
This paper is included in the Proceedings of the

14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’17).

March 27–29, 2017 • Boston, MA, USA

ISBN 978-1-931971-37-9

Open access to the Proceedings of the

14th USENIX Symposium on Networked

 Systems Design and Implementation

is sponsored by USENIX.

Live Video Analytics at Scale
with Approximation and Delay-Tolerance

Haoyu Zhang, Microsoft and Princeton University; Ganesh Ananthanarayanan,

Peter Bodik, Matthai Philipose, and Paramvir Bahl, Microsoft;

Michael J. Freedman, Princeton University

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang

Live Video Analytics at Scale with Approximation and Delay-Tolerance

Haoyu Zhang⋆†, Ganesh Ananthanarayanan⋆, Peter Bodik⋆, Matthai Philipose⋆

Paramvir Bahl⋆, Michael J. Freedman†

⋆Microsoft †Princeton University

Abstract
Video cameras are pervasively deployed for security

and smart city scenarios, with millions of them in large

cities worldwide. Achieving the potential of these cam-

eras requires efficiently analyzing the live videos in real-

time. We describe VideoStorm, a video analytics system

that processes thousands of video analytics queries on

live video streams over large clusters. Given the high

costs of vision processing, resource management is cru-

cial. We consider two key characteristics of video ana-

lytics: resource-quality tradeoff with multi-dimensional

configurations, and variety in quality and lag goals.

VideoStorm’s offline profiler generates query resource-

quality profile, while its online scheduler allocates re-

sources to queries to maximize performance on quality

and lag, in contrast to the commonly used fair sharing

of resources in clusters. Deployment on an Azure clus-

ter of 101 machines shows improvement by as much as

80% in quality of real-world queries and 7× better lag,

processing video from operational traffic cameras.

1 Introduction

Video cameras are pervasive; major cities worldwide like

New York City, London, and Beijing have millions of

cameras deployed [8,12]. Cameras are installed in build-

ings for surveillance and business intelligence, while

those deployed on streets are for traffic control and crime

prevention. Key to achieving the potential of these cam-

eras is effectively analyzing the live video streams.

Organizations that deploy these cameras—cities or po-

lice departments—operate large clusters to analyze the

video streams [5, 9]. Sufficient bandwidth is provisioned

(fiber drops or cellular) between the cameras and the

cluster to ingest video streams. Some analytics need to

run for long periods (e.g., counting cars to control traffic

light durations) while others for short bursts of time (e.g.,

reading the license plates for AMBER Alerts, which are

raised in U.S. cities to identify child abductors [1]).

Video analytics can have very high resource demands.

Tracking objects in video is a core primitive for many

scenarios, but the best tracker [69] in the VOT Challenge

2015 [59] processes only 1 frame per second on an 8-

core machine. Some of the most accurate Deep Neural

Networks for object recognition, another core primitive,

require 30GFlops to process a single frame [75]. Due

to the high processing costs and high data-rates of video

streams, resource management of video analytics queries

is crucial. We highlight two properties of video analytics

queries relevant to resource management.

Resource-quality trade-off with multi-dimensional

configurations. Vision algorithms typically contain

various parameters, or knobs. Examples of knobs are

video resolution, frame rate, and internal algorithmic pa-

rameters, such as the size of the sliding window to search

for objects in object detectors. A combination of the

knob values is a query configuration. The configuration

space grows exponentially with the number of knobs.

Resource demand can be reduced by changing configu-

rations (e.g., changing the resolution and sliding window

size) but they typically also lower the output quality.

Variety in quality and lag goals. While many queries

require producing results in real-time, others can tolerate

lag of even many minutes. This allows for temporarily

reallocating some resources from the lag-tolerant queries

during interim shortage of resources. Such shortage hap-

pens due to a burst of new video queries or “spikes” in

resource usage of existing queries (for example, due to

an increase in number of cars to track on the road).

Indeed, video analytics queries have a wide variety of

quality and lag goals. A query counting cars to control

the traffic lights can work with moderate quality (approx-

imate car counts) but will need them with low lag. Li-

cense plate readers at toll routes [16, 17], on the other

hand, require high quality (accuracy) but can tolerate lag

of even many minutes because the billing can be delayed.

However, license plate readers when used for AMBER

Alerts require high quality results without lag.

Scheduling large number of streaming video queries

with diverse quality and lag goals, each with many con-

figurations, is computationally complex. Production

systems for stream processing like Storm [4], Stream-

Scope [62], Flink [2], Trill [36] and Spark Stream-

ing [89] allocate resources among multiple queries only

based on resource fairness [7, 10, 27, 43, 51] common to

cluster managers like Yarn [3] and Mesos [49]. While

simple, being agnostic to query quality and lag makes

fair sharing far from ideal for video stream analytics.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 377

We present VideoStorm, a video analytics system that

scales to processing thousands of live video streams over

large clusters. Users submit video analytics queries con-

taining many transforms that perform vision signal pro-

cessing on the frames of the incoming video. At its core,

VideoStorm contains a scheduler that efficiently gener-

ates the query’s resource-quality profile for its different

knob configurations, and then jointly maximizes the qual-

ity and minimizes the lag of streaming video queries. In

doing so, it uses the generated profiles, and lag and qual-

ity goals. It allocates resources to each query and picks

its configuration (knob values) based on the allocation.

Challenges and Solution. The major technical chal-

lenges for designing VideoStorm can be summarized as

follows: (i) There are no analytical models for resource

demand and quality for a query configuration, and the

large number of configurations makes it expensive to

even estimate the resource-quality profile. (ii) Express-

ing quality and lag goals of individual queries and across

all queries in a cluster is non-trivial. (iii) Deciding al-

locations and configurations is a computationally hard

problem exponential in the number of queries and knobs.

To deal with the multitude of knobs in video queries,

we split our solution into offline (or profiling) and online

phases. In the offline phase, we use an efficient profiler

to get the resource-quality profile of queries without ex-

ploring the entire combinatorial space of configurations.

Using greedy search and domain-specific sampling, we

identify a handful of knob configurations on the Pareto

boundary of the profile. The scheduler in the online

phase, thus, has to consider only these configurations.

We encode quality and lag goals of a query in a util-

ity function. Utility is a weighted combination of the

achieved quality and lag, with penalties for violating the

goals. Penalties allow for expressing priorities between

queries. Given utilities of multiple queries, we schedule

for two natural objectives – maximize the minimum util-

ity, or maximize the total utility. The former achieves

fairness (max-min) while the latter targets performance.

Finally, in the online phase, we model the scheduling

problem using the Model-Predictive Control [67] to pre-

dict the future query lag over a short time horizon, and

use this predicted lag in the utility function. The sched-

uler considers the resource-quality profile of queries dur-

ing allocation, and allows for lagging queries to “catch

up.” It also deals with inevitable inaccuracies in resource

usages in the resource-quality profiles.

While we focus VideoStorm on video analytics using

computer vision algorithms, approximation and lag are

aspects that are fundamental to all machine learning al-

gorithms. To that end, the techniques in our system are

broadly applicable to all stream analytics systems that

employ machine learning techniques.

Machine ManagerMachine ManagerWorker Process

transform

track object

transform

classify object

Worker 2

Worker Process

transform

detect license
plates

Worker Process

transform

decode

transform

b/g subtract

control flow data flow
query1 query2

Worker 1

VideoStorm Manager
Scheduler + Profiler

Machine Manager

transform

decode

Machine Manager

Figure 1: VideoStorm System Architecture.

Contributions. Our contributions are as follows:

1. We designed and built a system for large-scale an-

alytics of live video that allows users to submit

queries with arbitrary vision processors.

2. We efficiently identify the resource-quality profile

of video queries without exhaustively exploring the

combinatorial space of knob configurations.

3. We designed an efficient scheduler for video queries

that considers their resource-quality profile and lag

tolerance, and trades off between them.

We considered streaming databases with approxima-

tion [19,37,68] as a starting point for our solution. How-

ever, they only consider the sampling rate of data streams

and used established analytical models [38] to calculate

the quality and resource demand. In contrast, vision

queries are more complex black-boxes with many more

knobs, and do not have known analytical models. More-

over, they optimize only one query at a time, while our

focus is on scheduling multiple concurrent queries.

Deployment on 101 machines in Azure show that

VideoStorm’s scheduler allocates resources in hundreds

of milliseconds even with thousands of queries. We

evaluated using real video analytics queries over video

datasets from live traffic cameras from several large

cities. Our offline profiling consumes 3.5× less CPU

resources compared to a basic greedy search. The on-

line VideoStorm scheduler outperforms fair scheduling

of resources [3, 31, 49] by as much as 80% in quality of

queries and 7× in terms of lag.

2 System Description

We describe the high-level architecture of VideoStorm

and the specifications for video queries.

