
Liveness Checking as Safety Checking to Find Shortest Counterexamples to Linear Time
Properties

Viktor Schuppan

c© Viktor Schuppan, 2005.

Doctoral Thesis ETH No. 16268

Liveness Checking as Safety Checking to Find
Shortest Counterexamples to Linear Time Properties

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

(ETH ZÜRICH)

for the degree of
Doctor of Technical Sciences

presented by
Viktor Schuppan

Dipl.-Inf. Univ. TU München
born September 5, 1973

citizen of Germany

accepted on the recommendation of
Prof. Dr. Armin Biere, examiner

Prof. Dr. Daniel Kröning, co-examiner

2005

To those who seek the truth.

Abstract

Temporal logic is widely used for specifying hardware and software systems. Typically two
types of properties are distinguished, safety and liveness properties. While safety can easily be
checked by reachability analysis, and many efficient checkers for safety properties exist, more
sophisticated algorithms have always been considered to be necessary for checking liveness. In
this dissertation we describe an efficient translation of liveness checking problems into safety

checking problems for finite state systems. More precisely, fair repeated reachability in a fair
Kripke structure K is formulated as reachability in a transformed Kripke structure KS. A fair
loop in K is detected in KS by saving a previously visited state in an additional state-recording
component, waiting until a fair state has been seen, and checking a loop closing condition.
The approach extends to all ω-regular properties. We show that the size of the state space,
the reachable state space, the transition relation, and its transitive closure grow by a factor of
|S| in the transformed model, where |S| is the size of the state space in the original model.
Radius and diameter increase by a small, constant factor. We discuss optimizations that limit
the overhead of our translation. We have implemented the approach for BDD-based model
checkers of the SMV family. Experimental results show not only that the approach is feasible
for complex examples, but that it may lead to faster verification if the property turns out to be
false. For one example even an exponential speed-up can be observed. We finally show that
a similar reduction can be applied to a number of infinite state systems, namely, (ω-) regular
model checking, pushdown systems, and timed automata.

Counterexamples as produced by a model checker for a failing property help developers to
understand the problem in a faulty design. The shorter a counterexample, the easier it is typi-
cally to understand. The length of a counterexample, as reported by a model checker, depends
on both the algorithm used for state space exploration and the way the property is encoded. We
provide necessary and sufficient criteria for a Büchi automaton to accept shortest counterex-

amples. Extending a notion introduced by Kupferman and Vardi we call a Büchi automaton
that accepts shortest counterexamples tight. We prove that Büchi automata constructed using
the approach of Kesten et al. (KPR), which is essentially the same as the construction by Licht-
enstein and Pnueli, are tight for future time LTL formulae, while an automaton generated with
the algorithm of Gerth et al. (GPVW) may lead to unnecessary long counterexamples. Optimal-
ity is lost in the first case as soon as past time operators are included. We show that potential
excess length is in both cases at most linear in the length of the specification. Using a recently
proposed encoding for bounded model checking of LTL with past by Latvala et al., we con-
struct a Büchi automaton that accepts shortest counterexamples for full LTL. The construction
adapts the idea of virtual unrolling by Benedetti and Cimatti to Büchi automata. Its general-
ization gives a method to make an arbitrary Büchi automaton accept shortest counterexamples.
We use our method of translating liveness into safety to find shortest counterexamples with
a BDD-based symbolic model checker without modifying the model checker itself. Though

v

vi

our method involves a quadratic blowup of the state space, it proves to be competitive with
SAT-based bounded model checking. Experimental results show that using a model checking
algorithm that finds shortest cycles contributes much more to a reduction in counterexample
length than using an automaton that accepts shortest counterexamples when compared with the
automaton by Kesten et al.

Zusammenfassung

Temporale Logik wird häufig für die Spezifikation von Hardware- und Softwaresystemen
eingesetzt. Dabei wird oft zwischen Sicherheits- und Lebendigkeitseigenschaften unterschie-
den. Während Sicherheitseigenschaften einfach mittels Erreichbarkeitsanalyse überprüft wer-
den können, wird Verifikation von Lebendigkeitseigenschaften meist mit spezialisierten Algo-
rithmen in Verbindung gebracht. Dementsprechend sind mehr effiziente Werkzeuge zur Über-
prüfung von Sicherheitseigenschaften verfügbar als zur Überprüfung von Lebendigkeitseigen-
schaften. In der vorliegenden Dissertation wird eine Übersetzung entwickelt, die das Problem
der Verifikation einer Lebendigkeitseigenschaft für Systeme mit endlich vielen Zuständen in
das der Verifikation einer Sicherheitseigenschaft überführt. Genauer gesagt wird das Problem
der Erreichbarkeit eines Zustandes s von sich selbst über einen fairen Pfad (faire wiederholte
Erreichbarkeit) in einer fairen Kripke Struktur K in das Problem der (einfachen) Erreichbarkeit
eines Zustandes sS in einer anderen Kripke Struktur KS übersetzt. Ein fairer Zyklus in K kann
in KS gefunden werden, indem zunächst nicht-deterministisch eine Kopie des momentanen
Zustands s in einer separaten Version der Zustandsvariablen abgelegt wird. Sobald zunächst
ein fairer und dann ein zu s identischer Zustand besucht worden sind, liegt ein fairer Zyklus
vor. Die Übersetzung kann zur Überprüfung beliebiger ω-regulärer Eigenschaften verwendet
werden. Die Größe des Zustandsraumes, des erreichbaren Zustandsraumes, der Übergangsre-
lation sowie ihrer transitiven Hülle im transformierten System wachsen proportional zur An-
zahl Zustände im Originalsystem. Radius und Durchmesser ändern sich nur um einen kleinen,
konstanten Faktor. Die Übersetzung wurde für Modellprüfer der SMV Familie implementiert.
Es werden außerdem Optimierungen vorgestellt, die den Anstieg der Komplexität begrenzen
helfen. Experimente zeigen, daß sich die transformierten Systeme nicht nur mit akzeptablem
Aufwand verifizieren lassen, sondern daß sich Gegenbeispiele im transformierten System sogar
manchmal schneller finden lassen als im Originalmodell. Ein Beispiel kann dabei sogar expo-
nentiell schneller überprüft werden. Schließlich wird die Übersetzung auf einige Systeme mit
unendlichem Zustandsraum erweitert, im einzelnen reguläre Modellprüfung, Kellerautomaten
und Realzeitautomaten.

Die Gegenbeispiele, die ein Modellprüfer bei Fehlschlagen einer Spezifikation ausgibt, ha-
ben sich als sehr hilfreich bei der Fehlersuche erwiesen. Ein Gegenbeispiel ist umso einfacher
zu verstehen, je kürzer es ist. Die Länge des ausgegebenen Gegenbeispiels hängt dabei sowohl
vom Modellprüfungsalgorithmus als auch von der Repräsentation der Spezifikation als Büchi
Automat ab. Es werden notwendige und hinreichende Kriterien entwickelt, die gewährleisten,
daß ein Büchi Automat kürzeste Gegenbeispiele erkennt. Der Begriff der tightness von Kupfer-
man und Vardi wird auf Büchi Automaten erweitert. Es wird gezeigt, daß ein Büchi Automat,
der mit dem Algorithmus von Kesten et al. (KPR) konstruiert wird, kürzeste Gegenbeispiele für
LTL eingeschränkt auf Zukunft erkennt. Im Gegensatz dazu führt der Algorithmus von Gerth et
al. (GPVW) zu unnötig langen Gegenbeispielen. Die Optimalität bei KPR geht verloren, sobald

vii

viii

die Einschränkung auf Zukunft aufgehoben wird. Es konnte gezeigt werden, daß in beiden Fäl-
len eine mögliche Überlänge höchstens linear in der Länge der Spezifikation ist. Durch Anpas-
sung einer kürzlich vorgestellten Kodierung für Bounded Model Checking mit Vergangenheit
von Latvala et al. wird ein Büchi Automat konstruiert, der kürzeste Gegenbeispiele für ganz
LTL erkennt. Die Konstruktion überträgt die Idee des virtuellen Ausrollens von Benedetti und
Cimatti auf Büchi Automaten. Ihre Verallgemeinerung ermöglicht es, einen beliebigen Büchi
Automaten so zu verändern, daß er kürzeste Gegenbeispiele akzeptiert. Die oben beschriebe-
ne Übersetzung von Lebendigkeits- in Sicherheitseigenschaften kann nun benutzt werden, um
kürzeste Gegenbeispiele mit einem BDD-basierten symbolischen Modellprüfer zu finden, oh-
ne dabei den Programmkode des Modellprüfers selbst zu verändern. Trotz des quadratischen
Wachstums im Zustandsraum werden Gegenbeispiele ähnlich schnell gefunden wie von einem
SAT-basierten Pfadlängen-begrenzten Modellprüfer. Experimente zeigen, daß die Verkürzung
in der Länge der Gegenbeispiele, die durch den Einsatz eines Modellprüfungsalgorithmus zum
Finden kürzester Zyklen erreicht wird, weit größer ist als die, die aus dem Einsatz eines Büchi
Automaten für kürzeste Gegenbeispiele resultiert.

Acknowledgments

First and foremost, I wish to thank my advisor Armin Biere. Being almost always available for
discussion, he taught me his way of doing research and gave all required support. I doubt that
there are many advisors who spend more time in direct contact with their students. I consider
this an asset. Being able to attend one or two major conferences in the field per year, often
without presenting a paper, also gave me very valuable input.

I would like to thank Daniel Kröning for being my co-advisor and providing support in
spite of a tight schedule and pre-alpha drafts. Thomas Gross is to be thanked for taking over
administrative responsibility during my final year.

My long-term office- and group-mate Cyrille Artho provided many thought-provoking im-
pulses.

I also benefitted much from stimulating discussions with Keijo Heljanko, Tommi Junttila,
Timo Latvala, and Andreas Podelski.

The software engineering group at ETH proved always open for visitors. Adam Darvas,
Werner Dietl, and Bernd Schöller were very welcome links into that group.

Hans Dubach, Ruth Hidalgo, Eva Ruiz, and Hanni Sommer made my life at ETH easier by
handling much of the administrative work.

The Computer Systems Institute was my home during my time at ETH. Seminars, coffee
breaks, ski weekends, Assiabende, and, most important, lunch breaks — it was all there. Special
thanks go to Hans Domjan, Philipp Kramer, Valery Naumov, Christoph von Praun, Patrik Reali,
Florian Schneider, Yang Su, Cristian Tuduce, and Irina Tuduce for discussions, support, and
friendship.

Last but not least, I am grateful to my parents and my friends for their patience and support.

ix

Contents

Abstract v

Zusammenfassung vii

Acknowledgments ix

Contents xi

1 Introduction 1

1.1 Safety and Liveness . 1
1.2 Counterexamples in Verification . 2
1.3 Thesis Statement and Contributions . 3

1.3.1 Reduction . 3
1.3.2 Büchi Automata for Shortest Counterexamples 4

1.4 Outline . 5
1.5 Previously Published Results . 5

2 Common Concepts and Notation 7

2.1 Background . 7
2.1.1 Temporal Logic . 7
2.1.2 Model Checking . 8

2.2 Preliminaries . 10
2.3 Kripke Structures as Models . 12
2.4 Linear Temporal Logic . 15
2.5 Büchi Automata . 17
2.6 Translating PLTLB Formulae into Büchi Automata 18
2.7 Defining Safety and Liveness . 19
2.8 Model Checking Linear Time Properties . 21

2.8.1 Basics . 21
2.8.2 Lasso-shaped counterexamples . 22
2.8.3 Model checking using BDDs . 22
2.8.4 Bounded model checking using SAT solvers 23
2.8.5 Abstraction . 24

3 Symbolic Loop Detection for Finite State Systems 27

xi

xii CONTENTS

3.1 Translating Simple Liveness into Safety . 27
3.1.1 Intuition . 27
3.1.2 Counter-Based Translation . 30
3.1.3 State-Recording Translation . 30
3.1.4 Comparison . 31

3.2 Translating Fair Repeated Reachability . 32
3.2.1 First Attempt . 32
3.2.2 Optimization . 32
3.2.3 Formalization and Correctness . 34
3.2.4 Extensions . 36

3.3 Complexity . 36
3.3.1 Explicit State Model Checking . 38
3.3.2 BDD-based Symbolic Model Checking 39
3.3.3 Summary . 42

3.4 Shortest Counterexamples . 43
3.5 Related Work . 43

3.5.1 Reduction to and Power of Reachability Checking 43
3.5.2 Shortest Counterexamples . 45

3.6 Summary . 46

4 Extending to Infinite State Systems 47

4.1 Regular Model Checking . 47
4.1.1 Preliminaries . 47
4.1.2 Reduction . 48
4.1.3 Example . 49
4.1.4 Discussion . 51

4.2 Pushdown Systems . 52
4.2.1 Preliminaries . 52
4.2.2 Reduction . 52
4.2.3 Complexity . 55
4.2.4 Shortest Lasso-Shaped Counterexamples 58

4.3 Timed Automata . 59
4.3.1 Preliminaries . 59
4.3.2 Reduction . 61
4.3.3 Complexity . 65
4.3.4 Shortest Lasso-Shaped Counterexamples 65

4.4 Related Work . 65
4.5 Summary . 66

5 Büchi Automata for Shortest Counterexamples 67

5.1 Tight Büchi Automata . 67
5.2 (Non-) Optimality of Specific Approaches . 71

5.2.1 Gerth et al. (GPVW) . 71
5.2.2 Kesten et al. (KPR) . 73

CONTENTS xiii

5.3 A Tight Look at LTL Model Checking . 74
5.3.1 Virtual Unrolling for Bounded Model Checking of PLTLB 74
5.3.2 A Tight Büchi Automaton for PLTLB 75
5.3.3 Partial Unrolling . 79

5.4 Generalization . 79
5.5 Related Work . 82

5.5.1 Virtual unrolling . 82

5.5.2 Tight automata . 83
5.5.3 Translating PLTLB into automata . 83

5.6 Summary . 84

6 Variable Optimization 85

6.1 The General Case . 85
6.2 Removing Constants . 86
6.3 Removing Input Variables . 87

6.4 Cone of Influence Reduction for Loop Detection 88
6.5 Abstraction Refinement for Loop Detection 90
6.6 Utility of ... 91

6.7 Related Work . 92
6.7.1 Completeness in bounded model checking 92
6.7.2 Identifying input variables and variable dependencies 94

6.7.3 Abstraction and refinement . 94
6.8 Summary . 96

7 Experiments 97

7.1 A Forward Jumping Counter . 97

7.2 Real-World Examples . 98
7.2.1 State-Recording Translation versus Standard Approach 102
7.2.2 BDD- versus SAT-based Model Checking of the Tight Encoding 102

7.2.3 The Cost of Tightness . 102
7.2.4 Comparing Variants of Variable Optimization 105
7.2.5 A Tight Büchi Automaton in the Standard Approach 105

7.3 Summary . 108

8 Conclusion 111

8.1 Contributions . 111

8.2 Future Work . 112
8.2.1 State-Recording Translation . 113
8.2.2 Infinite State Systems . 114
8.2.3 Tight Büchi Automata . 114

A Proofs and Auxiliary Lemmas 117

B Raw Data 119

xiv CONTENTS

List of Figures 127

List of Tables 129

Bibliography 131

1
Introduction

While there’s life, there’s hope.

