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Abstract

Video sequences contain many cues that may be used

to segment objects in them, such as color, gradient, color

adjacency, shape, temporal coherence, camera and object

motion, and easily-trackable points. This paper introduces

LIVEcut, a novel method for interactively selecting objects

in video sequences by extracting and leveraging as much

of this information as possible. Using a graph-cut opti-

mization framework, LIVEcut propagates the selection for-

ward frame by frame, allowing the user to correct any mis-

takes along the way if needed. Enhanced methods of ex-

tracting many of the features are provided. In order to use

the most accurate information from the various potentially-

conflicting features, each feature is automatically weighted

locally based on its estimated accuracy using the previ-

ous implicitly-validated frame. Feature weights are further

updated by learning from the user corrections required in

the previous frame. The effectiveness of LIVEcut is shown

through timing comparisons to other interactive methods,

accuracy comparisons to unsupervised methods, and quali-

tatively through selections on various video sequences.

1. Introduction

Video segmentation is an essential process in many video

applications. It is required for video editing and special ef-

fects whenever objects must be moved, deleted, individually

edited, or layered. It is also used in object recognition, 3D

reconstruction from video, and compression. Despite recent

research in the area, industry still largely relies on chroma

keying and manual rotoscoping, emphasizing the need for

an effective, easy-to-use video segmentation tool.

This need remains due to the surprising difficulty of the

problem. Video segmentation shares the difficulties of im-

age segmentation, such as overlapping color distributions,

weak edges, complex textures, and compression artifacts.

In addition to these challenges, video may contain erratic

camera and/or object movement, motion blur, and occlu-

Figure 1. From an initial segmented frame, a variety of features

are extracted. These are automatically locally weighted based on

estimated correctness and used to segment the next frame. If errors

occur, the user may correct them, and the system learns which

features are providing good information. The corrected frame is

used to continue propagating the segmentation.

sions. Objects may move enough that there is no over-

lap between successive frames. Other moving objects may

cause confusion. Lighting changes and shadows alter the

color distributions, and movements in 3D space may greatly

change an object’s 2D projected boundary. A given video

sequence can easily exhibit many of these challenges.

Many different kinds of information can be gleaned from

successive video frames to aid object selection. Such fea-

tures include color, gradient, adjacent color relationships,

shape, spatiotemporal coherence, camera motion, object

motion, and trackable points. The relative importance of

the cues differs depending on the sequence, the frame, and

even the location in the frame. For example, in Figure 1

a color model can easily distinguish the cat from the light

brown floor but would struggle separating the tail from the

similarly-colored bag. A shape feature, however, could sep-

arate the tail and bag. An algorithm that intelligently applies

all of these cues based on specific circumstances will per-

form better than one relying only on a subset of these cues

or on a static combination of all of them.

Despite the importance of each kind of information,
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most current algorithms do not use all these features. Al-

gorithms that segment the video as a spatiotemporal vol-

ume [2, 3, 5, 22] can generally only extract information

from the pixels under the user strokes to model the fore-

ground and background. These methods have no informa-

tion about some of these features such as shape or boundary

information, and have limited knowledge of other features

such as foreground and background color. By allowing the

user to segment one frame and then propagating this infor-

mation to other frames, these features can be used.

In this paper, we introduce LIVEcut, a frame-by-frame

interactive video segmentation method designed to maxi-

mize the information propagated from one frame to the next.

As shown in Figure 1, LIVEcut extracts various features,

locally weights them based on likely effectiveness, and re-

solves them using graph-cut optimization. LIVEcut also

learns automatically from user corrections how well each

cue performed and weights their importance accordingly.

Our local weighting allows LIVEcut to selectively apply the

cues that will most effectively segment the object. Contri-

butions are also made in the extraction of many of the indi-

vidual cues. These include full foreground and background

local color models, color adjacency models, separate fore-

ground and background motion models, point tracking in-

formation, and a new shape prior.

2. Related Work

Many approaches have been taken in interactive video

segmentation. Some approaches focus on either boundary

or region information only. Agarwala et al. [1] performs

boundary tracking using splines that follow object bound-

aries between keyframes using both boundary color and

shape-preserving terms. Bai and Sapiro [3] use region color

to compute a geodesic distance to each pixel to form a se-

lection. These approaches perform well when a single type

of cue is sufficient for selecting the desired object.

