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ABSTRACT

We present an approach to real-time tracking and mapping that sup-
ports any type of camera motion in 3D environments, that is, gen-
eral (parallax-inducing) as well as rotation-only (degenerate) mo-
tions. Our approach effectively generalizes both a panorama map-
ping and tracking system and a keyframe-based Simultaneous Lo-
calization and Mapping (SLAM) system, behaving like one or the
other depending on the camera movement. It seamlessly switches
between the two and is thus able to track and map through arbitrary
sequences of general and rotation-only camera movements.

Key elements of our approach are to design each system com-
ponent such that it is compatible with both panoramic data and
Structure-from-Motion data, and the use of the ‘Geometric Ro-
bust Information Criterion’ to decide whether the transformation
between a given pair of frames can best be modeled with an essen-
tial matrix E, or with a homography H. Further key features are
that no separate initialization step is needed, that the reconstruction
is unbiased, and that the system continues to collect and map data
after tracking failure, thus creating separate tracks which are later
merged if they overlap. The latter is in contrast to most existing
tracking and mapping systems, which suspend tracking and map-
ping, thus discarding valuable data, while trying to relocalize the
camera with respect to the initial map.

We tested our system on a variety of video sequences, success-
fully tracking through different camera motions and fully automat-
ically building panoramas as well as 3D structures.

1 INTRODUCTION

Over the past decade, there has been a tremendous amount of work
on real-time monocular vision-based tracking and mapping (T&M)
systems, that is, systems that simultaneously determine the position
and/or orientation of the camera with respect to a previously un-
known environment and create a model of this environment. Aside
from other applications (such as navigation of an autonomous ve-
hicle), T&M is an important enabling technology for Augmented
Reality (AR) in unprepared environments.

An important characteristic of a T&M system is the type of cam-
era motion and the geometry of the environment that it supports.
For example, a system may assume a planar environment [25],
or a camera that is rotating around its optical center [8, 37]. Si-
multaneous Localization and Mapping (SLAM) systems such as
[7, 9, 14, 22] can deal with environments of arbitrary geometry
and any camera motion that induces parallax (referred to as gen-
eral camera motions). However, with few exceptions [4], they do
not support rotation-only camera motion: Since SLAM systems are
designed primarily to handle a traveling camera, their mapping is,
intrinsically, built upon triangulation of features. Thus, they require
that each feature be observed from two distinct camera locations
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Figure 1: Our system supports both general and rotation-only cam-
era motion. In the former case, it acts as a SLAM system and mod-
els 3D structure in the environment; in the latter case, it acts as a
panorama mapper. It seamlessly switches between the two modes,
thus being able to track and map through arbitrary sequences of
general and rotation-only camera movements and — fully automati-
cally and in real time — creating combinations of 3D structure and
panoramic maps, as shown here.

and may produce degenerate maps or fail completely if the camera
rotates from one part of the environment to another.

Therefore, most SLAM systems need to be initialized with a dis-
tinct “traveling” movement of the camera for each newly observed
part of the environment. This restriction is acceptable for vehicle
navigation or if building a model of the environment is the user’s
intent (cf. Pollefeys et al. [26]: “Here we will assume that care is
taken during acquisition to not take multiple images from the same
position so that this problem doesn’t occur”). However, it is a major
limitation for their use in AR, where the model building is assumed
to be done in the background and ideally transparent to the user,
who should not be required to move a certain way in order to make
the system work. Moreover, rotation-only “looking around” is a
very natural motion and may occur in many AR applications.

Our particular motivation is the use of a T&M system for re-
mote collaboration [11]. Here, the emerging model of the environ-
ment is used to allow a physically remote user to view and navigate
the environment, and spatial annotations that are registered to this
model and overlaid onto the real world via an appropriate AR dis-
play are used to communicate visual/spatial information. For this
and many other applications, the paradigm for modeling the envi-
ronment should be to make the best possible use of all data that
can be casually collected and to enable viewing and placement of
annotations for as much time as possible. In particular, this means
not forcing the user to concentrate on model building, and not dis-
carding all frames that stem from rotation-only movements (as in
most SLAM systems) or as soon as the user starts moving (as with
panorama mapping). It should be noted that there is a trade-off
involved between the objective of creating a completely coherent
model and the objective of being able to freely move the camera
and enable viewing and placement of annotations at all times.



In this paper, we present an approach for the latter: a concept for
real-time tracking and mapping that explicitly supports both gen-
eral and rotation-only camera motions in 3D environments, does
not need a separate initialization step, and continues to collect data
despite intermittent tracking loss. In the case of intermittent track-
ing loss, it creates several disjoint maps which are later merged if
possible. (The idea of multiple sub-maps resembles the concept of
PTAMM [3], but they are created for an entirely different reason.)

One key element of our approach is the use of the ‘Geomet-
ric Robust Information Criterion’ (GRIC) by Torr [34] to decide
whether the transformation between a given pair of frames can best
be modeled with an essential matrix E, or with a homography H.
It should be noted that these two transformations are a complete
partition of all cases of camera motion that can occur in a static
environment, i.e., exactly one of them is correct.

2 RELATED WORK

2.1 Monocular vision-based SLAM

SLAM is the problem of determining the pose of the observer rel-
ative to an unknown environment and at the same time creating
a model of the environment (which may have arbitrary geomet-
ric complexity) while the observer moves around. In the case of
monocular vision-based SLAM [7], the only sensor used to accom-
plish this task is a single camera.

Filter-based SLAM systems [5, 7, 9] maintain estimates of both
camera and feature positions (i.e., the map) in a large state vec-
tor which is updated using Kalman filters in each frame. In con-
trast, keyframe-based systems as pioneered by Klein and Murray
[14, 15, 16] (PTAM) track features in each frame, but use only se-
lected frames to update their map, typically using bundle adjust-
ment for the latter. While all aforementioned system are based on
sparse features, Newcombe et al. [22] presented a keyframe-based
system that uses dense mapping. They report extremely robust re-
sults, but (in contrast to PTAM) require a GPU.

In both types of systems, the map is designed to store Structure-
from-Motion (SfM) data, that is, feature positions in 3D that have
been triangulated using observations from multiple viewpoints.
Thus, they typically require parallax-inducing camera motion in or-
der to bootstrap their map [7, 14, 22] (otherwise, the features can-
not be triangulated and integrated into the map). In some systems
[14, 22], the initialization is performed as a dedicated separate step,
and tracking quality crucially depends on the quality of this initial-
ization. Rotation-only motions are inherently not supported, unless
they are fully constrained to the already observed part of the scene.

