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Abstract We present a novel approach to adaptive navi-

gation in the interactive virtual world by using data from

the user. Our method constructs automatically a navigation

mesh that provides new paths for agents by referencing the

user movements. To acquire accurate data samples from all

the user data in the interactive world, we use the follow-

ing techniques: an agent of interest (AOI), a region of in-

terest (ROI) map, and a discretized path graph (DPG). Our

method enables adaptive changes to the virtual world over

time and provides user-preferred path weights for smart-

agent path planning. We have tested the usefulness of our

algorithm with several example scenarios from interactive

worlds such as video games. In practice, our framework can

be applied easily to any type of navigation in an interactive

world. In addition, it may prove useful for solving previous

pathfinding problems in static navigation planning.
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1 Introduction

In the real world, unexplored areas do not have roads. Over

time, however, a very small number of people start exploring

these areas and marking out the beginnings of paths. Others

naturally follow these paths laid out for them by the pio-

neers, and the paths gradually expand and become more de-

fined. Inspired by this natural process in the real world, we

conceived a new navigation approach for interactive virtual

worlds. Our system samples characteristic user movements

in the interactive world, and then generates new paths that

previously did not exist. Newly generated paths can be used

to expand the previous static world or to compensate for the

inadequacies of conventional agent pathfinding.

In recent years, with advances in graphics hardware, the

number of interactive applications involving multi agents

has increased. Consequently, users have more opportunities

to interact with a large number of agents in video games, and

they experience more complex interaction in online environ-

ments such as massively multiplayer online games and vir-

tual worlds. Real-time pathfinding is a process that enables

the real-time selection of optimal paths for agents within

a defined environment. Traditionally, it has been studied

within the domains of computer graphics and robotics.

Many real-time pathfinding approaches have focused on

global navigation with roadmap-based or graph-based meth-

ods to reduce the spatial complexity. Kavraki [8] presents

a graph-based pathfinding technique by using a probabilis-

tic roadmap in a static world. In a preprocessing phase, this

method builds a roadmap of possible motions of the robot

through the environment. When a particular path planning

query must be solved, a path is retrieved from this roadmap

using fast graph search. These methods have been success-

fully applied to computer animation problems such as the

animation of human-like characters [4, 7]. The probabilistic
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roadmap approach is suited for high dimensional environ-

ments. But the roadmap produced by the method can be low

quality paths consisting of straight line segments requiring

a smoothing process, which is not appropriate for real-time

processes.

To satisfy the performance and quality of path generation

at the same time, the two-level path planning method was

proposed in [9, 20]. In this method, the first level deals with

global path planning towards a goal, and the second level ad-

dresses local collision avoidance and navigation. The global

path is computed using a roadmap graph that represents

static objects in the scene without the presence of agents.

A classic search algorithm is then used to compute distances

from a goal position to any graph node.

As the size and complexity of the virtual world is in-

creasing, an appropriate solution for real-time navigation

in a very large virtual environment is required. Pettr’e et

al. [12] addressed this issue for crowds by using a space

structuring technique that automatically decomposes mul-

tilayered or uneven terrains into navigation corridors, giving

rise to a navigation graph. In [13], Pettr’e et al. extended

their autonomous navigation method by considering inter-

actions between pedestrians, using a predictive approach.

Their method supports a scalable simulation loop, which

allows crowd situation update while distributing the avail-

able computational resources in space and time. Therefore,

pathfinding can be implemented efficiently in a large virtual

world.

In recent years, the virtual world is changing to a dy-

namic environment. The adaptive concept was presented

as a complementary approach for agent navigation in dy-

namic environments. Sud et al. [15] present a novel ap-

proach to real-time path planning by multiple virtual agents

in complex dynamic scenes. They used a Multi-agent Nav-

igation Graph (MaNG), which is constructed using Voronoi

diagrams. In [16], they also suggested Adaptive Elastic

Roadmaps (AERO), which are reactive roadmap graphs us-

ing particle-based dynamics simulators.

