Sets

To trace the writable working set behaviour of a number of

representative workloads we used Xen’s shadow page ta-

bles (see Section 5) to track dirtying statistics on all pages

used by a particular executing operating system. This al-

lows us to determine within any time period the set of pages

written to by the virtual machine.

Using the above, we conducted a set of experiments to sam-

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 277

Effect of Bandwidth and Pre−Copy Iterations on Migration Downtime
(Based on a page trace of Linux Kernel Compile)

Migration throughput: 128 Mbit/sec

Elapsed time (sec)

0 100 200 300 400 500 600

R
a

te
o

f
p

a
g

e
d

ir
ty

in
g

(p
a

g
e

s
/s

e
c
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

E
x
p

e
c
te

d
d

o
w

n
ti
m

e
(s

e
c
)

0

0.5

1

1.5

2

2.5

3

3.5

4

Migration throughput: 256 Mbit/sec

Elapsed time (sec)

0 100 200 300 400 500 600

R
a

te
o

f
p

a
g

e
d

ir
ty

in
g

(p
a

g
e

s
/s

e
c
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

E
x
p

e
c
te

d
d

o
w

n
ti
m

e
(s

e
c
)

0

0.5

1

1.5

2

2.5

3

3.5

4

Migration throughput: 512 Mbit/sec

Elapsed time (sec)

0 100 200 300 400 500 600

R
a

te
o

f
p

a
g

e
d

ir
ty

in
g

(p
a

g
e

s
/s

e
c
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

E
x
p

e
c
te

d
d

o
w

n
ti
m

e
(s

e
c
)

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3: Expected downtime due to last-round memory

copy on traced page dirtying of a Linux kernel compile.

Effect of Bandwidth and Pre−Copy Iterations on Migration Downtime
(Based on a page trace of OLTP Database Benchmark)

Migration throughput: 128 Mbit/sec

Elapsed time (sec)

0 200 400 600 800 1000 1200

R
a

te
o

f
p

a
g

e
d

ir
ty

in
g

(p
a

g
e

s
/s

e
c
)

0

1000

2000

3000

4000

5000

6000

7000

8000

E
x
p

e
c
te

d
d

o
w

n
ti
m

e
(s

e
c
)

0

0.5

1

1.5

2

2.5

3

3.5

4

Migration throughput: 256 Mbit/sec

Elapsed time (sec)

0 200 400 600 800 1000 1200

R
a

te
o

f
p

a
g

e
d

ir
ty

in
g

(p
a

g
e

s
/s

e
c
)

0

1000

2000

3000

4000

5000

6000

7000

8000

E
x
p

e
c
te

d
d

o
w

n
ti
m

e
(s

e
c
)

0

0.5

1

1.5

2

2.5

3

3.5

4

Migration throughput: 512 Mbit/sec

Elapsed time (sec)

0 200 400 600 800 1000 1200

R
a

te
o

f
p

a
g

e
d

ir
ty

in
g

(p
a

g
e

s
/s

e
c
)

0

1000

2000

3000

4000

5000

6000

7000

8000

E
x
p

e
c
te

d
d

o
w

n
ti
m

e
(s

e
c
)

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4: Expected downtime due to last-round memory

copy on traced page dirtying of OLTP.

Effect of Bandwidth and Pre−Copy Iterations on Migration Downtime
(Based on a page trace of Quake 3 Server)

Migration throughput: 128 Mbit/sec

Elapsed time (sec)

0 100 200 300 400 500

R
a

te
o

f
p

a
g

e
d

ir
ty

in
g

(p
a

g
e

s
/s

e
c
)

0

100

200

300

400

500

600

E
x
p

e
c
te

d
d

o
w

n
ti
m

e
(s

e
c
)

0

0.1

0.2

0.3

0.4

0.5

Migration throughput: 256 Mbit/sec

Elapsed time (sec)

0 100 200 300 400 500

R
a

te
o

f
p

a
g

e
d

ir
ty

in
g

(p
a

g
e

s
/s

e
c
)

0

100

200

300

400

500

600

E
x
p

e
c
te

d
d

o
w

n
ti
m

e
(s

e
c
)

0

0.1

0.2

0.3

0.4

0.5

Migration throughput: 512 Mbit/sec

Elapsed time (sec)

0 100 200 300 400 500

R
a

te
o

f
p

a
g

e
d

ir
ty

in
g

(p
a

g
e

s
/s

e
c
)

0

100

200

300

400

500

600

E
x
p

e
c
te

d
d

o
w

n
ti
m

e
(s

e
c
)

0

0.1

0.2

0.3

0.4

0.5

Figure 5: Expected downtime due to last-round memory

copy on traced page dirtying of a Quake 3 server.