For filter-based systems, an alternative, six-dimensional
parametrization of the feature locations [5] can provide a remedy,
supporting rotation-only motion to some extent by admitting fea-
tures with an uninformative depth prior and filtering the features
through multiple motion models [4] to constrain their uncertainty.
However, this support comes at a high computational cost: The —
already very high — cost of filtering of each feature point is fur-
ther increased by doubling the dimensionality of the feature state
vector as well as computing the results for multiple motion mod-
els (note that Civera et al. [4] use seven models). As a result,
the number of features that can be tracked in real time, which is
typically already smaller for filter-based SLAM as compared to
keyframe-based SLAM1, is further decreased. (With just one mo-
tion model, Civera et al. [5] mention map sizes of up to one hundred
features, compared to several thousand for PTAM [14]. For the ap-
proach with multiple models [4], no real-time implementation is
described.) In the case of long sequences of camera rotation, many
of those computation cycles are spent filtering data where no gain
is to be expected (namely, re-estimating the (still undefined) feature

1For an interesting comparison of the relative computational cost of the

two approaches see Strasdat et al. [33].

depth) and are redundant at best and harmful (because noise may
lead to spurious depth estimates) at worst.

Therefore, we consider it an advantage of our approach that we
explicitly switch to panoramic mapping if supported by the obser-
vations, thus being able to take advantage of some of the advan-
tages that panoramic mapping offers — such as, a robust outlier-
resilient model (homography), a straight-forward mapping of the
entire frame instead of sparse features, as well as easy navigation,
all of which are especially important for AR. On the other hand, the
approach of Civera et al. [4] appears to have merit for modeling the
transition between two types of movement, or when only some of
the features exhibit parallax.

While admitting features without depth could in principle be
adopted for keyframe-based SLAM (in [16], this approach is em-
ployed to admit features before their depth is known), the ability to
rely on them exclusively would require fundamental and possibly
costly changes to the underlying mapping and bundle adjustment
(cf. [31] Sec. 3.7 for issues in the context of points at infinity). We
are not aware of any existing keyframe-based SLAM system which
explicitly supports rotation-only movements.

2.2 Further related work

Panorama mapping systems. Like a SLAM system, a panoramic
tracking and mapping systems aim at modeling the environment
while determining the pose of the camera, but in this case, the cam-
era is assumed to rotate around its optical center, so that only its
orientation has to be determined. An early real-time system is En-
visor [8]. Wagner et al. [37] describe a system that operates robustly
and in real time on a mobile device.

Environment modeling using other sensors. In theory, using
stereo cameras [18, 39] solves the problem of requiring the cam-
era to travel, since the baseline required to triangulate features is
built-in. In practice, however, using stereo cameras is only a partial
remedy, since the baseline has to be significant in relation to the dis-
tance to the environment in order to reliably estimate depth. Thus,
a wearable stereo system would be unable to map a building across
the street without requiring the user to provide additional baseline
by traveling (while a panorama system, though unable to provide
depth, will produce very usable information).

Further, systems based on alternative sensor types should be con-
sidered. In particular, active depth sensors based on time-of-flight
or structured light [19, 23] have recently generated significant in-
terest and can arguably provide for more detailed models and more
robust tracking when lighting conditions for vision-based tracking
are unfavorable. However, all of these systems have other inher-
ent limitations such as limited range, inability to work in sunlight,
and need for additional special hardware. Further, to present the
model to the user, it is necessary to include a color camera and thus
additional algorithmic steps (sensor fusion) have to be integrated.

We thus argue that there are both theoretical and practical inter-
ests in solving T&M using monocular vision.

Model selection, GRIC score and applications. Model selection
is defined as choosing the right model that best describes a set of
observations. Various metrics (frequently dubbed “information cri-
teria”) have been proposed to assess the fitness of a particular model
given the data, for example minimum description length [28], AIC
[1], and BIC [30]. Torr described both a maximum likelihood [35]
and a Bayesian formulation [34] of GRIC, and we use the latter
in this work. These information criteria are very general in nature
and can be applied to various types of models. In SfM, the GRIC
score has been applied particularly to detect homographies in order
to avoid them during keyframe selection [26, 27].



Figure 2: Conceptual overview of the main components of our system. The tracking thread is responsible for processing the incoming frames.
When certain criteria are fulfilled, it inserts a keyframe (Section 4.1), which is connected to the previous keyframe by either an essential matrix or
a homography, depending on the GRIC score (Section 6). The emerging chain of keyframes is clustered in keyframe groups based on the type
of transformation between them (Section 3.1). Each keyframe group governs one sub-map of the environment model, consisting either of 3D
structure or a (partial) panorama. When tracking is intermittently lost, a new track is started, which can later be merged if the sub-maps overlap
(Section 5.3).

3 SYSTEM ARCHITECTURE OVERVIEW

Our concept borrows two key ideas from Klein and Murray’s Par-
allel Tracking and Mapping (PTAM) system [14, 15, 16], namely,
the central role of keyframes, and the splitting of tracking and map-
ping into two parallel threads. For the latter, the split is taken even
further in that the tracking thread does not immediately require any
data from the mapping thread to process the next frame. By doing
so, the tracking thread can operate in much the same way inde-
pendent of whether the camera currently undergoes a traveling or a
rotation-only movement.

Fig. 2 presents a conceptual overview of the main components
of our system. In designing the system, we followed the follow-
ing guidelines: (1) the tracking thread should be as fast as possible
and leave all tasks that are not imminent in order for the next frame
to be processed to the mapping thread, which runs asynchronously
in the background; (2) the first steps in the pipeline should not be
dependent on the model that will be selected. The tracking and
mapping threads are described in detail in Sections 4 and 5, respec-
tively. Section 6 describes the problem of model selection and the
GRIC score in detail.

3.1 Data structures

Fig. 3 visualizes the main data objects that store the current system
state and the emerging map as well as their relations.

The set of keyframes form a graph, with individual keyframes as
nodes, and transformations (essential matrices and homographies)
as links (cf. the representation in [9]). The set of keyframe groups
also forms a graph, where each node represents a set of keyframes
(cf. the “epipolar graph” used for incremental SfM by Klopschitz
et al. [17]). While tracking is continuous, both graphs are linear, but
more complex topologies emerge from tracking loss (disconnected
subgraphs) or recovery (branching graph).

The most central element is the keyframe group: each keyframe
group governs one sub-map consisting of a set of keyframes which
are all linked by essential matrices (E-group), or all linked by ho-
mographies (H-group). The keyframe group also determines the
frame of reference, with respect to which all 3D pose information
and homographic warps, respectively, are stored. A keyframe may

Figure 3: Overview of the main data structures used to store the
emerging map(s).

be part of several groups (for example, in one H-group and one E-
group), in which case it gets assigned a pose in each of its groups
(e.g., keyframe 3 in Fig. 3).