Cicero, Ad Atticum

1.1 Safety and Liveness

Informal characterization Two types of properties are frequently distinguished in temporal
logic: safety properties state that “something bad does not happen,” while liveness properties

prescribe that “something good eventually happens” [Lam77]. Examples of safety properties
are mutual exclusion, not exceeding a given resource bound, and partial correctness. Here, the
“bad thing” is more than one process being in a critical section, using more resources than al-
lowed, and terminating with a wrong result. “After the rain, the sunshine” [BBF+01], starvation
freedom, and termination are examples of liveness properties. Clearly, the “good thing” is sun-
shine, a process making progress, and termination of a program. A bounded liveness property

specifies that something good must happen within a given time, for example, “every request is
followed by a reply within five units of time.”∗†

Safety is more useful, but ... Safety properties are considered more important in practice than
liveness properties. They are most crucial to system correctness and, therefore, deserve higher
priority and more time in verification [BBF+01]. In fact, “More than 90% ... of the errors in
real systems are violations of safety properties” [Lam04]. However, inferior performance of
checking liveness properties also contributes to the fact that some engineers do not bother to
specify liveness properties [BL03, BBF+01, Lar04]: the models on which safety properties
are checked may be too large to verify liveness properties; as a consequence, models used
to check liveness properties may lack sufficient level of detail to find subtle errors [Lam04].
Nevertheless, as every safety property is satisfied by the empty system [SL88], some form of
liveness is clearly desirable. Or, in Neil Jones’ words [Jon04]:

Without safety, liveness is illusory;
Without liveness, safety is ephemeral.

This leaves the choice of either bounded or unbounded liveness.
∗For clarification we sometimes refer to liveness properties as unbounded liveness properties.
†Technically, bounded liveness properties are safety properties (see Sect. 2.7). In particular, algorithms for

checking safety can be used to check bounded liveness. In this chapter we prefer to treat them as a separate type
of properties, which are amenable to safety checking but are liveness properties in their purpose.

1

2 CHAPTER 1. INTRODUCTION

Bounded liveness versus unbounded liveness In real life, unbounded liveness — only know-
ing that something good will happen eventually — is useless [BBF+01, PSZ]. At some stages
during development, unbounded liveness may nevertheless be the preferred level of abstraction
[BBF+01]. First, unbounded liveness is easier to read and write [BBF+01, Var04]. This is
especially true if parameters are to be included in bounded specifications of parameterized sys-
tems [BBF+01]. Second, timed behavior means high complexity [BBF+01, GGA05]. Third,
when working with concurrent and distributed systems, the notion of a next state may not be
meaningful [Lam83, PSZ]. Once unbounded liveness has been established, other means, such
as testing, may be used to check for bottlenecks if average performance is the primary concern
[Lam04]. Finally, bounded and unbounded liveness need not be contradictory [BBF+01]: truth
of bounded liveness implies truth of unbounded liveness; conversely, a proof of unbounded
liveness may be used to extract bounds.

Why bother? Lamport’s original motivation to distinguish safety and liveness properties was
that they typically require different proof techniques [Lam77]. In deductive verification, safety
properties are usually proved using invariance arguments, while liveness properties are veri-
fied with a well-foundedness argument [OL82]. In model checking, reachability is sufficient
to check safety properties [KV01], while liveness properties require some form of cycle detec-
tion [VW86, EL87, BCCZ99]. Furthermore, safety properties are deemed more important and
easier to verify; hence, more effort should be spent on them [BBF+01]. Classifying properties
can also help to come up with better structured specifications and may lead to fewer omissions
[BBF+01]. Fairness constraints need to be taken into account only when proving liveness prop-
erties [Sis94]. The modeling stage may be affected by the kind of property as well: different
simplifications preserve different classes of properties [BBF+01]. Finally, it is easy to monitor
executions for violations of safety properties [Sis94, HR02].

Is this the right distinction? Manna and Pnueli remark that the important distinction may
be between safety and non-safety [MP90]. However, Alpern and Schneider show that every
ω-regular property — the class of properties that we are concerned with — is the intersection
of a safety and a liveness property [AS87]. Hence, liveness seems to capture in a most general
sense the idea of what may be the non-safety part of an ω-regular property. Purpose of the above
discussion was to establish that it is useful to look beyond safety.

Problem statement Safety and more general ω-regular properties are treated differently in
a number of proofs, algorithms, and tools. Often, a technique or a tool is presented first for
safety properties and is only later extended to handle more properties. Examples are symbolic
trajectory evaluation [SB95, YS01], regular model checking [KMM+01, BJNT00, PS00], and
UPPAAL [LPY97, BDL04]. Some optimizations, such as forward model checking [INH96,
HKQ98, BCZ99], are only available when checking safety properties.

1.2 Counterexamples in Verification

Usefulness of counterexamples In the last years there has been an increased adoption of
formal methods, especially model checking [CGP99], by the hard- and software industry
[BDEGW03, Ben01, BR02]. Automation, limitation of scope to high-risk components, and

1.3. THESIS STATEMENT AND CONTRIBUTIONS 3

a focus on bug finding rather than full verification have contributed to that [BCLR04, Sch03,
AVARB+01]. Counterexamples [CV03] show a (partial) execution that exhibits an error. They
are provided by model checkers when the verification of a property fails and have proved helpful
in both, finding the actual fault and improving verification methodology. The utility of coun-
terexamples is witnessed by the success of SAT-based bounded model checking [BCCZ99]:
initially, bounded model checking could only be used to find bugs; nevertheless, the technol-
ogy made a very quick transition into industry [CFF+01]. Some researchers even claim that
counterexamples are the “single most effective feature to convince system engineers about the
value of formal verification” [CV03]. With respect to methodology, recent progress in model
checking software is largely based on an automated abstraction-refinement cycle, which uses
counterexamples to guide the refinement [CGJ+03].

Problem statement Most counterexamples still need to be interpreted by humans. Shorter
counterexamples will, in general, be easier to understand. In the automata-theoretic approach
to model checking [VW86], finding a shortest counterexample to an ω-regular property re-
quires both, a method to find shortest cycles and a suitable Büchi automaton to encode the
property. While SAT-based bounded model checkers can find shortest counterexamples, SAT-
based bounded model checking does not perform equally well on all examples as BDD-based
symbolic model checking and vice versa [AS04]. An efficient BDD-based technique that pro-
duces shortest counterexamples has not been available so far. No suitable Büchi automaton to
encode the property has been extracted from the custom encodings used by SAT-based bounded
model checkers.

1.3 Thesis Statement and Contributions

In this dissertation we establish the following thesis:

1. For finite state systems, verification of ω-regular properties using repeated reacha-
bility can be syntactically reduced to verification of safety properties using reach-
ability. The reduction leads to a quadratic increase in system size. It extends to a
number of infinite state systems.

2. Necessary and sufficient criteria for Büchi automata to accept shortest counterex-
amples to LTL with past can be stated. A Büchi automaton fulfilling these criteria
can be constructed. Its combination with the reduction from repeated reachability
to reachability gives a practical method to find shortest counterexamples to LTL
with past.

1.3.1 Reduction

Basic idea We develop a reduction from fair repeated reachability to reachability. It takes a
finite state system M equipped with a set of fairness constraints F and produces another finite
state system M ′ such that there is an initialized fair path in M iff a certain set of states in M ′

is reachable. The basic idea is borrowed from explicit on-the-fly model checking [CVWY92]
and from bounded model checking [BCCZ99]: a counterexample to a simple liveness property
Fp (“finally p”) in a finite state system is lasso-shaped, i.e., it consists of a stem that leads to

4 CHAPTER 1. INTRODUCTION

a loop such that p is false on stem and loop. As in [BCCZ99] the major challenge is how to
detect the loop. Our translation tries to guess the start of a loop, saves it in a copy of the state
variables, and checks whether the saved state occurs a second time. When this happens, a loop
has been found and the property is checked. Via a standard automaton construction [VW94]
our translation is applicable to all ω-regular properties.

Source-to-source Our reduction is source-to-source and can be applied even manually on the
design entry-level. The user does not need to have access to the source code of the tool itself.
This could be useful in an industrial setting, where the source code of a tool is usually not
available. To some extent it might also discourage tool vendors to charge extra license fees for
liveness support, if compromises with respect to capacity are acceptable.

Complexity Saving of the state variables doubles the number of state variables in the reduced
system. Disregarding a (small constant) number of additional flags, the number of states of the
reduced system is the square of the number of states in the original system. We also establish
bounds on the number of forward iterations required to check the reduced system.

Forward model checking, shortest cycles The reduced system can be verified using forward
model checking [INH96, HKQ98, BCZ99]. When this is applied, shortest cycles are obtained
in finite state systems.

Performance Experiments with NuSMV [CCG+02] and Cadence SMV [McM] show that a
reachability algorithm can check the reduced system with acceptable overhead compared to
the traditional algorithm on the original system. This is in part due to specific optimizations
that target the overhead introduced by the reduction. In some cases the optimizations give
improvements of more than 2 orders of magnitude over the unoptimized reduction. On specific
examples our approach is exponentially faster than the traditional algorithm.

Infinite state systems The reduction extends to (ω−)regular model checking [KMM+01,
WB98, BJNT00, BLW04a], pushdown systems [BEM97, FWW97, EHRS00a], and timed au-
tomata [AD94].

1.3.2 Büchi Automata for Shortest Counterexamples

Tight Büchi automata We extend the notion of Kupferman and Vardi of a tight automaton
on finite words [KV01], which accepts shortest violating prefixes for safety properties, to Büchi
automata. A tight Büchi automaton accepts shortest counterexamples to ω-regular properties.
We establish necessary and sufficient criteria for a Büchi automaton to be tight.

Results for known automata constructions A simple example shows that the translation
from LTL to Büchi automata by Gerth et al. [GPVW96] and some of its descendants do not
generate tight Büchi automata. Resulting counterexamples can have excess length linear in the
length of the formula. The translation by Kesten et al. [KPR98] produces tight Büchi automata

1.4. OUTLINE 5

for future time LTL but exhibits excess length linear in the number of past time operators if
those are admitted.

Constructing tight Büchi automata We show how to construct a tight Büchi automaton for
LTL formulae with past. The construction is based on an encoding of LTL with past for bounded
model checking [LBHJ05]. We generalize the construction to make arbitrary Büchi automata
tight.

Performance Experimental results show that finding shortest counterexamples with a BDD-
based symbolic model checker using the reduction from repeated reachability to reachability
and a tight Büchi automaton based on [LBHJ05] is competitive with SAT-based bounded model
checking.

1.4 Outline

The outline of this dissertation is as follows. The next chapter 2 discusses some required back-
ground and introduces notation. Chapter 3 presents the reduction from fair repeated reachabil-
ity to reachability. It is extended to some infinite state systems in Chap. 4. Büchi automata for
shortest counterexamples are discussed in Chap. 5. In Chap. 6 variable optimization is proposed
to alleviate the overhead introduced by the reduction. Chapter 7 presents experimental results
that show the viability of our approach. Chapter 8 concludes.

1.5 Previously Published Results

This dissertation is partially based on the following publications. The initial reduction of re-
peated reachability to reachability is presented in [BAS02]. A follow-up journal article [SB04]
adds optimizations and a more extensive experimental evaluation. It also gives a corrected and
more detailed analysis of the complexity of the reduction. The extension to infinite state sys-
tems is contained in [SB06]. The investigation of Büchi automata for shortest counterexamples
appeared in [SB05]. Some of the examples are taken from a case study [SB03].

2
Common Concepts and

Notation

In the history of mankind, no two people have ever been able to agree on the toppings

for pizza.

Jim Davis, Garfield

To verify a software or hardware system using model checking the system is modeled in a form
understood by the model checker, a specification is given as a set of properties, and finally a
model checker is employed to verify that the specification holds in the model or to provide a
counterexample, which shows why the specification is wrong. After giving some background
and preliminaries we discuss concepts and notation used in each task in turn. Localized notation
is presented in subsequent chapters as needed.

2.1 Background

2.1.1 Temporal Logic

Motivation A broad class of programs is transformational [HP85] in character: they take
inputs, compute functions on the inputs, and output the results. Specifying and reasoning about
transformational programs, which are usually sequential and terminating, can be done, e.g.,
with the help of pre- and postconditions and Hoare triples [Flo67, Hoa69]. However, these
may not be sufficient for reactive programs [HP85]: these are designed to constantly interact
with their environment, such as operating systems, and are often concurrent or designed not to
terminate. For such programs one also wishes to specify and reason about what can happen
in intermediate states of a — potentially infinite — execution. Pnueli has established temporal

logics for specifying properties of and reasoning about such programs [Pnu77]. Temporal logics
are a special kind of modal logics that include operators (“modalities”) to reason about the truth
values of assertions at different times during the execution of a program. A survey on temporal
logic is available in [Eme90].

Linear versus branching time Temporal logics distinguish a linear and a branching view on
time [Lam80]. In the linear view, each point in time has exactly one future. A specification
is interpreted over a linear structure, i.e., a computation is a sequence of events. LTL [Pnu77,
MP83, Eme90] is an example of a linear temporal logic. In the branching view, there is a
(non-deterministic) choice between several potential futures at each point in time. This results

7

8 CHAPTER 2. COMMON CONCEPTS AND NOTATION

in a tree of potential computations. A temporal logic providing a pure branching view is CTL

[CE82, Eme90]. Neither view can, on its own, express all properties that the other can [Lam80,
EH86]. CTL∗ [EH86] and the µ-calculus [Koz83] integrate both views. However, few tools
actually support these [Bie97]. While model checking linear time has complexity linear in the
size of the model and exponential in the size of the formula [LP85], model checking branching
time is linear in both the size of the model and the size of the formula [CES86]. In practice,
size and structure of the model are at least equally important and worst case behavior is rare
[Hol03, CGH97]. Users of model checking tools tend to prefer specifications in linear time
temporal logic [Var01]. For more discussion and arguments in favor of the linear view and
more references see [Var01, Hol03]. The main reason for focusing on the linear view below is
simply the fact that repeated reachability is the main vehicle used in model checking linear time
and, hence, the proposed techniques are readily applicable there.

Usefulness of past operators Temporal logics as originally developed by philosophers in-
cluded both past and future operators [Eme90]. It turns out that past operators do not add
expressive power when reasoning about presence and future only, which is the case when spec-
ifying properties of initialized computation paths [Kam68, GPSS80]. Consequentially, past op-
erators were initially not included in temporal logics for verification (e.g. [Pnu77]). However, as
argued by [LPZ85], past operators can replace history variables [OG76] in modular verification.
Further, some specifications are more natural to write if past operators are available [LPZ85] —
in fact, some specifications can be made exponentially more succinct [LMS02]. Finally, past
operators do not increase worst-case complexity of the model checking problem (see Sect. 2.8)
[SC85]. Hence, mostly stemming from [LP85], extensions to past have been described and
implemented for explicit state [GO03], symbolic SAT-based [BC03, CRS04, LBHJ05]∗, and
symbolic BDD-based model checking [FMPT01]. NuSMV [CCG+02] contains some of these
implementations.

2.1.2 Model Checking

Motivation Traditional deductive reasoning (e.g., [Pel01]) about temporal properties of hard-
ware and software systems is not well automated and, therefore, considered difficult and tedious.
If a system is — or can be abstracted to be — finite state, reasoning can be automated: the sys-
tem can be represented as a finite state graph and graph-theoretic algorithms can be employed to
determine truth of temporal properties. This approach, termed model checking, was pioneered
independently by Clarke and Emerson [CE82] and Queille and Sifakis [QS82]. Automation
doesn’t come for free, though: the size of the state graph can be exponential in the description
of the system (called the “state explosion problem”), and infinite state systems cannot be han-
dled without further measures. Consequently, a significant amount of research in model check-
ing has been devoted to both problems. In spite of these challenges, model checking has been
widely adopted in the hardware and software industry, e.g., at IBM [AVARB+01, BDEGW03],
Intel [Ben01, Sch03], and Microsoft [BR02, BCLR04]. Or, as Jackson and Rinard put it [JR00]:

Indeed, the success of model checking ... can largely be credited with saving the
reputation of formal methods.

∗Note that [CRS04] contains a bug and may produce incorrect results when the property uses past operators
[LBHJ05]. For a fix see [BHJ+06].