Effect of Bandwidth and Pre−Copy Iterations on Migration Downtime
(Based on a page trace of SPECweb)

Migration throughput: 128 Mbit/sec

Elapsed time (sec)

0 100 200 300 400 500 600 700

R
a

te
o

f
p

a
g

e
d

ir
ty

in
g

(p
a

g
e

s
/s

e
c
)

0

2000

4000

6000

8000

10000

12000

14000

E
x
p

e
c
te

d
d

o
w

n
ti
m

e
(s

e
c
)

0

1

2

3

4

5

6

7

8

9

Migration throughput: 256 Mbit/sec

Elapsed time (sec)

0 100 200 300 400 500 600 700

R
a

te
o

f
p

a
g

e
d

ir
ty

in
g

(p
a

g
e

s
/s

e
c
)

0

2000

4000

6000

8000

10000

12000

14000

E
x
p

e
c
te

d
d

o
w

n
ti
m

e
(s

e
c
)

0

1

2

3

4

5

6

7

8

9

Migration throughput: 512 Mbit/sec

Elapsed time (sec)

0 100 200 300 400 500 600 700

R
a

te
o

f
p

a
g

e
d

ir
ty

in
g

(p
a

g
e

s
/s

e
c
)

0

2000

4000

6000

8000

10000

12000

14000

E
x
p

e
c
te

d
d

o
w

n
ti
m

e
(s

e
c
)

0

1

2

3

4

5

6

7

8

9

Figure 6: Expected downtime due to last-round memory

copy on traced page dirtying of SPECweb.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association278

ple the writable working set size for a variety of bench-

marks. Xen was running on a dual processor Intel Xeon

2.4GHz machine, and the virtual machine being measured

had a memory allocation of 512MB. In each case we started

the relevant benchmark in one virtual machine and read

the dirty bitmap every 50ms from another virtual machine,

cleaning it every 8 seconds – in essence this allows us to

compute the WWS with a (relatively long) 8 second win-

dow, but estimate it at a finer (50ms) granularity.

The benchmarks we ran were SPEC CINT2000, a Linux

kernel compile, the OSDB OLTP benchmark using Post-

greSQL and SPECweb99 using Apache. We also measured

a Quake 3 server as we are particularly interested in highly

interactive workloads.

Figure 2 illustrates the writable working set curve produced

for the SPEC CINT2000 benchmark run. This benchmark

involves running a series of smaller programs in order and

measuring the overall execution time. The x-axis measures

elapsed time, and the y-axis shows the number of 4KB

pages of memory dirtied within the corresponding 8 sec-

ond interval; the graph is annotated with the names of the

sub-benchmark programs.

From this data we observe that the writable working set

varies significantly between the different sub-benchmarks.

For programs such as ‘eon’ the WWS is a small fraction of

the total working set and hence is an excellent candidate for

migration. In contrast, ‘gap’ has a consistently high dirty-

ing rate and would be problematic to migrate. The other

benchmarks go through various phases but are generally

amenable to live migration. Thus performing a migration

of an operating system will give different results depending

on the workload and the precise moment at which migra-

tion begins.

4.2 Estimating Migration Effectiveness

We observed that we could use the trace data acquired to

estimate the effectiveness of iterative pre-copy migration

for various workloads. In particular we can simulate a par-

ticular network bandwidth for page transfer, determine how

many pages would be dirtied during a particular iteration,

and then repeat for successive iterations. Since we know

the approximate WWS behaviour at every point in time, we

can estimate the overall amount of data transferred in the fi-

nal stop-and-copy round and hence estimate the downtime.

Figures 3–6 show our results for the four remaining work-

loads. Each figure comprises three graphs, each of which

corresponds to a particular network bandwidth limit for

page transfer; each individual graph shows the WWS his-

togram (in light gray) overlaid with four line plots estimat-

ing service downtime for up to four pre-copying rounds.

Looking at the topmost line (one pre-copy iteration),

the first thing to observe is that pre-copy migration al-

ways performs considerably better than naive stop-and-

copy. For a 512MB virtual machine this latter approach

would require 32, 16, and 8 seconds downtime for the

128Mbit/sec, 256Mbit/sec and 512Mbit/sec bandwidths re-

spectively. Even in the worst case (the starting phase of

SPECweb), a single pre-copy iteration reduces downtime

by a factor of four. In most cases we can expect to do

considerably better – for example both the Linux kernel

compile and the OLTP benchmark typically experience a

reduction in downtime of at least a factor of sixteen.

The remaining three lines show, in order, the effect of per-

forming a total of two, three or four pre-copy iterations

prior to the final stop-and-copy round. In most cases we

see an increased reduction in downtime from performing

these additional iterations, although with somewhat dimin-

ishing returns, particularly in the higher bandwidth cases.