When tracking is lost, all links to the current keyframe and
keyframe group are lost, and the tracker starts a new track. Initially,
the new track is completely unconnected to the previous data, but
can later be merged (if there is some overlap in what is observed
during both tracks) as explained in Section 5.3.

Rotation-only camera motion vs. planar environments. It should
be noted that there are two reasons for why the transformation be-
tween two images is best modeled by a homography: either because
the camera underwent rotation-only movement, or because the ob-
served part of the environment is planar. For all rotations, one can
construct an equivalent camera motion along a planar environment,
so without making further assumptions the two cases cannot be dis-
tinguished based on image data alone. However, we emphasize that
our concept does not require the ability to distinguish the two cases.
Only for visualization of the results (Figs. 1 and 5) do we make the
assumption that homographies describe rotation-only movements,
but the system is agnostic to this assumption.

Since the two cases cannot be distinguished, one can indeed not
recover the exact 3D trajectory of the camera. With the application
of AR in mind, one can, however, ensure correct registration of all
annotations with respect to the scene.



Figure 4: Feature re-estimation constrained by epipolar geometry.
Tentative feature correspondences are created using NCC-based
template matching. Features shown in green are identified as in-
liers to the estimated essential matrix Ê, with epiline segments indi-
cated in purple. The outlier (red) is re-estimated by sampling a strip
along the epiline segment (right image, enlarged) and re-evaluating
the NCC scores along the epiline. The re-estimated feature position
is shown in yellow in the left image.

4 TRACKING

Keypoints are detected using the FAST corner detector [29]. We
enforce a spatially well-distributed set of keypoints, which was
shown to improve tracking robustness [10, 13], by overlaying a
simple rectangular grid over the image and selecting the strongest
keypoint in each cell. Frame-to-frame feature correspondences are
created using a multi-level, active search patch tracker with nor-
malized cross-correlation (NCC)-based template matching. On the
full-resolution image, the feature location is refined to subpixel ac-
curacy by using a quadratic fit to neighboring scores. This is similar
in particular to the keypoint tracking by Wagner et al. [36]; however
in contrast to their system, the multi-level tracking is executed on a
per-feature basis (instead of interleaved with the pose estimation),
to make the first steps in the tracking pipeline agnostic about the
type of camera motion (and thus the model that would need to be
enforced).

From all feature correspondences, we estimate both a homog-
raphy Ĥ and an essential matrix Ê between the last keyframe k0

and the current frame using MAPSAC [34] (for the latter, Nistér’s
five-point algorithm [24] is used to generate the hypothesis inside
MAPSAC).

Next, the GRIC score (cf. Section 6) is computed for both mod-
els, and the better model (that is, the one with lower GRIC score)
is selected. If Ê is determined to be the better fit, it is decomposed
into relative pose information [R̂|t̂].

The measurement error σ (needed for MAPSAC, and, more cru-
cially, the GRIC score) is estimated from all inliers and used for the
next frames, averaged over a window of 10 frames to be more robust
to a single frame with bad model fit. With our test sequences (cf.
Section 7), the range of estimates for σ is about 0.5 to 1.5 pixels —
if tracking of a feature succeeds, it is highly accurate.

For either model, outliers are re-estimated. This is trivial in the
case of Ĥ, since the model defines a unique mapping. In the case of
Ê, each outlier is re-estimated by sampling a strip along the epiline
segment, re-evaluating the NCC scores along the epiline, and set-
ting the feature position to the point with highest NCC score. This
process is visualized in Fig. 4 and was found to improve tracking
and model quality, since the feature tracks can be maintained for
longer (instead of finding new features to replace the lost ones).
Features that prove unreliable (i.e., features that repeatedly are out-
liers and need to be re-estimated) are removed.

If no keyframe is added (cf. next section), processing of this
frame is completed.

4.1 Inserting a new keyframe

The tracking thread adds the current frame as a new keyframe k+1

when several conditions (similar to the ones suggested by Klein
and Murray [14]) are met: (1) Tracking quality is good (as deter-
mined by the fraction of inliers that MAPSAC finds); (2) enough
time has passed since the last keyframe insertion; (3) in the case
of Ĥ, when the median 2D distance that the keypoints “traveled”
since the last keyframe is large enough, and in the case of Ê, when
the median feature triangulation angle is large enough. For homo-
graphies, the 2D distance is directly correlated with the camera’s
angle of rotation if Ĥ describes a rotation, but it also captures pure
translational movements (along a planar surface). In the case of Ê,
requiring a minimum angle under which a feature is observed is
equivalent to requiring a minimum baseline relative to the distance
to the model and ensures that the depth estimates are reasonably
conditioned [31].

If the transformation between the second-last keyframe k−1 and
the last keyframe k0 is the same type as the one estimated between
k0 and the newly inserted keyframe k+1, the new information gets
merged into the existing keyframe group as described in the next
two paragraphs. If the new transformation is of a different type, a
new keyframe group gets created, such that k0 is the last keyframe
in the old group, and the first keyframe (together with k+1) of the
new group (cf. keyframe 3 in Fig. 3).

Merging a new keyframe into an H-group. For homographies, a
common frame of reference is adopted by multiplying the current
estimate Ĥ with the k0’s pose Hk0

in the current group.

Merging a new keyframe into an E-group. For essential matri-
ces, adopting a common frame of reference follows the same idea,
but is slightly more involved: the new keyframe’s pose can be de-
scribed as [R|t]k+1

= [R|t]k0
· [R̂|t̂]. However, the scale of Ê is ar-

bitrary, and thus the scale of [R|t]k+1
is not defined. To arrive at a

common scale, we use the set of all feature observations that have
a triangulated position in both the existing E-group as well as with
respect to Ê, and calculate the ratios of their distances to k0 in both
coordinate systems. We then take the median of those ratios as a
robust measure of the scale between the two point clouds and scale
tk+1

accordingly.

This strategy of merging two local reconstructions is similar to
the offline incremental SfM system by Klopschitz et al. [17] (al-
though the merging of two reconstructions is implemented differ-
ently). It should be noted that with this strategy, all of the keyframe
pairs and thus all of the local maps are given the same weight (the
order of {k−1,k0}, {k0,k+1} does not influence the result), i.e., the
reconstruction is unbiased. This is in contrast to SLAM systems
that have a dedicated initialization step, in which the quality of the
map is dependent on the frames involved in this initialization step
in particular.

New features are detected in all uncovered image regions by ap-
plying the same grid as in the first frame and choosing new features
for each cell that is not covered by currently tracked features.