Many current techniques use graph cut to segment the

video as a spatiotemporal volume. Graph cut, as formulated

in [5], solves for a segmentation by minimizing an energy

function over a combination of both region and boundary

terms. It has been shown to be effective in the segmentation

of images [11, 15] and volumes [2].

Boykov and Jolly [5] introduced a basic approach to seg-

menting video as a spatiotemporal volume. Their graph

connects pixels in a volume, which implicitly includes spa-

tiotemporal coherence information. Graph cut is applied us-

ing a region term based on a color model of the pixels under

the user strokes and a boundary term based on gradient.

Wang et al. [22] builds on this approach by allowing

users to segment video by drawing strokes on arbitrary

slices of the spatiotemporal volume. While this permits a

user to mark several frames at once, it requires a steep learn-

ing curve to know how to carve the volume so that the right

pixels are visible along the slice. The method uses a global

color model based on the user strokes as well as a local color

model for static backgrounds in addition to gradient values.

In Li et al. [10], users segment every tenth frame, and

graph cut computes the selection between the frames using

global color models from the key-frames, gradient, and co-

herence as its primary cues. The user may also manually in-

dicate areas to which local color models are applied. While

this method performs well, it requires the manual segmen-

tation of many frames in addition to corrections.

In methods where the video is treated as a spatiotemporal

volume [2, 3, 5, 22], the only information known for certain

about the object and background are in the user-marked pix-

els. This provides very limited knowledge about the object

interior and no knowledge about the boundary. While [10]

is an exception to this, it requires the user to manually seg-

ment many frames. These methods contrast our own, where

frame-by-frame propagation allows for the computation of

complete features.

In parallel with our own work, Yin and Collins [26]

proposed an automated video segmentation system that in-

cludes color, gradient, color adjacency, and shape informa-

tion in a graph cut framework. They dynamically reweight

these terms from frame to frame, but do so on a global basis

without regard to user corrections.

Some unsupervised video segmentation methods have

also combined various cues [6, 19, 25]. While unsuper-

vised techniques generally perform well at roughly sepa-

rating motion layers, they do not produce the high-quality

results required for many applications. The object of inter-

est may also not correspond to a motion layer, leaving these

methods incapable of generating the desired result.

3. LIVEcut Video Segmentation

While the methods described in Section 2 provide good

means of segmenting video, each relies only on a few cues

to make decisions. LIVEcut extracts much more informa-

tion about the sequence and uses this to improve the seg-

mentation. The user marks the object in the first frame of

the sequence using the stroke-based method employed by

most graph-cut methods, and LIVEcut propagates various

cues taken from the full frame to the next frame as described

in this section. These cues are automatically weighted lo-

cally and resolved using graph-cut optimization (Section 4).

As the user proceeds through the sequence, the implicit ver-

ification of the previous frame allows LIVEcut to use the en-

tire previous frame once again to segment the current frame.

3.1. Graph cut framework

Before explaining the specific features we propagate

from frame to frame, we present the overall framework in

which the features are resolved. For this, we use minimum
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graph-cut optimization. Graph cut computes a segmentation

over a set of pixels P by minimizing the equation

E(L) =
∑

xi∈P

R(xi,Li) + λ
∑

(xi,xj)∈N

B(xi, xj) |Li −Lj | (1)

where L = (Li) is a binary vector of labels and Li is

the label (0 for background, 1 for foreground) for pixel xi,

R(xi, l) is a region cost term based on the label l, B(xi, xj)
is a boundary cost term, λ is a relative weighting of R and

B, and N is the set of pairs of neighboring pixels.

Our region term R(xi, l) is the sum of all cues that apply

to an individual pixel. Given a set of unary cues U ,

R(xi, l) = s(xi, l) +
∑

u∈U

αu(xi) wu(xi, l) (2)

where wu(xi, l) is the cost of labeling pixel xi with label l
according to cue u, αu(xi) is a scalar giving the certainty

of wu at xi, and s(xi, l) = 0 if the pixel was labeled l by a

user stroke and ∞ if labeled l̄ (the other label).

Our boundary term B(xi, xj) is given by

B(xi, xj) = wa(xi, xj) wg(xi, xj). (3)

and encourages selection boundaries in the current frame to

occur at image edges with similar color profiles to the se-

lection boundaries in the previous frame. The unary terms

(color wc, spatiotemporal coherency wh, shape ws, and

point tracking wp) and binary terms (gradient wg and color

adjacency wa) are defined in Sections 3.3-3.8.