This is because all the observed workloads exhibit a small

but extremely frequently updated set of ‘hot’ pages. In

practice these pages will include the stack and local vari-

ables being accessed within the currently executing pro-

cesses as well as pages being used for network and disk

traffic. The hottest pages will be dirtied at least as fast as

we can transfer them, and hence must be transferred in the

final stop-and-copy phase. This puts a lower bound on the

best possible service downtime for a particular benchmark,

network bandwidth and migration start time.

This interesting tradeoff suggests that it may be worthwhile

increasing the amount of bandwidth used for page transfer

in later (and shorter) pre-copy iterations. We will describe

our rate-adaptive algorithm based on this observation in

Section 5, and demonstrate its effectiveness in Section 6.

5 Implementation Issues

We designed and implemented our pre-copying migration

engine to integrate with the Xen virtual machine moni-

tor [1]. Xen securely divides the resources of the host ma-

chine amongst a set of resource-isolated virtual machines

each running a dedicated OS instance. In addition, there is

one special management virtual machine used for the ad-

ministration and control of the machine.

We considered two different methods for initiating and

managing state transfer. These illustrate two extreme points

in the design space: managed migration is performed

largely outside the migratee, by a migration daemon run-

ning in the management VM; in contrast, self migration is

implemented almost entirely within the migratee OS with

only a small stub required on the destination machine.

In the following sections we describe some of the imple-

mentation details of these two approaches. We describe

how we use dynamic network rate-limiting to effectively

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 279

balance network contention against OS downtime. We then

proceed to describe how we ameliorate the effects of rapid

page dirtying, and describe some performance enhance-

ments that become possible when the OS is aware of its

migration — either through the use of self migration, or by

adding explicit paravirtualization interfaces to the VMM.

5.1 Managed Migration

Managed migration is performed by migration daemons

running in the management VMs of the source and destina-

tion hosts. These are responsible for creating a new VM on

the destination machine, and coordinating transfer of live

system state over the network.

When transferring the memory image of the still-running

OS, the control software performs rounds of copying in

which it performs a complete scan of the VM’s memory

pages. Although in the first round all pages are transferred

to the destination machine, in subsequent rounds this copy-

ing is restricted to pages that were dirtied during the pre-

vious round, as indicated by a dirty bitmap that is copied

from Xen at the start of each round.

During normal operation the page tables managed by each

guest OS are the ones that are walked by the processor’s

MMU to fill the TLB. This is possible because guest OSes

are exposed to real physical addresses and so the page ta-

bles they create do not need to be mapped to physical ad-

dresses by Xen.

To log pages that are dirtied, Xen inserts shadow page ta-

bles underneath the running OS. The shadow tables are

populated on demand by translating sections of the guest

page tables. Translation is very simple for dirty logging:

all page-table entries (PTEs) are initially read-only map-

pings in the shadow tables, regardless of what is permitted

by the guest tables. If the guest tries to modify a page of

memory, the resulting page fault is trapped by Xen. If write

access is permitted by the relevant guest PTE then this per-

mission is extended to the shadow PTE. At the same time,

we set the appropriate bit in the VM’s dirty bitmap.

When the bitmap is copied to the control software at the

start of each pre-copying round, Xen’s bitmap is cleared

and the shadow page tables are destroyed and recreated as

the migratee OS continues to run. This causes all write per-

missions to be lost: all pages that are subsequently updated

are then added to the now-clear dirty bitmap.

When it is determined that the pre-copy phase is no longer

beneficial, using heuristics derived from the analysis in

Section 4, the OS is sent a control message requesting that

it suspend itself in a state suitable for migration. This

causes the OS to prepare for resumption on the destina-

tion machine; Xen informs the control software once the

OS has done this. The dirty bitmap is scanned one last

time for remaining inconsistent memory pages, and these

are transferred to the destination together with the VM’s

checkpointed CPU-register state.

Once this final information is received at the destination,

the VM state on the source machine can safely be dis-

carded. Control software on the destination machine scans

the memory map and rewrites the guest’s page tables to re-

flect the addresses of the memory pages that it has been

allocated. Execution is then resumed by starting the new

VM at the point that the old VM checkpointed itself. The

OS then restarts its virtual device drivers and updates its

notion of wallclock time.

Since the transfer of pages is OS agnostic, we can easily

support any guest operating system – all that is required is

a small paravirtualized stub to handle resumption. Our im-

plementation currently supports Linux 2.4, Linux 2.6 and

NetBSD 2.0.

5.2 Self Migration

In contrast to the managed method described above, self

migration [18] places the majority of the implementation

within the OS being migrated. In this design no modifi-

cations are required either to Xen or to the management

software running on the source machine, although a migra-

tion stub must run on the destination machine to listen for

incoming migration requests, create an appropriate empty

VM, and receive the migrated system state.