Previous roadmap- or navigation graph-based pathfind-

ing techniques have focused on agent navigation in the vir-

tual world by using data from the environment itself. The

environmental complexity of the virtual world has increased

exponentially in just a few years, aiming to satisfy users’

demands for “reality.” In that world, a user can control a

specific agent and interact with other agents with few re-

strictions. However, there are some limitations on handling

these types of environments using previous pathfinding tech-

niques alone, because of the irregularity and complexity of

the interactive world. Our method has been devised to ad-

dress these types of pathfinding problems. In this paper, we

propose a new adaptive navigation method based on user in-

teraction data. To our knowledge, this is the first adaptive

navigation method that uses user data to evolve the static

Fig. 1 System overview

navigation data structure over time in an interactive virtual

world. Figure 1 shows our system overview. The remainder

of this paper is structured as follows. Section 2 reviews prob-

lems with previous pathfinding methods when applied to in-

teractive worlds. Section 3 describes our proposed system

for adaptive navigation, which comprises four components

in addition to the metadata acquisition. Section 4 presents

our results, and Sect. 5 contains our conclusions.

2 Pathfinding problems in the interactive world

The A∗ algorithm is the most widely used search algorithm

for real-time pathfinding in the interactive world [6]. The

dynamic A∗ algorithm (D∗) [17] can be another solution for

unknown, partially known, and changing environments. The

A∗-based algorithm requires a static quantized search space

which depends on the nature of the world. Stout et al. [18]

suggested various ways to quantize the world including rec-

tangular grids, quad trees, convex polygons, and navigation

meshes, etc. A navigation mesh is an abstract data structure

used in artificial intelligence (AI) applications to aid agents

in pathfinding through large spaces. Meshes are typically

implemented as graphs, which enables their manipulation by

the large number of algorithms defined for these structures.

One of the most common uses of navigation meshes is in

video games [3, 19] and commercial AI pathfinding middle-

wares [5, 11]. In this section, we present a brief description

of the development process for pathfinding that mostly relies

on navigation meshes and addresses common pathfinding is-

sues.

2.1 Pathfinding based on navigation meshes

Pathfinding processes based on navigation meshes usually

have two stages, a preprocessing stage and a run-time stage.

The pathfinding approach varies according to the type of

agents involved.
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2.1.1 The preprocessing stage

(1) Terrain data loading: Loads the art resources that con-

tain the world data.

(2) Navigation mesh generation: Using the loaded terrain

data, areas over which the actual agent movement is al-

lowed are processed into a navigation mesh. In identi-

fying these mobility areas, one refers to the terrain gra-

dient and any manual inputs from the developer. At this

stage, the navigation graph can be used depending on

the pathfinding requirement.

2.1.2 The run-time stage

(3) Destination assignment: The destination for the agent

movement is assigned in accordance with event triggers

or user interaction.

(4) Shortest path search: The A∗ search algorithm is ap-

plied to the navigation mesh or other derived data struc-

tures to calculate the shortest path to the destination

points inside of the navigation meshes.

(5) Movement: The agent moves along the derived shortest

paths and avoids other moving agents by local devia-

tions inside of the generated navigation mesh. If the nav-

igation graph is used, the agent moves along the graph

edges.

2.1.3 PC and NPC

In a user-participating virtual world, agents are classified

as either playable characters (PCs) or non-playable charac-

ters (NPCs). NPC movement is relatively robust and sim-

ple compared with that of PCs. NPCs move only along the

shortest path obtained in stage 4 by the system. If there is an

area that is not covered by the navigation mesh acquired in

stage 2, that area becomes an inaccessible area for NPCs.

Movement processes for PCs are slightly different from

those of NPCs in the interactive world. PC movement is con-

trolled by point designation and/or by directional control.

Here, point designation refers to the user directly designat-

ing a destination point for the PC, and is usually achieved

via a mouse click. Conversely, directional control refers to

user input of the direction of the PC’s movement from the

current location and is usually achieved via directional keys.