In order to increase the speed of the algorithm, we ap-

ply our algorithm to an oversegmentation of the image pro-

duced using [20]. The segmentation is then refined on the

pixel level similar to [11]. While the following terms are de-

fined according to pixels, they can all be directly extended

to oversegmented regions.

3.2. Object and Background Motion

Motion is an important cue in video segmentation. By

considering the motion of the object, more precise local in-

formation may be used to segment it. By removing camera

motion, better local information can be used for the back-

ground where it is static.

Many methods account for the camera motion by align-

ing the frames in a preprocessing step [10, 22]. However,

since the foreground object will often exhibit different mo-

tion patterns than the background, aligning the background

will not correctly align the foreground.

Since we know the segmentation of the previous frame,

we can align the foreground and background separately.

The background is aligned by locating good points to

track [17], then computing and applying a homography.

While the foreground can be tracked in the same manner,

problems can occur if the foreground does not have enough

trackable points to generate a good homography due to large

movements or little texture. To account for these cases, we

use a novel method to roughly align the foreground.

We use an iterative closest point-style algorithm [4] to

match pixels xi in the selection M on the current frame I to

pixels yj in the next frame Inext with one affine transforma-

tion A. The iteration alternates between (a) finding the best

matches {(xi, ym(i))} for a given A, and (b) finding the best

A to align matches {(xi, ym(i))}. In (a), we match points in

(xy position × RGB color) space so that points in M are

matched to points in Inext that are similar in color and po-

sition after applying A. For each xi ∈ M , we solve a near-

est neighbor problem ym(i) = arg minyj
||(Axi, γI(xi)) −

(yj , γInext(yj))||
2
2 ([14]), where RGB values are in [0, 1]

and γ is the sum of the frame width and height. For (b), we

solve A = arg minA

∑n
i=1 ||Axi − ym(i)||

2
2 ([16]).

The object and background motions are not included as

a term in graph cut. Rather, they are used to spatially trans-

form the locality information of the other cues. While this

transformation does not completely capture non-rigid mo-

tion, it improves the locality of the foreground information

and works well in practice.

3.3. Gradient

Image gradients are important for encouraging selection

boundaries to fall on image edges. As in [11], we use color

difference as a boundary term:

wg(xi, xj) =
1

||C(xi) − C(xj)||2 + 1
. (4)

where C(xi) ∈ [0, 255]3 is the color at xi. Gradient bound-

ary terms are standard practice in graph-cut segmentation.

3.4. Color

A color-model region term encourages pixels to be la-

beled according to the color distribution of the model. Be-

cause most graph-cut algorithms [5, 11, 22] do not have ac-

cess to a full segmentation of a frame, only the pixels under

the user strokes are used to create the model. This limited

sample does not always accurately represent the color prop-

erties of the image. These algorithms must also by necessity

use a global color model, which does not differentiate col-

ors located in different regions of the image. While [10] can

use a local color model, it only does so over a small window

if manually indicated by the user.

A contribution of LIVEcut is that it uses a local color

model generated from the entire previous frame, which can

distinguish between colors in different regions of the im-

age. Such a color model is shown in Figure 2a, where the

cat is likely foreground while the similarly-colored back-

pack and rope are not. The local color model is generated

by creating a (l, u, v, x, y) vector pi for each pixel xi in the
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(a) Color (b) Color adjacency (c) Temporal coherence (d) Shape (e) Point tracking

Figure 2. Visualization of the graph-cut terms for the frame with a cat from Figure 6. White indicates foreground likelihood, black back-

ground, and mid-gray neutral, except for the color adjacency, where white indicates an object boundary and black indicates no boundary.

previous frame (where (l, u, v) is the color and (x, y) is the

motion-adjusted location). The probability of the pixel be-

ing foreground is then computed by a 5D Fast Gauss Trans-

form [24]. The probability is assigned to the cost term by

wc(xi, l) = P (pi|l̄) (5)

where P (pi|l̄) is the normalized probability of the location

and color of xi given the label l̄.