The pre-copying scheme that we implemented for self mi-

gration is conceptually very similar to that for managed mi-

gration. At the start of each pre-copying round every page

mapping in every virtual address space is write-protected.

The OS maintains a dirty bitmap tracking dirtied physical

pages, setting the appropriate bits as write faults occur. To

discriminate migration faults from other possible causes

(for example, copy-on-write faults, or access-permission

faults) we reserve a spare bit in each PTE to indicate that it

is write-protected only for dirty-logging purposes.

The major implementation difficulty of this scheme is to

transfer a consistent OS checkpoint. In contrast with a

managed migration, where we simply suspend the migra-

tee to obtain a consistent checkpoint, self migration is far

harder because the OS must continue to run in order to

transfer its final state. We solve this difficulty by logically

checkpointing the OS on entry to a final two-stage stop-

and-copy phase. The first stage disables all OS activity ex-

cept for migration and then peforms a final scan of the dirty

bitmap, clearing the appropriate bit as each page is trans-

ferred. Any pages that are dirtied during the final scan, and

that are still marked as dirty in the bitmap, are copied to a

shadow buffer. The second and final stage then transfers the

contents of the shadow buffer — page updates are ignored

during this transfer.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association280

5.3 Dynamic Rate-Limiting

It is not always appropriate to select a single network

bandwidth limit for migration traffic. Although a low

limit avoids impacting the performance of running services,

analysis in Section 4 showed that we must eventually pay

in the form of an extended downtime because the hottest

pages in the writable working set are not amenable to pre-

copy migration. The downtime can be reduced by increas-

ing the bandwidth limit, albeit at the cost of additional net-

work contention.

Our solution to this impasse is to dynamically adapt the

bandwidth limit during each pre-copying round. The ad-

ministrator selects a minimum and a maximum bandwidth

limit. The first pre-copy round transfers pages at the mini-

mum bandwidth. Each subsequent round counts the num-

ber of pages dirtied in the previous round, and divides this

by the duration of the previous round to calculate the dirty-

ing rate. The bandwidth limit for the next round is then

determined by adding a constant increment to the previ-

ous round’s dirtying rate — we have empirically deter-

mined that 50Mbit/sec is a suitable value. We terminate

pre-copying when the calculated rate is greater than the ad-

ministrator’s chosen maximum, or when less than 256KB

remains to be transferred. During the final stop-and-copy

phase we minimize service downtime by transferring mem-

ory at the maximum allowable rate.

As we will show in Section 6, using this adaptive scheme

results in the bandwidth usage remaining low during the

transfer of the majority of the pages, increasing only at

the end of the migration to transfer the hottest pages in the

WWS. This effectively balances short downtime with low

average network contention and CPU usage.

5.4 Rapid Page Dirtying

Our working-set analysis in Section 4 shows that every OS

workload has some set of pages that are updated extremely

frequently, and which are therefore not good candidates

for pre-copy migration even when using all available net-

work bandwidth. We observed that rapidly-modified pages

are very likely to be dirtied again by the time we attempt

to transfer them in any particular pre-copying round. We

therefore periodically ‘peek’ at the current round’s dirty

bitmap and transfer only those pages dirtied in the previ-

ous round that have not been dirtied again at the time we

scan them.

We further observed that page dirtying is often physically

clustered — if a page is dirtied then it is disproportionally

likely that a close neighbour will be dirtied soon after. This

increases the likelihood that, if our peeking does not detect

one page in a cluster, it will detect none. To avoid this

0

2000

4000

6000

8000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4
k
B

p
a
g
e
s

Iterations

Transferred pages

Figure 7: Rogue-process detection during migration of a

Linux kernel build. After the twelfth iteration a maximum

limit of forty write faults is imposed on every process, dras-

tically reducing the total writable working set.

unfortunate behaviour we scan the VM’s physical memory

space in a pseudo-random order.

5.5 Paravirtualized Optimizations

One key benefit of paravirtualization is that operating sys-

tems can be made aware of certain important differences

between the real and virtual environments. In terms of mi-

gration, this allows a number of optimizations by informing

the operating system that it is about to be migrated – at this

stage a migration stub handler within the OS could help

improve performance in at least the following ways:

Stunning Rogue Processes. Pre-copy migration works

best when memory pages can be copied to the destination

host faster than they are dirtied by the migrating virtual ma-

chine. This may not always be the case – for example, a test

program which writes one word in every page was able to

dirty memory at a rate of 320 Gbit/sec, well ahead of the

transfer rate of any Ethernet interface. This is a synthetic

example, but there may well be cases in practice in which

pre-copy migration is unable to keep up, or where migra-

tion is prolonged unnecessarily by one or more ‘rogue’ ap-

plications.