2.1. BACKGROUND 9

A survey on model checking is [CS01], for textbooks see [CGP99, BBF+01, Hol03, Pel01].

Counterexamples A particularly useful feature of model checkers is the generation of error
traces or counterexamples, see Sect. 1.2.

Automata-theoretic approach Many algorithms for model checking temporal formulae rep-
resent the system as a graph and work through the formula syntactically (e.g., [LP85, CES86]).
Vardi and Wolper came up with a different approach [VW86]: if the model is regarded as a
language generator and the property as a language acceptor, one can represent both, model and
property, as automata on infinite objects where the type of the automata depends on the system
and on the logic at hand. Assuming that the model is already represented as an automaton of
the appropriate kind, this makes model checking a two-step process: first, translate the formula
into a corresponding automaton; second, solve an automata-theoretic question, which involves
both automata, such as language emptiness of the intersection of both automata. This approach
makes many results from automata theory immediately available to model checking and of-
ten leads to asymptotically optimal algorithms [KVW00]. The automata-theoretic approach is
dominating the verification of linear temporal logic, while the syntactic approach is preferred
for branching time.

Explicit state model checking The first model checkers were explicit state model checkers,
i.e., they used an explicit representation of both transition relation and sets of states. This
implies that each pair of states in the transition relation and each state in a set of states take up
a non-zero amount of memory. The state explosion problem severely limits the size of systems
that can be handled with this approach in its pure form.

BDD-based symbolic model checking Symbolic model checkers represent the transition re-
lation and sets of states symbolically and operate on these symbolic representations. In a sys-
tem with a high degree of regularity this can yield exponential savings in memory. Many
researchers used binary decision diagrams (BDDs) [Bry86] in verification, for examples see
[BCM+92, BF90, Pix91, CMB91]. Among those, the work of McMillan [McM93], leading to
the SMV model checker, proved most successful.

SAT-based symbolic model checking The increasing power of Boolean SAT-solvers spurred
the development of SAT-based symbolic model checkers using propositional Boolean formulae
as representation of state transition systems [BCCZ99, BCC+99, BCRZ99]. Typically, SAT-
based model checkers are bounded, i.e., they check paths only up to a user-defined length. This
makes them most suitable for bug finding. Techniques to overcome this limitation are an active
area of research [SSS00, McM03, AS04, HJL05]. For a recent survey on SAT-based formal
verification see [PBG05].

Abstraction Many authors consider abstraction as one of the most powerful tools to combat
the state explosion problem [CGP99, Hol03]. Abstraction (see, e.g., [CGL94, Kur94, CC77,
Kro99]) can be used to abstract from unnecessary details of the state space, leading to a re-
duction in the number of states. Predicate abstraction is especially useful to obtain finite ap-

10 CHAPTER 2. COMMON CONCEPTS AND NOTATION

proximations of infinite state systems [GS97]. A too coarse abstraction may not allow to prove
or disprove a property, while a too fine abstraction can make verification intractable. Auto-
mated abstraction refinement tries to alleviate this problem by starting with a coarse abstraction
and subsequently refining it based on information from unsuccessful verification attempts. Ex-
amples of approaches where refinement is driven by abstract counterexamples that have no
counterpart in the concrete model (called spurious counterexamples) are the work by Balarin
and Sangiovanni-Vincentelli [BSV93], Kurshan’s automatic localization reduction ([Kur94],
pp. 170–172), and counterexample guided abstraction refinement by Clarke et al. [CGJ+03].

Further approaches to state explosion Partial order methods are another technique to com-
bat state explosion [GP93, Pel96, Val92]. They exploit concurrency among asynchronously
executing parts of a system by taking only one order of independent transitions into account
if other orders of these transitions are known to lead to the same state. Other successful ap-
proaches to the state explosion problem include modular reasoning, symmetry reduction, and
induction. For references see [CGP99, CS01].

Application areas, examples Partial order methods are particularly successful in the verifi-
cation of asynchronous concurrent systems, which are typically software. Examples of explicit
state model checkers employing partial order reduction are SPIN [Hol03], Bogor [RDH03], and
Java PathFinder [VHB+03]. Symbolic model checkers are most suitable in a synchronous —
typically hardware — setting. The original SMV [McM93], its popular open-source reimple-
mentation NuSMV [CCG+02], an industrial successor at Cadence [McM], or VIS [VIS96] are
BDD-based symbolic model checkers belonging to this class. NuSMV also includes SAT-based
bounded and unbounded model checking routines [CRS04, HJL05]. CBMC is a SAT-based
symbolic bounded model checker for ANSI-C [CKL04]. Based on predicate abstraction and
counterexample guided abstraction refinement, symbolic methods have made symbolic model
checking efficient for software as well. Examples are SLAM [BR02], BLAST [HJMS02], and
MAGIC [CCG+04].

2.2 Preliminaries

Basics The set of Booleans is denoted by IB = {0, 1}; IN and IR are naturals and reals,
respectively. Tuples are enclosed in parentheses, elements of a tuple are separated by commas.

Sequence Let Σ be a finite alphabet, let α be a finite or infinite sequence over Σ. Elements
of a sequence typically have no operator between them, as have subsequences that are con-

catenated to form a larger sequence. If ambiguity might arise, ◦ is used to denote concatena-
tion of elements and/or (sub)sequences. Concatenation is defined if the left operand has finite
length. The length of a sequence α is defined as its number of elements, i.e., |α| = n + 1
if α = σ0σ1 . . . σn is finite, ∞ otherwise. α[i] denotes the element at index i where count-
ing starts from 0. α[i, j] is the subsequence α[i]α[i + 1] . . . α[j] of α, where α[i, j] = ǫ if
i > j. α[i,∞] is α with its first i states chopped off. α is a prefix of β, denoted α ⊑ β, iff
α = ǫ ∨ ∃0 ≤ i < |β| . α = β[0, i]. If S is a set of sequences, the set of finite prefixes of
(members of) S is pre(S) = {α | |α| < ∞ ∧ ∃β ∈ S . α ⊑ β}. inf (α) denotes the set

2.2. PRELIMINARIES 11

of elements appearing infinitely often in α. The cross product of two sequences α, β of equal
length, α× β, is defined component-wise.

Composing (sets of) sequences Let S be a set of finite sequences and T be a set of finite or
infinite sequences, both over Σ. If S or T are sets of elements of Σ, consider them to be sets
of sequences of length 1. Then S ◦ T = {s ◦ t | s ∈ S ∧ t ∈ T} denotes the set of sequences
concatenated from elements of S and T . Let α be a finite sequence over Σ. Then α∗ (resp. α+)
denotes the set of sequences obtained by finite (resp. finite non-zero) repetition of α. If α 6= ǫ,
αω is the sequence obtained by infinite repetition of α. The operators ∗, +, ω are extended to sets
of finite (non-empty) sequences in the natural way.

Language A language over Σ is a subset of Σ∞ = Σ∗∪Σω. An ω-language is a subset of Σω.

Regular expressions/languages A regular expression over a finite alphabet Σ is defined in-
ductively as follows:

1. ∅ is a regular expression (empty set),

2. {ǫ} is a regular expression (empty sequence),

3. ∀a ∈ Σ, a is a regular expression (singleton),

4. if S and T are regular expressions, S ◦ T is a regular expression (concatenation),

5. if S and T are regular expressions, S ∪ T is a regular expression (union, alternative), and

6. if S is a regular expression, S∗ is a regular expression (finite but unbounded repetition,
Kleene star).

In addition, brackets may be used to indicate operator precedence. Each regular expression
induces a language R ⊆ Σ∗, called a regular language. The set of regular languages over Σ is
closed under intersection and complement. We identify a regular expression with the language
it induces.

ω-regular expressions/languages ω-regular expressions extend regular expressions to obtain
languages of infinite words, called ω-regular languages:

1. if S is a regular expression, Sω is an ω-regular expression,

2. if S is a regular expression and T is an ω-regular expression, S ◦ T is an ω-regular
expression, and

3. if S and T are ω-regular expressions, S ∪ T is an ω-regular expression.

ω-regular languages are also closed under intersection and complement.

12 CHAPTER 2. COMMON CONCEPTS AND NOTATION

Lassos Let β, γ with γ 6= ǫ be finite sequences. A sequence α is a 〈β, γ〉-lasso with stem β

and loop γ iff α = βγω. We sometimes write 〈β, γ〉 instead of βγω. A sequence α is lasso-

shaped iff there exist β, γ such that α is a 〈β, γ〉-lasso. The length of a lasso is defined as
|〈β, γ〉| = |β| + |γ|. A lasso 〈β, γ〉 is minimal for α iff α = βγω and ∀β ′, γ′ . α = β ′γ′

ω ⇒
|〈β, γ〉| ≤ |〈β ′, γ′〉|. The type [LMS02] of a 〈β, γ〉-lasso is defined as type(〈β, γ〉) = (|β|, |γ|).
A sequence α can be mapped to a set of types: type(α) = {type(〈β, γ〉) | α = βγω}. We state
the following facts about sequences (proved in appendix A).

Lemma 1 Let 〈β, γ〉 be a minimal lasso for α, 〈β ′, γ′〉 a minimal lasso for α′, and α′′ = α×α′.

Then there are finite sequences β ′′, γ′′ such that 〈β ′′, γ′′〉 is a minimal lasso for α′′, |β ′′| =
max(|β|, |β ′|), and |γ ′′| = lcm(|γ|, |γ′|).†

Lemma 2 Let α = βγω = β ′γ′ω with 〈β, γ〉 minimal for α. Then |β| ≤ |β ′| and |γ| divides

|γ′|.

Corollary 3 Let 〈β, γ〉 be minimal for α. 〈β, γ〉 is unique.

2.3 Kripke Structures as Models

Kripke structure Literature on model checking uses state-labeled transition systems as mod-
els, called Kripke structures [MOSS99, CGP99]. Let AP be a set of atomic propositions. A
Kripke structure over AP is a four tuple K = (S, T, I, L) where S is a finite set of states,
T ⊆ S × S is a transition relation, I ⊆ S is the set of initial states, and L 7→ 2AP is a
labeling of the states with the subset of atomic propositions true in that state. A fair Kripke
structure has an additional finite set of (weak) fairness constraints F = {F0, . . . , Ff} with
Fi ⊆ S for 0 ≤ i ≤ f . A primed state s′ denotes a successor state or next state of some state
s, i.e. (s, s′) ∈ T . T+ denotes the transitive, T ∗ the reflexive, transitive closure of the transition
relation.

Symbolic notation It is often more convenient (e.g., [KPR98]) to construct the state space
of a Kripke structure as the set of valuations of a set of state variables V , with each vi ∈ V

ranging over a set of values Vi. If s and s′ are current and next states, vi(s) and vi(s′) denote the
valuation of vi in s and s′, respectively. When s and s′ are clear from the context, we often write
vi and v′i. vi and v′i are also called current-state variable and next-state variable. When we use
the symbolic notation, we writeK = (V, S, T, I, L, F) where V is the set of state variables, S is
a predicate that restricts the potential valuations of the variables in V (called a state invariant),
and T , I , L, and F retain their usual meaning, but are typically given as predicates over current-
and next-state variables.

Path A non-empty sequence of states π is a path in K if ∀0 < i < |π| . (π[i− 1], π[i]) ∈ T .‡

If π[0] ∈ I , π is initialized. An infinite path is fair if ∀Fi ∈ F . ∀j ≥ 0 . ∃k > j . π[k] ∈ Fi. Π

†lcm(a, b) denotes the least common multiple of a and b.
‡Contrary to some other work in model checking, our definition of path length counts states rather than transi-

tions. While counting transitions is closer to the notion of distance, that is most relevant when weighted transitions
are used. As we do not need weighted transitions and counting states simplifies some of the technical parts (e.g.,
the length of two concatenated sequences of states is simply the sum of their lengths) we prefer to count states
rather than transitions.

2.3. KRIPKE STRUCTURES AS MODELS 13

denotes the set of all initialized paths in K, ΠF ⊆ Π the set of initialized fair paths. Note, that
if F = ∅ every infinite path is considered fair.

Reachability Let s1, s2 ∈ S be states and S1 ⊆ S a non-empty set of states. s2 is reachable

from s1 iff there exists a finite path π inK that starts in s1 and ends in s2: ∃π . |π| <∞∧π[0] =
s1 ∧ π[|π| − 1] = s2. s2 is reachable from a set of states S1 iff it is reachable from some
state in S1. Reachability of a set of states from an individual state or a set of states is defined
correspondingly. The set of reachable states of K, R(K), is defined as R(K) = {s ∈ S |
s is reachable from I}.

Strongly connected component A non-empty set of states S1 ⊆ S is a strongly connected

component (SCC) iff for each pair of states s1, s2 ∈ S1, s2 is reachable from s1. An SCC is
non-trivial iff it consists of more than one state or of a single state with a transition to itself.
A strongly connected component S1 is fair iff it intersects each fairness constraint: ∀0 ≤ i ≤
f . S1 ∩ Fi 6= ∅.

Distance, radius, diameter The distance of a state t from a state s in K, written δ(K, s, t),
is the length of a shortest path in K that starts in s and ends in t: δ(K, s, t) = min{|π| | π[0] =
s ∧ π[|π| − 1] = t}. δ(K, s, t) is defined to be ∞ if t is not reachable from s. The distance of
a state t from a non-empty set of states S1 is the minimal distance of t from all states s ∈ S1.
The radius of a Kripke structure is the maximum distance of any state from the initial states:
r(K) = max{δ(K, I, s) | s ∈ R(K)}. The diameter of a Kripke structure K is the length of a
longest loop-free path in K: d(K) = max{|π| | ∀0 ≤ i < j < |π| . π[i], π[j] ∈ R(K) ∧ π[i] 6=
π[j]}.

Projection Sometimes we only want to take a subset of state variables into account. Let s
be a state over a set of state variables V . Let Ṽ = {vi0 , . . . , vi|Ṽ |−1

} ⊆ V be a subset of state

variables. The projection of s onto Ṽ is defined as s|Ṽ = (vi0(s), . . . , vi|Ṽ |−1
(s)). The definition

is extended to paths and sets of states in the natural way.

Language Each fair path implicitly defines an infinite sequence over 2AP . We write L(π) for
the sequence over 2AP induced by π: α = L(π) ⇔ ∀0 ≤ i . α[i] = L(π[i]). The language of
a Kripke structure K over AP is defined as Lang(K) = {L(π) | π ∈ ΠF}. Sometimes it is
useful to consider the language of all fair paths starting from a particular state s: for s ∈ S, we
define Lang(K, s) = Lang((S, T, {s}, L, F)).

Property, satisfaction Similarly, a property φ is an ω-language over 2AP .§ A property φ

holds universally in a Kripke structure K (with both φ and K over AP), denoted K |=∀ φ, iff
Lang(K) ⊆ φ. It holds existentially, written K |=∃ φ, iff Lang(K) ∩ φ 6= ∅. If K 6|=∀ φ then
each path π ∈ ΠF with L(π) 6∈ φ is a counterexample to the property. A witness is defined
analogously in the existential case. In all subsequent chapters we are only concerned with the
universal case and write |= when we mean |=∀. A property is ω-regular if it is an ω-regular
language.

§See Sect. 2.1.1 for a discussion on that choice.