2.1 VideoStorm Architecture

The VideoStorm cluster consists of a centralized man-

ager and a set of worker machines that execute queries,

378 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 "name": "LicensePlate",

2 "transforms": [

3 {"id": "0",

4 "class_name": "Decoder",

5 "parameters": {
6 "CameraIP": "134.53.8.8",

7 "CameraPort": 8100,

8 "@OutputResolution": "720P",

9 "@SamplingRate": 0.75 }
10 },
11 {"id": "1",

12 "input_transform_id": "0",

13 "class_name": "OpenALPR",

14 "parameters": {
15 "@MinSize": 100,

16 "@MaxSize": 1000,

17 "@Step": 10 }
18 }]

Figure 2: VideoStorm Query for license plate reader.

see Figure 1. Every query is a DAG of transforms on live

video that is continuously streamed to the cluster; each

transform processes a time-ordered stream of messages

(e.g., video frames) and passes its outputs downstream.

Figure 1 shows two example queries. One query runs

across two machines; after decoding the video and sub-

tracting the background, it sends the detected objects

to another machine for tracking and classification. The

other query for detecting license plates runs on a single

machine. We assume there is sufficient bandwidth provi-

sioned for cameras to stream their videos into the cluster.

Every worker machine runs a machine manager which

start worker processes to host transforms. The machine

manager periodically reports resource utilizations as well

as status of the running transforms to the VideoStorm

manager. The scheduler in the manager uses this infor-

mation to allocate resources to queries. The VideoStorm

manager and the machine managers are not on the query

data path; videos are streamed directly to the decoding

transforms and thereon between the transforms.

2.2 Video Queries Specification

Queries submitted to the VideoStorm manager are strung

together as pipelines of transforms. Figure 2 shows a

sample VideoStorm pipeline with two transforms. The

first transform decodes the live video to produce frames

that are pushed to the second transform to find license

plate numbers using the OpenALPR library [13].

Each transform contains an id and class name which

is the class implementing the transform (§7). The in-

put transform id field specifies the transform whose output

feeds into this transform, thus allowing us to describe

a pipeline. VideoStorm allows arbitrary DAGs including

multiple inputs and outputs for a transform. Source trans-

forms, such as the “Decoder”, do not specify input trans-

C D Q

A1 1 0.6

A2 2 0.7

A3 3 0.8

(a) Query A

C D Q

B1 1 0.1

B2 2 0.3

B3 3 0.9

(b) Query B

Query A Query B

Time R C D A Q L C D A Q L

0 4 A2 2 2 0.7 - B2 2 2 0.3 -

10 2 A1 1 1 0.6 - B1 1 1 0.1 -

22 4 A2 2 2 0.7 - B2 2 2 0.3 -

(c) Fair allocation

Query A Query B

Time R C D A Q L C D A Q L

0 4 A1 1 1 0.6 - B3 3 3 0.9 -

10 2 A1 1 1 0.6 - B3 3 1 0.9 -

22 4 A1 1 1 0.6 - B2 2 3 0.3 8s

38 4 A1 1 1 0.6 - B3 3 3 0.9 -

(d) Performance-based allocation

Table 1: Tables (a) and (b) show queries A and B with three

configurations each, resource demand D and quality Q. Ta-

bles (c) and (d) show the time and capacity R, and for each

query the chosen configuration C, demand D, allocation A,

achieved quality Q, and lag L for the fair and performance-

based schedulers. Notice in (d) that query B achieves higher

quality between times 10 and 22 than with the fair sched-

uler in (c), and never lags beyond its permissible 8s.

form, but instead directly connect to the camera source

(specified using IP and port number).

Each transform contains optional knobs (parameters);

e.g., the minimum and maximum window sizes (in pix-

els) of license plates to look for and the step increments

to search between these sizes for the OpenALPR trans-

form (more in §5). Knobs whose values can updated dy-

namically start with the ‘@’ symbol. The VideoStorm

manager updates them as part of its scheduling decisions.

3 Making the Case for Resource Allocation

We make the case for resource management in video an-

alytics clusters using a simple example (§3.1) and real-

world video queries (§3.2).

3.1 Motivating Example

Cluster managers such as Yarn [3], Apollo [31] and

Mesos [49] commonly divide resources among multiple

queries based on resource fairness. Being agnostic to

query quality and lag preferences, fair allocation is the

best they can do. Instead, scheduling for performance

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 379

leads to queries achieving better quality and lag.

The desirable properties of a scheduler for video ana-

lytics are: (1) allocate more resources to queries whose

qualities will improve more, (2) allow queries with built-

up lag in their processing to “catch up,” and (3) adjust

query configuration based on the resource allocated.

Tables 1a and 1b shows two example queries A and

B with three knob configurations each (Ax and Bx, re-

spectively). Query A’s improvement in quality Q is less

pronounced than B’s for the same increase in resource

demand D. Note that D is the resource to keep up with the

incoming data rate. Query A cannot tolerate any lag, but

B can tolerate up to 8 seconds of lag. Lag is defined as

the difference between the time of the last-arrived frame

and the time of the last-processed frame, i.e., how much

time’s worth of frames are queued-up unprocessed.

Let a single machine with resource capacity R of 4

run these two queries. Its capacity R drops to 2 after 10

seconds and then returns back to 4 after 12 more seconds

(at 22 seconds). This drop could be caused by another

high-priority job running on this machine.

Fair Scheduling. Table 1c shows the assigned configu-

ration C, query demand D, resource allocation A, quality

Q and lag L with a fair resource allocation. Each query

selects the best configuration to keep up with the live

stream (i.e., keeps its demand below its allocation). Us-

ing the fair scheduler, both queries get an allocation of 2

initially, picking configurations A2 and B2 respectively.

Between times 10 to 22, when the capacity drops to 2,

the queries get an allocation of 1 each, and pick configu-

rations A1 and B1. At no point do they incur any lag.

Performance-based Scheduling. As Table 1d shows,

a performance-based scheduler allocates resources of 1

and 3 to queries A and B at time 0; B can thus run at con-

figuration B3, achieving higher quality compared to the

fair allocation (while A’s quality drops only by 0.1). This

is because the scheduler realizes the value in providing

more resources to B given its resource-quality profile.

At time 10 when capacity drops to 2, the scheduler

allocates 1 unit of resource to each to the queries, but re-

tains configuration B3 for B. Since resource demand of

B3 is 3, but B has been allocated only 1, B starts to lag.

Specifically, every second, the lag in processing will in-

crease by 2/3 of a second. However, query B will still

produce results at quality 0.9, albeit delayed. At time 22,

the capacity recovers and query B has built up a lag of

8 seconds. The scheduler allocates 3 resource units to

B but switches it to configuration B2 (whose demand is

only 2). This means that query B can now catch up – ev-

ery second it can process 1.5 seconds of video. Finally, at

time 38, all the lag has been eliminated and the scheduler

switches B to configuration B3 (quality 0.9).

The performance-based scheduler exhibited the three

properties listed above. It allocated resources to optimize

480p 576p 720p 900p1080p
Frame Resolution

0.0
0.2
0.4
0.6
0.8
1.0

Quality CPU

(a) License Plate — Resolution

(sampling rate = 0.12)

0.1 0.2 0.3 0.4
Sampling Rate

0.0
0.2
0.4
0.6
0.8
1.0

Quality CPU

(b) License Plate — Sampling

(resolution = 480p)

0.2 0.4 0.6 0.8 1.0
Sampling Rate

0.0
0.2
0.4
0.6
0.8
1.0

Quality CPU

(c) DNN — Sampling

DIST HIST SURF SIFT
Object Mapping Metric

0.0
0.2
0.4
0.6
0.8
1.0

Quality CPU

(d) Tracker — Object Mapping

Figure 3: Resource-quality profiles for real-world video

queries. For simplicity, we plot one knob at a time.

for quality and allowed queries to catch up to built-up

lag, while accordingly adjusting their configurations.

3.2 Real-world Video Queries

Video analytics queries have many knob configurations

that affect output quality and resource demand. We

highlight the resource-quality profiles of four real-world

queries—license plate reader, car counter, DNN classi-

fier, object tracker—of interest to the cities we are part-

nering with and obtained videos from their operational

traffic cameras (§8.1). For clarity, we plot one knob at a

time and keep other knobs fixed. Quality is defined as the

F1 score ∈ [0, 1] (the harmonic mean between precision

and recall [83]) with reference to a labeled ground truth.

License Plate Reader. The OpenALPR [13] library

scans the video frame to detect potential plates and

then recognizes the text on plates using optical charac-

ter recognition. In general, using higher video resolution

and processing each frame will detect the most license

plates accurately. Reducing the resolution and process-

ing only a subset of frames (e.g., sampling rate of 0.25)

dramatically reduces resource demand, but can also re-

duce the quality of the output (i.e., miss or incorrectly

read plates). Figures 3a and 3b plots the impact of reso-

lution and sampling rate on quality and CPU demand.1

Car Counter. Resolution and sampling rate are knobs

that apply to almost all video queries. A car counter

monitors an “area of interest” and counts cars passing

the area. In general, its results are of good quality even

with low resolution and sampling rates (plots omitted).

1Sampling rate of 0.75 drops every fourth frame from the video.

380 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Deep Neural Network (DNN) Classifier. Vision pro-

cessing is employing DNNs for key tasks including ob-

ject detection and classification. Figure 3c profiles a

Caffe DNN [54] model trained with the widely-used Im-

ageNet dataset [41] to classify objects into 1,000 cate-

gories. We see a uniform increase in the quality of the

classification as well as resource consumption with the

sampling rate. As DNN models get compressed [45,46],

reducing their resource demand at the cost of quality, the

compression factor presents another knob.