PCs whose destination has been designated by pointing find

their path using the navigation mesh in the same manner as

NPCs. PCs whose destination has been defined using direc-

tional keys, on the other hand, do not reference the naviga-

tion mesh but move in each designated direction by a preset

distance instead.

2.2 Limitations

Under the processes described above, pathfinding produces

the following issues. These types of issues still remain as

Fig. 2 Previous pathfinding issues—NPC detouring cases. PCs can

jump over the small gap (left) and jump down from the hill (right), but

NPCs cannot do this

practical problems, even in some million-unit-selling com-

mercial interactive titles [2, 10].

2.2.1 Updating difficulty for the navigation mesh

Because of the huge data size of the terrain of virtual worlds,

updating the navigation mesh in stages 1 and 2, still remains

a time-consuming task. Consequently, it limits the dynamic

update of the entire virtual world, forcing the world to be

static or only partially dynamic within a limited region.

2.2.2 Incomplete navigation mesh coverage

At stage 2, issues with the navigation mesh generation algo-

rithm and/or mistakes by the world resource developer can

lead to areas where the navigation mesh does not exist. In

this case, unexpected inaccessible areas exist in the world,

which subsequently causes the following problems.

– NPC detouring: At stage 5, an NPC may travel an un-

necessarily long route, irrespective of the terrain. This in-

efficient detouring of NPCs lowers the realism of NPC

actions in the virtual world and may enable a user to ex-

ploit this glitch, resulting in various forms of NPC interac-

tion abuse. In particular, exploitable vulnerabilities such

as this in a combat situation severely threaten the balance

of the virtual world. Figure 2 shows the NPC detouring

cases in two discontinuous areas.

– PC detouring: Controlling a PC via point designation may

result in the PC traveling an unnecessarily long route.

This forces the user to limit the designation of destination

points to nearby and linear points from the PC’s current

position, consequently necessitating an excessive number

of point designations.

2.2.3 Movement range discrepancy between PC and NPC

There is a difference in the degree of controllability freedom

between PCs and NPCs. Compared with the NPC, which

refers to the navigation mesh only, PC can explore more ar-

eas and choose a better path by experimenting in various

circumstances. This discrepancy produces adaptation limi-

tations related to agent pathfinding in the interactive world.
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3 System

This paper proposes a new method for agent pathfinding that

applies user movement data to address the issues with con-

ventional pathfinding approaches in the interactive world.

This idea was conceived with the assumption that users can

choose better paths instinctively if they control their charac-

ters. In the early stages of investigating an interactive world,

users do not usually select the best routes when controlling

their characters, because of the lack of world information.

But as time goes on, users become accustomed to the world,

and they start to discover better paths than the system can

generate. For example, they can jump onto the roof of a

building, or hide in places that other agents cannot reach,

using unexpected skills. Until now, the system has not been

able to handle this type of situation without manual inter-

vention. However, if a system were capable of learning the

user’s experimentally optimized paths, and integrating these

findings into its virtual world, it would give more realism to

the user and avoid any vulnerabilities of the virtual world

in advance. This process can be called adaptive path expan-

sion, and it is not based on any specific algorithm but based

on statistical data from the real world.

In the interactive world, users can accumulate their play

experiences, but NPCs usually cannot. Therefore, as time

goes on, PCs become smart, whereas NPCs retain their ini-

tial static behavior. This sometimes causes the user to be-

come bored or leads to the vulnerabilities of the agent be-

ing exploited. Evolutionary computation can be a solution to

this problem. Much research in the artificial intelligence do-

main has used neural networks and genetic algorithms. But

to evolve the NPC correctly, an appropriate objective func-

tion based on various parameters is required. Users’ path

data can be part of the necessary metadata used to evolve

the NPC. The trained paths generated by the system can be

utilized as the key metadata for agent evolution. Knowing

the users’ previous paths, the NPC may be able to make

smarter decisions. To achieve these two capabilities, namely

adaptive path expansion and collecting metadata for agent

evolution, we use a combination of processes, as follows.