14 CHAPTER 2. COMMON CONCEPTS AND NOTATION

Sum The sum K3 of Kripke structures K1 and K2 can exhibit the behavior of either of its
constituents, i.e., it is defined with language union in mind. If the sets of atomic proposi-
tions AP 1 and AP 2 of K1 and K2 don’t match, any word in Lang(K3) behaves like a word
in the language of Ki w.r.t. AP i and is free w.r.t. AP 3−i \ AP i for i ∈ {1, 2}. Formally, let
K1 = (S1, T1, I1, L1, F1 = {F1,0, . . . , F1,f1}) and K2 = (S2, T2, I2, L2, F2 = {F2,0, . . . , F2,f2})
be Kripke structures over AP 1 and AP2. The sum K3 = K1 + K2 is defined as K3 =
(S3, T3, I3, L3, F3) over AP 3 = AP 1 ∪ AP 2 where

S3 = S1 × 2AP2\AP1 ∪ 2AP1\AP2 × S2

T3 = {((s1, s), (s
′
1, s

′)) ∈ S3 × S3 | (s1, s
′
1) ∈ T1} ∪

{((s, s2), (s
′, s′2)) ∈ S3 × S3 | (s2, s

′
2) ∈ T2}

I3 = I1 × 2AP2\AP1 ∪ 2AP1\AP2 × I2
L3((s1, s2)) = L1(s1) ∪ s if (s1, s2) ∈ S1 × 2AP2\AP1 ,

s ∪ L2(s2) otherwise, and,
F3 = {F̃1,0, . . . , F̃1,f1, F̃2,0, . . . , F̃2,f2} with

F̃1,j = F1,j × 2AP2\AP1 ∪ 2AP1\AP2 × S2,

F̃2,j = S1 × 2AP2\AP1 ∪ 2AP1\AP2× ∈ F2,j

Synchronous product The synchronous product of Kripke structures is defined over tu-
ples of states, where shared atomic propositions of the component states in a tuple have to
match. Hence, the idea is language intersection. Formally, let K1 = (S1, T1, I1, L1, F1 =
{F1,0, . . . , F1,f1}) and K2 = (S2, T2, I2, L2, F2 = {F2,0, . . . , F2,f2}) be Kripke structures over
AP1 and AP 2. The synchronous product of K1 and K2 is defined as K3 = (S3, T3, I3, L3, F3)
over AP3 = AP 1 ∪ AP 2 where

S3 = {(s1, s2) ∈ S1 × S2 | L(s1) ∩ AP 2 = L(s2) ∩ AP1},
T3 = {((s1, s2), (s

′
1, s

′
2)) ∈ S3 × S3 | (s1, s

′
1) ∈ T1 ∧ (s2, s

′
2) ∈ T2},

I3 = {(s1, s2) ∈ S3 | s1 ∈ I1 ∧ s2 ∈ I2},
L3((s1, s2)) = L1(s1) ∪ L2(s2), and
F3 = {F̃1,0, . . . , F̃1,f1, F̃2,0, . . . , F̃2,f2} with

F̃1,j = (F1,j × S2) ∩ S3,

F̃2,j = (S1 × F2,j) ∩ S3

Reduction to single fairness constraint Some algorithms operate on Kripke structures with a
single fairness constraint. We give two well-known reductions from arbitrary Kripke structures
to ones with only one fairness constraint. The process is called degeneralization. Let K =
(S, T, I, L, F) with F = {F0, . . . , Ff} 6= ∅ be a Kripke structure.

The first reduction is referred to as Choueka’s flag construction [Cho74], see also [Hol03].
It uses f + 1 copies of S. Intuitively, a path is forced to cycle through the copies, switching
from copy i to copy (i+ 1)mod(f + 1) when a state in Fi is seen. It is now sufficient to define
the set of initial states to be the initial states in one of the copies of K and the fair states as the

2.4. LINEAR TEMPORAL LOGIC 15

states in Fi in the i-th copy for some i. Formally: we construct K̃ = (S̃, T̃ , Ĩ, L̃, F̃) with

S̃ = S × {0, . . . , f},

T̃ = {((s, i), (s′, i′)) | (s, s′) ∈ T ∧ i′ = (if s ∈ Fi then (i+ 1) mod (f + 1) else i)},
Ĩ = {(s, 0) | s ∈ I},

L̃((s, i)) = L(s), and
F̃ = {(s, f) | s ∈ Ff}

It’s easy to see that Lang(K) = Lang(K̃).

The previous reduction increases the state space by a factor of O(f). However, lasso-shaped
fair paths may become longer than necessary. This effect can be avoided at the expense of using
O(f) instead of O(log(f)) additional state bits. We refer to the following approach as bit-set

degeneralization.

S̃ = S × IBf+1,

T̃ = {((s, b0, . . . , bf), (s
′, b′0, . . . , b

′
f)) |

(s, s′) ∈ T ∧

(if (
∨f
i=0 ¬bi) then ∀0 ≤ i ≤ f . (bi → b′i) ∧ (b′i → bi ∨ s

′ ∈ Fi)
else ∀0 ≤ i ≤ f . b′i → s′ ∈ Fi)},

Ĩ = {(s, b0, . . . , bf) | s ∈ I ∧ ∀0 ≤ i ≤ f . bi → s ∈ Fi},

L̃((s, b0, . . . , bf)) = L(s), and
F̃ = {(s, 1, . . . , 1)}

Again, we have Lang(K) = Lang(K̃).¶

2.4 Linear Temporal Logic

Syntax We consider specifications given in Propositional LTL with both future and past op-
erators (PLTLB) [Eme90]. The syntax of PLTLB is defined over a set of atomic propositions
AP . Each atomic proposition is a PLTLB formula; if φ and ψ are PLTLB formulae, so are ¬φ
(negation), φ ∨ ψ (disjunction), Xφ (next-time), φ U ψ (strong until), Yφ (strong last-time),
φ S ψ (strong since).

Semantics We define the semantics of formulae recursively on positions of infinite sequences
over 2AP in Fig. 2.1. The language of a formula φ is the set of infinite sequences σ such that
φ holds on σ: Lang(φ) = {σ ∈ (2AP)ω | σ, 0 |= φ}. Hence, a PLTLB formula induces a
property over AP and the definitions of satisfaction in a Kripke structure from Sect. 2.3 apply.
We identify the formula with the property it defines and we write K |=∀/∃ φ also for a PLTLB
formula φ. Via L a formula φ also induces a satisfaction relation on paths of a Kripke structure.
We write K, π, i |= φ iff L(π[i,∞]) |= φ. If K is clear, it may be omitted; 0 is the default
value for i. If only initialized fair paths are taken into account, this provides an alternative route
to the definition of existential and universal validity in a Kripke structure. While the latter is
preferred by some authors, both definitions are equivalent and ours turns out to make some of
the definitions in Sect. 2.7 easier.

¶Note, that forcing bi to true as soon as a fair state is seen —i.e., using bi-implications b ′
i ↔ bi ∨ s′ ∈ Fi,

b′i ↔ s′ ∈ Fi, and bi ↔ s ∈ Fi in T̃ and Ĩ —may not guarantee shortest counterexamples. For an example see
Fig. 2.3. The problem does not arise if the bi are set only when the loop has already started.

16 CHAPTER 2. COMMON CONCEPTS AND NOTATION

σ, i |= p iff p ∈ σ[i] for p ∈ AP

σ, i |= ¬φ iff σ, i 6|= φ

σ, i |= φ ∨ ψ iff σ, i |= φ or σ, i |= ψ

σ, i |= Xφ iff σ, i+ 1 |= φ

σ, i |= φ U ψ iff ∃j ≥ i . (σ, j |= ψ ∧ ∀i ≤ k < j . σ, k |= φ)
σ, i |= Yφ iff i > 0 and σ, i− 1 |= φ

σ, i |= φ S ψ iff ∃0 ≤ j ≤ i . (σ, j |= ψ ∧ ∀j < k ≤ i . σ, k |= φ)

Figure 2.1: The semantics of PLTLB

sub(p) = {p}
sub(¬φ) = {¬φ} ∪ sub(φ)
sub(φ ∨ ψ) = {φ ∨ ψ} ∪ sub(φ) ∪ sub(ψ)
sub(Xφ) = {Xφ} ∪ sub(φ)
sub(φ U ψ) = {φ U ψ} ∪ sub(φ) ∪ sub(ψ)
sub(Yφ) = {Yφ} ∪ sub(φ)
sub(φ S ψ) = {φ S ψ} ∪ sub(φ) ∪ sub(ψ)

Table 2.1: Definition of subformulae

Future and past fragments If the past operators Y and S are excluded, we obtain future LTL
formulae (PLTLF). Similarly, a past formula (PLTLP) has no occurrences of X and U. For this
reason, when we speak about future or past, we include present.

Further operators We have the following usual abbreviations: 1 ≡ p ∨ ¬p (constant true),
0 ≡ ¬1 (constant false), φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ) (conjunction), φ → ψ ≡ ¬φ ∨ ψ (implication),
φ ↔ ψ ≡ (φ → ψ) ∧ (ψ → φ) (equivalence), φ R ψ ≡ ¬(¬φ U ¬ψ) (release), Fφ ≡ 1 U φ

(finally), Gφ ≡ ¬F¬φ (globally), Zφ ≡ ¬Y¬φ (weak last-time), φ T ψ ≡ ¬(¬φ S ¬ψ) (weak

since, “triggered”), Oφ ≡ 1 S φ (once), and Hφ ≡ ¬O¬φ (historically).

Recursive expansion formulae For U and S there exist recursive expansion formulae
(e.g. [KPR98]):

φ = ψ1 U ψ2 : πi |= φ iff (πi |= ψ2) ∨ (πi |= ψ1) ∧ (πi+1 |= φ)
φ = ψ1 S ψ2 : πi |= φ iff (πi |= ψ2) ∨ (i > 0) ∧ (πi |= ψ1) ∧ (πi−1 |= φ)

The expansion of U is not sufficient to guarantee proper semantics: additional measures must
be taken to select the desired fixed point, e.g., by adding fairness constraints.

Sub-/superformula The set of subformulae of a PLTLB formula φ, sub(φ), is defined recur-
sively in Tab. 2.1. Further, if φ ∈ sub(ψ), then ψ is a superformula of φ.

2.5. BÜCHI AUTOMATA 17

Future/past operator depth The future (resp. past) operator depth hf (resp. hp) of a PLTLB
formula φ is the maximal number of nested future (resp. past) time operators in φ:

hf(φ) =





0 iff φ ∈ AP

hf (ψ) iff φ = ◦ψ , where ◦ ∈ {¬,Y}
max(hf(ψ1), hf(ψ2)) iff φ = ψ1 ◦ ψ2 , where ◦ ∈ {∨,S}
1 + hf(ψ) iff φ = Xψ

1 + max(hf (ψ1), hf(ψ2)) iff φ = ψ1 U ψ2

hp(φ) =






0 iff φ ∈ AP

hp(ψ) iff φ = ◦ψ , where ◦ ∈ {¬,X}
max(hp(ψ1), hp(ψ2)) iff φ = ψ1 ◦ ψ2 , where ◦ ∈ {∨,U}
1 + hp(ψ) iff φ = Yψ

1 + max(hp(ψ1), hp(ψ2)) iff φ = ψ1 S ψ2

The authors of [LMS02, BC03] proved independently that a PLTLB property φ can distinguish
at most hp(φ) loop iterations of a lasso. We restate Lemma 5.2 of [LMS02] for PLTLB:

Lemma 4 For any lasso π of type (ls, ll), for any PLTLB property φ with at most hp(φ) nested

past-time modalities, and any i ≥ ls + ll · hp(φ): π, i |= φ⇔ π, i+ ll |= φ.

2.5 Büchi Automata

Büchi automata as operational representations Linear temporal logic formulae are descrip-
tive in nature and, given some experience, are relatively easy to read and write. Büchi automata
[Büc62, Tho90] are one kind of finite state automata whose acceptance condition is designed to
accept infinite words (sequences) over some alphabet. They have a close relation to PLTLB (see
below) and they have an operational character. Therefore, automata on infinite objects [Tho90]
such as Büchi automata are a working horse of many model checking algorithms.

Definition Given our definition of fair Kripke structures, a Büchi automaton that accepts infi-
nite sequences over 2AP is simply a fair Kripke structure.‖ The language accepted by the Büchi
automaton B = (S, T, I, L, F) is Lang(B). An initialized fair path ρ in B with L(ρ) = α is
a run on α. A Büchi automaton is called generalized if |F | > 1, non-generalized or simple
otherwise. Every generalized Büchi automaton can be transformed into a non-generalized one
accepting the same language (see Sect. 2.3).

Union, intersection, complement Typical operations on formal languages and the automata
used to accept them are union, intersection, and complement. Computing language union

(resp. intersection) for a pair of Büchi automata B1, B2 can be achieved by forming their sum
(resp. synchronous product) B1 +B2 (resp. B1 × B2). While Büchi automata are closed under
complement, the construction is exponential in the size of the automaton and usually avoided if
possible (see [Tho90] for references).

‖Typically, automata used as language acceptors are labeled with the their alphabet on transitions rather than
states. However, model checking algorithms are formulated easier using this definition; see also [Pel01].

18 CHAPTER 2. COMMON CONCEPTS AND NOTATION

Emptiness, inclusion Below we will need to determine whether the language accepted by a
Büchi automaton B is empty or not. The language of B = (S, T, I, L, F) is not empty iff there
exists an initialized fair path, or, equivalently, there exists a reachable, fair, non-trivial strongly
connected component. The latter can be determined in linear time in the number of states of the
automaton using Tarjan’s algorithm [Tar72] or nested depth-first search [CVWY92]. Testing
language inclusion between two Büchi automata is PSPACE-hard in general [CDK93].

Relating ω-regular expressions, PLTLB, and Büchi automata It turns out that there is an
intimate relationship between the languages that can be expressed using ω-regular languages,
PLTLB, and Büchi automata. It is this relationship that makes use of Büchi automata in model
checking linear time properties worthwhile. ω-regular expressions and Büchi automata are
expressively equivalent. PLTLB has less expressive power than the other two formalisms: its
expressivity corresponds to that of star-free ω-regular expressions and of counter-free Büchi
automata. Extended versions of linear temporal logic such as [Wol83, SVW87, VW94] raise
the expressive power of linear temporal logic to that of ω-regular expressions and of Büchi
automata. For more explanation, proofs, and references see, e.g., [Eme90, Tho90].

2.6 Translating PLTLB Formulae into Büchi Automata

Motivation Leveraging the operational character of Büchi automata for verification of PLTLB
formulae requires a translation from a PLTLB formula φ into a Büchi automaton Bφ such that
Lang(φ) = Lang(Bφ). Wolper, Vardi, and Sistla were the first to show that this is possible and
to provide a corresponding algorithm [WVS83, VW94]. Below we follow the construction of
Kesten et al. [KPR98].∗∗

Construction A Büchi automaton Bφ
KPR for a PLTLB formula φ is constructed symbolically

as Bφ
KPR = (V φ, Sφ, T φ, Iφ ∧ xφ, L

φ, F φ) over the set of atomic propositions AP φ = {p |
p is an atomic proposition in sub(φ)}. All state variables are Boolean, V φ, Sφ, T φ, Iφ, and F φ

are recursively defined in Tab. 2.2, and Lφ(s) = {p ∈ APφ | xp(s) = 1}. For a uniform
explanation, Tab. 2.2 uses state variables also for Boolean connectives. In an implementation
for BDDs these are typically replaced by macros [KPR98, CGH97, Sch01]. Intuitively, each
state variable ofBφ

KPR corresponds to a subformulaψ of φ. xψ is constrained such that xψ is true
at some state of an initialized fair path π in Bφ

KPR iff ψ is true in that state: ∀π ∈ ΠF . ∀ψ ∈
sub(φ) . ∀0 ≤ i . xψ(π[i]) ⇔ π, i |= ψ. For that purpose, the definitions of the Boolean
connectives and X and Y in Tab. 2.2 directly follow the semantics of PLTLB in Fig. 2.1. For
U and S the recursive expansion formulae are used. The fairness properties ensure that the
right subformula of an U eventually becomes true. For more explanations and formal proofs of
correctness see [KPR98, CGH97, LPZ85].