4.2 Relocalizing vs. starting a new track

When tracking gets lost — in our case, when MAPSAC fails to find
a model with sufficient support for either E and H — the standard
strategy employed in most T&M systems (e.g., in [14, 15, 25, 37])
is to continuously try to relocalize the camera pose with respect to
the current map with each new frame until successful. However,
this means that tracking and mapping are suspended and no data is
collected until relocalization is successful.

Here, we employ an alternative strategy proposed by Eade and
Drummond [9]: instead of trying to relocalize, we let the tracker
start a new track immediately, and leave it to the background thread
to later merge tracks if possible (cf. Section 5.3). The benefit of this



Figure 5: Merging of tracks (top) vs. relocalization (bottom). The rotation-only input video for the data shown here contains several rapid camera
motions (cf. description of the dataset in [6]), resulting in intermittent tracking loss. After each loss, our system starts a new partial panorama,
and, while the incoming live frames are being processed, attempts to stitch them together in the background. The final panorama (top) is an
almost complete horizontal panorama of the scene (cf. cylindrical rendering on the right). 1605 frames are registered to this panorama. Another
410 frames are registered to partial panoramas (not shown) which the system was unable to connect to the main model (whether these should
be counted as success or failure depends on the application that the system is used for). For 338 frames, tracking failed. In comparison, with
the same tracking system but using relocalization, only the model at the bottom gets mapped, with 1154 registered frames. (Here, the model is
visualized in five segments because the transition between two pairs of keyframes got modeled with an essential matrix, but the model is — by
construction — fully connected.) The data of all other 1199 frames (which “passed by” while the system unsuccessfully tried to relocalize) are
discarded.

method, illustrated in Fig. 5, is that the system continues to collect
data even after tracking failure occurs, and, if the tracks overlap,
efficiently merges them (if they do not overlap, a recovery-based
system would never recover), so that no data is lost.

5 MAPPING

The mapping thread is executed in parallel to the tracking thread
and cycles through the following set of tasks:

1. triangulate features;

2. run bundle adjustment;

3. merge disjoint tracks;

4. clean up residual data.

These tasks are allowed to be more computationally intensive than
the tracker’s tasks, since the system does not depend on them in
order to process the next frame.

5.1 Triangulating features

A feature that was observed in at least two keyframes within the
same E-group GE is triangulated and gets assigned a 3D location
in GE ’s frame of reference. When the tracker adds a new keyframe
with a new observation of a feature f , a flag is set within f , and
f is re-triangulated using all information when the mapper cycles
through this step the next time.

5.2 Bundle adjustment

E-groups with at least three keyframes get passed through a stan-
dard bundle adjuster [20] that globally optimizes keyframe (i.e.,
camera) poses and feature positions in this group’s frame of ref-
erence.

5.3 Merging disjoint tracks

As mentioned above, when tracking gets lost, the tracker imme-
diately starts a new, independent track, rather than continuously
trying to relocalize with respect to the existing map. In doing so,
the tracker continues to collect data and ‘stitch together’ keyframes
even though the spatial relation to the first map is unknown.

The algorithm that merges tracks is very similar to the keyframe-
based recovery by Klein and Murray [15] (also used in [25, 37],
among others): as observed by Eade and Drummond [9], recovery,
loop closure, and (here) merging of tracks are effectively equiva-
lent. The only difference lies in when the algorithm is executed and
how its result is used.

Whenever a new keyframe is taken, the system stores a down-
sampled, blurred copy of the image (here: 80×60 pixels, blurred
with a Gaussian with σ = 1.5px), dubbed small blurry image (SBI).

Merging of tracks is done as follows: the algorithm chooses a
keyframe k1 and computes the normalized cross-correlation (NCC)
of its SBI with the SBI of all other keyframes. Keyframes on the
same track as k1 are omitted, as are keyframes to which a previous
merge attempt failed. The keyframe k2 with the highest NCC score
is selected, and the SBIs of k1 and k2 are aligned to each other using
inverse compositional image alignment [2] of an affine homography
HA. The features of k1 are then projected into k2 using HA, and a
regular “tracking” step (cf. Section 4) is executed.

If the tracking step fails, k2 is “blacklisted” in k1 as a failed at-
tempt (so that the algorithm does not attempt the same combina-
tion again), and k1 stores a timestamp of when this merge attempt
occurred. The next time the algorithm tries to merge tracks, the
keyframe that has not been chosen as k1 the longest is chosen as k1.

If the tracking step succeeds in estimating a model that is sup-
ported by a sufficient fraction of feature correspondences, the two



Figure 6: Intuition of why model selection with models of differing
dimensions is hard: Trying to fit a 2D point and a 2D line to a set
of noisy measurements. Both models have the same number of de-
grees of freedom (2), yet the dimensionality of the error is different (2
vs. 1), and the sum of errors (dashed red) is guaranteed to be smaller
in the case of the line.

tracks are considered successfully merged. H-groups can be im-
mediately merged by concatenating the homographies accordingly
(cf. Section 4.1). To merge E-groups, one more tracking step is
needed to generate feature observations common to both the exist-
ing groups and the newly inserted group that merges the two tracks.
Then, they can be merged by adopting a common frame of refer-
ence analogous to the procedure when a new keyframe is inserted
(Section 4.1).

The features are transferred to a new frame of reference by
re-triangulating their positions using the observations from all
keyframes in the merged group (Section 5.1).

The benefit of merging tracks is visualized in the case of
panorama data in Fig. 5. In this particular case, the data of the
merged tracks covers almost all areas that were visible during the
input sequence, and is merged to an almost complete horizontal
panorama. In comparison, while the “relocalization” strategy is
able to recover and continue the first map several times, it discards
imagery of large parts of the scene which were observed by the
camera while the algorithm unsuccessfully tried to relocalize.

5.4 Cleaning up residual data

When a new track is started and thus a new keyframe is created
(Section 4.2), but tracking gets lost again immediately after that,
this new keyframe (and all features found in it) are not connected to
any other data and provide very little useful information. To make
sure that this kind of residual data does not accumulate, the map-
ping thread goes through the set of keyframes, identifies isolated
keyframes and removes them.

6 MODEL SELECTION

If observed data may have arisen from several different models,
one faces the problem of selecting the right model additionally to
the common estimation of the model parameters. Model selection
is a complex problem in particular if the models in question are of
fundamentally different kind, as is the case here: a homography is a
bijective 2D map, and thus the observed error between an estimated
and measured feature location is two-dimensional, whereas the es-
sential matrix maps a 2D point to a line in 2D, and thus the error
is one-dimensional (perpendicular to the line). This is analogous
to trying to determine if an observed set of 2D points can best be
described by a point or by a line (Fig. 6). It becomes apparent that
the sum of the fitting errors is not sufficient to select the model.