3.1 Adaptive path expansion

Referencing user movement paths in an interactive world

requires the gathering of relevant data. The data must be

sampled from areas that have pathfinding issues and must

contain information needed for updating the path. However,

it is difficult to anticipate when and how this type of data

might be manifested and particularly difficult to make such

forecasts in massive virtual worlds. Furthermore, monitor-

ing the paths of the thousands of agents who simultaneously

connect to and play in a virtual online world via a server is

almost impossible. In addressing this issue with a systemi-

cally efficient and automated approach, we use three auto-

matic sampling techniques, as follows.

Fig. 3 Checking the shortest path update by PC

3.1.1 Region-based sampling: the ROI map

Virtual worlds are usually enormous in scale, and pathfind-

ing issues within such environments are difficult to identify

because they usually occur at underexplored areas within the

world. Automated data sampling necessitates the identifica-

tion of problematic areas within a limited time frame. There-

fore, to solve this problem, we propose a region of interest

(ROI) map. Using such a map was motivated by Pettr’e’s

idea [12] of utilizing regions of interest in adjusting the level

of detailed processing of movements. First, we construct an

ROI map for the entire virtual world in terms of scalable

two-dimensional grids called monitoring blocks (MBs). An

MB has an ROI level that is proportional to the possibility

of finding an optimal path within the area. The levels range

from level 0, where no pathfinding issues are anticipated, to

level N, where pathfinding issues are likely. By using spa-

tial partitioning techniques such as quad tree [1], each MB

can be divided into four smaller MBs recursively until one

reaches a level N.

With an ROI map deployed in the environment, the sys-

tem should be able to detect abnormal shortest routes se-

lected by the user. The quickest and the most direct ap-

proach is to look for instances where the route traveled

by the user between two specific points is shorter than the

distance measured between those points as calculated by

the A∗ algorithm used in the system. Consider the map of

Fig. 3, where we need to check the shortest path update

by the user in a certain period. Let S be a starting location

at time t0 and E be an ending location at time t0 + �tE .

Then Pi is the actual PC’s location at t0 + �ti and Ai is

the simulated PC’s location at t0 + �ti , which is calcu-

lated by the A∗ algorithm on the existing navigation mesh.

If
∑N−1

i=0 d(Pi,Pi+1) <
∑N−1

i=0 d(Ai,Ai+1), where d(. , .) is

the Euclidean distance between two points, then the path
∑N−1

i=0 d(Pi,Pi+1) is the new updated shortest path by the

user between S and E at time t0 + �tE .

The discovery of such an instance is evidence that an area

might have a pathfinding issue. If all user distances were

to be calculated, pathfinding issues could be identified ac-

curately. However, monitoring region constraints make this

impossible. The ROI map enables approximation of this de-

tection process. The system selects one of the MBs in real

time and assigns one agent within the selected MB to act
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as the sample agent. The system then measures the move-

ments of the sample agent within that MB for a fixed dura-

tion and checks for the emergence of new shortest routes. If

no new shortest route is found after multiple attempts, the

system selects another MB and repeats the process. If the

sample agent does travel by a new shortest route, the ROI

map assumes the presence of a pathfinding issue area within

the selected MB and subsequently raises the ROI level for

the relevant MB. With these new level assignments, rele-

vant MBs are divided to form half-sized quad sub-MBs, and

the process is repeated to elevate the problematic area to the

highest detection level. These detailed MBs are then used

as the minimum extraction areas during path sampling (see

Sect. 3.1.3). In this way, the proposed system utilizes an

ROI map to monitor levels, aiming to sample data effectively

from areas where new shortest routes have emerged.

3.1.2 Agent-based sampling: the AOI

In the monitoring stage, if we select the sample agent with-

out having a plan, this can reduce the detection performance.