3.5. Color adjacency

Not only are the colors indicative of the objects, but the

relationship of adjacent colors is as well. Certain color pairs

may only exist within the object (background), while others

only cross the object boundary. For example, the ballerina

in Figure 6 contains a strong red-to-black edge in her cloth-

ing that only exists within her interior and never across her

boundary. Ideally, a method should distinguish which tran-

sitions exist along the boundary and which do not.

While some methods have modeled the color profile of

the object edge, such as [13], they do not handle strong gra-

dients within objects where a cut could occur. Cui et al. [7]

modifies gradient strength based on color relationships but

requires the color to be heavily quantized and does not spec-

ify exactly how the locality of edges is implemented.

We introduce a new color-adjacency model to weight

the importance of image gradients. The model is com-

puted using a Fast Gauss Transform [24], similar to the

color model. Adjacent pixels are represented by an 8D vec-

tor eij = (li, ui, vi, lj , uj , vj , x, y) where (li, ui, vi) is the

color of pixel xi, (lj , uj , vj) the color of the xj , and (x, y)
their motion-adjusted location. A model I is generated for

all edges that are in the interior of either the foreground or

background, and another model B is generated for all edges

along the boundary. These probabilities are combined into

a boundary reweighting factor by

wa(xi, xj) =

(

1 +

∣

∣

∣

∣

P (eij |I) − P (eij |B)

P (eij |I) + P (eij |B)

∣

∣

∣

∣

)2η

(6)

where P (eij |l) is the probability of eij given the label

l. η gives the sign of the numerator: 1 if P (eij |I) ≥
P (eij |B) and -1 otherwise. Equation 6 creates a scalar

ranging from 0.25 if the model indicates a pure boundary

(P (eij |I) = 0, P (eij |B) = 1) to 4 for a pure interior edge

(P (eij |I)=1, P (eij |B)=0), with a factor wa =1 for equal

interior and boundary probabilities (P (eij |I) = P (eij |B)).
Figure 2b shows the effect of the color adjacency model.

The cat’s outline is clearly highlighted as the desired bound-

ary, while other edges are suppressed.

3.6. Spatiotemporal Coherency

Videos usually exhibit a high amount of coherency be-

tween frames. Spatiotemporal-volume approaches [10, 22]

implicitly capture this coherency through edges across

frames. With our frame-by-frame approach, coherency be-

tween frames can be included without explicitly represent-

ing the labeled pixels from the previous frame. Rather, we

assign a high region cost to label xi as l if there is a nearby

pixel (after motion adjustment) in the previous frame la-

beled l̄ that has a similar color:

wh(xi, l) =
∑

yj∈Nl̄(xi)

1

||C(xi) − C(yj)||2 + 1
(7)

where Nl̄(xi) is the set of all neighbors of xi from the pre-

vious frame that are labeled l̄. Figure 2c shows the cost

map for the spatiotemporal coherency where the cat is likely

foreground since it overlaps with the previous frame. The

blockiness is due to the oversegmentation regions.

3.7. Shape

When an object passes over a similarly colored back-

ground, no edge exists upon which to place the boundary.

In these cases, the shape of the object is vital. Including a

shape term in the features can handle such cases.

Recently there has been interest in including shape pri-

ors into graph cut [8, 9, 18, 21].The common approach is to

align the shape to the image by user interaction and/or au-

tomated means, and then include a term in the cost function

based on distance to the shape or a mismatch score.

In LIVEcut, because we have tracked the object mo-

tion forward, we already have an estimate of the motion-

adjusted object shape Φ (where Φ(xi) = 1 if xi is in the

object mask and 0 otherwise) and its boundary Ω (where

782



Ω = ∂Φ). We compute the distance from each pixel to the

boundary after adjusting for object motion using

dΩ(xi) = min
p∈Ω

(||p − xi||). (8)

Our shape term is an extension to [21] but takes distance

into account:

ws(xi, l) = |l − Φ(xi)|min(dΩ(xi)/M, 1) (9)

where M is the maximum allowable distance (we use M =
10). If the estimated shape mask does not match the la-

beling of a pixel, this term penalizes the labeling based on

the pixel’s distance to the predicted shape boundary up to a

threshold M . Using a small M , if the boundary is only off

by a few pixels, it will have a minimal cost added. This cost

function combined with the estimation of the object motion

comprise a novel shape prior for graph cut. The resulting

costs produced by the shape cue are shown in Figure 2d.