For this reason, several different metrics have been proposed.
Here, we use the Bayesian formulation of the ‘Geometric Robust
Information Criterion’ (GRIC) as derived by Torr [34], which is
based on the Bayesian probability that a given model generated the
observed data.

In this section, we use the same notation and variable names as
Torr. The subscript m is used to indicate that a quantity is dependent
on the model m. log(x) denotes the natural logarithm.

6.1 Torr’s GRIC score

The most generic formulation of Torr’s GRIC score is

GRICm =−2LMAP,m + km logn (1)

(cf. [34] Eq. (46)) where km is the number of parameters of the
model, n is the number of observations, and the maximum a-
posteriori log likelihood LMAP,m is derived according to the prob-
lem at hand. For the problem of model selection based on two-view
correspondences with constrained search regions in the presence of
outliers,

GRICm = ∑
i

ρ2

(

e2
i,m

σ2

)

+λ1ndm + km logn+ const (2)

with ρ2(x) = min{x,Tm} (3)

Tm = 2 log

(
γ

1− γ

)

+(D−dm)λ1 (4)

λ1 = log(S2/(2πσ2)) (5)

(cf. [34] Eqs. (48,49,18,19)) where dm is the dimensionality of the
model manifold (2 for homography, 3 for essential matrix), γ is the
prior expectation that a random correspondence is an inlier, D is the
dimensionality of each observation (here: a pair of 2D points, i.e.,
D = 4), S×S is the size of the constrained search region (and thus
the volume from which outliers may appear), and finally σ is the
standard deviation of the measurement error, which is assumed to
be Gaussian. (It should be noted that despite the name, the GRIC
score is a cost function, that is, lower score indicates better model
fit.)

6.2 GRIC score for large active search regions

To arrive at a reasonably simple closed-form formula for the GRIC
score, Torr [34] employs several approximations and assumptions.
One of these assumptions — namely, that the depth disparity of in-
liers is distributed uniformly across the entire search region — is not
fulfilled within reasonable bounds for applications with large active
search regions. In this section, we will first explain the assumption,
provide evidence that it would introduce a significant bias in our
use case, and finally derive a more general form of the GRIC score
which decreases this bias.

Among the quantities that are included in the calculation of the
score are the volumes of the spaces in which certain measurements
may occur. For example, assuming that each image has dimen-
sions L × L, then any individual 2D point measurement may oc-
cur on the volume L× L. In an application that uses constrained
search regions to establish correspondences (like ours), an arbi-
trary correspondence (i.e., pair of points) may occur on the volume
v = L×L× S× S, where S is the size of the search region. How-
ever, a correspondence that is an inlier to a (given) bijective 2D
map such as a homography is distributed on the volume cH = L×L
(because the second point is uniquely fixed by the bijective map).
If the model is a non-bijective relation such as an essential or fun-
damental matrix, which constrain a point to lie on a line but do not
fix its position along the line, the volume becomes cE = L×L×R,
where R is the range of the disparity along which the feature match
is expected to occur.

R is limited to [0,S], as otherwise the match will not be found
and the correspondence will become an outlier. For simplicity, Torr
sets R = S, which causes several terms to cancel each other in the
derivation of the final GRIC score (Eq. (2)). However, this assumes
that the inliers are uniformly distributed in disparity in the entire
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Figure 7: (a) Preferred models (according to GRIC score) as a function of the inlier ratio nin,E/nin,H (expressed as a function of S/σ and
γ = {0.5, 0.6, 0.7, 0.8} (lines from top to bottom)). Below the respective line, the GRIC score will prefer H, even if E produces more inliers.
(b) Tracked feature correspondences in scene classified by H, (c) the same correspondences classified by E. Inliers are shown in green,
outliers in red. Even though E models all correct correspondences correctly and H misclassifies 19 correct correspondences as outliers,
GRICH = 1633.83 < GRICE = 1919.53 and the algorithm would chose H over E. (Here: n = 112, S = 40, σ = 1, γ = 0.5.) The more general score
derived in Section 6.2 decreases this problem.

search region.2 For large S, this is not the case: The search region
is large because we want tracking to be robust to fast camera move-
ment (including camera rotations), but we expect the (2D) move-
ment of all features to be strongly correlated; the range of disparity
is still likely to be only a few pixels. Hence, the log likelihood for
E is decreased because it does not match the model well, creating a
significant bias towards selecting H.

Evidence that this bias is significant and can lead to incorrect
model selection. Assume that a traveling camera observes a scene
which contains a near-planar object on which many (but not all)
correctly and accurately tracked feature correspondences lie. Those
correspondences will be inliers to both E and H, with ei ≈ 0. As-
sume that there are further accurately tracked features on other sur-
faces (will be inliers to E, but outliers for H), and, optionally, sev-
eral spurious correspondences. Following Eq. (2), the GRIC score
for either model m then is

GRICm ≈ (n−nin,m) ·Tm +λ1ndm + km logn+ const (6)

where nin,m is the number of inliers for model m. We are interested
in the threshold when the scores for the essential matrix E and the
homography H are equal:

(n−nin,E)·TE +λ1ndE + kE logn =

(n−nin,H)·TH +λ1ndH + kH logn
(7)

Assuming that (kE − kH) logn << (n−nin,m) ·Tm:

⇒ nin,E

nin,H
=

2 log
γ

1−γ +(D−dH) ·λ1

2 log
γ

1−γ +(D−dE) ·λ1

(8)

With λ1 as given in Eq. (5), D = 4, dE = 3 and dH = 2:

⇒ nin,E

nin,H
=

2 log
γ

1−γ +2log
(

S2

2πσ 2

)

2 log
γ

1−γ +1log
(

S2

2πσ 2

) (9)

This ratio is plotted for a range of reasonable values for S, σ , γ
in Fig. 7(a). It can be seen that the range of nin,E/nin,H for which

2Torr [34] explicitly warns that “care should be taken to rederive [this

quantity] according to the exact distribution [...] in different scenarios.”

the algorithm will prefer H (i.e., the area below the line) increases
with the search region S, up to the point that the algorithm will, for
very large S and γ close to 0.5, prefer H even if E produces almost
twice as many inliers (nin,E/nin,H = 2). Fig. 7(b,c) illustrates a
real-world case in which exactly this is the case: GRICH < GRICE

even though E models all correspondences correctly (including re-
jection of three spurious correspondences), while H discards a siz-
able set of correct correspondences as outliers.