To reduce the search space and increase the performance of

correct-hit, we have adopted an agent level monitoring tech-

nique. A user who has discovered a new shortest route in a

specific area of a virtual world is far more likely than other

users to repeat the same pattern next time in the area. To re-

flect this probability, we have defined and implemented the

profiling of the agent of interest (AOI). The concept involves

identifying and monitoring PC agents that have a high like-

lihood of identifying new shortest routes. A PC that has

achieved or will achieve a new shortest route becomes an

AOI. These AOIs are frequently identified for monitoring in

the ROI map. There are many possible cases whereby PCs

will make new paths. We estimate these cases by consider-

ing the following three general-purpose properties.

– Violation of region entrance: A PC may have a high pos-

sibility of making new paths in uncovered areas of the

navigation mesh. If the world has geometric data about

inaccessible areas in addition to the navigation mesh, the

system can easily detect the presence of the PC inside it.

Usually because of memory limitations, this type of infor-

mation is not maintained at the run-time stage. However,

by adopting a region approximation scheme, the system

can maintain the data via a minimal data structure. We

generated an approximated nonnavigation mesh area by

using a convex hull of ungrouped points in the map. If

a PC enters inside the convex hull, we designate it as an

AOI. If pi is the location of selected agent i in an MB,

the evaluation function h(pi) for this can be described as

follows. Here, D(., .) is the collision detection function

for the convex hull and Vc is the outline vertices of the

convex hull

h(pi) =

{

1 if (D(pi , All Vc) = true),

0 else.
(1)

– Level of isolation: A new path may not be placed in an

easily accessible area for every PC. That area may be

located in some unreachable area. From this considera-

tion, we evaluate an isolation level, which is calculated by

counting the number of adjacent agents in radius r around

the selected agent i

s(pi) =

{

1 if (num(pi, r) = 0),

0 else.
(2)

– Possibility of propagation: During online virtual world

play, there is a chance that a normal PC will witness an-

other PC achieving a new shortest route and follow suit.

These PCs come to carry AOI status. In other words, PCs

who are present in the vicinity of an AOI during its dis-

covery of a new shortest route are also assigned as AOIs.

By considering the preceding properties, we designed

the following OR operation function for an AOI evaluation.

Here, gi is the Boolean value which is updated when agent

i has found a new shortest path, and ji is another Boolean

value which is updated when a propagation event occurs.

h(pi) is used to reflect the violation of a region entrance,

and s(pi) is used for checking the level of isolation. While

gi is a deterministic term, ji , h(pi), and s(pi) are proba-

bilistic terms for AOI assignment. These three terms can be

combinational depending on the content of the virtual world.

AOIi =
{

pi |gi = 1 ∨ ji = 1 ∨ h(pi) = 1 ∨ s(pi) = 1
}

(3)

Furthermore, the total number of AOIs in each MB is

also referenced in the selection of the next MB (3.1.1). This

increases the accuracy of sampling for target regions. The

number of AOIs increases in proportion to the total num-

ber of ROI levels in the MBs. However, to cap the monitor-

ing load, there is a maximum maintaining time as an AOI

and a maximum number of allowed AOIs. Via this process,

our system designates and monitors AOIs to identify those

agents who are most capable of determining new shortest

routes. Table 1 shows the profile table for AOIs.

Table 1 Profiling table of AOIs

Num AgentID ZoneID gi ji h(pi) s(pi) Remaining

time (min)

1 5032 31 1 0 1 0 75

2 1012 17 0 0 0 1 64

3 15 9 0 0 1 1 57

. . . . . . . . . . . . . . . . . . . . . . . .

30 965 24 0 1 0 0 12
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3.1.3 Path sampling: the DPG

After the regions and agents for monitoring have been nar-

rowed down, the system is ready to sample actual paths to

obtain the positional data required to generate a navigation

mesh. A trajectory clustering technique [14] which uses an

artificial neural network can be a solution for this stage.