3.8. Point tracking

For most pixels in a typical video sequence, it is difficult

to precisely determine the corresponding point in the next

frame. However, easily-trackable points give nearly cer-

tain information about their labeling (see Figure 2e). While

many algorithms make use of such points, video segmen-

tation methods based on graph cut currently do not. We

use [12, 17] to track these points and assign a penalty to la-

beling xi as l if xi is within a distance D (we use D = 5)

of a tracked point that was labeled l̄ in the previous frame:

wp(xi, l) =

{

1 if dΘl̄
(xi) ≤ D

0 otherwise
(10)

where Θl̄ is the set of tracked points labeled l̄. Any points

that were not reliably tracked are removed from Θl. We

also filter out any points too close to the object boundary

(within 10 pixels), because points near the boundary may

potentially spill over onto the other side.

4. Automatically Weighting Cues

While a variety of cues can be used for video segmenta-

tion, some features will perform more reliably than others

given a specific sequence, frame, or even location within

the frame. In order to best leverage the various cues, we

evaluate and learn from their performance.

We automatically weight the region terms in graph cut

on a local basis, as shown in Equation 2 by the αu factors.

In this manner, the most effective cues will have a stronger

effect. Each αu is a combination of an automatic scaling

βu based on the estimated effectiveness of that term locally

(Section 4.1) and a weighting ρu that is learned through user

corrections (Section 4.2):

αu(xi) = βu(pi) ρu(xi). (11)

(a) Color (b) Coherency (c) Shape

Figure 3. Visualization of the estimated accuracy of the (a) color,

(b) spatial coherency, and (c) shape terms. The grayscale value of

a pixel indicates the local weight β for that pixel and cue.

4.1. Setting estimated effectiveness

For each region term, LIVEcut assesses its own perfor-

mance on the previous frame to estimate the accuracy of

that feature for each pixel. This ensures that each feature is

weighted strongly in the areas where it is most effective.

For the color term, the accuracy can be estimated by ap-

plying the model to the frame that generated it (i.e. the pre-

vious frame) by

βc(xi) = P prev(pi|L
prev
i ) (12)

where the superscript prev indicates that the probability and

label are from the previous frame and pi is the (l, u, v, x, y)
color and location vector for pixel xi. Figure 3a shows the

estimated effectiveness for one frame of the cat sequence.

Note that while the weighting is generally high (shown by

brighter pixels), it is lower near where the cat crosses the

rope due to the overlapping color models.

The coherency term in Equation 7 returns a large value

when a pixel is similar in color to a neighboring pixel of the

opposite label in the previous frame. This works well ex-

cept when near object boundaries where the foreground and

background colors are similar, because the costs for each

label are then similar. This can be detected by a low proba-

bility in the color model near the boundary. We weight the

coherency term accordingly:

βh(xi) = max(P prev(pi|L
prev
i ), min(d2

Ω(xi)/D2, 1))
(13)

where D is a distance threshold (we use 0.25(image width

+ height)). This equation includes both a color term and

a distance term. Near the boundary, the distance term is

small, so the color term dominates, and the weight is high

if the foreground and background colors are dissimilar. Far

from the boundary, the distance term dominates. This is

illustrated in Figure 3b, where near the object the weighting

looks similar to that of the color model, while away from

the object it resembles a distance map.

The shape term is most important for localizing bound-

aries where the similarity of foreground and background

colors weakens the effectiveness of the color, spatiotempo-

ral, gradient, and color adjacency terms. It is also effective

far from the boundary where the labeling is more certain.
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(a) Error (b) Color (c) Coherency (d) Shape

Figure 4. (a) An error occurred in the propagated segmentation.

Since the (b) color cue was incorrect, its weight is decreased. The

(c) coherency and (d) shape cues were correct, so they are in-

creased. The grayscale value in (b-d) visualizes the label the cue

suggests, with white indicating foreground and black background.

Based on these ideas, we weight the shape term using

βs(xi) = max(1−P prev(pi|L
prev
i ), min(d2

Ω(xi)/D2, 1)).
(14)

Note the similarity to βh(xi) in Equation 13, except that

the color probability has been subtracted from 1. This can

be seen in Figure 3c, where the shape term looks like the

coherency term except that it is inverted near the object. The

shape prior will thereby be more heavily weighted in areas

where color does not effectively identify the boundary, such

as the cat and rope overlap in Figure 3.