In both the managed and self migration cases, we can miti-

gate against this risk by forking a monitoring thread within

the OS kernel when migration begins. As it runs within the

OS, this thread can monitor the WWS of individual pro-

cesses and take action if required. We have implemented

a simple version of this which simply limits each process

to 40 write faults before being moved to a wait queue – in

essence we ‘stun’ processes that make migration difficult.

This technique works well, as shown in Figure 7, although

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 281

one must be careful not to stun important interactive ser-

vices.

Freeing Page Cache Pages. A typical operating system

will have a number of ‘free’ pages at any time, ranging

from truly free (page allocator) to cold buffer cache pages.

When informed a migration is to begin, the OS can sim-

ply return some or all of these pages to Xen in the same

way it would when using the ballooning mechanism de-

scribed in [1]. This means that the time taken for the first

“full pass” iteration of pre-copy migration can be reduced,

sometimes drastically. However should the contents of

these pages be needed again, they will need to be faulted

back in from disk, incurring greater overall cost.

6 Evaluation

In this section we present a thorough evaluation of our im-

plementation on a wide variety of workloads. We begin by

describing our test setup, and then go on explore the mi-

gration of several workloads in detail. Note that none of

the experiments in this section use the paravirtualized opti-

mizations discussed above since we wished to measure the

baseline performance of our system.

6.1 Test Setup

We perform test migrations between an identical pair of

Dell PE-2650 server-class machines, each with dual Xeon

2GHz CPUs and 2GB memory. The machines have

Broadcom TG3 network interfaces and are connected via

switched Gigabit Ethernet. In these experiments only a sin-

gle CPU was used, with HyperThreading enabled. Storage

is accessed via the iSCSI protocol from an NetApp F840

network attached storage server except where noted other-

wise. We used XenLinux 2.4.27 as the operating system in

all cases.

6.2 Simple Web Server

We begin our evaluation by examining the migration of an

Apache 1.3 web server serving static content at a high rate.

Figure 8 illustrates the throughput achieved when continu-

ously serving a single 512KB file to a set of one hundred

concurrent clients. The web server virtual machine has a

memory allocation of 800MB.

At the start of the trace, the server achieves a consistent

throughput of approximately 870Mbit/sec. Migration starts

twenty seven seconds into the trace but is initially rate-

limited to 100Mbit/sec (12% CPU), resulting in the server

throughput dropping to 765Mbit/s. This initial low-rate

pass transfers 776MB and lasts for 62 seconds, at which

point the migration algorithm described in Section 5 in-

creases its rate over several iterations and finally suspends

the VM after a further 9.8 seconds. The final stop-and-copy

phase then transfer the remaining pages and the web server

resumes at full rate after a 165ms outage.

This simple example demonstrates that a highly loaded

server can be migrated with both controlled impact on live

services and a short downtime. However, the working set

of the server in this case is rather small, and so this should

be expected to be a relatively easy case for live migration.

6.3 Complex Web Workload: SPECweb99

A more challenging Apache workload is presented by

SPECweb99, a complex application-level benchmark for

evaluating web servers and the systems that host them. The

workload is a complex mix of page requests: 30% require

dynamic content generation, 16% are HTTP POST opera-

tions, and 0.5% execute a CGI script. As the server runs, it

generates access and POST logs, contributing to disk (and

therefore network) throughput.

A number of client machines are used to generate the load

for the server under test, with each machine simulating

a collection of users concurrently accessing the web site.

SPECweb99 defines a minimum quality of service that

each user must receive for it to count as ‘conformant’; an

aggregate bandwidth in excess of 320Kbit/sec over a series

of requests. The SPECweb score received is the number

of conformant users that the server successfully maintains.

The considerably more demanding workload of SPECweb

represents a challenging candidate for migration.

We benchmarked a single VM running SPECweb and

recorded a maximum score of 385 conformant clients —

we used the RedHat gnbd network block device in place of

iSCSI as the lighter-weight protocol achieves higher per-

formance. Since at this point the server is effectively in

overload, we then relaxed the offered load to 90% of max-

imum (350 conformant connections) to represent a more

realistic scenario.

Using a virtual machine configured with 800MB of mem-

ory, we migrated a SPECweb99 run in the middle of its

execution. Figure 9 shows a detailed analysis of this mi-

gration. The x-axis shows time elapsed since start of migra-

tion, while the y-axis shows the network bandwidth being

used to transfer pages to the destination. Darker boxes il-

lustrate the page transfer process while lighter boxes show

the pages dirtied during each iteration. Our algorithm ad-

justs the transfer rate relative to the page dirty rate observed

during the previous round (denoted by the height of the

lighter boxes).