However, the computational cost for the large data set in a

massive world should be considered. We achieve this via two

objectives. Firstly, we try to minimize the path sampling pe-

riod, which is a costly process. We use actual path sampling

only for an MB that has reached the topmost ROI level. In

other words, the MBs in the ROI map that continued to raise

its ROI levels through AOI tracking in previous stages did

not track the actual paths of individual agents. This selec-

tive process can streamline path extraction by minimizing

the temporal sampling load. Secondly, we try to minimize

the storage for extracted path data. Virtual worlds usually

provide a massive environment to mimic the scale of the real

world. Storing all the path data as positions on the map of

such a vast virtual environment will invariably lead to an ex-

cessive memory load. To address this issue, we have used

a discretized path graph (DPG). A DPG is a graph gener-

ated by discretizing actual movement paths to a predefined

resolution. An edge of a DPG is an approximation to a sam-

pled path, and each vertex is a crossing point of the paths.

Such a graph reduces the amount of storage space needed

for terrain position data. Using the DPG, the system needs

to calculate optimal position data for each new navigation

mesh. We address this by accumulating intersection strength

values in the vertices for path intersections within the DPG.

Figure 4 shows user’s paths and generated DPG. Specifi-

cally, points along a path with many intersections carry a

high intersection strength value. Intersections having a cer-

tain strength value or higher are categorized as feature path

points (FPP) sets, and are used as input data for navigation

mesh generation. Our path sampling approach can be clas-

sified as time-based sampling assuming a constant speed by

the PC. It can be integrated with ease into the following nav-

igation mesh generation technique, and is capable of func-

tioning efficiently.

Fig. 4 User’s paths (left) and generated discretized path graph (right)

3.1.4 Navigation mesh generation

The data obtained from the automatic monitoring process

described in Sect. 3.1.3 are FPP sets, which are the discrete

values of the most frequent intersections along the accumu-

lated user paths. These unconstructed point sets are distrib-

uted over areas where the navigation mesh is rarely present,

and the system must be able to utilize these points to gen-

erate a navigation mesh that can seamlessly connect with

the existing navigation mesh. To achieve this, the proposed

method relies on Delaunay triangulation [1]. Because of the

uniform spacing of FPPs, Delaunay triangulation can gener-

ate stable triangles. It maximizes the minimum angle of all

the angles of the triangles in the triangulation and thereby

tends to avoid skinny triangles. The navigation mesh’s for-

mat affects pathfinding using local coordinates. If the navi-

gation mesh is not evenly distributed, movement along ac-

tual paths may seem jerky. The navigation mesh obtained by

applying Delaunay triangulation to areas within a fixed ra-

dius of points identified via the monitoring process enables

each of the triangles to obtain stable areas, and thereby en-

ables natural movement.

If the sample points are located far away from the exist-

ing navigation mesh, the generated navigation mesh can be-

come isolated from the existing mesh. However, the method

presented in Sect. 3.1.3 usually performs continuous sam-

pling within the grids, giving spatial continuity to the sam-

pling points and thereby limiting the possibility of isolated

navigation mesh generation. Delaunay triangulation usually

generates stable triangles, but sometimes it can produces

asymmetric skinny triangles from distantly separated points.

To eliminate these triangles, we added an edge length con-

straint to the Delaunay triangulation. It can prevent unex-

pected connect between newly generated meshes and ex-

isting meshes. Figure 5 illustrates multiple input paths and

generated navigation meshes with our system. Our system

uses the four techniques described above. The appropriate

combination of these techniques depends on the properties

Fig. 5 Automatic navigation mesh generation. Red lines are input

paths from users
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Table 2 Pseudocode for the adaptive navigation expansion process

Algorithm

1. At Preprocessing

Parameter_initialize()

Construct_Event_Block (non_navigation_mesh_area)

2. At Run time4

Callback Function:

AOI Update (EventID)

Main:

MB tMB=Select_MB_in ROI( )

AGENT tAgent= Select_Target_Agent (tMB)

If(tMB.ROI_level > MAX_MONITORING_LEVEL)