Generalized GRIC score. Thus, we re-derive the GRIC score for
the general case of R independent of S. The full derivation is given
in Appendix A. Our final formula for the GRIC score is

GRICm = ∑
i

ρ2

(

e2
i,m

σ2

)

+n

(

(D−dm) log2πσ2 +2 log
cm

γ

)

+ km logn

(10)

with ρ2(x) = min{x,Tm}, and

Tm = 2 log

(
γ

1− γ
· v

cm

)

− (D−dm) log2πσ2 (11)

We show in Appendix B that this is equivalent to Torr’s formula
([34] Eq. (48)) for the special case R = S.

7 EVALUATION

We implemented our system prototype in C++, making use of the
OpenCV3, TooN4 and libCVD5 libraries. Our system runs in real-
time on a commodity PC without specific optimizations. Typical
timings are presented in Fig. 8. They are, of course, strongly de-
pendent on the used hardware and parameter configuration (in par-
ticular, number of keypoints per frame) and presented here only as
a reference point.

At this point, our prototype is not optimized to run in real-time on
a mobile device (such as light-weight tablet or smartphone). How-
ever, the most expensive parts (in particular, the tracking with NCC-
based matching, cf. Fig. 8) are computationally similar to T&M

3http://opencv.willowgarage.com/
4http://www.edwardrosten.com/cvd/toon.html
5http://www.edwardrosten.com/cvd/

http://opencv.willowgarage.com/
http://www.edwardrosten.com/cvd/toon.html
http://www.edwardrosten.com/cvd/


Figure 8: Breakdown of timings in tracking thread. These times were
taken on a commodity PC with Intel i7 Core and 4 GB RAM running
Ubuntu 10.10, without specific optimizations or the use of a GPU.
All times are averaged per frame over the entire sequence. Since
creating a new keyframe is executed at most every 20th frame, its
contribution to the average time is minimal. The time spent waiting
for the mutex lock could be significantly reduced by implementing
more fine-grained mutex locks in the mapping thread.

systems that have been shown to operate in real time on such de-
vices [16, 36] several years ago. Thus, we argue that with appropri-
ate algorithmic and device-specific optimizations [16], running an
implementation of our concept on a mobile device is feasible.

We tested our system on a variety of video sequences, includ-
ing videos of a panorama dataset by Coffin et al. [6] 6, sequences
from the “City of Sights” repository [12] 7, as well as further self-
recorded videos, using models from the “City of Sights” as back-
drop. Results from those videos are presented in Figs. 1, 5, and 9.
While our system has a number of parameters which were tuned by
hand, we determined one set of parameters and kept it constant for
all results presented here.

A quantitative comparison of our prototype proves difficult,
since to our knowledge, there is no other system that is able to cre-
ate panoramas as well as 3D structures (such as illustrated in Fig. 1
top right) in real time. Qualitatively, we can state that the frame-
to-frame tracking is very robust. In panorama mode, our system is
able to stitch together panoramas with high accuracy. Merging of
tracks works very robustly, with very few observed false positives.

However, our implementation of tracking during general motion
and 3D reconstruction is still susceptible to common SLAM pitfalls
such as adversarial camera motion and fails for unfavorable sets of
keyframes. As correctly noted by Newcombe et al. [22], the criteria
used to insert keyframes in feature-based systems, ours included,
are heuristics only. Therefore, the robustness of the 3D mapping
part can currently not compete with the robustness demonstrated
by systems such as PTAM [14] or DTAM [22]. Here, especially the
design choice of waiving the requirement of a separate initialization
step (which is used to bootstrap the map in [14, 22]) appears to
somewhat compromise model coherency.

The model selection with the GRIC score appears to be robust
against outliers and image noise. For example, for 125 keyframe
pairs that were evaluated during processing of the rotation-only
video sequence to Fig. 5, the algorithm chose correct model (H) 123
times. One concern is the occurrence of somewhat ambiguous situ-
ations, such as the presence of a dominant planar object, or rotations
with very small shifts of the optical center. In these cases, the ratio
of the GRIC scores is sensitive to certain parameters (such as R and
γ) and may flip-flop between the two models from one frame to the
next. It should be noted that this is not a flaw of the GRIC score per

6http://tracking.mat.ucsb.edu
7http://cityofsights.icg.tugraz.at

Figure 9: Our system acting as a SLAM system, reconstructing the
scene in 3D and recovering the camera trajectory fully automatically.
The input sequence for this model stems from the “City of Sights”
repository [12] and was recorded by a robot arm. Each reconstructed
3D feature position is visualized as a small image patch (sampled
from the frame in which it was first observed).

se — the score is as ambiguous as the observed camera motion —
and that tracking and mapping does, indeed, continue successfully;
however the collected model in this case is fragmented in several
(connected, but nevertheless separate) maps (as can be observed in
Fig. 5 bottom), which is undesirable.

8 CONCLUSIONS

We have presented an approach for real-time tracking and map-
ping that supports both general (parallax-inducing) and degenerate
(rotation-only) camera motions in 3D environments. Our design
paradigm was to make use of all data that can be casually collected,
and to not require any particular assistance by the user (such as a
separate initialization step, or particular types of camera motion).

Our system is able to track and map through motion sequences
that neither conventional SLAM systems nor panorama systems can
process. Tracking is highly accurate, panorama stitching is fully
automatic and seamless. Depending on the video sequence, the
strategy of starting a new track and later merging separate tracks
(instead of trying to relocalize continuously with respect to the first
map) significantly increases the amount of data present in the final
environment model.

We acknowledge that tracking robustness during general motion
and coherency of the produced 3D model is, at this point, not com-
parable to systems such as PTAM [14] or DTAM [22]. While co-
herency of the 3D model was not the main focus of our work, it is
clear that the robustness needs to be increased in order to turn our
prototype into a system that supports unconstrained user motion and
can be used as the basis for an AR application. In particular, more
advanced map feature management including filtering of outliers,
more sophisticated keyframe selection, estimation of feature nor-
mals [21, 38] and thus more sophisticated feature predictions may
be beneficial to integrate. In doing so, one challenge is that the ear-
lier steps in the pipeline should be agnostic about the current type
of model, as otherwise many redundant computations may be exe-
cuted. Due of this, existing strategies cannot necessarily be applied
one to one.

Aside from improving the 3D reconstruction, there are several
other areas with open research questions. With respect to the GRIC
score, while its model recommendation is arguably the optimal
choice given a particular set of parameters and one pair of frames,
it is nontrivial to provide optimal parameters for any kind of data
input. Further, given a larger set of frames, coherency across the
chosen models may be preferable over selecting the locally optimal
model for any pair, in order to minimize “fragmentation” of the
model into too many (connected) sub-maps of different type. Fi-
nally, while we currently select only one model for the entire frame

http://tracking.mat.ucsb.edu
http://cityofsights.icg.tugraz.at


(which is, theoretically, the correct thing to do, since the motion
refers to the camera an thus to the entire frame), there may be cases
especially in outdoor AR in which the foreground exhibits enough
parallax to be modeled in 3D, while the background exhibits lit-
tle parallax and might benefit from the stable, dense mapping that
homographies offer. This leads to an interesting problem in which
image segmentation and scene modeling interact.