Object Tracker. Finally, we have also profiled an ob-

ject tracker. This query continuously models the “back-

ground” in the video, identifies foreground objects by

subtracting the background, and tracks objects across

frames using a mapping metric. The mapping metric

is a key knob (Figure 3d). Objects across frames can

be mapped to each other using metrics such as distance

moved (DIST), color histogram similarity (HIST), or

matched over SIFT [14] and SURF [15] features.

Resource-quality profiles based on knob configura-

tions is intrinsic to video analytics queries. These queries

typically identify “events” (like license plates or car acci-

dents), and using datasets where these events are labeled,

we can empirically measure precision and recall in iden-

tifying the events for different query configurations.

In contrast to approximate SQL query processing,

there are no analytical models to estimate the relationship

between resource demand and quality of video queries

and it depends on the specific video feeds. For example,

reducing video resolution may not reduce OpenALPR

quality if the camera is zoomed in enough. Hence queries

need to be profiled using representative video samples.

3.3 Summary and Challenges

Designing a scheduler with the desirable properties in

§3.1 for real-world video queries (§3.2) is challenging.

First, the configuration space of a query can be large

and there are no analytical models to estimate the re-

source demand and result quality of each configuration.

Second, trading off between the lag and quality goals

of queries is tricky, making it challenging to define

scheduling objectives across all queries in the cluster.

Third, resource allocation across all queries in the

cluster each with many configurations is computationally

intractable, presenting scalability challenges.

4 Solution Overview

The VideoStorm scheduler is split into offline profiling

and online phases (Figure 4). In the offline phase, for

every query, we efficiently generate its resource-quality

profile – a small number of configurations on the Pareto

Workers

start / stop / migrate query / transform

Profiler §5

query
Scheduler

Resource

Allocation

§6.2

Placement

§6.3

query profile

configuration changes

report machine, query stats

(periodic)

resource changes

(periodic)

(periodic)

utility func.

§6.1

offline online

WorkersWorkers

Figure 4: VideoStorm Scheduler Components.

curve of the profile, §5. This dramatically reduces the

configurations to be considered by the scheduler.

In the online phase, the scheduler periodically (e.g.,

every second) considers all running queries and adjusts

their resource allocation, machine placement, and con-

figurations based on their profiles, changes in demand

and/or capacity (see Figure 4). We encode the quality

and lag requirements of each individual query into its

utility function, §6.1. The performance goal across all

queries in a cluster is specified either as maximizing the

minimum utility or the sum of utilities, §6.2 and §6.3.

5 Resource-Quality Profile Estimation

When a user submits a new query, we start running it im-

mediately with a default profile (say, from its previous

runs on other cameras), while at the same time we run

the query through the offline profiling phase. The query

profiler has two goals. 1) Select a small subset of con-

figurations (Pareto boundary) from the resource-quality

space, and 2) Compute the query profile, Pk, i.e., the re-

source demand and result quality of the selected config-

urations. The profile is computed either against a labeled

dataset or using the initial parts of the video relative to a

“golden” query configuration which might be expensive

but is known to produce high-quality results.

5.1 Profile estimation is expensive

We revisit the license plate reader query from §3.2 in de-

tail. As explained earlier, frame resolution and sampling

rate are two important knobs. The query, built using

the OpenALPR library [13], scans the image for license

plates of size MinSize, then multiplicatively increases the

size by Step, and keeps repeating this process until the

size reaches MaxSize. The set of potential license plates

is then sent to an optical character recognizer.

We estimate the quality of each knob configuration

(i.e., combination of the five knobs above) on a labeled

dataset using the F1 score [83], the harmonic mean be-

tween precision and recall, commonly used in machine

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 381

0

0.2

0.4

0.6

0.8

0.01 0.1 1 10 100 1000

q
u
a
lit

y,
 F

1
 s

c
o
re

resource demand [CPU cores, log scale]

Figure 5: Resource-quality for license plate query on a 10

minute video (414 configurations); x-axis is resource de-

mand to keep up with live video. Generating this took 20

CPU days. The black dashed line is the Pareto boundary.

learning; 0 and 1 represent the lowest and highest qual-

ities. For example, increasing MinSize or decreasing

MaxSize reduces the resources needed but can miss some

plates and decrease quality.

Figure 5 shows a scatter plot of resource usage vs.

quality of 414 configurations generated using the five

knobs. There is four orders of magnitude of difference

in resource usage; the most expensive configuration used

all frames of a full HD resolution video and would take

over 2.5 hours to analyze a 1 minute video on 1 core. No-

tice the vast spread in quality among configurations with

similar resource usage as well as the spread in resource

usage among configurations that achieve similar quality.

5.2 Greedy exploration of configurations

We implement a greedy local search to identify con-

figuration with high quality (Q) and low demand (D);

see Table 2. Our baseline profiler implements hill-

climbing [74]; it selects a random configuration c, com-

putes its quality Q(c) and resource demand D(c) by run-

ning the query with c on a small subset of the video

dataset, and calculates X(c) = Q(c)− βD(c) where β
trades off between quality and demand. Next, we pick a

neighbor configuration n (by changing the value of a ran-

dom knob in c). If X(n)> X(c), then n is better than c in

quality or resource demand (or both); we set c = n and

repeat. When we cannot find a better neighbor (i.e., our

exploration indicates that we are near a local optimum),

we repeat by picking another random c.

Several enhancements significantly increase the effi-

ciency of our search. To avoid starting with an expen-

sive configuration and exploring its neighbors, (which

are also likely to be expensive, thus wasting CPU), we

pick k random configurations and start from the one with

the highest X(c). We found that using even k = 3 can

successfully avoid starting in an expensive part of the

search space. Second, we cache intermediate results in

the query’s DAG and reuse them in evaluating configura-

tions with overlapping knob values.

Term Description

Pk profile of query k

ck ∈ Ck specific configuration of query k

Qk(c) quality under configuration c

Dk(c) resource demand under configuration c

Lk,t measured lag at time t

Uk utility

QM
k (min) quality goal

LM
k (max) lag goal

ak resources allocated

Table 2: Notations used, for query k.

While our simple profiler is sufficiently efficient

for our purpose, sophisticated hyperparameter searches

(e.g., [76]) can potentially further improve its efficiency.

Pareto boundary. We are only interested in a small

subset of configurations that are on the Pareto boundary

P of the resource-quality space. Let Q(c) be the quality

and D(c) the resource demand under configuration c. If

c1 and c2 are two configurations such that Q(c1)≥ Q(c2)
and D(c1) ≤ D(c2), then c2 is not useful in practice; c1

is better than c2 in both quality and resource demand.

The dashed line in Figure 5 shows the Pareto boundary

of such configurations for the license plate query. We ex-

tract the Pareto boundary of the explored configurations

and call it the resource-quality profile P of the query.

We can generate the same profile as the baseline pro-

filer on the license plate query with 3.5× less CPU re-

sources (i.e., 5.4 CPU hours instead of 19 CPU hours).

6 Resource Management

In the online phase, the VideoStorm cluster sched-

uler considers the utilities of individual queries and the

cluster-wide performance objectives (defined in §6.1)

and periodically performs two steps: resource allocation

and query placement. In the resource allocation step,

§6.2, the scheduler assumes the cluster is an aggregate

bin of resources and uses an efficient heuristic to maxi-

mize the cluster-wide performance by adjusting query al-

location and configuration. In the query placement step,

§6.3, the scheduler places new queries to machines in the

cluster and considers migrating existing queries.

6.1 Utility: Combining Quality and Lag

Each query has preferences on the desired quality and

lag. What is the minimum quality goal (QM)? How

much does the query benefit from higher quality than

the goal? What is the maximum lag (LM) it can toler-

ate and how sensitive are violations to this goal? (See

Table 2 for notations.) We encode these preferences in

382 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

3

6

0 0.5 1

UQ

quality Q

query 1

query 2

QM
1 QM

2

-6

-3

0

0 5 10

UL

lag L [sec]

query 1

query 2

LM
1

LM
2

Figure 6: Examples for the second (UQ) and third terms

(UL) in equation 1. (Left) Query 1’s quality goal is relatively

lenient, QM
1 = 0.2, but its utility grows slowly with increase

in quality beyond QM
1 . Query 2 is more stringent, QM

2 = 0.6,

but its utility grows sharply thereon. (Right) Query 1 has

lag target of LM
1 = 5 beyond which it incurs a penalty. Query

2 has a stricter lag goal of LM
2 = 1 and also its utility drops

much faster with increased lag.

utility functions, an abstraction used extensively in eco-

nomics [65, 73] and computer systems [22, 55].

Our utility function for a query has the following form,

where (x)+ is the positive part of x. We omit the query

index k for clarity.

U(Q,L) =UB +UQ(Q)+UL(L)

=UB +αQ · (Q−QM)+−αL · (L−LM)+
(1)

UB is the “baseline” utility for meeting the quality and

lag goals (when Q = QM and L = LM). The second term

UQ describes how the utility responds to achieved quality

Q above QM , the soft quality goal; the multiplier αQ and

QM are query-specific and set based on the application

analyzing the video. Results with quality below QM are

typically not useful to the users.