PATH p=Sample_Path (tAgent)

POSITION sPosition=Descretize (p)

DPG.Push_list (sPosition)

Else

If(Check_Path_update (tAgent.path)= true)

AssignAOI(tAgent)

AssignAOI(tAgent, PROPAGATION_RADIUS)

tMB.IncreaseROI_level ( )

tMB.DivideMB()

End if

End if

3. At Postprocessing or At Run time

FPP sets=Construct_FPP(DPG.list)

MESH tMesh=Triangulation(sets)

Update_world_Navigation_Mesh(tMesh)

of the interactive world. Table 2 shows the pseudocode for

our adaptive navigation expansion.

3.2 Collecting metadata for NPC evolution

In addition to automatic path expansion, statistical user

paths can be referenced by the metadata for smart-agent

path planning. As described above, PCs usually develop op-

timal paths in various environments. Sometimes, their unex-

pected path planning makes the system impossible to deal

with. For example, if agents have been planned to move via

the specific paths to guard critical point, PCs can become

accustomed to these static paths over time and find a de-

tour, thereby evading the agents. In other cases, if an NPC

knows the PC’s statistically most likely meeting spot, they

can expose more community related contents to the target

PC by placing a related NPC there. To make this possible,

an amount of metadata has to be collected from the system.

In the commercial interactive world, this type of work is

usually performed manually by monitoring personnel. Our

system can become an automatic framework for this work,

with a minor system modification. If we design and imple-

ment a specific evaluation function such as (3) for an AOI

by satisfying the monitoring cases, we can have target AOIs

in the ROI map. Then, by applying the ROI map and DPG,

FPP sets are acquired. This FPP set can be exported to as log

data, and then automatically utilized for various purposes in

the interactive world. We can estimate the level of the user’s

traffic at a certain point by referencing the accumulating in-

tersection strength values of FPPs. By using these data, we

construct a user influence map. The value in this map is used

as the weight value w(n) for the heuristic term of the A∗

search algorithm. The weight value decreases at the high

user traffic node n and increases at the low traffic node as

a penalty cost. Here, in (4), f (n) is the total cost for the A∗

search algorithm. g(n) is the path-cost function, which is the

cost from the starting node to the current node n, and h(n)

is the estimated distance from the current node to the goal.

α is the penalty ratio for the user influence map between

[0,1]. This weight term does not make the total cost equal

to zero, which can cause pathfinding confusion. If the α is

zero, there is no influence from the user’s path data.

f (n) = g(n) + h(n) + αw(n) (4)

Our FPP set has spatial continuity because of the con-

tinuous path sampling described in Sect. 3.1.3. But the in-

tersection strength value in FPP sets may not be contin-

uous. This may cause a few local zigzag paths with the

A∗ search algorithm. To minimize this case, we applied

a 1D 1 × 3 average filter to intersection strength values

along the FPPs before converting to the value of the influ-

ence map. With this simple user influence map, the mod-

ified A∗ search algorithm gives a more content-oriented

weighted path to the NPC. By using this path, the NPC

can show more adaptive movements compared with the pre-

vious fixed movement patterns. Experimentally, using our

system, this data collection process can be performed at

run time, but periodic monitoring can also be made avail-

able.

4 Implementation

The proposed system’s framework was constructed using

Windows XP, DirectX 9.0, and the Ogre3D Rendering En-

gine. Experiments with the system were performed on a

computer equipped with an Intel 1.83 GHz processor, 2 GB

of memory, and an NVIDIA 8400 GT graphics card. Ex-

periment 1 was designed to validate the proposed system’s

process for sampling multi-agent paths and generating new

navigation meshes. The map modeled a mountain that had

two hidden narrow paths. We deployed 140 agents in the
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map. The agents roamed around the map with their desig-

nated goals, and some agents tried to use the two hidden

paths. In the early stages, our ROI map monitored the agents

randomly, but as an agent approached an inaccessible area,

the system designated the agent as an AOI via (3). Then it

started to check its path update at short time intervals. If

an agent updated the newest path, the system increased the

ROI level of the MB and refined the MB into sub-quad MBs.