Further, it remains an open question how a model that consists
of a mixture of structural data and (partial) panoramas can best be
visualized, presented to, and navigated by the user. This is not a
concern if the model is used only as an anchor for AR annotations
(in which case the user never actually sees the model, but only the
annotations fused with his/her view onto the real world). However,
if the model is to be used in Virtual Reality as well (for example,
to allow a spatially remote user to view the scene), the model itself
needs to be presented and navigated. This works very well in the
case of panoramic mapping, where the emerging model (i.e., the
stitched panorama) is easy to interpret and browse. It is inherently
more challenging in the case of 3D data (especially if the model
is incomplete, so that the viewpoints for which useful views can
be rendered are restricted), and, to our knowledge, a completely
open research question for the case of live, incomplete data that
consists of mixtures of structural and panoramic data. By build-
ing on large data collections and offline reconstructions, interesting
viewing modalities for mixed data like this have emerged from the
Structure-from-Motion community [32].

APPENDIX

A DERIVATION OF THE GENERALIZED GRIC SCORE

The general Bayesian formulation of the GRIC score (cf. [34] Eq.
(46)) is

GRICm =−2LMAP,m + km logn (12)

with (cf. [34] Eq. (15))

LMAP,m = ∑
i

log(γi · pin +(1− γi) · pout) (13)

pin =

√
2πσ2

dm−D

cm
· exp

(

−
e2

i,m

2σ2

)

(14)

pout = 1/v (15)

where γi ∈ {1,0} indicates if correspondence i is an inlier. Denote
with γ = {P(γi = 1)} ([34] Eq. (8)) the prior expectation of seeing
an inlier, and maximize over γi:

⇒ GRICm =−2∑
i

log(max{γ · pin;(1− γ)pout})+ km logn

= ∑
i

min{−2log(γ · pin)
︸ ︷︷ ︸

(∗)

;−2log((1− γ)pout)
︸ ︷︷ ︸

(∗∗)

})+ km logn

(16)

(∗) =−2log

(

γ

√
2πσ2

dm−D

cm
· exp

(

−
e2

i,m

2σ2

))

(17)

=
e2

i,m

σ2
+(D−dm) log2πσ2 +2 log

cm

γ
(18)

(∗∗) =−2log

(
1− γ

v

)

(19)

= Tm +(D−dm) log2πσ2 +2 log
cm

γ
(20)

with Tm := 2 log

(
γ

1− γ
· v

cm

)

− (D−dm) log2πσ2 ≡ (11)

(21)

⇒ GRICm = ∑
i

(

ρ2

(

e2
i,m

σ2

)

+(D−dm) log2πσ2

+2 log
cm

γ

)

+ km logn ≡ (10)

(22)

B PROOF THAT THE GENERALIZED GRIC SCORE IS

EQUIVALENT TO TORR’S FORMULA FOR R=S

For the special case of R = S, note that U := (v/cm)
1

D−dm = S and

U ′ := cm/Udm = L2/S2 (i.e., both are independent of the model m)
for all models considered here. Starting with Eq. (21),

Tm = 2 log

(
γ

1− γ

)

+2 log
(

UD−dm

)

− (D−dm) log2πσ2 (23)

= 2 log

(
γ

1− γ

)

+(D−dm) log

(
U2

2πσ2

)

(24)

which is equivalent to Torr’s definition of T ([34] Eq. (18)) with
λ1 := log(U2/(2πσ2)). Further, starting with Eq. (22),

GRICm = ∑
i

ρ2

(

e2
i,m

σ2

)

+Am + km logn (25)

with Am = n

(

(D−dm) log2πσ2 +2 log
cm

γ

)

(26)

= n

(

λ1dm +D log2πσ2 +2 log
cm

γ
−dm logU2

)

(27)

= λ1ndm + log

(
(2πσ2)D

γ2
·
( cm

Udm

)2
)

(28)

= λ1ndm + log

(
(2πσ2)D

γ2
·U ′2

)

(29)

= λ1ndm + const (30)

⇒ GRICm = ∑
i

ρ2

(

e2
i,m

σ2

)

+λ1ndm + km logn+ const

≡ [34] Eq. (48) �

(Note that all terms that are not dependent on m are considered
constant in this context, even if they change from frame to frame.)

ACKNOWLEDGEMENTS

This work was supported by a fellowship from UCSB, NSF CA-
REER grant IIS-0747520 and ONR grant N00014-09-1-1113.

REFERENCES

[1] H. Akaike. A new look at the statistical model identification. IEEE

Trans. Automatic Control, 19(6):716–723, 1974.

[2] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying
framework: Part 1. Technical Report CMU-RI-TR-02-16, Robotics
Institute, Carnegie Mellon University, Pittsburgh, July 2002.

[3] R. O. Castle, G. Klein, and D. W. Murray. Video-rate localization in
multiple maps for wearable augmented reality. In Proc 12th IEEE Intl.

Symp. on Wearable Computers, pp. 15–22, 2008.

[4] J. Civera, A. Davison, and J. Montiel. Interacting multiple model
monocular SLAM. In IEEE Intl. Conference on Robotics and Au-

tomation (ICRA), pp. 3704–3709. 2008.



[5] J. Civera, A. Davison, and J. Montiel. Inverse depth parametrization
for monocular SLAM. IEEE Trans. Robotics, 24(5):932–945, 2008.

[6] C. Coffin, J. Ventura, and T. Höllerer. A repository for the evaluation
of image-based orientation tracking solutions. In Proc. 2nd Intl. Work-

shop on AR/MR Registration, Tracking and Benchmarking (TrakMark

2011), in conjunction with ISMAR 2011.

[7] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. MonoSLAM:
Real-time single camera SLAM. IEEE Trans. Pattern Analysis and

Machine Intelligence, 29(6):1052–1067, 2007.

[8] S. DiVerdi, J. Wither, and T. Höllerer. All around the map: Online
spherical panorama construction. Computers & Graphics, 33(1):73–
84, 2009.

[9] E. Eade and T. Drummond. Unified loop closing and recovery for real
time monocular SLAM. In Proc. British Machine Vision Conference

(BMVC), 2008.

[10] S. Gauglitz, L. Foschini, M. Turk, and T. Höllerer. Efficiently selecting
spatially distributed keypoints for visual tracking. In Proc. IEEE Intl.

Conference on Image Processing (ICIP), 2011.