Complexity and application Note that although Bφ
KPR has exponentially many states in |φ|,

a symbolic description has length O(|φ|) and can be constructed in O(|φ|) time and space.
Hence, the construction is often used in symbolic model checking (which is the focus of our

∗∗Similar constructions have appeared before but their presentation is closest to our definitions.

2.7. DEFINING SAFETY AND LIVENESS 19

definition
ψ

V ψ = Sψ = Tψ = Iψ = Fψ =

p {xp} xp ↔ p 1 1 ∅

¬ψ1 V ψ1 ∪ {xψ} Sψ1 ∧ (xψ ↔ ¬xψ1
) Tψ1 Iψ1 Fψ1

ψ1 ∨ ψ2 V ψ1 ∪ V ψ2 ∪ {xψ}
Sψ1 ∧ Sψ2∧
(xψ ↔ xψ1

∨ xψ2
)

Tψ1 ∧ Tψ2 Iψ1 ∧ Iψ2 Fψ1 ∪ Fψ2

Xψ1 V ψ1 ∪ {xψ} Sψ1 Tψ1 ∧ (xψ ↔ x′
ψ1

) Iψ1 Fψ1

ψ1 U ψ2 V ψ1 ∪ V ψ2 ∪ {xψ} Sψ1 ∧ Sψ2
Tψ1 ∧ Tψ2∧
(xψ ↔ xψ2

∨ xψ1
∧ x′

ψ
)

Iψ1 ∧ Iψ2
Fψ1 ∪ Fψ2∪
{{¬xψ ∨ xψ2

}}

Yψ1 V ψ1 ∪ {xψ} Sψ1 Tψ1 ∧ (x′
ψ
↔ xψ1

) Iψ1 ∧ (xψ ↔ 0) Fψ1

ψ1 S ψ2 V ψ1 ∪ V ψ2 ∪ {xψ} Sψ1 ∧ Sψ2
Tψ1 ∧ Tψ2∧
(x′
ψ

↔ x′
ψ2

∨ x′
ψ1

∧ xψ)
Iψ1 ∧ Iψ2∧
(xψ ↔ xψ2

)
Fψ1 ∪ Fψ2

Table 2.2: Property-dependent part of a Büchi automaton constructed with KPR [KPR98]

work), while in explicit state model checking constructions that produce smaller automata are
preferred. For more discussion and references see Sect. 5.5.

2.7 Defining Safety and Liveness

The major difference between a thing that might go wrong and a thing that cannot

possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it

usually turns out to be impossible to get at or repair.

Douglas Adams, Mostly Harmless

All living things are afraid to die. — No, you’re exactly wrong, the only truly alive

beings are those unafraid to die.

David Zindell, Neverness

Formal definition of safety Alpern and Schneider [AS85] were the first to formally charac-
terize both, safety and liveness properties (for an informal explanation see Sect. 1.1). The basis
of their definition of a safety property is the idea that if a “bad thing” has happened, that must
be irremediable. Hence, a property φ over 2AP is a safety property iff each sequence not in φ
has a finite bad prefix, i.e., a finite prefix that cannot be extended to a sequence in φ:

φ is a safety property iff (∀σ . σ 6∈ φ) ⇔ (∃0 ≤ i . ∀τ ∈ (2AP)ω . σ[0..i] ◦ τ 6∈ φ)

Note that, by this definition, the “bad thing” must be discrete and there is an identifiable point
at which it can be recognized [AS85]. Now it is easy to see why bounded liveness properties
are actually safety properties: passing of the bound without the “good thing” having happened
constitutes a bad thing and is beyond remedy.

Formal definition of liveness Key to Alpern and Schneider’s definition of a liveness property
is the idea that every finite prefix can be extended to a sequence in φ— otherwise that finite pre-
fix would be a bad prefix and, hence, the property would also have at least partial characteristics
of a safety property. Formally:

φ is a liveness property iff ∀σ ∈ (2AP)∗ . ∃τ ∈ (2AP)ω . σ ◦ τ ∈ φ

Note that the “good thing” need not be discrete.

20 CHAPTER 2. COMMON CONCEPTS AND NOTATION

Justification and consequences Alpern and Schneider argue [AS85] that no definition of a
liveness property can be more permissive than theirs: any property failing the above definition
must have a finite prefix that cannot be extended to be in the property; however, this is by
definition a bad prefix. They further give a topological interpretation where safety properties are
closed sets and liveness properties are dense sets. Based on that they show that every property
is the intersection of a safety and a liveness property. The only property that is both a safety
and a liveness property is the true property (2AP)ω. In a subsequent paper [AS87] the same
authors give an equivalent characterization in terms of Büchi automata. It allows to check
whether a property given as Büchi automaton is a safety or a liveness property. Furthermore,
they show how to construct Büchi automata corresponding to a safety and liveness property
whose intersection is the original property. The definition of Alpern and Schneider has been
widely adopted (e.g., [KV01, Pel01, Hol03]), refined into a temporal hierarchy [MP90], and
generalized using a lattice-theoretic approach to encompass branching time [MT03] and using
Heyting algebras to handle finite behaviors [Mai04].

Alternative definitions Lamport provided the first formal definition of safety [Lam85]. His
definition is based on the idea that for a safety property φ, an infinite path satisfies φ iff each
finite prefix does not violate φ. He restricts his definition to stuttering-invariant [Lam83] prop-
erties; other than that, the definition is equivalent to that of Alpern and Schneider [AS85], see
[ADS86]. The definition [AS85] of safety properties coincides with Emerson’s limit closed
properties [Eme83]. Lichtenstein et al. provide a syntactic definition of safety properties using
past operators [LPZ85], which is equivalent to [AS85]: every formula of the form Gφ, where
φ is a past formula, describes a safety property. They also give a syntactic definition of liveness
properties, which is, however, more general than [AS85]. Sistla [Sis94] gives syntactic charac-
terizations of several classes of safety properties using only future operators, the most general
being equivalent to [AS85] for properties that can be expressed in PLTLB. He also syntactically
characterizes some classes of liveness and fairness properties. For a (somewhat dated) survey
see [Kin94].

Recognizing bad prefixes Kupferman and Vardi investigated how the knowledge that a prop-
erty is a safety property can be used in verification of that property [KV01]. According to our
definition (Sect. 2.3), a counterexample to some property φ in a model M is an infinite path π
in M that violates φ. If φ is a safety property, a (finite) bad prefix of a counterexample focuses
on the violating part and, hence, should be more useful to the developer. Kupferman and Vardi
show how to construct an automaton on finite words, which accepts precisely the set of shortest
bad prefixes for a safety property φ. They call such an automaton tight for φ. The construc-
tion involves an exponential blowup when starting from a Büchi automaton accepting ¬φ and
a corresponding double exponential blowup when φ is given as PLTLB formula. In the light of
that blowup the requirement to accept every violating prefix is lessened: an automaton on finite
words is fine for φ if it accepts at least one bad prefix for each π 6∈ φ.

Kupferman and Vardi then introduce the notion of an informative bad prefix. Intuitively,
an informative bad prefix contains all the information to see why the prefix is bad for a safety
formula φ, it “tells the whole story” [KV01]. The idea of the formal definition of that notion
is that the satisfaction of the formula ¬φ on a bad prefix π can be established by proceeding
as in Fig. 2.1 without ever having to refer beyond the last state of π. Safety formulae are then
classified as intentionally safe iff every bad prefix is informative, as accidentally safe iff every

2.8. MODEL CHECKING LINEAR TIME PROPERTIES 21

π 6∈ φ has at least one informative bad prefix, and as pathologically safe otherwise. The latter
contain redundancy and are not expected to occur often in practice. There exists an automaton
B on finite words exponential in the size of a PLTLB formula φ such that B is tight for φ if φ is
intentionally safe and fine for φ if φ is accidentally safe.

2.8 Model Checking Linear Time Properties

2.8.1 Basics

Model checking problem Given a model of a system M as Kripke structure and a property
φ as PLTLB formula or as Büchi automaton, both over a set of atomic propositions AP , the
model checking problem is to determine whether M |=∀ φ.

Automata-theoretic approach for linear time We have already seen that Büchi automata can
represent both, model and PLTLB formula. Let M be a model and φ be a PLTLB formula over
a common set of atomic propositions AP , and let Bφ, Bφ, and B¬φ be Büchi automata where
Bφ accepts φ, Bφ is the complement of Bφ, and B¬φ accepts ¬φ. This leaves the following

choices to solve the problem whether M |=∀ φ: Lang(M)
?
⊆ Lang(Bφ), Lang(M ×Bφ)

?
= ∅,

or Lang(M × B¬φ)
?
= ∅. In the light of the complexities hinted at in Sect. 2.5 the last choice

is preferable. Model checking for a model M and a PLTLB formula φ can be done in time
O(|M | · 2|φ|), where |M | is the number of states in M and |φ| is the length of φ, as follows
[VW86]:
1. negate φ: O(1)
2. construct B¬φ: O(2|φ|)
3. construct M ×B¬φ: O(|M | · |B¬φ|)
4. check whether Lang(M ×B¬φ) = ∅: O(|M | · |B¬φ|)

If the product automaton has only one fairness constraint, step 4 corresponds to checking
whether there is a fair state that is both, reachable from an initial state and reachable from
itself. Such a state is termed repeatedly reachable.

Model checking safety properties As noted in Sect. 2.7, for each safety property φ there
exists an automaton on finite words that recognizes the bad prefixes of φ. This allows for a
simpler procedure to model check safety properties [KV01]: Transform the Büchi automaton
representing the model into an automaton on finite words by disregarding the set of fairness
constraints and making every state accepting. Then build the product with the automaton rec-
ognizing the bad prefixes. Finally, determine whether an accepting state (also called a bad state)
in the product is reachable.

Reachability and repeated reachability The last two paragraphs justify the notion that safety
properties can be checked by reachability while general linear properties require repeated reach-
ability.

22 CHAPTER 2. COMMON CONCEPTS AND NOTATION

2.8.2 Lasso-shaped counterexamples

Existence of lasso-shaped counterexamples From the automata-theoretic approach it’s easy
to see that, if a counterexample π′ to a PLTLB property φ exists in a model M given as Kripke
structure, then there also exists a lasso-shaped counterexample π to φ in M [VW86].†† The
length of a lasso-shaped counterexample π is defined as the length of its minimal lasso.

Shortest counterexamples Given that

1. we are only interested in finitely representable counterexamples,

2. every failing PLTLB property in a given Kripke structure M has a lasso-shaped coun-
terexample, and

3. lasso-shaped counterexamples are returned by most model checking algorithms for
PLTLB,

we adopt the following definition from Clarke et al. [CGMZ95]: a shortest counterexample to
a PLTLB property φ in a Kripke structure M is one that has a most compact representation as
a lasso. Formally, let M = (S, T, I, L, F) be a Kripke structure, let φ be a PLTLB property. A
path α in M is a shortest counterexample for φ in M iff

1. α 6|= φ

2. ∃β, γ . (α = βγω ∧ ∀β ′, γ′ . (β ′γ′
ω ∈ ΠF ∧ β ′γ′

ω 6|= φ⇒ |〈β, γ〉| ≤ |〈β ′, γ′〉|))

Discussion This definition is not optimal. First, an early position of the violation (if that can
be clearly attributed) need not coincide with the least number of states required to close a loop.
Second, apart from length, ease of understanding is not a criterion either. The first problem is
most relevant for properties that also have finite bad prefixes, i.e., properties that are a subset of
a safety property [KV01]. Finding the shortest bad prefix for safety formulae can be done using
the (doubly exponential) method proposed in [KV01]. For solutions to the second problem see
the discussion of related work in Chap. 3.

2.8.3 Model checking using BDDs

ROBDDs Binary decision diagrams [Bry86] represent a Boolean function as directed acyclic
graph where internal nodes are marked with variables, outgoing edges are marked with potential
values 0 and 1 of a variable, and terminal nodes contain the result 0 or 1 of a function application.
If common subgraphs are shared, the BDD is reduced. It is ordered, if the sequence of nodes in
all paths from a root to a leaf follows the same variable order. We assume reduced ordered BDDs
(ROBDDs) with a common variable order for all BDDs involved. For a given variable order,
ROBDDs are a canonical normal form for Boolean functions. Operations include Boolean
operations, (partial) function evaluation, and function composition.

††Sistla and Clarke proved that fact before [SC85].

2.8. MODEL CHECKING LINEAR TIME PROPERTIES 23

Importance of variable order The actual size of a BDD representing a given function and,
hence, the time needed to perform operations involving that BDD, depend to a large extent on
the variable order used. The difference in size between an optimal and a non-optimal variable
order may be exponential [Bry86]. Finding an optimal variable order is a coNP-complete prob-
lem [Bry86]. For some Boolean functions the smallest BDD has size exponential in the number
of variables [Bry91].

Reachability and repeated reachability with BDDs BDD-based symbolic model checking
represents both, transition relation and sets of states (more precisely, their characteristic func-
tions), as BDDs. Given a set of states S1 as BDD one can compute BDDs representing the
sets of states reachable from S1 in one step forward (forward image) or backward (backward

image). The set of reachable states can then simply be constructed by starting from the initial
states and repeatedly computing forward images until a fixed point is reached. This corresponds
to a breadth-first traversal of the state graph. A check whether a bad state has been reached can
be performed after each iteration. The number of forward image operations to determine reach-
ability of a bad state is the minimum of the radius of the state graph and the distance of the bad
state closest to the initial states. Repeated reachability is more involved, it requires two or more
fixed point computations.

Forward model checking The standard method to evaluate CTL formulae in a BDD-based
model checker is based on backward image computation [McM93]. Experimental evidence
shows that computing forward images performs better than computing backward images
[INH96]. Triggered by that observation Iwashita et al. propose forward model checking, which
tries to replace backward image computations with forward image computations in the evalu-
ation of a CTL formula [INH96]. Henzinger et al. show that all ω-regular properties can be
handled using forward image computations only, while some CTL formulae require backward
image computation [HKQ98]. Biere et al. then suggest a symbolic tableau-based method for
forward model checking of PLTLF, which combines depth- and breadth-first search [BCZ99].
Forward model checking inherently only traverses the reachable state space; this can also be
accomplished with backward image computation by computing the set of reachable states first,
but that incurs an additional risk of state space explosion. As stated in the previous paragraph
checking reachability requires forward image computation only.

2.8.4 Bounded model checking using SAT solvers

Idea, Process In SAT-based bounded model checking [BCCZ99, BCC+99, BCRZ99], the
model checking problem M |=∀ φ is translated into a sequence of propositional formulae of the
form |[M,φ, k]| in the following way: |[M,φ, k]| is satisfiable iff an informative bad prefix or a
lasso-shaped counterexample π of length k exist. In the case of a lasso-shaped counterexample,
a loop is assumed to be closed between the last state π[k − 1] and some successor π[l + 1] of a
previous occurrence of that last state π[l] = π[k − 1]. The resulting formulae are then handed
to a SAT solver for increasing bounds k until either a counterexample is found, absence of a
counterexample is proved, or a user defined resource threshold is reached. Note, that check-
ing reachability and repeated reachability is usually combined in SAT-based bounded model
checking.

24 CHAPTER 2. COMMON CONCEPTS AND NOTATION

Custom encodings versus Büchi automata In principle, the automata-theoretic approach
can be used to encode |[M,φ, k]|; however, first implementations used a custom encod-
ing [BCCZ99, BC03]. This proved difficult to implement in an optimal fashion and to
extend for completeness. More recent work uses either simplified, recursive encodings
[CRS04, LBHJ04, LBHJ05, HJL05], which are optimized for BMC but show some similar-
ity to the Büchi automata of [KPR98], or uses Büchi automata directly [CKOS05, AS04].