With the aid of our adaptive sampling techniques, with few

missing MB selections, and within 550 iterations, our sys-

tem discovered two hidden path areas. It also successfully

generated adaptive navigation meshes around them by using

DPG in real time. For this experiment, an 80×80 resolution

DPG was used and 112 FPPs were generated in 26 ms. 181

MBs were used for monitoring. Figure 6 shows the sampling

process and experiment result.

Fig. 6 The sampling process (above) and the simulation result (below)

in experiment 1

Experiment 2 was designed to validate the utility of the

proposed method in a video game environment. The map

comprised 15 NPCs and 1 PC moving about within a town

level. There was one narrow path in the center areas where

the navigation mesh did not generate during the develop-

ment process. Because of that, an NPC detouring case could

occur around this area. But a PC, as per their directional con-

trol inputs, could cross over into the other side via the narrow

path. The system detected this agent as an AOI, confirmed

the new optimized path, raised the corresponding area’s ROI

level, and then formed a DPG using the path data obtained.

Intersection points within the DPG having at least a specific

level of intersection strength were chosen as the final sample

points, and the system used these for processing automatic

triangulation to generate a new navigation mesh. With this

new navigation mesh, NPCs that previously had no path in-

cluded the new mesh into their pathfinding process to reach

the formerly inaccessible area. The experiment showed that

the proposed system automatically monitored the movement

routes of PCs to generate new paths and to enable NPCs to

share the newly discovered paths. Figure 7 shows the results

of experiment 2.

Fig. 7 Original navigation meshes (above) and adaptive agent naviga-

tion on the newly generated meshes (below) in experiment 2
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Fig. 8 An NPC routing case (above) and adaptive NPC navigation

(below) in experiment 3

Experiment 3 addressed the issue of another NPC detour.

In a terrain having at its center a hill with a steep slope on

one side, an NPC could only travel to the top of the hill

by going around the steep slope. With no navigation mesh

around the steep side of the hill, because of differences in

elevation, the NPCs were unable to include the area in their

pathfinding process. But a PC could move over the hill with

directional control, and they could evade hostile pursuing

NPCs. Under these conditions, the proposed system identi-

fies the new path and allows the NPCs to follow the same

path as that taken by the PC. This effectively prevents user

exploitation and enables more realistic pathfinding. Figure 8

shows the adaptive agent navigation for the NPC routing

case.

Experiment 4 was performed to find out if the proposed

system is capable of resolving the conventional PC detour-

ing issue. In this experiment, there was an alternate path on a

hill at the center of the area. This path was accessible to PCs

via directional keys, but there was no navigation mesh for

the path, because of differences of elevation in the terrain.

With the conventional pathfinding process, point-clicking a

destination behind the hill would have resulted in a long de-

tour around the hill. With the proposed system, however,

the system learned the alternative path as a PC navigated

through it and thereby enabled other agents to use the newly

discovered path. Figure 9 shows the adaptive PC navigation

result.

Fig. 9 A PC routing case (experiment 4). FPPs set around hill (left),

point designation via mouse click (middle), and PC navigation on the

newly generated navigation mesh (right)

5 Conclusions

The system proposed in this paper has proven to be capable

of referencing a user’s path data to resolve the pathfinding

issues caused by limitations in conventional static naviga-

tion mesh-based methods, The proposed method combines

real-time sampling techniques to extract user location in-

formation from a vast amount of user data to generate new

navigation meshes automatically. It enables robust adaptive

changes of the virtual world in pathfinding. In addition, the

same data can be used as the metadata for agent evolution.

It provides user-preferred path weights for smart-agent path

planning. Our method is advantageous in that it can be ap-

plied to any type of interactive virtual world directly and

with ease. Furthermore, the proposed method has the poten-

tial to be extended to applications that utilize the collection

of user data at run time.
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