The third term, UL, represents the penalty for results

arriving later than the maximum lag goal of LM . 2 Recall

that lag is the difference between the current time and

the arrival time of the last processed frame, e.g., if at

time 10:30 we process a frame that arrived at 10:15, the

lag is 15 minutes. Similar to latency SLOs in clusters,

there is no bonus for lag being below LM . See Figure 6

for examples of UQ and UL in queries.

Scheduling objectives. Given utilities of individual

queries, how do we define utility or performance of the

whole cluster? Previous work has typically aimed to

maximize the minimum utility [61, 64] or sum of util-

ities [61, 63], which we adopt. When deployed as a

“service” in the public cloud, utility will represent the

revenue the cluster operator generates by executing the

query; penalties and bonuses in utility translate to loss

and increase in revenue. Therefore, maximizing the sum

of utilities maximizes revenue. In a private cluster that is

shared by many cooperating entities, achieving fairness

is more desirable. Maximally improving the utility of the

worst query provides max-min fairness over utilities.

2Multiplier αL is in (1/second), making UL dimensionless like UQ.

To simplify the selection of utility functions in practi-

cal settings, we can provide only a few options to choose

from. For example, the users could separately pick the

minimum quality (40%, 60%, or 80%) and the maximum

lag (1, 10, or 60 minutes) for a total of nine utility func-

tion templates. Users of cloud services already make

similar decisions; for example, in Azure Storage [32],

they separately select data redundancy (local, zone, or

geo-distributed) and data access pattern (hot vs. cool).

6.2 Resource Allocation

Given a profile Pk and a utility function Uk for each query

k, the scheduler allocates resources ak to the queries and

picks their query configuration (ck ∈ Pk). The scheduler

runs periodically (e.g., every few seconds) and reacts to

arrival of new queries, changes in query demand and lag,

and changes in resource capacity (e.g., due to other high-

priority non-VideoStorm jobs).

6.2.1 Scheduling Using Model-Predictive Control

The scheduler aims to maximize the minimum or sum

of query utilities, which in turn depend on their quality

and lag. A key point to understand is that while we can

near-instantaneously control query quality by adjusting

its configuration, query lag accumulates over time if we

allocate less resources than query demand.

Because of this accumulation property, the scheduler

cannot optimize the current performance, but only aims

to improve performance in the near future. We formulate

the scheduling problem using the Model-Predictive Con-

trol (MPC [67]) framework; where we model the cluster

performance over a short time horizon T as a function of

query configuration and allocation. In each step, we se-

lect the configuration and allocation to maximize perfor-

mance over the near future (described in detail in §6.2.2).

To predict future performance, we need to predict

query lag; we use the following formula:

Lk,t+T (ak,ck) = Lk,t +T −T
ak

Dk(ck)
(2)

We plug in the predicted lag Lk,t+T into the utility

function (Equation 1) to obtain the predicted utility.

6.2.2 Scheduling Heuristics

We describe resource allocation assuming each query to

contain only one transform, which we relax in §6.4.

Maximizing sum of utilities. The optimization prob-

lem for maximizing sum of utilities over time horizon T

is as follows. Sum of allocated resources ak cannot ex-

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 383

ceed cluster resource capacity R.

max
ak,ck∈Pk

∑k Uk(Qk(ck),Lk,t+T) (3)

s.t. ∑k ak ≤ R

Maximizing the sum of utilities is a variant of the knap-

sack problem where we are trying to include the queries

at different allocation and configuration to maximize the

total utility. The maximization results in the best distri-

bution of resources (as was illustrated in §3.1).

When including query k at allocation ak and configu-

ration ck, we are paying cost of ak and receiving value of

uk = Uk(Qk(ck),Lk,t+T). We employ a greedy approxi-

mation based on [40] where we prefer queries with high-

est value of uk/ak; i.e., we receive the largest increase in

utility normalized by resource spent.

Our heuristic starts with ak = 0 and in each step we

consider increasing ai (for all queries i) by a small ∆ (say,

1% of a core) and consider all configurations of ci ∈ Pi.

Among these options, we select query i (and correspond-

ing ci) with largest increase in utility.3 We repeat this

step until we run out of resources or we have selected the

best configuration for each query. (Since we start with

ak = 0 and stop when we run out of resources, we will

not end up with infeasible solutions.)

Maximizing minimum utility. Below is the optimiza-

tion problem to maximize the minimum utility predicted

over a short time horizon T . We require that all utilities

be ≥ u and we maximize u.

max
ak,ck∈Pk

u (4)

s.t. ∀k : Uk(Qk(ck),Lk,t+T)≥ u

∑k ak ≤ R

We can improve u only by improving the utility of the

worst query. Our heuristic is thus as follows. We start

with ak = 0 for all queries. In each step, we select query

i= argmink Uk(Qk(ck),Lk,t+T) with the lowest utility and

increase its allocation by a small ∆, say 1% of a core.

With this allocation, we compute its best configuration ci

as argmaxc∈Pi
Ui(Qi(c),Li,t+T). We repeat this process

until we run out of resources or we have picked the best

configuration for each query.

6.3 Query Placement

After determining resource allocation and configuration

of each query, we next describe the placement of new

queries and migration of existing queries. We quantify

3We use a concave version of the utility functions obtained using

linear interpolation to ensure that each query has a positive increase in

utility, even for small ∆.

the suitability of placing a query q on machine m by com-

puting a score for each of the following goals: high uti-

lization, load balancing, and spreading low-lag queries.

(i) Utilization. High utilization in the cluster can be

achieved by packing queries in to machines, thereby min-

imizing fragmentation and wastage of resources. Pack-

ing has several well-studied heuristics [44, 71]. We de-

fine alignment of a query relative to a machine using a

weighted dot product, p, between the vector of machine’s

available resources and the query’s demands; p ∈ [0,1].
(ii) Load Balancing. Spreading load across the cluster

ensures that each machine has spare capacity to handle

changes in demand. We therefore prefer to place q on

a machine m with the smallest utilization. We capture

this in score b = 1− M+D
Mmax

∈ [0,1], where M is the current

utilization of machine m and D is demand of query q.

(iii) Lag Spreading. Not concentrating many low-lag

queries on a machine provides slack to accumulate lag

for some queries when resources are scarce, without hav-

ing to resort to migration of queries or violation of their

lag goal LM . We achieve this by maintaining high av-

erage LM on each machine. We thus compute score

l ∈ [0,1] as the average LM after placing q on m.

The final score sq,m is the average of the three scores.

For each new query q, we place it on a machine with

the largest sq,m. For each existing query q, we migrate

from machine m0 to a new machine m1 only if its score

improves substantially; i.e., s(q,m1)− s(q,m0)> τ .

6.4 Enhancements

Incorrect resource profile. The profiled resource de-

mand of a query, Dk(ck), might not exactly correspond

to the actual query demand, e.g., when demand depends

on video content. Using incorrect demand can negatively

impact scheduling; for example, if Dk(c) = 10, but actual

usage is Rk = 100, the scheduler would estimate that al-

locating ak = 20 would reduce query lag at the rate of

2×, while the lag would actually grow at a rate of 5×.

To address this, we keep track of a running average of

mis-estimation µ = Rk/Dk(c), which represents the mul-

tiplicative error between the predicted demand and actual

usage. We then incorporate µ in the lag predictor from

Equation 2, Lk,t+T (ak,ck) = Lk,t +T −T
ak

Dk(ck)
(1

µ).

Machine-level scheduling. As most queries fit on a

single machine, we can respond to changes in demand or

lag at the machine-level, without waiting for the cluster-

wide decisions. We therefore execute the allocation step

from §6.2 on each machine, which makes the scheduling

logic much more scalable. The cluster-wide scheduler

still runs the allocation step, but only for the purposes of

determining query placement and migration.

DAG of transforms. Queries consisting of a DAG of

transforms could be placed across multiple machines.

384 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We first distribute the query resource allocation, ak, to in-

dividual transforms based on per-transform resource de-

mands. We then place individual transforms to machines

as described in §6.3 while accounting for the expected

data flow across machines and network link capacities.

7 VideoStorm Implementation

We now discuss VideoStorm’s key implementation de-

tails and the interfaces implemented by transforms.

7.1 Implementation Details

In contrast to widely-deployed cluster frameworks like

Yarn [3], Mesos [49] and Cosmos [31], we highlight the

differences in VideoStorm’s design. First, VideoStorm

takes the list of knobs, resource-quality profiles and lag

goals as inputs to allocate resources. Second, machine-

level managers in the cluster frameworks pull work,

whereas the VideoStorm manager pushes new queries

and configuration changes to the machine-managers.

Finally, VideoStorm allows machine managers to au-

tonomously handle short-term fluctuations (§6.4)

Flow control. We implemented flow control across

transforms of a query to minimize the buffering inside

the query pipeline, and instead push queuing of unpro-

cessed video to the front of the query. This helps for two

reasons. First, decoded frames can be as much as 300×

larger than the encoded video (from our benchmarks on

HD videos). Buffering these frames will significantly in-

flate memory usage while spilling them to disk affects

overall performance. Second, buffering at the front of

query enables the query to respond promptly to configu-

ration changes. It prevents frames from being processed

by transforms with old inconsistent knob values.