Incremental BMC Incremental bounded model checkers, introduced by [Sht01, WKS01]
allow the SAT solver to reuse partial results obtained for some bound k1 when checking k2 >

k1, often giving significant speed-ups. Recent implementations in NuSMV include [ES03] for
invariants and [HJL05] for PLTLB.

2.8.5 Abstraction

Existential abstraction To obtain an abstract Kripke structure M̃ = (S̃, T̃ , Ĩ , L̃, F̃) from
some concrete modelM = (S, T, I, L, F), abstraction typically introduces a surjective mapping
h from the concrete state space S to an abstract set of states S̃ where S̃ has fewer states than
S [CGL94]. If the abstraction is existential, there is a transition between abstract states s̃, s̃′ if
there exist concrete states s, s′ such that h(s) = s̃, h(s′) = s̃′, and (s, s′) ∈ T . Similarly, s̃ is
initial (resp. ∈ F̃i), if s̃ = h(s) for some initial state s (resp. for some s ∈ Fi). Note that this
formulation requires the concrete transition relation to obtain the abstract transition relation. As
a representation of the concrete transition relation as a BDD might already require too much
memory further approximations are performed to obtain the abstract transition relation directly
from a relational description of the original model. Both, the existential abstraction and the
(suitably chosen) further approximations only add behavior to the original Kripke structure.
Hence, if a property φ holds universally in the abstracted and approximated model, it is known
to hold universally in the concrete model [CGL94].

Universal abstraction The definition of universal abstraction can be obtained by replacing
existential with universal quantifiers in the definition of existential abstraction. Universal ab-
straction only restricts behavior of the original Kripke structure and, therefore, can be used
to establish that a property φ holds existentially. We do not use universal abstraction in this
dissertation and refer to existential abstraction when we speak of abstraction.

Abstraction refinement Only if a property φ can be proven to hold universally in the abstract
Kripke structure M̃ the result directly transfers to the concreteM . If φ does not hold universally
in the abstract, a concrete counterexample can sometimes be reconstructed from an abstract one
and a definite result is obtained for M . Otherwise the abstraction needs to be refined. Figure
2.2 shows that scheme, which has been proposed in similar form by Balarin and Sangiovanni-
Vincentelli [BSV93] and Kurshan [Kur94]. The algorithm terminates provided that a strict
refinement can always be obtained in line 9 and the maximal number of successive refinements
in line 9 is finitely bounded (and, of course, “elementary” steps in lines 1, 3, and 6 terminate).

2.8. MODEL CHECKING LINEAR TIME PROPERTIES 25

Require: concrete model M and property φ
Ensure: return 1 iff M |=∀ φ

1: construct initial abstraction M̃ , φ̃
2: loop

3: model check M̃
?

|=∀ φ̃

4: if M̃ |=∀ φ̃ then

5: return 1
6: else if counterexample has concrete counterpart then

7: return 0
8: else

9: refine M̃ , φ̃ based on information obtained in line 3
10: end if

11: end loop

Figure 2.2: A general scheme for abstraction refinement

{F }0

{F }1

{F }0

s0 s1

s2

s3

Figure 2.3: This example shows that the variant of bit-set degeneralization that forces bi to true
as soon as a state in Fi is seen may not give shortest counterexamples. The example
has two sets of fairness constraints F0 and F1. If b0 is forced to true in the initial
state s0, a loop in the degeneralized automaton can only be closed when s2 is seen
for the second time. Specifically, the resulting fair lasso is (s0s1)(s2s3s1)

ω, while
the shortest fair lasso is (s0)(s1s2s3)

ω.

3
Symbolic Loop Detection for

Finite State Systems

If you try and take a cat apart to see how it works, the first thing you have on your

hands is a non-working cat. Life is a level of complexity that almost lies outside our

vision; it is so far beyond anything we have any means of understanding that we just

think of it as a different class of object, a different class of matter; ’life’, something

that had a mysterious essence about it, was god given, and that’s the only explanation

we had.
Douglas Adams

In this chapter we present the state-recording translation from repeated reachability to reach-
ability, which is the main idea of this dissertation. Section 3.1 introduces a translation from
simple liveness to safety. This is extended to fair repeated reachability and formalized in 3.2.
Its complexity is analyzed in Sect. 3.3. Section 3.4 explains how shortest lasso-shaped coun-
terexamples can be found. Section 3.5 discusses related work and Sect. 3.6 sums up.

3.1 Translating Simple Liveness into Safety

3.1.1 Intuition

Lasso-shaped counterexamples A counterexample trace for a simple liveness property Fp

is an infinite path where p never holds along the path. If the number of states in a system
is finite, a counterexample trace to a simple liveness property can be assumed to be lasso-
shaped: it consists of a finite prefix and an infinitely repeating loop as shown in Fig. 3.1 (see
also Sect. 2.8.2). Such a trace can always be derived from an arbitrary infinite trace by inserting
a back loop from the first state occurring the second time. If p was false for every state in the
original trace, it will also hold nowhere in the lasso-shaped trace.

0s ls k−1s

Figure 3.1: A generic lasso-shaped counterexample

27

28 CHAPTER 3. SYMBOLIC LOOP DETECTION FOR FINITE STATE SYSTEMS

Special-purpose algorithms Thus, simple liveness properties Fp of finite state systems can
be verified by finding all lasso-shaped traces and checking whether p has been true some-
where on each trace once the loop is closed. Explicit state algorithms using Büchi Automata
[CVWY92] and unfolding liveness properties in SAT-based symbolic bounded model checking
[BCCZ99] are examples of model checking algorithms that use this observation. Instead of
implementing this observation in a special purpose algorithm we show in the following how it
can be used to transform a model and a simple liveness property such that reachability checking
is sufficient to verify that property.

Translating bounded liveness In model checking applications it is often observed that a sim-
ple liveness property Fp can further be restricted by adding a bound k on the number of steps
within which the body p has to hold. The bound is either given in the specification or may be
determined by manual inspection. A bounded simple liveness property F

kp is defined as

F
kp ≡ p ∨Xp ∨ · · · ∨ X

kp, with X
ip ≡ X · · ·X︸ ︷︷ ︸

i−times

p (3.1)

and clearly F
kp implies Fp. The reverse direction is also true if the bound is chosen large

enough, in particular as large as the number of states |S| in the model, since all states are
reachable in |S| steps. A naive translation would just exchange Fp for F

kp with k the number
of states. However, the expansion of F

kp in (3.1) results in a very large formula, especially in
the context of symbolic model checking.

Translating unbounded liveness Assume instead, that the model is extended with a variable
looped that indicates when a loop is closed and with a variable live that remembers whether p
has already been true. Then, the simple liveness property Fp in the original model is equivalent
to the safety property G(looped → live) in the extended model. Implementing live is easy. In
the rest of this section two implementations for looped are discussed. The first counter-based

translation is based on the verification of bounded liveness alone as described above. A main
contribution of this dissertation is the second state-recording translation, which can be applied
to arbitrary finite state systems and ω-regular properties and can still be verified efficiently in
many cases.

Example As an example, consider the 2-bit counter with self-loops in Fig. 3.2. There, F s =
3 does not hold. A counterexample is given by π = 0, 1, 2, 2, Figure 3.3 shows a model
of the counter in the input language of the model checker NuSMV [CCG+02] in its original
form and with the counter-based and the state-recording translation applied. Note that all three
models explicitly enumerate all possible values of the counter. While this makes the description
easier to understand, it is exponential in the number of bits of the counter. A linear description
can be obtained by using a binary encoding of s in the declaration of the variables and in the
transition relation.

Remarks Note, that in Fig. 3.3 only the specifications are not supported by the input language
of the original SMV [McM93], all other parts are compatible. Our reduction can be used in
every model checker that supports verifying invariants. In the original SMV these are expressed
as AG invariant and, hence, we could have written AG (looped → live). We use the dialect to

3.1. TRANSLATING SIMPLE LIVENESS INTO SAFETY 29

0 1 2 3

Figure 3.2: A 2-bit counter with self-loops

MODULE main

VAR
 s: {0, 1, 2, 3};
ASSIGN
 init(s) := 0;
 next(s) := case
 s = 0: {1,s};
 s = 1: {2,s};
 s = 2: {3,s};
 s = 3: {0,s};
 esac;

LTLSPEC
 F (s = 3)

MODULE main

-- unmodified part of the
-- original system
VAR
 s: {0, 1, 2, 3};
ASSIGN
 init(s) := 0;
 next(s) := case
 s = 0: {1,s};
 s = 1: {2,s};
 s = 2: {3,s};
 s = 3: {0,s};
 esac;

-- lasso detection part
VAR
 counter: 0..4;
 live : boolean;

ASSIGN
 init(counter) := 0;
 next(counter) := case
 counter < 4: counter + 1;
 1 : counter;
 esac;

 init(live) := 0;
 next(live) := live | (s = 3);

DEFINE
 looped := (counter = 4);

-- transformed specification
INVARSPEC
 looped -> live;

MODULE main

-- unmodified part of the
-- original system
VAR
 s: {0, 1, 2, 3};
ASSIGN
 init(s) := 0;
 next(s) := case
 s = 0: {1,s};
 s = 1: {2,s};
 s = 2: {3,s};
 s = 3: {0,s};
 esac;

-- lasso detection part
VAR
 save : boolean;
 hat_s: {0, 1, 2, 3};
 lo : {st,lb,lc};
 live : boolean;

ASSIGN
 init(lo) := st;
 next(lo) := case
 (lo = st) & save : lb;
 (lo = lb) & (hat_s = s): lc;
 1 : lo;
 esac;

 init(hat_s) := 0;
 next(hat_s) := case
 (lo = st) & save: s;
 1 : hat_s;
 esac;

 init(live) := 0;
 next(live) := live | (s = 3);

DEFINE
 looped := (lo = lc);

-- transformed specification
INVARSPEC
 looped -> live

(a) original (b) counter-based (c) state-recording

Figure 3.3: Translating simple liveness: NuSMV code of 2-bit counter with self-loops

30 CHAPTER 3. SYMBOLIC LOOP DETECTION FOR FINITE STATE SYSTEMS

emphasize the difference between the original (PLTLB) and transformed (invariant) versions.
Another reason is to stick to the linear view throughout this dissertation. Finally, while the
PLTLB property F s = 3 is equivalent∗ to the CTL property AF s = 3, we will later also
use PLTLB specifications that cannot be expressed in CTL, which is the only property language
directly supported by SMV.

3.1.2 Counter-Based Translation

Intuition Instead of detecting a loop when it is closed, the counter-based translation infers
that a loop should have occurred once a sufficient number of transitions have been performed.
A counter is added to the model that is incremented at each transition and sets looped to true
once it reaches a predefined bound.

Example In Fig. 3.3 (b) the state variables and the transition relation of the original model are
left unchanged. The lasso detection part implements a counter for the number of transitions
performed and adds the flag live. Finally, the specification is modified as described.

Generalization A more general form of the counter-based translation can use a flag finished

instead of looped. That flag becomes true once a sufficient number of transitions has been
performed to ensure that p would have occurred on a path if Fp were true.

3.1.3 State-Recording Translation

Intuition In principle, state space search is memory-less. Detecting a loop as soon as it is
closed can not be expressed directly in temporal logic. Instead, we add copies of all variables to
the model, enabling us to save a state that has previously been visited. Reoccurrence of a state
can now be detected by comparing the present state to the saved copy. As the start of a loop is
not known beforehand, an oracle is used to indicate when a copy of the present state should be
saved.

Example The counter-based and the state-recording translation differ only in the lasso detec-
tion part, see Fig. 3.3 (c). Here, it consists of an oracle save, a copy hat_s of the original state
variables s, and an additional state variable, lo (for lasso) to store the current position on the
presumed lasso. lo has the value st for stem up to and including the point when save becomes
true for the first time. The value of lo changes to lb (loop body) once a state has been saved. It
changes to lc (loop closed) after the second occurrence of the saved state has been detected. So
far, the value of lo is only used to prevent overwriting the copy of the state variables.

Remark When the loop closing condition looped becomes true, the current state has been
visited earlier. Therefore, the transformed specification does not need to take the current value
of the property p into account. It suffices that the live flag remembers whether p has been
true in the past. Figure 3.4 illustrates a run of the state-recording translation for the generic
counterexample from Fig. 3.1.

∗We assume that both formulae have to be true in all initial states.

3.1. TRANSLATING SIMPLE LIVENESS INTO SAFETY 31

save

state

state
saved

+1l+1l

0

s s

0 0

s

0 0 0

s

save

hat_s

live

oracle
s

st st st lb lb

s s

0

s

lb lc

detect

loop

0 0 0 00 0

lo

s s s s

1

lk−1

lll

l

l

10

s^ s^ s^000

is live

true?

Figure 3.4: A run of the state-recording translation for the generic counterexample

3.1.4 Comparison

Finding bounds To work correctly, the counter-based translation requires coming up with a
large enough bound. A trivial bound valid for arbitrary models is the overall number of states
in the original model: any path of that length must include a loop. However, this requires an
impractically large number of iterations in a realistic model as the property can only be checked
when the counter has reached its bound. For most models and properties smaller bounds exist
that still ensure correct results. A smaller bound adds fewer state bits and should lead to faster
verification. Presently, a practically efficient method to compute a minimal bound is not known
for arbitrary models and properties [CKOS05].

Shortest counterexamples Furthermore, the counter-based translation will, in general, not
produce shortest counterexamples. Later in this chapter we show that the state-recording trans-
lation has this capability.

Generalization The counter-based translation gives no indication of a loop start. This makes
generalization to arbitrary properties more difficult: the standard (automata-theoretic) approach
to verify ω-regular properties using Büchi automata can not be applied directly, as it requires
checking that a fair state has been seen on the loop.

One step ahead In our example of the counter-based translation in Fig. 3.3 (b), the last state
in the loop must have already been seen and does not add new information regarding the truth of
the liveness property. Therefore, the result could be determined one cycle before this bound is
actually reached. This optimization has not been applied in Fig. 3.3 (b) to keep the presentation
of both translations uniform. However, if an optimal bound were known for a model M and a
property Fp, the counter-based translation could stop one step earlier than the state-recording
translation if M |= Fp.

Focus As it does not need bounds and is easier to generalize, we concentrate on the state-
recording translation below.

32 CHAPTER 3. SYMBOLIC LOOP DETECTION FOR FINITE STATE SYSTEMS

3.2 Translating Fair Repeated Reachability

3.2.1 First Attempt

Intuition Model checking of ω-regular properties can be done by detecting fair loops in the

product of the model and a Büchi automaton for the negation of the property (see Sect. 2.8.1).

A fairness condition is a set of states in the original system. A path is fair if it passes infinitely

often through a state in each fairness condition. Recognizing fair loops in the state-recording

translation is therefore similar to detecting that a simple liveness property has been fulfilled: an

additional state variable f (f air) is introduced that observes similar to live whether one of its

fair states has been seen. The invariant to check in the transformed system then becomes that a

fair loop must never be closed.

Example Figure 3.5 shows an example. The counter is the same as in Fig. 3.3 but the spec-

ification now reads F G s 6= 0. The negation of this is G F s = 0, hence, a counterexample

needs to see s = 0 infinitely often. We define the set of fair states to be {s = 0}. The part to

save a state is unchanged. f has replaced live. It is initially set to false and becomes true when

a fair state occurs on the loop, that is, when lo has the value lb. The transition of lo to lc now

requires that f is true. I.e., l = lc now signals detection of a fair loop.

3.2.2 Optimization

For Theory

Problems of the first attempt The translations shown in Figs. 3.3 (c) and 3.5 (b) recognize

closure of a loop only with one step delay. In addition, they are forced to start on the stem.

Hence, a lasso-shaped counterexample of length 1 will be signalled only at step 3. Figure 3.5

(c) shows an optimized version.