For the point-tracking term, we have already removed

points that were not reliably tracked, so we have high con-

fidence in the remaining points. We therefore weight all

points equally: βp(xi) = 1.

4.2. Learning from user corrections

While the automatic weighting usually works well, it

may be incorrect at times and require further user correc-

tion. LIVEcut handles this automatically by learning from

the corrections. The user corrects any mistakes by mark-

ing them with strokes before proceeding to the next frame.

Since each region term gives a value in favor of the fore-

ground F and the background B, each suggests a label for

each pixel. More precisely, if wu(xi,F) − wu(xi,B) > 0,

then the term wu would label xi as background on its own,

and vice versa. By comparing the initial propagated se-

lection to the selection after corrections, we can determine

which features were correct at each pixel and use that to

weight their future performance. In Figure 4, since the color

weight for foreground wc(xi,F) was greater than the back-

ground weight wc(xi,B), the future weight of those color

terms are weakened. The coherency and shape terms sug-

gested the correct labeling and are strengthened.

We initialize ρu to a constant value for all xi. Let Si
u be

the initial propagated segmentation suggested by term wu

alone, and let Sf be the final segmentation after the user

has corrected any mistakes. If Si
u(xi) �= Sf (xi), wu sug-

gested an incorrect labeling for xi and its weight should be

discounted by ρu in the next frame,

ρnext
u (xi) =

{

ρu(xi) + δ0 if Si
u(xi) = Sf (xi)

ρu(xi) − δ1 if Si
u(xi) �= Sf (xi)

(15)

Video Size Graph Cut Time User Time

Bass Guitar 960×540×72 0.055 / 3.53 sec 38 min

Cat 640×480×56 0.038 / 1.88 sec 5 min

Flamingo 960×540×76 0.055 / 2.82 sec 30 min

Footballer 720×576×19 0.053 / 1.99 sec 5 min

Lemurs 960×540×86 0.047 / 3.11 sec 36 min

Table 1. Timing results from several sequences. The graph-cut

time first gives the time to process an interaction on one frame, and

then the time to propagate information to the next frame. “Foot-

baller” is courtesy of Artbeats (www.artbeats.com).

where all segmentations S are from the current frame. δ0

and δ1 are constant increments for ρu. We use δ0 = 0.4 and

δ1 = 0.8, and ρ is initialized to 1.

5. Results

For an interactive segmentation system, the real measure

of success is the amount of user time required to perform a

selection. Accordingly, we report the time required to se-

lect objects in several sequences. The segmentations can be

judged qualitatively by the examples shown in Figure 6. In

order to better evaluate the accuracy of LIVEcut, we also

compare it to automatic segmentation techniques, despite

the disadvantage this gives to an algorithm designed for in-

teractive use.

5.1. Timing and Qualitative Results

Table 1 gives timing results over several challenging

video sequences. The “footballer” sequence exhibits large

motions, a drastically changing object shape, and a partial

occlusion from another moving object. “Bass guitar” and

“lemurs” both contain overlapping color models, bound-

aries where there is no gradient information, and motion

blur. While much of the body of the “flamingo” is easy

to segment, the legs are narrow, exhibit large movements,

are often heavily blurred, and have a similar color to the

background. Using LIVEcut, a user is able to segment the

objects without excessive interaction. The selection from

several frames of these sequences can be seen in Figure 6.

We apply the robust matter [23] to our output to account for

mixed pixels on boundaries.

We compare LIVEcut to [22] using videos from this pa-

per in Table 2. The user time to acquire binary segmen-

tation results similar in quality to these techniques is com-

parable or less in these examples. The time the user must

wait between each interaction for the selection to update

is also less, providing a better interactive experience. Our

algorithm also does not need the large preprocessing time

that [22] requires. We were able to segment “amira” with

LIVEcut, while [22] required the help of [1] to do so. We

also were able to segment the “ballerina” as one object,

while [22] required one pass for the feet and another for
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Other Techniques LIVEcut