Migration. As described in §6.3, VideoStorm migrates

queries depending on the load in the cluster. We imple-

ment a simple “start-and-stop” migration where we start

a copy of a running query/transform on the target ma-

chine, duplicate its input stream to the copy, and stop

the old query/transform after a short period. The whole

process of migration is data-lossless and takes roughly a

second (§8.3), so the overhead of duplicated processing

during the migration is very small.

Resource Enforcement. VideoStorm uses Job Ob-

jects [18] for enforcing allocations. Similar to Linux

Containers [11], Job Objects allow controlling and re-

sizing the CPU/memory limits of running processes.

7.2 Interfaces for Query Transforms

Transforms implement simple interfaces to process data

and exchange control information.

• Processing. Transforms implement byte[] Pro-

cess(header, data) method. header contains metadata

such as frame id and timestamp. data is the input

byte array, such as decoded frame. The transform

returns another byte array with its result, such as the

detected license plate. Each transform maintains its

own state, such as the background model.

• Configuration. Transforms can also implement Up-

date(key, value) to set and update knob values to

change query configuration at runtime.

8 Evaluation

We evaluate the VideoStorm prototype (§7) using a clus-

ter of 101 machines on Microsoft Azure with real video

queries and video datasets. Our highlights:

1. VideoStorm outperforms the fair scheduler by 80%

in quality of outputs with 7× better lag. (§8.2)

2. VideoStorm is robust to errors in query profiles and

allocates nearly the same as correct profiles. (§8.3)

3. VideoStorm scales to thousands of queries with little

systemic execution overheads. (§8.4)

8.1 Setup

Video Analytics Queries. We evaluate VideoStorm us-

ing four types of queries described and profiled in §3.2 –

license plate reader, car counter, DNN classifier, object

tracker. These queries are of major interest to the cities

we are partnering with in deploying our system.

Video Datasets. The above queries run on video

datasets obtained from real and operational traffic cam-

eras in Bellevue and Seattle cities for two months (Sept.–

Oct., 2015). In our experiments, we stream the recorded

videos at their original frame-rate (14 to 30 fps) and res-

olution (240P to 1080P) thereby mimicking live video

streams. The videos span a variety of conditions (sun-

ny/rainy, heavy/light traffic) that lead to variation in their

processing workload. We present results on multiple dif-

ferent snippets from the videos.

Azure Deployment. We deploy VideoStorm on 101 D3

v2 instances on Azure’s West-US cluster [6]. D3 v2 in-

stances contain 4 cores of the 2.4GHz Intel Xeon proces-

sor and 14GB RAM. One machine ran the VideoStorm

global manager on which no queries were scheduled.

Baseline. We use the work-conservative fair scheduler

as our baseline. It’s the widely-used scheduling pol-

icy for cluster computing frameworks like Mesos [49],

Yarn [3] and Cosmos [31]. When a query, even at its

best configuration, cannot use its fair share, it distributes

the excess resources among the other queries. The fair

scheduler places the same number of queries evenly on

all available machines in a round-robin fashion.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 385

0 50 100 150 200 250 300 350 400
Burst Duration, N (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

U
til

ity
Fair Scheduler

(a) Utility

0 50 100 150 200 250 300 350 400
Burst Duration, N (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

VideoStorm MaxMin (Allocation Only)

(b) Quality

0 50 100 150 200 250 300 350 400
Burst Duration, N (seconds)

0
5

10
15
20
25

Fr
am

es
 (%

) L
ag

gi
ng

B
ey

on
d

G
oa

l

VideoStorm MaxMin

(c) Lag

Figure 7: VideoStorm outperforms the fair scheduler as the duration of burst of queries in the experiment is varied. Without

its placement but only its allocation (“VideoStorm MaxMin (Allocation Only)”), its performance drops by a third.

Metric. The three metrics of interest to us are quality,

frames (%) exceeding the lag goal in processing, and util-

ity (§6.1). We compare the improvement (%); if a metric

(say, quality) with VideoStorm and the fair scheduler is

XV and X f , we measure
XV−X f

X f
×100%.

8.2 Performance Improvements

Our workload consists of a mix of queries with lenient

and stringent goals. We start with a set of 300 queries

picked from the four types (§8.1) on 300 distinct video

datasets at the beginning of the experiment. 60% of these

queries have a lag goal LM of 20s while the remaining are

more lenient with a lag goal of 300s. All of them have a

quality goal QM of 0.25. We set the lag multiplier αL = 1

for these long-lived video analyses.

Burst of N seconds: At a certain point, a burst of 200 li-

cense plate queries arrive and last for N seconds (which

we will vary). These queries have a lag goal QL of

20s, a high quality goal (1.0), and higher αL = 2. They

mimic short-term deployment of queries like AMBER

Alerts with stringent accuracy and lag goals. We eval-

uate VideoStorm’s reaction to the burst of queries up to

several minutes; note that the improvements will carry

over when tolerant delay and bursts are much longer.

8.2.1 Maximize the Minimum Utility (MaxMin)

We ran a series of experiments with burst duration N

from 10 seconds to 400 seconds. Figure 7a plots the

minimum query utility achieved in each of the experi-

ments, when VideoStorm maximizes the minimum util-

ity (§6.2.2). For each point in the figure, we ob-

tain the minimum utility, quality and lag over an inter-

val that includes a minute before and after the N sec-

ond burst. VideoStorm’s utility (“VideoStorm-MaxMin”)

drops only moderately with increasing burst duration. Its

placement and resource allocations ensure it copes well

with the onset of and during the burst. Contrast with the

fair scheduler’s sharp drop with N.

The improvement in utility comes due to smartly ac-

counting for the resource-quality profile and lag goal of

the queries; see Figures 7b and 7c. Quality (F1 score

0 50 100 150 200 250
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

S
ha

re
 o

f C
lu

st
er

 C
P

U
s Lag Goal=300s Lag Goal=20s High-Quality, Lag Goal=20s

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

Lag Goal=300s Lag Goal=20s High-Quality, Lag Goal=20s

0 50 100 150 200 250
Time (seconds)

0
20
40
60
80

100
120

La
g

(s
ec

)

Figure 8: (Top) CPU Allocation for burst duration N =
150s, and (bottom) quality and lag averaged across all

queries in each of the three categories.

[83]; ∈ [0, 1]) with the fair scheduler is 0.2 lower than

VideoStorm to begin with, but reduces significantly to

nearly 0.5 for longer bursts (higher N), while quality with

VideoStorm stays at 0.9, or nearly 80% better. The rest

of VideoStorm’s improvement comes by ensuring that

despite the accumulation in lag, fewer than 5% of the

frames exceed the query’s lag goal whereas with the fair

scheduler it grows to be 7× worse.

How valuable is VideoStorm’s placement? Figure 7

also shows the “VideoStorm MaxMin (Allocation Only)”

graphs which lie in between the graphs for the fair sched-

uler and VideoStorm. As described in §6.3, VideoStorm

first decides the resource allocation and then places them

onto machines to achieve high utilization, load balancing

and spreading of lag-sensitive and lag-tolerant queries.

As the results show, not using VideoStorm’s placement

heuristic (instead using our baseline’s round-robin place-

ment) considerably lowers VideoStorm’s gains.

Figure 8(top) explains VideoStorm’s gains by plotting

the allocation of CPU cores in the cluster over time, for

burst duration N = 150s. We group the queries into

386 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 100 200 300 400
Burst Duration, N (seconds)

0.80
0.85
0.90
0.95
1.00

Q
ua

lit
y

Lag Goal=20s, ®L=1 High Quality, Lag Goal=20s, ®L=2

0 100 200 300 400
Burst Duration, N (seconds)

0
2
4
6
8

10

Fr
am

es
 (%

) L
ag

gi
ng

 B
ey

on
d

G
oa

l

Figure 9: Impact of αL. Queries with higher αL have fewer

frames lagging beyond their goal.

three categories — the burst of queries with 20s lag goal

and quality goal of 1.0, those with 20s lag goal, and

300s lag goal (both with quality goal of 0.25). We see

that VideoStorm adapts to the burst and allocates nearly

60% of the CPU cores in the cluster to the burst of li-

cense plate queries which have a high quality and tight

lag goals. VideoStorm also delays processing of lag-

tolerant queries (allocating less than 10% of CPUs). Fig-

ure 8(bottom) shows the resulting quality and lag, for

queries in each category. We see that because the delay-

tolerant queries have small allocation, their lag grows but

stays below the goal. The queries with 20s lag goal re-

duce their quality to adapt to lower allocation and keep

their lag (on average) within the bound.

Impact of αL. Figure 9 plots the distinction in treat-

ment of queries with the same lag goal (LM) but differ-

ent αL and quality goals. While the figure on the left

shows that VideoStorm does not drop the quality of the

query with QM = 1.0, it also respects the difference in

αL; fewer frames of the query with αL = 2 lag beyond

the goal of 20s (right). This is an example of how utility

functions encode priorities.