Optimized version The optimized state-recording translation is expressed as predicates on

the initial states and the transition relation. The oracle save is not needed explicitly: it is re-

placed by the (now non-deterministic) transition of lo from st to lb. The set of initial states

consists of two subsets. The first subset starts on the stem (lo = st). Correspondingly, f is

false. The copy of the state variables of the original model are initialized with a default value.

The second subset immediately starts the loop body (lo = lb), saves the initial state, and may

set f to true if the initial state is fair. The transition relation is partitioned into subsets marked

(1) – (5). Subset (1) covers the case on the stem. Fair states are irrelevant and the copies of their

state variables keep their values. Subset (2) saves a state and enters the loop. Occurrence of a

fair state may be remembered. Transitions from the third set (3) are taken as long as no second

occurrence of the stored state or no fair state has been recorded. When f is true, a second oc-

currence is finally detected by a transition in (4). After that only transitions from the last set (5)

are taken.

Remarks This version is the basis of the formalization of the translation. It detects presence

of a fair loop at loop closure. Note also that neither a default initial value for the copies of the

3.2. TRANSLATING FAIR REPEATED REACHABILITY 33

MODULE main

VAR
 s: {0, 1, 2, 3};
ASSIGN
 init(s) := 0;
 next(s) := case
 s = 0: {1,s};
 s = 1: {2,s};
 s = 2: {3,s};
 s = 3: {0,s};
 esac;

LTLSPEC
 F G (s != 0)

MODULE main

-- unmodified part of the
-- original system
VAR
 s: {0, 1, 2, 3};
ASSIGN
 init(s) := 0;
 next(s) := case
 s = 0: {1,s};
 s = 1: {2,s};
 s = 2: {3,s};
 s = 3: {0,s};
 esac;

-- fair lasso detection part
VAR
 save : boolean;
 hat_s: {0, 1, 2, 3};
 lo : {st,lb,lc};
 f : boolean;

ASSIGN
 init(lo) := st;
 next(lo) := case
 (lo = st) & save : lb;
 (lo = lb) & (hat_s = s) & f: lc;
 1 : lo;
 esac;

 init(hat_s) := 0;
 next(hat_s) := case
 (lo = st) & save: s;
 1 : hat_s;
 esac;

 init(f) := 0;
 next(f) := f | (lo = lb) & (s = 0);

-- transformed specification
INVARSPEC
 !(lo = lc)

MODULE main

-- unmodified part of the
-- original system
VAR
 s: {0, 1, 2, 3};
ASSIGN
 init(s) := 0;
 next(s) := case
 s = 0: {1,s};
 s = 1: {2,s};
 s = 2: {3,s};
 s = 3: {0,s};
 esac;

-- fair lasso detection part
VAR
 hat_s: {0, 1, 2, 3};
 lo : {st,lb,lc};
 f : boolean;

DEFINE
 hat_s_0 := 0;

INIT
 (lo = st & !f & hat_s = hat_s_0)
 |
 (lo = lb & (f -> s = 0) & hat_s = s)

TRANS
 -- (1)
 (lo = st & next(lo) = st
 & !f & !next(f)
 & hat_s = hat_s_0 & hat_s = next(hat_s))
 |

 -- (2)
 (lo = st & next(lo) = lb
 & !f & (next(f) -> next(s) = 0)
 & hat_s = hat_s_0 & next(s) = next(hat_s))
 |

 -- (3)
 (lo = lb & next(lo) = lb
 & ((f -> next(f))
 & (next(f) -> f | next(s) = 0))
 & hat_s = next(hat_s))
 |

 -- (4)
 (lo = lb & next(lo) = lc
 & f & next(f)
 & next(s) = hat_s & hat_s = next(hat_s))
 |

 -- (5)
 (lo = lc & next(lo) = lc
 & f & next(f)
 & hat_s = next(hat_s))

-- transformed specification
INVARSPEC
 !(lo = lc)

(a) original (b) state-recording (c) state-recording (optimized)

Figure 3.5: Translating fairness: NuSMV code of 2-bit counter with self-loops

34 CHAPTER 3. SYMBOLIC LOOP DETECTION FOR FINITE STATE SYSTEMS

Definition 1 Let K = (S, T, I, L, F = {F0}) be a fair Kripke structure with ŝ0 ∈ S arbitrary

but fixed. Then KS = (SS, T S, IS, LS, F S) is defined as:

SS = S × S × {st , lb, lc} × IB

IS = {(s0, ŝ0, st , 0) | s0 ∈ I} ∪
{(s0, s0, lb, f) | s0 ∈ I ∧ (f → s0 ∈ F0)}

T S = {((s, ŝ, lo, f), (s′, ŝ′, lo′, f ′)) | (s, s′) ∈ T ∧
((lo = st ∧ lo′ = st ∧ ¬f ∧ ¬f ′ ∧ ŝ = ŝ′ = ŝ0) ∨ (1)
(lo = st ∧ lo′ = lb ∧ ¬f ∧ (f ′ → s′ ∈ F0) ∧ ŝ = ŝ0 ∧ s

′ = ŝ′) ∨ (2)
(lo = lb ∧ lo′ = lb ∧ (f → f ′) ∧ (f ′ → f ∨ s′ ∈ F0) ∧ ŝ = ŝ′) ∨ (3)
(lo = lb ∧ lo′ = lc ∧ f ∧ f ′ ∧ ŝ = s′ = ŝ′) ∨ (4)
(lo = lc ∧ lo′ = lc ∧ f ∧ f ′ ∧ ŝ = ŝ′))} (5)

LS((s, ŝ, lo, f)) = L(s)

F S = ∅

state variables nor keeping the value of the copies constant in subsets (1) and (5) are necessary

for correctness. Similarly, f need not be kept constant in subsets (1), (4), and (5). The advantage

is improved complexity of the verification problem. Further, f is set nondeterministically in the

initial state and in subsets (2) and (3) as this simplifies the calculation of the radius of the

transformed model.

. . . and for Practice

While the representation of the transition relation in Fig. 3.5 (c) is well-suited for analysis (and,

therefore, has been presented in that way here), in practice systems are more often formulated

by (guarded) assignments of initial- and next-state values to state variables as in Fig. 3.5 (b).

Hence, our actual implementation of the translation is based on that style but makes sure that

counterexamples are detected when the loop is closed.

3.2.3 Formalization and Correctness

The formal definition of the state-recording translation of a Kripke structure K with a single

fairness constraint is given in Def. 1. It largely corresponds to Fig. 3.5 (c). Theorem 5 states

correctness: the language of (the original) K is non-empty iff a state with lo = lc is reachable

in (the transformed) KS.

Theorem 5 Let K = (S, T, I, L, F = {F0}) be a fair Kripke structure, let KS be defined as

above. Then

Lang(K) 6= ∅ ⇔ R(KS) ∩ {(s, ŝ, lc, f) ∈ SS} 6= ∅

3.2. TRANSLATING FAIR REPEATED REACHABILITY 35

Proof: We prove the following bi-implications from top to bottom:

Lang(K) 6= ∅
⇔

∃π = (s0 . . . sl−1)(sl . . . sm−1sm . . . sk−1)
ω ∈ ΠF

with k > m ≥ l ≥ 0 ∧ sm ∈ F0

⇔
∃πS = (s0, ŝ0, st , 0) . . . (sl−1, ŝ0, st , 0)(sl, sl, lb, 0) . . . (sm−1, sl, lb, 0)(sm, sl, lb, 1) . . .

. . . (sk−1, sl, lb, 1)(sk, sl, lc, 1) ∈ ΠS with k > m ≥ l ≥ 0
⇔

R(KS) ∩ {(s, ŝ, lc, f) ∈ SS} 6= ∅

1. “⇒”: Every finite Kripke structure with non-empty language contains a lasso-shaped fair

path, see also Sect. 2.8.2.

“⇐”: Obvious.

2. “⇒”: Let π = (s0 . . . sl−1)(sl . . . sm−1sm . . . sk−1)
ω be an initialized fair path in K with

k > m ≥ l ≥ 0 and sm ∈ F0. We construct πS as follows.

If l > 0 choose πS[0] = (s0, ŝ0, st , 0) with arbitrary ŝ0. Construct

(s0, ŝ0, st , 0) . . . (sl−1, ŝ0, st , 0) by taking transitions from subset (1). Assume first that

m > l. Proceed to (sl, sl, lb, 0) via a transition from (2), continue via (sm−1, sl, lb, 0) to

(sm, sl, lb, 1) and from there to (sk−1, sl, lb, 1) with k − l − 1 transitions from (3). As

k > l there is a transition from (4) to (sk, sl, lc, 1) with sk = sl. If m = l, modify the

target state of the transition from (2) to be (sl, sl, lb, 1) and continue to (sk−1, sl, lb, 1) and

then to (sk, sl, lc, 1), again with sk = sl.

Otherwise, if l = 0, start with (s0, s0, lb, 0) if m > l and (s0, s0, lb, 1) if m = l and

continue with k − 1 transitions from (3) and one from (4) as before.

“⇐”: Let πS = (s0, ŝ0, st , 0) . . . (sl−1, ŝ0, st , 0)(sl, sl, lb, 0) . . . (sm−1, sl, lb, 0) ◦
(sm, sl, lb, 1) . . . (sk−1, sl, lb, 1)(sk, sl, lc, 1) be an initialized path in KS such that k >

m ≥ l ≥ 0. From the construction of KS, π′ = s0 . . . sl−1sl . . . sm−1sm . . . sk−1sk
is an initialized finite path in K with sk = sl and sm ∈ F0. Hence, π =
(s0 . . . sl−1)(sl . . . sm−1sm . . . sk−1)

ω is an initialized fair path in K as desired.

3. “⇒”: Obvious.

“⇐”: Let sS be a reachable state in {(s, ŝ, lc, f) ∈ SS}, By definition of KS, f is 1.

Further, there is an initialized path πS′
ending in sS. According to the definition of T S,

πS′
takes precisely one transition from subset (4). Let πS be the prefix of πS′

up to the

target state of that transition. Let k = |πS|−1. Clearly, k > 0. Let πS[k] = (sk, sk, lc, 1).
By definition of T S there exists 0 ≤ m′ < k such that ∀m′ ≤ i < k . πS[i] = (si, sk, lb, 1)
with sm′ ∈ F0. Choose m to be the smallest such m′.

Case 1 m = 0: With l = 0 and the definition of IS and T S we have that πS[0] =
(s0, sk, lb, 1) = (s0, s0, lb, 1).

Case 2 m > 0 ∧ πS[m − 1] = (sm−1, sk, st , 0): Set l = m. By definition of T S,

∀0 ≤ i < l . πS[i] = (si, ŝ0, st , 0) and πS[l] = (sl, sk, lb, 1) = (sl, sl, lb, 1).

36 CHAPTER 3. SYMBOLIC LOOP DETECTION FOR FINITE STATE SYSTEMS

Case 3 m > 0 ∧ πS[m − 1] = (sm−1, sk, lb, 0): By definition of T S there is 0 ≤ l′ < m

such that ∀l′ ≤ i < m . πS[i] = (si, sk, lb, 0). Set l to the smallest such l′.

Case 3.1 l = 0: By definition of IS, πS[0] = (s0, sk, lb, 0) = (s0, s0, lb, 0).

Case 3.2 l > 0: From the definition of T S, ∀0 ≤ i < l . πS[i] = (si, ŝ0, st , 0) and

πS[l] = (sl, sk, lb, 0) = (sl, sl, lb, 0).

In all cases sk = sl and the πS has the desired shape.

✷

3.2.4 Extensions

Fairness A generalization to several fairness constraints can be achieved either by applying

one of the translations in Sect. 2.3 or, more directly, by using one flag per fairness constraint.

Extension to Muller, Rabin, or Streett acceptance conditions [Tho97] is also possible.

Hierarchy No special precautions are required for hierarchical models that can be flattened.

If hierarchy should be preserved, the lo signal is defined† in the top-level module and only

forwarded to each submodule. Each module defines the copy of its state variables and flags to

remember occurrence of fair states. The non-determinism in the subsets (2) and (4) of Def. 1

ensures that corresponding transitions can be taken when all submodules are prepared to do

so. This construction enables translating models (possibly by hand) without separate flattening

before.

Example Figure 3.6 gives an example that includes hierarchy. Two tasks are trying to enter

a critical section. If both are in their try-state a non-deterministic choice decides which task is

allowed to proceed. Fairness ensures that each task eventually gets its turn. The example shows

the translation of the mutex model with a specification given as a Büchi automaton. The original

specification G ((t0 .s = try) → (F (t0 .s = crit))) states that if task 0 is trying to enter its

critical section, it will eventually be able to do so. The negated specification was translated

into a Büchi automaton with Wring v1.1.0 (available from [Som]). The resulting automaton is

depicted in Fig. 3.7.

3.3 Complexity

After correctness has been established, we can now state the theoretical bounds on the overhead

for verification that is introduced into a system by our translation. Remember, that our objective

was to enable checking ω-regular properties with techniques and tools previously only used for

reachability calculation or safety checking. It turns out that the impact of our translations on

the complexity for model checking or reachability calculation is quite reasonable. As sketched

with the example of Fig. 3.5, the size of a non-canonical symbolic description in program code,

increases only by a small constant factor.

†in the C sense [KR88]

3.3. COMPLEXITY 37

MODULE task(id, turn)

-- unmodified part
VAR s: {non, try, crit};
ASSIGN
 init(s) := non;
 next(s) := case
 s = non: try;
 s = try & (id = turn): crit;
 s = try & !(id = turn): try;
 s = crit: non; esac;
FAIRNESS
 turn = id

MODULE main

VAR turn: 0..1;
 t0: task(0, turn);
 t1: task(1, turn);

-- Buechi automaton
VAR b: {n1, n2, n3, sink};
ASSIGN
 init(b) := {n2, n3};
 next(b) := case
 b = n1 & (t0.s = non | t0.s = crit): {n1};
 b = n1 & t0.s = try: {n2, n1};
 (b=n2 | b=n3) & (t0.s=non | t0.s=try): {n3};
 1: sink; esac;
FAIRNESS
 b = n3

-- Buechi specification
LTLSPEC F 0

MODULE task(id, turn, lo)

-- unmodified part
VAR s: {non, try, crit};
ASSIGN
 init(s) := non;
 next(s) := case
 s = non: try;
 s = try & (id = turn): crit;
 s = try & !(id = turn): try;
 s = crit: non; esac;

-- fair lasso detection part
VAR hat_s: {non, try, crit};
 f : boolean;
DEFINE
 hat_s_0 := non;
INIT
 (lo = st & !f & hat_s = hat_s_0)
 | (lo = lb & (f -> turn = id) & hat_s = s)
TRANS
 (lo = st & next(lo) = st
 & !f & !next(f)
 & hat_s = hat_s_0 & hat_s = next(hat_s))
 | (lo = st & next(lo) = lb
 & !f & (next(f) -> next(turn) = id)
 & hat_s = hat_s_0 & next(s) = next(hat_s))
 | (lo = lb & next(lo) = lb
 & (f -> next(f)) & ((next(f) -> f | next(turn) = id))
 & hat_s = next(hat_s))
 | (lo = lb & next(lo) = lc
 & f & next(f)
 & next(s) = hat_s & hat_s = next(hat_s))
 | (lo = lc & next(lo) = lc
 & f & next(f)
 & hat_s = next(hat_s))

MODULE main

VAR turn: 0..1;
 t0: task(0, turn, lo); -- note signal forwarding
 t1: task(1, turn, lo); -- note signal forwarding

-- Buechi automaton
VAR b: {n1, n2, n3, sink};
ASSIGN
 init(b) := {n2, n3};
 next(b) := case
 b = n1 & (t0.s = non | t0.s = crit): {n1};
 b = n1 & t0.s = try: {n2, n1};
 (b=n2 | b=n3) & (t0.s=non | t0.s=try): {n3};
 1: sink; esac;