As in the case of the static web server, migration begins

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association282

Elapsed time (secs)

0 10 20 30 40 50 60 70 80 90 100 110 120 130

T
h
ro

u
g
h
p
u
t
(M

b
it
/s

e
c
)

0

200

400

600

800

1000

Effect of Migration on Web Server Transmission Rate

Sample over 100ms

Sample over 500ms

512Kb files

100 concurrent clients

1st precopy, 62 secs further iterations

9.8 secs
765 Mbit/sec

870 Mbit/sec

694 Mbit/sec

165ms total downtime

Figure 8: Results of migrating a running web server VM.

In the final iteration, the domain is suspended. The remaining

18.2 MB of dirty pages are sent and the VM resumes execution

on the remote machine. In addition to the 201ms required to

copy the last round of data, an additional 9ms elapse while the

VM starts up. The total downtime for this experiment is 210ms.

0 50 55 60 65 70

0

100

200

300

400

500

600

676.8 MB

VM memory transfered

Memory dirtied during this iteration

126.7 MB 39.0 MB

28.4 MB

24.2 MB

16.7 MB

14.2 MB

15.3 MB

18.2 MB

The first iteration involves a long, relatively low-rate transfer of

the VM’s memory. In this example, 676.8 MB are transfered in

54.1 seconds. These early phases allow non-writable working

set data to be transfered with a low impact on active services.

Iterative Progress of Live Migration: SPECweb99
350 Clients (90% of max load), 800MB VM

Total Data Transmitted: 960MB (x1.20)

Area of Bars:

Tr
a

n
s
fe

r
R

a
te

(M
b

it
/s

e
c
)

Elapsed Time (sec)

Figure 9: Results of migrating a running SPECweb VM.

with a long period of low-rate transmission as a first pass

is made through the memory of the virtual machine. This

first round takes 54.1 seconds and transmits 676.8MB of

memory. Two more low-rate rounds follow, transmitting

126.7MB and 39.0MB respectively before the transmission

rate is increased.

The remainder of the graph illustrates how the adaptive al-

gorithm tracks the page dirty rate over successively shorter

iterations before finally suspending the VM. When suspen-

sion takes place, 18.2MB of memory remains to be sent.

This transmission takes 201ms, after which an additional

9ms is required for the domain to resume normal execu-

tion.

The total downtime of 210ms experienced by the

SPECweb clients is sufficiently brief to maintain the 350

conformant clients. This result is an excellent validation of

our approach: a heavily (90% of maximum) loaded server

is migrated to a separate physical host with a total migra-

tion time of seventy-one seconds. Furthermore the migra-

tion does not interfere with the quality of service demanded

by SPECweb’s workload. This illustrates the applicability

of migration as a tool for administrators of demanding live

services.

6.4 Low-Latency Server: Quake 3

Another representative application for hosting environ-

ments is a multiplayer on-line game server. To determine

the effectiveness of our approach in this case we config-

ured a virtual machine with 64MB of memory running a

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 283

Elapsed time (secs)

0 10 20 30 40 50 60 7

P
a
c
k
e
t
fl
ig

h
t
ti
m

e
(s

e
c
s
)

0

0.02

0.04

0.06

0.08

0.1

0.12

Packet interarrival time during Quake 3 migration

M
ig

ra
ti
o
n

1

d
o
w

n
ti
m

e
:

5
0
m

s

M
ig

ra
ti
o
n

2

d
o
w

n
ti
m

e
:

4
8
m

s

Figure 10: Effect on packet response time of migrating a running Quake 3 server VM.

0 4.5 5 5.5 6 6.5 7

0

50

100

150

200

250

300

350

400

450

56.3 MB 20.4 MB 4.6 MB

1.6 MB

1.2 MB

0.9 MB

1.2 MB

1.1 MB

0.8 MB

0.2 MB

0.1 MBIterative Progress of Live Migration: Quake 3 Server
6 Clients, 64MB VM

Total Data Transmitted: 88MB (x1.37)

VM memory transfered

Memory dirtied during this iteration

Area of Bars:

Tr
a

n
s
fe

r
R

a
te

(M
b

it
/s

e
c
)

Elapsed Time (sec)

The final iteration in this case leaves only 148KB of data to

transmit. In addition to the 20ms required to copy this last

round, an additional 40ms are spent on start-up overhead. The

total downtime experienced is 60ms.

Figure 11: Results of migrating a running Quake 3 server VM.

Quake 3 server. Six players joined the game and started to

play within a shared arena, at which point we initiated a

migration to another machine. A detailed analysis of this

migration is shown in Figure 11.

The trace illustrates a generally similar progression as for

SPECweb, although in this case the amount of data to be

transferred is significantly smaller. Once again the trans-

fer rate increases as the trace progresses, although the final

stop-and-copy phase transfers so little data (148KB) that

the full bandwidth is not utilized.