8.2.2 Maximize the Total Utility (MaxSum)

Recall from §6.2.2 that VideoStorm can also maximize

the sum of utilities. We measure the average utility, qual-

ity, and frames (%) exceeding the lag goal; maximiz-

ing for the total utility and average utility are equivalent.

VideoStorm achieves 25% better quality and 5× better

lag compared with the fair scheduler.

Per Query Performance. While MaxMin scheduling,

as expected, results in all the queries achieving similar

quality and lag, MaxSum priorities between queries as

the burst duration increases. Our results show that the

license plate query, whose utility over its resource de-

mand is relatively lower, is de-prioritized with MaxSum

(reduced quality as well as more frames lagging). With

its high quality (1.0) and low lag (20s) goals, the sched-

uler has little leeway. The DNN classifier, despite having

comparable resource demand does not suffer from a re-

duction in quality because of its tolerance to lag (300s).

50 100 150 200 250 300
Number of New Queries

0.0
0.2
0.4
0.6
0.8
1.0

Q
ua

lit
y

Fair Scheduler

(a) Quality

50 100 150 200 250 300
Number of New Queries

0
5

10
15
20

Fr
am

es
 (%

) L
ag

gi
ng

B
ey

on
d

G
oa

l

VideoStorm MaxMin

(b) Lag

Figure 10: VideoStorm vs. fair scheduler as the number of

queries in the burst during the experiment is varied.

0
10
20
30

M
1
 C

PU

0 50 100 150 200
Time (seconds)

0
10
20
30

M
2
 C

PU

Q1 (migrated) Q2 Q3 Q4 (lag-tolerant)

Figure 11: Q1 migrated between M1 and M2. Resource for

the only lag-tolerant query Q4 (on M2) is reduced for Q1.

8.2.3 Varying the Burst Size

We next vary the size of the burst, i.e., number of queries

that arrive in the burst. Note that the experiments above

had varied the duration of the burst but with a fixed

size of 200 queries. Varying the number of queries in

the burst introduces different dynamics and reactions in

VideoStorm’s scheduler. We fix the burst duration to

200s. Figure 10 plots the results. The fair allocation

causes much higher fraction of frames to exceed the lag

goal when the burst size grows. VideoStorm better han-

dles the burst and consistently performs better. Note that

beyond a burst of 200 queries, resources are insufficient

even to satisfy the lowest configuration (least resource

demand), causing the degradation in Figure 10b.

8.3 VideoStorm’s Key Features

We now highlight VideoStorm’s migration of queries and

accounting for errors in the resource demands.

8.3.1 Migration of Queries

Recall from §6.3 and §7 that VideoStorm migrates

queries when necessary. We evaluate the value of migra-

tion by making the following addition to our experiment

described at the beginning of §8.2. During the experi-

ment, we allocate half the resources in 50% of our ma-

chines to other non-VideoStorm jobs. After a few min-

utes, the non-VideoStorm jobs complete and leave. Such

jobs will be common when VideoStorm is co-situated

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 387

0 100 200 300 400 500
Time (seconds)

15
20
25
30
35
40
45

C
P

U
 (w

/o
 a

da
pt

at
io

n)

(a) Without Adaptation

0 100 200 300 400 500
Time (seconds)

15
20
25
30
35
40
45

C
P

U
 (w

/ a
da

pt
at

io
n)

Accurate Twice Half

(b) With Adaptation

0 100 200 300 400 500
Time (seconds)

0.0

0.5

1.0

1.5

2.0

¹

(c) µ Over Time

Figure 12: We show three queries on a machine whose resource demands in their profiles are synthetically doubled, halved,

and unchanged. By learning the proportionality factor µ (12c), our allocation adapts and converges to the right allocations

(12b) as opposed to without adaptation (12a).

with other frameworks in clusters managed by Yarn [3]

or Mesos [49]. We measure the migration time, and com-

pare the performance with and without migration.

Figure 11 plots the timeline of two machines, M1 and

M2; M1 where a non-VideoStorm job was scheduled and

M2 being the machine to which a VideoStorm query Q1,

originally on M1, was migrated. Q1 shifts from running

on M1 to M2 in only 1.3s. We migrate Q1 back to M1

when the non-VideoStorm job leaves at ∼ 150s.

Shifting Q1 to M2 (and other queries whose machines

were also allocated non-VideoStorm jobs, correspond-

ingly) ensured that we did not have to degrade the qual-

ity or exceed the lag goals. Since our placement heuristic

carefully spread out the queries with lenient and stringent

lag goals (§6.3), we ensured that each of the machines

had sufficient slack. As a result, when Q1 was migrated

to M2 which already was running Q2 and Q4, we could

delay the processing of the lag-tolerant Q4 without vi-

olating any lag goals. The allocations of these delayed

queries were ramped up for them to process their back-

log as soon as the queries were migrated back.

As a consequence, the quality of queries with migra-

tion is 12% better than without migration. Crucially, 18×

more frames (4.55% instead of 0.25%) would have ex-

ceeded the lag goal without migration.

8.3.2 Handling Errors in Query Profile

VideoStorm deals with difference between the resource

demands in the resource-quality profile and the actual

demand by continuously monitoring the resource con-

sumption and adapting to errors in profiled demand (µ
in §6.4). We now test the effectiveness of our correction.

We synthetically introduce errors in our profiles, as

if they were profiles with errors, and use the erroneous

profiles for our resource allocation. Consequently, the

actual resource demands when the query executes do not

match. In the workload above, we randomly make the

profile to be half the actual resource demand for a third

of the queries, twice the demand for another third, and

unchanged (accurate) for the rest. VideoStorm’s adaptive

correction ensures that the quality and lag of queries with

Mean Standard

Action Duration (ms) Deviation (ms)

Start Transform 60.37 3.96

Stop Transform 3.08 0.47

Config. Change 15 2.0
Resource Change 5.7 1.5

Table 3: Latency of VideoStorm’s actions.

erroneous profiles are nearly 99.6% of results obtained if

the profiles were perfectly accurate.

In Figure 12, we look at a single machine where

VideoStorm placed three license plate queries, one each

of the three different error categories. An ideal allocation

(in the absence of errors) should be a third of the CPU to

each of the queries. Figure 12a, however, shows how the

allocation is far from converging towards the ideal with-

out adaptation, because erroneous profiles undermine the

precision of utility prediction. In contrast, with the adap-

tation, despite the errors, resource allocations converge

to and stay at the ideal (Figure 12b). This is because the

µ values for the queries with erroneous profiles are cor-

rectly learned as 2 and 0.5; the query without any error

introduced its profile has its µ around 1 (Figure 12c).

8.4 Scalability and Efficiency

Latency of VideoStorm’s actions. Table 3 shows the

time taken for VideoStorm to start a new transform (ship-

ping binaries, process startup), stop a transform, and

change a 100-knob configuration and resource allocation

of 10 running queries. We see that VideoStorm allows

for near-instantaneous operations.

Scheduling Decisions. Figure 13a plots the time taken

by VideoStorm’s scheduler. Even with thousands of

queries, VideoStorm make its decisions in just a few sec-

onds. This is comparable to the scalability of schedulers

in big data clusters, and video analytics clusters are un-

likely to exceed them in the number of queries. Com-

bined with the low latency of actions (Table 3), we be-

lieve VideoStorm is sufficiently scalable and agile.

388 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

500 1000 2000 4000 8000
Number of Queries

0
1
2
3
4
5
6

S
ch

ed
ul

in
g

 T
im

e
(s

)
Number of Machines

100 200 500 1000

(a) Scheduling Scalability

Car Counter
0

10
20
30
40
50
60
70

La
te

nc
y

(m
s)

Vanilla
DAG Local

Single Transform
DAG Distributed

(b) Overheads

Figure 13: Overheads in scheduling and running queries.

Transform Overheads. Finally, we measure the over-

head of running a vision algorithm inside VideoStorm.

We compare the latency in processing a frame while run-

ning as a vanilla process, inside a single transform, as

a DAG of transforms on one machine, and as a DAG

distributed across machines. Figure 13b shows that the

overheads are limited. Running as a single transform, the

overhead is < 3%. When possible, VideoStorm places

the transforms of a query DAG locally on one machine.

9 Related Work

Cluster schedulers. Cluster schedulers [3, 31, 39, 42,

44, 49, 86] do not cater to the performance objectives of

streaming video analytics. They take resource demands

from tasks (not the profiles), mostly allocate based on

fairness/priorities, and do not resize running containers,

key to dealing with resource churn in VideoStorm (§7).

Deadline-Based Scheduling. Many systems [22, 39,

42, 56, 85] adaptively allocate resources to meet dead-

lines of batch jobs or reduce lag of streaming queries.

Scheduling in real-time systems [52,87] has also consid-

ered using utility functions to provide (soft) deadlines to

running tasks. Crucially, these systems do not consider

approximation together with resource allocation to meet

deadlines and do not optimize across multiple queries

and servers.

Streaming and Approximate Query Processing Sys-

tems. Load shedding has been a topic of interest in

streaming systems [25, 68] to manage memory usage of

SQL operators but they do not consider lag in processing.