[11] S. Gauglitz, C. Lee, M. Turk, and T. Höllerer. Integrating the phys-
ical environment into mobile remote collaboration. In Proc. ACM

SIGCHI’s Intl. Conference on Human-Computer Interaction with Mo-

bile Devices and Services (MobileHCI), 2012.

[12] L. Gruber, S. Gauglitz, J. Ventura, S. Zollmann, M. Huber,
M. Schlegel, G. Klinker, D. Schmalstieg, and T. Höllerer. The City
of Sights: Design, construction, and measurement of an augmented
reality stage set. In Proc. IEEE Intl. Symposium on Mixed and Aug-

mented Reality (ISMAR’10), pp. 157–163, Seoul, Korea, Oct. 13-16
2010.

[13] L. Gruber, S. Zollmann, D. Wagner, D. Schmalstieg, and T. Höllerer.
Optimization of target objects for natural feature tracking. In Proc.

20th Intl. Conference on Pattern Recognition (ICPR), pp. 3607–3610,
Istanbul, August 2010.

[14] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In Proc. 6th IEEE and ACM Intl. Symposium on Mixed

and Augmented Reality, Nara, Japan, November 2007.

[15] G. Klein and D. Murray. Improving the agility of keyframe-based
SLAM. In Proc. 10th European Conference on Computer Vision, pp.
802–815, Marseille, France, Oct. 2008.

[16] G. Klein and D. Murray. Parallel tracking and mapping on a camera
phone. In Proc. 8th IEEE Intl. Symposium on Mixed and Augmented

Reality, pp. 83–86, Oct. 2009.

[17] M. Klopschitz, A. Irschara, G. Reitmayr, and D. Schmalstieg. Ro-
bust incremental structure from motion. In Proc. Intl. Symposium on

3D Data Processing, Visualization and Transmission (3DPVT), vol. 2,
2010.

[18] T. Lemaire, C. Berger, I.-K. Jung, and S. Lacroix. Vision-based
SLAM: Stereo and monocular approaches. Intl. Journal of Computer

Vision, 74:343–364, 2007.

[19] S. Lieberknecht, A. Huber, S. Ilic, and S. Benhimane. RGB-D camera-
based parallel tracking and meshing. In IEEE Intl. Symposium on

Mixed and Augmented Reality (ISMAR) 2011, pp. 147 –155, Oct.
2011.

[20] M. A. Lourakis and A. Argyros. SBA: A software package for generic
sparse bundle adjustment. ACM Trans. Math. Software, 36(1):1–30,
2009.

[21] N. Molton, A. Davison, and I. Reid. Locally planar patch features for

real-time structure from motion. In Proc. 15th British Machine Vision

Conference (BMVC), 2004.

[22] R. Newcombe, S. Lovegrove, and A. Davison. Dtam: Dense tracking
and mapping in real-time. In IEEE Intl. Conference on Computer

Vision (ICCV), pp. 2320–2327, 2011.

[23] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinect-
Fusion: Real-time dense surface mapping and tracking. In Proc. IEEE

Intl. Symposium on Mixed and Augmented Reality (ISMAR), 2011.

[24] D. Nistér. An efficient solution to the five-point relative pose problem.
IEEE Trans. Pattern Analysis and Machine Intelligence, 26(6):756–
770, 2004.

[25] C. Pirchheim and G. Reitmayr. Homography-based planar mapping
and tracking for mobile phones. In Proc. 10th IEEE Intl. Symposium

on Mixed and Augmented Reality (ISMAR), pp. 27 –36, oct. 2011.

[26] M. Pollefeys, F. Verbiest, and L. Van Gool. Surviving dominant planes
in uncalibrated structure and motion recovery. In Proc. European Con-

ference on Computer Vision (ECCV), pp. 613–614, 2002.

[27] J. Repko and M. Pollefeys. 3D models from extended uncalibrated
video sequences: Addressing key-frame selection and projective drift.
In Proc. 5th Intl. Conference on 3-D Digital Imaging and Modeling

(3DIM), pp. 150–157, 2005.

[28] J. Rissanen. Modeling by shortest data description. Automatica, 14
(5):465–471, 1978.

[29] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. In Proc. IEEE European Conference on Computer Vision

(ECCV), vol. 1, pp. 430–443, May 2006.

[30] G. Schwarz. Estimating the dimension of a model. Annals of Statistics,
6:461– 464, 1978.

[31] N. Snavely. Scene Reconstruction and Visualization from Internet

Photo Collections. PhD thesis, University of Washington, 2008.

[32] N. Snavely, S. Seitz, and R. Szeliski. Photo tourism: exploring photo
collections in 3D. In ACM Trans. Graphics (TOG), vol. 25, pp. 835–
846, 2006.

[33] H. Strasdat, J. Montiel, and A. Davison. Real-time monocular SLAM:
Why filter? In Proc. IEEE Intl. Conference on Robotics and Automa-

tion (ICRA), pp. 2657–2664, 2010.

[34] P. Torr. Bayesian model estimation and selection for epipolar geome-
try and generic manifold fitting. Intl. Journal of Computer Vision, 50
(1):35–61, 2002.

[35] P. H. Torr, A. W. Fitzgibbon, and A. Zisserman. The problem of de-
generacy in structure and motion recovery from uncalibrated image
sequences. Intl. Journal of Computer Vision, 32:27–44, 1999.

[36] D. Wagner, D. Schmalstieg, and H. Bischof. Multiple target detection
and tracking with guaranteed framerates on mobile phones. In Proc.

8th IEEE Intl. Symposium on Mixed and Augmented Reality (ISMAR),
pp. 57–64, Oct. 2009.

[37] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg. Real-time
panoramic mapping and tracking on mobile phones. In Proc. IEEE

Virtual Reality (VR), March 2010.

[38] H. Wuest, F. Wientapper, and D. Stricker. Acquisition of high quality
planar patch features. Advances in Visual Computing, pp. 530–539,
2008.

[39] Z. Zhang and O. Faugeras. Estimation of displacements from two
3D frames obtained from stereo. IEEE Trans. Pattern Analysis and

Machine Intelligence, 14(12):1141 –1156, dec 1992.


	Introduction
	Related Work
	Monocular vision-based SLAM
	Further related work

	System Architecture Overview
	Data structures

	Tracking
	Inserting a new keyframe
	Relocalizing vs. starting a new track

	Mapping
	Triangulating features
	Bundle adjustment
	Merging disjoint tracks
	Cleaning up residual data

	Model Selection
	Torr's GRIC score
	GRIC score for large active search regions

	Evaluation
	Conclusions
	Derivation of the Generalized GRIC Score
	Proof that the Generalized GRIC Score is Equivalent to Torr's Formula for R=S