Overall, we are able to perform the live migration with a to-

tal downtime of 60ms. To determine the effect of migration

on the live players, we performed an additional experiment

in which we migrated the running Quake 3 server twice

and measured the inter-arrival time of packets received by

clients. The results are shown in Figure 10. As can be seen,

from the client point of view migration manifests itself as

a transient increase in response time of 50ms. In neither

case was this perceptible to the players.

6.5 A Diabolical Workload: MMuncher

As a final point in our evaluation, we consider the situation

in which a virtual machine is writing to memory faster than

can be transferred across the network. We test this diaboli-

cal case by running a 512MB host with a simple C program

that writes constantly to a 256MB region of memory. The

results of this migration are shown in Figure 12.

In the first iteration of this workload, we see that half of

the memory has been transmitted, while the other half is

immediately marked dirty by our test program. Our algo-

rithm attempts to adapt to this by scaling itself relative to

the perceived initial rate of dirtying; this scaling proves in-

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association284

0 5 10 15 20 25

0

200

400

600

800

1000
Iterative Progress of Live Migration: Diabolical Workload
512MB VM, Constant writes to 256MB region.

Total Data Transmitted: 638MB (x1.25)

Elapsed Time (sec)

Tr
a

n
sf

e
r

R
a

te
(M

b
it

/s
e

c)

255.4 MB

44.0 MB

116.0 MB 222.5 MB

In the first iteration, the workload

dirties half of memory. The other half

is transmitted, both bars are equal.

VM memory transfered

Memory dirtied during this iteration

Area of Bars:

Figure 12: Results of migrating a VM running a diabolical

workload.

sufficient, as the rate at which the memory is being written

becomes apparent. In the third round, the transfer rate is

scaled up to 500Mbit/s in a final attempt to outpace the

memory writer. As this last attempt is still unsuccessful,

the virtual machine is suspended, and the remaining dirty

pages are copied, resulting in a downtime of 3.5 seconds.

Fortunately such dirtying rates appear to be rare in real

workloads.

7 Future Work

Although our solution is well-suited for the environment

we have targeted – a well-connected data-center or cluster

with network-accessed storage – there are a number of ar-

eas in which we hope to carry out future work. This would

allow us to extend live migration to wide-area networks,

and to environments that cannot rely solely on network-

attached storage.

7.1 Cluster Management

In a cluster environment where a pool of virtual machines

are hosted on a smaller set of physical servers, there are

great opportunities for dynamic load balancing of proces-

sor, memory and networking resources. A key challenge

is to develop cluster control software which can make in-

formed decision as to the placement and movement of vir-

tual machines.

A special case of this is ‘evacuating’ VMs from a node that

is to be taken down for scheduled maintenance. A sensible

approach to achieving this is to migrate the VMs in increas-

ing order of their observed WWS. Since each VM migrated

frees resources on the node, additional CPU and network

becomes available for those VMs which need it most. We

are in the process of building a cluster controller for Xen

systems.

7.2 Wide Area Network Redirection

Our layer 2 redirection scheme works efficiently and with

remarkably low outage on modern gigabit networks. How-

ever, when migrating outside the local subnet this mech-

anism will not suffice. Instead, either the OS will have to

obtain a new IP address which is within the destination sub-

net, or some kind of indirection layer, on top of IP, must ex-

ist. Since this problem is already familiar to laptop users,

a number of different solutions have been suggested. One

of the more prominent approaches is that of Mobile IP [19]

where a node on the home network (the home agent) for-

wards packets destined for the client (mobile node) to a

care-of address on the foreign network. As with all residual

dependencies this can lead to both performance problems

and additional failure modes.

Snoeren and Balakrishnan [20] suggest addressing the

problem of connection migration at the TCP level, aug-

menting TCP with a secure token negotiated at connection

time, to which a relocated host can refer in a special SYN

packet requesting reconnection from a new IP address. Dy-

namic DNS updates are suggested as a means of locating

hosts after a move.

7.3 Migrating Block Devices

Although NAS prevails in the modern data center, some

environments may still make extensive use of local disks.

These present a significant problem for migration as they

are usually considerably larger than volatile memory. If the

entire contents of a disk must be transferred to a new host

before migration can complete, then total migration times

may be intolerably extended.

This latency can be avoided at migration time by arrang-

ing to mirror the disk contents at one or more remote hosts.

For example, we are investigating using the built-in soft-

ware RAID and iSCSI functionality of Linux to implement

disk mirroring before and during OS migration. We imag-

ine a similar use of software RAID-5, in cases where data

on disks requires a higher level of availability. Multiple

hosts can act as storage targets for one another, increasing

availability at the cost of some network traffic.