Aurora, Medusa, and Borealis [19, 33, 37] and follow-up

works [78, 79, 81, 82, 88] use QoS graphs to capture lag

and sampling rate but they consider them separately and

do not trade-off between them, a key aspect in our so-

lution. In contrast to JetStream [72], that degrades data

quality based on WAN bandwidths, VideoStorm identi-

fies the best knobs to use automatically and adjusts al-

locations jointly across queries. Stream processing sys-

tems used in production [2, 4, 62, 89] do not consider

load-shedding, and resource-quality tradeoff and lag in

their design; Google Cloud Dataflow [21] requires man-

ual trade-off specifications. Approximation is also used

by recent [20, 23, 84] and older [47, 53] batch querying

systems using statistical models for SQL operators [38].

Relative to the above literature, our main contributions

are three-fold: (i) considering quality and lag of video

queries together for multiple queries using predictive

control, (ii) dealing with multitude of knobs in vision al-

gorithms, and (iii) profiling black-box vision transforms

with arbitrary user code (not standard operators).

Utility functions. Utility functions are used exten-

sively throughout economics [65, 73], compute sci-

ence [48, 55, 57, 63], and other disciplines to map how

users benefit from performance [50, 58, 80]. In stream

processing systems, queries describe their requirements

for throughput, latency, and fraction of dropped tu-

ples [22,34,60,79]. With multiple entities, previous work

has typically maximized the minimum utility [61, 64] or

sum of utilities [61,63], which is what we also use. Util-

ity elicitation [28, 30, 35] helps obtain the exact shape of

the utility function.

Autonomic Computing. Autonomic computing [24,

26,29,66,70,77] allocate resources to VMs and web ap-

plications to maximize their quality of service. While

some of them used look-ahead controllers based on

MPC [67], they mostly ignored our main issues on the

large space of configurations and quality-lag trade-offs.

10 Conclusion

VideoStorm is a video analytics system that scales to

processing thousands of video streams in large clusters.

Video analytics queries can adapt the quality of their re-

sults based on the resources allocated. The core aspect of

VideoStorm is its scheduler that considers the resource-

quality profiles of queries, each with a variety of knobs,

and tolerance to lag in processing. Our scheduler opti-

mizes jointly for the quality and lag of queries in allocat-

ing resources. VideoStorm also efficiently estimates the

resource-quality profiles of queries. Deployment on an

Azure cluster of 101 machines show that VideoStorm can

significantly outperform a fair scheduling of resources,

the widely-used policy in current clusters.

Acknowledgments

We are grateful to Xiaozhou Li, Qifan Pu, Logan

Stafman and Shivaram Venkataraman for reading early

versions of the draft and providing feedback. We also

thank our shepherd George Porter and the anonymous

NSDI reviewers for their constructive feedback. This

work was partially supported by NSF Awards CNS-

0953197 and IIS-1250990.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 389

References

[1] AMBER Alert, U.S. Department of Justice. http://

www.amberalert.gov/faqs.htm.

[2] Apache Flink. https://flink.apache.org/.

[3] Apache Hadoop NextGen MapReduce (YARN). https:

//hadoop.apache.org/docs/r2.7.1/hadoop-

yarn/hadoop-yarn-site/YARN.html.

[4] Apache Storm. https://storm.apache.org/.

[5] Avigilon. http://avigilon.com/products/.

[6] Azure Instances. https://azure.microsoft.com/

en-us/pricing/details/virtual-machines/.

[7] Capacity Scheduler. https://hadoop.apache.

org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-

site/CapacityScheduler.html.

[8] China’s 100 Million Surveillance Cameras. https://

goo.gl/UK3Obl.

[9] Genetec. https://www.genetec.com/.

[10] Hadoop Fair Scheduler. https://hadoop.apache.

org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-

site/FairScheduler.html.

[11] Linux Containers LXC Introduction. https://

linuxcontainers.org/lxc/introduction/.

[12] One Surveillance Camera for Every 11 People in Britain,

Says CCTV Survey. https://goo.gl/cHLqiK.

[13] Open ALPR. http://www.openalpr.com.

[14] OpenCV Documentation: Introduction to SIFT

(Scale-Invariant Feature Transform). http:

//docs.opencv.org/3.1.0/da/df5/tutorial_

py_sift_intro.html.

[15] OpenCV Documentation: Introduction to SURF

(Speeded-Up Robust Features). http://docs.opencv.

org/3.0-beta/doc/py_tutorials/py_feature2d/

py_surf_intro/py_surf_intro.html.

[16] SR 520 Bridge Tolling, WA. https://www.wsdot.wa.

gov/Tolling/520/default.htm.

[17] Turnpike Enterprise Toll-by-Plate, FL. https://www.

tollbyplate.com/index.

[18] Windows Job Objects. https://msdn.microsoft.

com/en-us/library/windows/desktop/

ms684161(v=vs.85).aspx.

[19] D. J. Abadi et al. The Design of the Borealis Stream Pro-

cessing Engine. In CIDR, Jan. 2005.

[20] S. Agarwal, B. Mozafari, A. Panda, M. H., S. Madden,

and I. Stoica. BlinkDB: Queries with Bounded Errors and

Bounded Response Times on Very Large Data. In ACM

EuroSys, Apr. 2013.

[21] T. Akidau et al. The Dataflow Model: A Practical Ap-

proach to Balancing Correctness, Latency, and Cost in

Massive-Scale, Unbounded, Out-of-order Data Process-

ing. Proceedings of the VLDB Endowment, Aug. 2015.

[22] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure.

Adaptive Control of Extreme-Scale Stream Processing

Systems. In IEEE ICDCS, July 2006.

[23] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica,

A. Wierman, and M. Yu. GRASS: Trimming Stragglers in

Approximation Analytics. In USENIX NSDI, Apr. 2014.

[24] A. AuYoung, A. Vahdat, and A. C. Snoeren. Evaluat-

ing the Impact of Inaccurate Information in Utility-Based

Scheduling. In Proceedings of the Conference on High

Performance Computing Networking, Storage and Analy-

sis, Nov. 2009.

[25] B. Babcock, M. Datar, and R. Motwani. Load Shedding

for Aggregation Queries over Data Streams. In IEEE

ICDE, Mar. 2004.

[26] A. Beloglazov and R. Buyya. Energy Efficient Resource

Management in Virtualized Cloud Data Centers. In IEEE

CCGRID, May 2010.

[27] A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi,

S. Shenker, and I. Stoica. Hierarchical Scheduling for Di-

verse Datacenter Workloads. In ACM SoCC, Nov. 2014.

[28] J. Blythe. Visual Exploration and Incremental Utility

Elicitation. In AAAI, July 2002.

[29] N. Bobroff, A. Kochut, and K. Beaty. Dynamic Placement

of Virtual Machines for Managing SLA Violations. In

IFIP/IEEE International Symposium on Integrated Net-

work Management, 2007.

[30] C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans.

Regret-based Utility Elicitation in Constraint-based Deci-

sion Problems. In IJCAI, 2005.

[31] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,

M. Wu, and L. Zhou. Apollo: Scalable and Coordinated

Scheduling for Cloud-Scale Computing. In USENIX

OSDI, 2014.

[32] B. Calder et al. Windows Azure Storage: A Highly Avail-

able Cloud Storage Service with Strong Consistency. In

ACM SOSP, 2011.

[33] D. Carney, U. Çetintemel, M. Cherniack, C. Convey,

S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and

S. Zdonik. Monitoring Streams: a New Class of Data

Management Applications. In VLDB, 2002.

[34] D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cher-

niack, and M. Stonebraker. Operator Scheduling in a Data

Stream Manager. In VLDB, 2003.

[35] U. Chajewska, D. Koller, and R. Parr. Making Rational

Decisions Using Adaptive Utility Elicitation. In AAAI,

2000.

[36] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine,

D. Fisher, J. Wernsing, and D. Rob. Trill: A High-

Performance Incremental Query Processor for Diverse

Analytics. In USENIX NSDI, 2014.

[37] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Car-

ney, U. Cetintemel, Y. Xing, and S. Zdonik. Scalable

Distributed Stream Processing. In CIDR, Jan. 2003.

390 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.amberalert.gov/faqs.htm
http://www.amberalert.gov/faqs.htm
https://flink.apache.org/
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/YARN.html
https://storm.apache.org/
http://avigilon.com/products/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://goo.gl/UK3Obl
https://goo.gl/UK3Obl
https://www.genetec.com/
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://goo.gl/cHLqiK
http://www.openalpr.com
http://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html
http://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html
http://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html
https://www.wsdot.wa.gov/Tolling/520/default.htm
https://www.wsdot.wa.gov/Tolling/520/default.htm
https://www.tollbyplate.com/index
https://www.tollbyplate.com/index
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684161(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684161(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684161(v=vs.85).aspx

[38] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jer-

maine. Synopses for Massive Data: Samples, His-

tograms, Wavelets, Sketches. Foundations and Trends in

Databases, Jan. 2012.

[39] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ra-

makrishnan, and S. Rao. Reservation-based Scheduling:

If You’re Late Don’t Blame Us! Nov. 2014.

[40] G. B. Dantzig. Discrete-Variable Extremum Problems.

Operations Research 5 (2): 266288, 1957.

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image

Database. In CVPR, 2009.

[42] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and

R. Fonseca. Jockey: Guaranteed Job Latency in Data Par-

allel Clusters. In ACM EuroSys, 2012.