Pre- Graph Cut User Post- Graph Cut User

Video Size Method process Time Time process Time Time

amira 640×480×35(80)* [22]+[1] 12 min 5 sec 15 min 35 min 0.054 / 1.62 sec 7 min

ballerina 640×480×150 [22] 25 min 11.5 sec 140 min 30 min 0.051 / 1.76 sec 74 min

elephant 720×480×100 [22] 20 min 9.1 sec 40 min 30 min 0.036 / 2.39 sec 38 min

manincap 640×480×150 [22] 30 min 16.5 sec 20 min 35 min 0.034 / 1.86 sec 23 min

stairs 640×480×63(100)* [22] 20 min 8.5 sec 20 min 30 min 0.028 / 1.71 sec 13 min

Table 2. Comparison of LIVEcut to [22]. The graph-cut time for LIVEcut lists first the time to process an interaction on one frame, and

then the time to propagate the selection to the next frame. The ’*’ indicates that the video we obtained differed in length to that reported

in [22] (shown in parentheses). The postprocess time for [22] consists of pixel-level refinement, but also includes matting, which is not

reported for the our method. LIVEcut does not need any pre-processing time.

Sequence 41 43 50 51 54

LIVEcut Error % 2.30 5.93 1.07 1.18 0.45

[25] Error % 0.80 0.02 1.31 1.06 0.33

Sequence 56 58 60 IU JM

LIVEcut Error % 2.47 0.24 14.96 2.96 31.37

[25] Error % 0.93 0.79 6.33 2.56 0.27

Table 3. Comparison of [25] to LIVEcut using automatic segmen-

tation (i.e. without allowing user corrections).

Figure 5. Accuracy of several sequences from Table 3.

the body. Finally, our user interaction is simpler, requiring

only drawing strokes on individual frames and allowing se-

quential processing of the video, while [22] also requires

rotating and slicing through a spatiotemporal volume.

5.2. Accuracy and Stability

For interactive segmentation systems, accuracy is diffi-

cult to measure since a user can always achieve perfect ac-

curacy given enough time. To demonstrate accuracy, we

perform automatic segmentations and compare to the un-

supervised method from [25] on their database. In doing

so, LIVEcut faces a large disadvantage. LIVEcut was de-

signed to assume that the previous frame was correctly seg-

mented by the user, and proceeds under that assumption.

Furthermore, LIVEcut receives no user training, while [25]

is trained on similar data. While this test neutralizes many

of the strengths of LIVEcut, it allows us to show the algo-

rithm’s accuracy and stability.

For this test, we segmented the first frame of ten se-

quences, each of size 320×240 with an average length of

over 350 frames. We then computed the segmentation with-

Sequence 41 43 56 60 JM

LIVEcut Error % 0.55 1.41 1.37 3.17 2.26

# frames corrected 1 5 1 2 7

Table 4. Accuracy of LIVEcut on sequences from Table 3 after

corrections on the number of frames shown.

out additional user interaction and compare to the results

from [25] in Table 3. For several of the videos (50, 51,

54, 58, IU), we have comparable or better results. For the

others, the accuracy over time is shown in Figure 5. Our

segmentation error in each case was very low until an abrupt

increase due to a change in the scene. For three of the cases,

the error is low until the subject moves his hand in front of

his body. In these cases, LIVEcut assumes that the hand is

an occluding object that it should not segment and does not

recover the entire object once the hand leaves. In the other

cases, a rapid motion confuses our algorithm. Note that in

each case, the error is quite stable after the initial mistake

because LIVEcut accurately tracks what it assumes is the

new state of the object.

To better show the accuracy and stability on these se-

quences, we resegmented the video allowing corrections

only on or near the frames where large errors occur. Table 4

shows that the accuracy is now similar to or less than [25]

while allowing very few corrections. While LIVEcut can

achieve similar results to unsupervised methods with little

or no corrections, these methods could not produce the high

quality results from LIVEcut shown in Figure 6.

6. Conclusion

We have presented a new method for interactively seg-

menting video sequences by propagating multiple cues

from one frame to another. These cues are automatically

weighted according to their predicted importance on the

specific video sequence being segmented, and are further

weighted based on learning from user corrections. Many of

the cues also include novel improvements in the context of

video segmentation using graph cut.

While propagating multiple weighted cues is effective

in segmenting video, further improvements can be made.

LIVEcut only uses cues from the previous frame together
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Figure 6. Several examples of object selections using LIVEcut.

with the accumulated learning. However, more global infor-

mation about the entire video sequence may assist the seg-

mentation. Improved learning techniques may better weight

the graph-cut terms.
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