The effective management of local storage for clusters of

virtual machines is an interesting problem that we hope to

further explore in future work. As virtual machines will

typically work from a small set of common system images

(for instance a generic Fedora Linux installation) and make

individual changes above this, there seems to be opportu-

nity to manage copy-on-write system images across a clus-

ter in a way that facilitates migration, allows replication,

and makes efficient use of local disks.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 285

8 Conclusion

By integrating live OS migration into the Xen virtual ma-

chine monitor we enable rapid movement of interactive

workloads within clusters and data centers. Our dynamic

network-bandwidth adaptation allows migration to proceed

with minimal impact on running services, while reducing

total downtime to below discernable thresholds.

Our comprehensive evaluation shows that realistic server

workloads such as SPECweb99 can be migrated with just

210ms downtime, while a Quake3 game server is migrated

with an imperceptible 60ms outage.

References

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven

Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian

Pratt, and Andrew Warfield. Xen and the art of virtu-

alization. In Proceedings of the nineteenth ACM sym-

posium on Operating Systems Principles (SOSP19),

pages 164–177. ACM Press, 2003.

[2] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler,

and S. Zhou. Process migration. ACM Computing

Surveys, 32(3):241–299, 2000.

[3] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow,

M. S. Lam, and M.Rosenblum. Optimizing the mi-

gration of virtual computers. In Proc. of the 5th Sym-

posium on Operating Systems Design and Implemen-

tation (OSDI-02), December 2002.

[4] M. Kozuch and M. Satyanarayanan. Internet sus-

pend/resume. In Proceedings of the IEEE Work-

shop on Mobile Computing Systems and Applications,

2002.

[5] Andrew Whitaker, Richard S. Cox, Marianne Shaw,

and Steven D. Gribble. Constructing services with

interposable virtual hardware. In Proceedings of the

First Symposium on Networked Systems Design and

Implementation (NSDI ’04), 2004.

[6] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The de-

sign and implementation of zap: A system for migrat-

ing computing environments. In Proc. 5th USENIX

Symposium on Operating Systems Design and Im-

plementation (OSDI-02), pages 361–376, December

2002.

[7] Jacob G. Hansen and Asger K. Henriksen. Nomadic

operating systems. Master’s thesis, Dept. of Com-

puter Science, University of Copenhagen, Denmark,

2002.

[8] Hermann Härtig, Michael Hohmuth, Jochen Liedtke,

and Sebastian Schönberg. The performance of micro-

kernel-based systems. In Proceedings of the sixteenth

ACM Symposium on Operating System Principles,

pages 66–77. ACM Press, 1997.

[9] VMWare, Inc. VMWare VirtualCenter Version 1.2

User’s Manual. 2004.

[10] Michael L. Powell and Barton P. Miller. Process mi-

gration in DEMOS/MP. In Proceedings of the ninth

ACM Symposium on Operating System Principles,

pages 110–119. ACM Press, 1983.

[11] Marvin M. Theimer, Keith A. Lantz, and David R.

Cheriton. Preemptable remote execution facilities for

the V-system. In Proceedings of the tenth ACM Sym-

posium on Operating System Principles, pages 2–12.

ACM Press, 1985.

[12] Eric Jul, Henry Levy, Norman Hutchinson, and An-

drew Black. Fine-grained mobility in the emerald sys-

tem. ACM Trans. Comput. Syst., 6(1):109–133, 1988.

[13] Fred Douglis and John K. Ousterhout. Transparent

process migration: Design alternatives and the Sprite

implementation. Software - Practice and Experience,

21(8):757–785, 1991.

[14] A. Barak and O. La’adan. The MOSIX multicom-

puter operating system for high performance cluster

computing. Journal of Future Generation Computer

Systems, 13(4-5):361–372, March 1998.

[15] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N.

Nelson, and B. B. Welch. The Sprite network oper-

ating system. Computer Magazine of the Computer

Group News of the IEEE Computer Group Society, ;

ACM CR 8905-0314, 21(2), 1988.

[16] E. Zayas. Attacking the process migration bottle-

neck. In Proceedings of the eleventh ACM Symposium

on Operating systems principles, pages 13–24. ACM

Press, 1987.

[17] Peter J. Denning. Working Sets Past and Present.

IEEE Transactions on Software Engineering, SE-

6(1):64–84, January 1980.

[18] Jacob G. Hansen and Eric Jul. Self-migration of op-

erating systems. In Proceedings of the 11th ACM

SIGOPS European Workshop (EW 2004), pages 126–

130, 2004.

[19] C. E. Perkins and A. Myles. Mobile IP. Pro-

ceedings of International Telecommunications Sym-

posium, pages 415–419, 1997.

[20] Alex C. Snoeren and Hari Balakrishnan. An end-to-

end approach to host mobility. In Proceedings of the

6th annual international conference on Mobile com-

puting and networking, pages 155–166. ACM Press,

2000.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association286