[43] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,

S. Shenker, and I. Stoica. Dominant Resource Fairness:

Fair Allocation of Multiple Resource Types. In USENIX

NSDI, 2011.

[44] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and

A. Akella. Multi-Resource Packing for Cluster Sched-

ulers. In ACM SIGCOMM, 2014.

[45] S. Han, H. Mao, and W. J. Dally. Deep Compres-

sion: Compressing Deep Neural Network with Pruning,

Trained Quantization and Huffman Coding. Computing

Research Repository, Nov. 2015.

[46] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman,

and A. Krishnamurthy. MCDNN: An Approximation-

Based Execution Framework for Deep Stream Processing

Under Resource Constraints. In ACM MobiSys, 2016.

[47] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online Ag-

gregation. In ACM SIGMOD, 1997.

[48] A. Hernando, R. Sanz, and R. Calinescu. A Model-

Based Approach to the Autonomic Management of Mo-

bile Robot Resources. In International Conference on

Adaptive and Self-Adaptive Systems and Applications,

2010.

[49] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.

Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A

Platform for Fine-Grained Resource Sharing in the Data

Center. In USENIX NSDI, 2011.

[50] D. E. Irwin, L. E. Grit, and J. S. Chase. Balancing Risk

and Reward in a Market-Based Task Service. In IEEE In-

ternational Symposium on High Performance Distributed

Computing, 2004.

[51] J. Jaffe. Bottleneck Flow Control. IEEE Transactions on

Communications, 29(7):954–962, 1981.

[52] E. D. Jensen, P. Li, and B. Ravindran. On Recent Ad-

vances in Time/Utility Function Real-Time Scheduling

and Resource Management. IEEE International Sympo-

sium on Object and Component-Oriented Real-Time Dis-

tributed Computing, 2005.

[53] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scal-

able Approximate Query Processing with the DBO En-

gine. ACM Transactions on Database Systems, 33(4):23,

2008.

[54] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,

R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Con-

volutional Architecture for Fast Feature Embedding. In

ACM International Conference on Multimedia, 2014.

[55] R. Johari and J. N. Tsitsiklis. Efficiency Loss in a Net-

work Resource Allocation Game. Mathematics of Oper-

ations Research, 29(3):407–435, 2004.

[56] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayana-

murthy, A. Tumanov, J. Yaniv, Í. Goiri, S. Krishnan,

J. Kulkarni, and S. Rao. Morpheus: towards automated

SLOs for enterprise clusters. In USENIX OSDI, 2016.

[57] F. P. Kelly, A. K. Maulloo, and D. K. Tan. Rate Control

for Communication Networks: Shadow Prices, Propor-

tional Fairness and Stability. Journal of the Operational

Research Society, 49(3):237–252, 1998.

[58] J. O. Kephart. Research Challenges of Autonomic Com-

puting. In ACM ICSE, 2005.

[59] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Ce-

hovin, G. Fernandez, T. Vojir, G. Hager, G. Nebehay, and

R. Pflugfelder. The Visual Object Tracking (VOT) Chal-

lenge Results. In IEEE ICCV Workshops, Dec. 2015.

[60] V. Kumar, B. F. Cooper, and K. Schwan. Distributed

Stream Management Using Utility-Driven Self-Adaptive

Middleware. In IEEE ICAC, 2005.

[61] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer,

A. Tantawi, and A. Youssef. Performance management

for cluster based web services. In Integrated Network

Management VIII, pages 247–261. Springer, 2003.

[62] W. Lin, Z. Qian, J. Xu, S. Yang, J. Zhou, and L. Zhou.

StreamScope: Continuous Reliable Distributed Process-

ing of Big Data Streams. In USENIX NSDI, Mar. 2016.

[63] S. H. Low and D. E. Lapsley. Optimization Flow Control-

I: Basic Algorithm and Convergence. IEEE/ACM Trans-

actions on Networking, 7(6):861–874, 1999.

[64] P. Marbach. Priority Service and Max-Min Fairness. In

IEEE INFOCOM, 2002.

[65] R. C. Merton. Continuous-Time Finance. Blackwell,

1990.

[66] D. Minarolli and B. Freisleben. Utility-Based Resource

Allocation for Virtual Machines in Cloud Computing. In

IEEE Symposium on Computers and Communications,

pages 410–417, 2011.

[67] M. Morari and J. H. Lee. Model Predictive Control: Past,

Present and Future. Computers & Chemical Engineering,

23(4):667–682, 1999.

[68] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,

M. Datar, G. Manku, C. Olston, J. Rosenstein, and

R. Varma. Query Processing, Resource Management, and

Approximation in a Data Stream Management System. In

CIDR, 2003.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 391

[69] H. Nam and B. Han. Learning Multi-Domain Convolu-

tional Neural Networks for Visual Tracking. Computing

Research Repository, abs/1510.07945, 2015.

[70] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,

S. Singhal, A. Merchant, and K. Salem. Adaptive Con-

trol of Virtualized Resources in Utility Computing Envi-

ronments. In ACM SIGOPS Operating Systems Review,

volume 41, pages 289–302, 2007.

[71] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder.

Heuristics for Vector Bin Packing. In Microsoft Research

Technical Report, Jan. 2011.

[72] A. Rabkin, M. Arye, S. Sen, V. Pai, and M. Freedman.

Aggregation and Degradation in JetStream: Streaming

Analytics in the Wide Area. In USENIX NSDI, 2014.

[73] B. T. Ratchford. Cost-Benefit Models for Explaining

Consumer Choice and Information Seeking Behavior.

Management Science, 28, 1982.

[74] S. J. Russell and P. Norvig. Artificial Intelligence: A Mod-

ern Approach. Pearson Education, 2nd edition, 2003.

[75] K. Simonyan and A. Zisserman. Very Deep Convo-

lutional Networks for Large-Scale Image Recognition.

Computing Research Repository, abs/1409.1556, 2014.

[76] J. Snoek, H. Larochelle, and R. P. Adams. Practical

Bayesian Optimization of Machine Learning Algorithms.

In NIPS, Dec. 2012.

[77] M. Steinder, I. Whalley, D. Carrera, I. Gaweda, and

D. Chess. Server Virtualization in Autonomic Manage-

ment of Heterogeneous Workloads. In IFIP/IEEE Inter-

national Symposium on Integrated Network Management,

2007.

[78] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying Fit: Ef-

ficient Load Shedding Techniques for Distributed Stream

Processing. In VLDB, 2007.

[79] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and

M. Stonebraker. Load Shedding in a Data Stream Man-

ager. In VLDB, 2003.

[80] G. Tesauro, R. Das, W. E. Walsh, and J. O. Kephart.

Utility-Function-Driven Resource Allocation in Auto-

nomic Systems. In ICAC, 2005.

[81] Y.-C. Tu, M. Hefeeda, Y. Xia, S. Prabhakar, and S. Liu.

Control-Based Quality Adaptation in Data Stream Man-

agement Systems. In Database and Expert Systems Ap-

plications, 2005.

[82] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load Shed-

ding in Stream Databases: a Control-Based Approach. In

VLDB, 2006.

[83] C. J. Van Rijsbergen. Information Retrieval. Butterworth,

2nd edition, 1979.

[84] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J.

Franklin, and I. Stoica. The Power of Choice in Data-

aware Cluster Scheduling. In USENIX OSDI, 2014.

[85] A. Verma, L. Cherkasova, and R. H. Campbell. ARIA:

Automatic Resource Inference and Allocation for Mapre-

duce Environments. In ICAC, 2011.

[86] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,

E. Tune, and J. Wilkes. Large-scale cluster management

at Google with Borg. In ACM EuroSys, 2015.

[87] E. Wandeler and L. Thiele. Real-time interfaces for

interface-based design of real-time systems with fixed pri-

ority scheduling. In Proceedings of the 5th ACM interna-

tional conference on Embedded software, pages 80–89.

ACM, 2005.

[88] Y. Wei, V. Prasad, S. H. Son, and J. A. Stankovic.

Prediction-Based QoS Management for Real-Time Data

Streams. In IEEE RTSS, 2006.

[89] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and

I. Stoica. Discretized Streams: Fault-Tolerant Streaming

Computation at Scale. In ACM SOSP, 2013.

392 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	System Description
	VideoStorm Architecture
	Video Queries Specification

	Making the Case for Resource Allocation
	Motivating Example
	Real-world Video Queries
	Summary and Challenges

	Solution Overview
	Resource-Quality Profile Estimation
	Profile estimation is expensive
	Greedy exploration of configurations

	Resource Management
	Utility: Combining Quality and Lag
	Resource Allocation
	Scheduling Using Model-Predictive Control
	Scheduling Heuristics

	Query Placement
	Enhancements

	VideoStorm Implementation
	Implementation Details
	Interfaces for Query Transforms

	Evaluation
	Setup
	Performance Improvements
	Maximize the Minimum Utility (MaxMin)
	Maximize the Total Utility (MaxSum)
	Varying the Burst Size

	VideoStorm's Key Features
	Migration of Queries
	Handling Errors in Query Profile

	Scalability and Efficiency

	Related Work
	Conclusion