-- fair lasso detection part
VAR hat_b: {n1, n2, n3, sink};
 lo : {st,lb,lc};
 f : boolean;
DEFINE
 hat_b_0 := n1;
INIT
 (lo = st & !f & hat_b = hat_b_0)
 | (lo = lb & (f -> b = n3) & hat_b = b)
TRANS
 (lo = st & next(lo) = st
 & !f & !next(f)
 & hat_b = hat_b_0 & hat_b = next(hat_b))
 | (lo = st & next(lo) = lb
 & !f & (next(f) -> next(b) = n3)
 & hat_b = hat_b_0 & next(b) = next(hat_b))
 | (lo = lb & next(lo) = lb
 & (f -> next(f)) & (next(f) -> f | next(b) = n3)
 & hat_b = next(hat_b))
 | (lo = lb & next(lo) = lc
 & f & next(f)
 & next(b) = hat_b & hat_b = next(hat_b))
 | (lo = lc & next(lo) = lc
 & f & next(f)
 & hat_b = next(hat_b))

-- transformed Buechi specification
INVARSPEC !(lo = lc)

(a) original (b) state-recording

Figure 3.6: Translating hierarchy: NuSMV code of mutex with Büchi specification

38 CHAPTER 3. SYMBOLIC LOOP DETECTION FOR FINITE STATE SYSTEMS

n3 {try, non}

n1

n2 {try}

{crit, try, non}

Figure 3.7: Büchi automaton for ¬G((s = try) → (F(s = crit)))

3.3.1 Explicit State Model Checking

Number of states In global (explicit) model checking [CE82] the complexity is governed by

the number of states and the size of the transition relation. We first analyze the former, which

increases quadratically:

|SS| = |S| · |S| · |{st, lb, lc}| · |{0, 1}| = 6 · |S|2 = O(|S|2)

Number of reachable states In the case of on-the-fly (explicit) model checking [GPVW96]

the size of the reachable state spaceR(KS) is of more interest. In a reachable state (s, ŝ, lo, f) ∈
R(KS), ŝ is either the fixed initial state ŝ0 or is reachable inK itself, since only reachable states

are recorded. Therefore the size of R(KS) is bounded by

|R(KS)| ≤ |R(K)| · |R(K)| · |{st, lb, lc}| · |{0, 1}| = 6 · |R(K)|2 = O(|R(K)|2).

This bound is tight: a modulo n counter, like the model in Fig. 3.2 for n = 4, has |R(KS)| =
O(n2) reachable states. If n = 4 then every combination of {0, . . . , 3} × {0, . . . , 3} can be

reached for (s, ŝ).

Size of the transition relation For the size of the transition relation, note that Def. 1 fixes an

initial state for the not-yet-saved copy of the original state variables and allows the value of the

copy to change at most once on each path at the point of saving (subset (2)). This limits the size

of T S as follows: there are at most |T | transitions in subsets (1) and (4), 2 · |T | in subset (2),

2 · |S| · |T | in subset (3), and |S| · |T | in the last subset (5). Hence,

|T S| ≤ 4 · |T | + 3 · |S| · |T | = O(|S| · |T |)

Transitive closure of the transition relation The complexity of some model check-

ing algorithms — e.g., pushdown systems, see Sect. 4.2 — depends also on the size of

the transitive closure of the transition relation. For the transitive closure of T S, assume

((s, ŝ, lo, f), (s′, ŝ′, lo′, f ′)) ∈ T S∗
. Clearly, (s, s′) ∈ T ∗. There are 6 combinations of lo

and lo ′ as shown in Tab. 3.1. Therefore we have

|T S∗
| ≤ 9 · |S| · |T ∗| + |T ∗| = O(|S| · |T ∗|)

3.3. COMPLEXITY 39

lo lo ′ constraints max. no. of transitions

st st ŝ = ŝ′ = ŝ0, ¬f ∧ ¬f ′ |T ∗|
st lb ŝ = ŝ0, ¬f 2 · |S| · |T ∗|
st lc ŝ = ŝ0, ¬f ∧ f ′ |S| · |T ∗|
lb lb ŝ = ŝ′, f → f ′ 3 · |S| · |T ∗|
lb lc ŝ = ŝ′, f ′ 2 · |S| · |T ∗|
lc lc ŝ = ŝ′, f ∧ f ′ |S| · |T ∗|

Table 3.1: Deriving a bound on the number of transitions in the transitive closure

3.3.2 BDD-based Symbolic Model Checking

Static Bounds

BDD for transition relation Regarding symbolic model checking with BDDs [McM93] we

have two results. First we relate the size of the BDDs for the transition relation of K and

KS. Assuming S is encoded with n = ⌈log2 |S|⌉ state bits, we can encode SS with 2n + 3
Boolean variables. It is important to interleave the Boolean variables for the original and copied

instances of the state variables. Otherwise the size of the BDD for the term

((lo = st ∧ lo ′ = st ∧ ¬f ∧ ¬f ′ ∧ ŝ = ŝ′ = ŝ0) ∨)
(lo = st ∧ lo ′ = lb ∧ ¬f ∧ (f ′ → s′ ∈ F0) ∧ ŝ = ŝ0 ∧ s

′ = ŝ′)∨
(lo = lb ∧ lo ′ = lb ∧ (f → f ′) ∧ (f ′ → f ∨ s′ ∈ F0) ∧ ŝ = ŝ′)∨
(lo = lb ∧ lo ′ = lc ∧ f ∧ f ′ ∧ ŝ = s′ = ŝ′)∨
(lo = lc ∧ lo ′ = lc ∧ f ∧ f ′ ∧ ŝ = ŝ′))}

(3.2)

anded to the original transition relation T in Def. 1 explodes. With an interleaved order it is

linear in n with a factor of approx. 20. The factor has been determined empirically for large

state spaces as shown in Table 3.2. The first column shows the original number n of state

bits. The second and third columns contain the number of BDD nodes necessary to represent

Eqn. (3.2) using a non-interleaved (blocked) or interleaved order respectively. The exact number

of nodes may vary with details of the encoding.

Assuming that a BDD representing the set of fair states has size c, the size of the BDD for

T S can be bounded roughly by 20 ·c ·n the size of the BDD for T by using the fact from [Bry86]

that computing any Boolean binary operation on BDDs will produce a BDD that is linear in size

with factor 1 in the size of the argument BDDs.

BDD for initial states Similar calculations for the set of initial states show that the size of

BDDs representingKS can be bound to be linear in the size of the BDDs representing K, linear

in the number of state bits, and linear in the size of the BDD representing the set of fair states.

Dynamic Bounds

These static bounds do not say anything about the size of the BDDs in the fixed point iterations.

The radius of a Kripke structure is an upper bound for the number of iterations necessary to

reach a fixed point (see Sect. 2.8.3). Note that the results derived for the radius and the diameter

40 CHAPTER 3. SYMBOLIC LOOP DETECTION FOR FINITE STATE SYSTEMS

blocked interleaved

n nodes nodes nodes/n

10 9791 217 21.7

12 38985 257 21.4167

14 155731 297 21.2143

16 622685 337 21.0625

18 2490471 377 20.9444

20 ∗ 417 20.85

32 ∗ 657 20.5312

64 ∗ 1297 20.2656

128 ∗ 2577 20.1328

256 ∗ 5137 20.0664

512 ∗ 10257 20.0332

1024 ∗ 20497 20.0166

2048 ∗ 40977 20.0083

4096 ∗ 81937 20.0042

Table 3.2: BDD sizes for Eqn. (3.2) (∗ = memory limit of 512 MB reached).

ofKS stated in Theorem 4.4 of [BAS02] are incorrect if the ¬p-predicated diameter d¬p [SB04]

is larger than the diameter d. As shown in [SB04] the predicated diameter can be much larger

than the diameter itself. A fixed analysis is given in [SB04]. Analysis of the construction in

Def. 1 does not require predicated radius or diameter. This is the reason why the fairness flag is

set non-deterministically.

Radius To determine the radius rS of KS consider an initial state sSi = (si, ŝi, loi, fi) and a
target state sSt = (st, ŝt, lot, ft) with sSi , s

S

t ∈ S × S × {st , lb, lc} × IB. If sSt is reachable from
sSi , sSt is reachable from sSi in at most rS steps. This is denoted as follows:

sS

i =









si
ŝi
loi

fi









≤ rS
−→









st
ŝt
lot

ft









= sS

t

All enhancements to the original state space are monotonic in the added component. More

specifically, Def. 1 fixes the following order of events: Starting from an initial state si, a loop

state sl must be saved. Only then can a fair state sf be recorded. After that the loop state

sl may be reached to close the loop. A target state st may be reached following any of these

intermediate states. More formally, 9 cases can be distinguished depending on lo i, lot, fi, ft:

1. loi = lb ∧ lot = lb ∧ fi ∧ ft: the initial state is saved, its fairness recorded, but the loop

3.3. COMPLEXITY 41

is not closed. In other words, this is simply a path from si to st.








si
si
lb

1









≤ r
−→









st
si
lb

1









2. loi = lb ∧ lot = lc ∧ fi ∧ ft: the initial state is saved, its fairness recorded, and the loop is
closed. If si and st are not identical, the former must be reached a second time first, only
then the path proceeds to st. As si is initial, the length of the second section (if present)
is also bounded by r.









si
si
lb

1









≤ r
−→









si
si
lc

1









≤ r
−→









st
si
lc

1









3. loi = lb ∧ lot = lb ∧¬fi ∧¬ft: the initial state is saved but neither is a fair state recorded
nor is the loop closed.









si
si
lb

0









≤ r
−→









st
si
lb

0









4. loi = lb ∧ lot = lb ∧ ¬fi ∧ ft: the initial state is saved, a fair state sf is recorded (which
might be identical to st), but the loop is not closed.









si
si
lb

0









≤ r
−→









sf
si
lb

1









≤ d
−→









st
si
lb

1









5. loi = lb ∧ lot = lc ∧¬fi ∧ ft: the initial state is saved, a fair state sf is recorded, and the
loop is closed. Note that sf must be reached before before si is reached a second time.
Again, the last section can be bounded by r. si and st might be the same states.









si
si
lb

0









≤ r
−→









sf
si
lb

1









≤ d
−→









si
si
lc

1









≤ r
−→









st
si
lc

1









6. loi = st ∧ lot = st ∧ ¬fi ∧ ¬ft: no state is saved. Hence, simply a path from si to st.








si
ŝ0

st

0









≤ r
−→









st
ŝ0

st

0









7. loi = st ∧ lot = lb ∧ ¬fi ∧ ¬ft: a state sl is saved, but no fair state is recorded, and the
loop is not closed. sl and st could be identical.









si
ŝ0

st

0









≤ r
−→









sl
ŝ0

lb

0









≤ d
−→









st
ŝ0

lb

0









42 CHAPTER 3. SYMBOLIC LOOP DETECTION FOR FINITE STATE SYSTEMS

8. loi = st ∧ lot = lb ∧ ¬fi ∧ ft: a state sl is saved. Only after that can and is a fair state sf
reached. The loop is not closed. sf and st can be the same.









si
ŝ0

st

0









≤ r
−→









sl
ŝ0

lb

0









≤ d
−→









sf
ŝ0

lb

1









≤ d
−→









st
ŝ0

lb

1









9. loi = st ∧ lot = lc ∧ ¬fi ∧ ft: A state sl is saved, after that a fair state sf is reached, and
only then the loop is closed. sl and st could be identical states.









si
ŝ0

st

0









≤ r
−→









sl
ŝ0

lb

0









≤ d
−→









sf
ŝ0

lb

1









≤ d
−→









sl
ŝ0

lc

1









≤ d
−→









st
ŝ0

lc

1









Diameter Bounds on the diameter dS can be obtained similarly by starting in an arbitrary

state sSs = (ss, ŝs, los, fs). As we have defined the length of a path as its number of states, we

obtain

rS ≤ r + 3 · d− 3 = O(d)

and

dS ≤ 4 · d− 3 = O(d)

Note though, that the diameter of a system can be exponentially larger than its radius as shown

in [SB04].

3.3.3 Summary

Theorem 6 summarizes some of the results of this section. It supports the intuition that KS

corresponds to |S| copies of K running in parallel, each with a different guess of the loop start.

Theorem 6 Let K = (S, T, I, L, F = {F0}) be a Kripke structure with r = r(K) and d =
d(K). Let KS be defined as in Def. 1. Then

1. |SS| = |S| · |S| · |{st, lb, lc}| · |{0, 1}| = 6 · |S|2 = O(|S|2)

2. |R(KS)| ≤ 6 · |R(K)|2 = O(|R(K)|2)

3. |T S| ≤ 4 · |T | + 3 · |S| · |T | = O(|S| · |T |)

4. |T S∗
| ≤ 9 · |S| · |T ∗| + |T ∗| = O(|S| · |T ∗|)

5. rS ≤ r + 3 · d− 3 = O(d)

6. dS ≤ 4 · d− 3 = O(d)

✷

3.4. SHORTEST COUNTEREXAMPLES 43

3.4 Shortest Counterexamples

When performing reachability analysis on KS, the algorithm will either reach a fixed point or

find a counterexample after at most rS+1 iterations, from which a lasso-shaped counterexample

in K can be derived. Moreover, if the property under consideration is false and if breadth-first

search is used for reachability analysis in KS, the proof of Thm. 5 implies that a shortest lasso-

shaped counterexample in K (i.e., with respect to the product of the automaton for the property

and that for the original model to be verified) can be derived. If the approach using several

flags to encode general fairness is used (see Sect. 2.3) and the property is encoded using a tight

Büchi automaton (see Sect. 5.1), this implies that the counterexample is a shortest one with

respect to the property in the original model to be verified. Note, that the translated system

needs one step to detect a loop. Hence, when lasso-shaped counterexamples and violating

prefixes (see Sect. 2.7) are searched for in parallel, and search is stopped after finding the first

counterexample, a reported shortest violating prefix may be one state longer than the length of

a potential shortest lasso-shaped counterexample.

3.5 Related Work

3.5.1 Reduction to and Power of Reachability Checking

Reduction to reachability Burch [Bur91] presents an idea how to verify liveness properties

as safety properties by using timed trace structures [Bur89, Dil88]. Both, model and specifica-

tion are given as timed trace structures. Discrete time is modeled using time ticks. The user

is then required to provide a mapping which translates time ticks of the model to those of the

specification. Burch claims that his method is conservative, i.e., an invalid mapping may only

lead to false positives. He reports that a CTL model checker was faster than his translation on

an example. He concludes that his method “may not be efficient in practice” and is of interest

mainly in theory or if no dedicated liveness checking is available. While the exposition [Bur91]

is by example, we believe that his approach resembles the counter-based translation 3.1.2 if no

further knowledge of the timing behavior of the model is available. We suspect that applying his

method to an arbitrary (untimed) finite state system in order to verify a simple liveness property

Fp requires adding a time tick to each cycle or dead-end state‡ in the model and then checking

that the number of time ticks before a p-state is reached does not exceed the maximal number

of time ticks on any initialized loop-free ¬p-path.

Shilov et al. have developed a game-theoretic reduction from their Second Order Elemen-

tary Propositional Dynamic Logic (SOEPDL) [SY01] to reachability for classes of models

which include all finite models and which are closed under Cartesian product and power set

[SYE+05, SY01]. SOEPDL is more expressive than Stirling’s second order propositional modal

logic 2M [Sti96] (i.e., it subsumes LTL, CTL, and the propositional µ-calculus [Koz83]). While

the reduction by Shilov et al. is more powerful than our reduction, in terms of number of con-

figurations, [SYE+05] is doubly exponential where ours is typically quadratic. In the words of

[SYE+05], this renders it “totally non-efficient, impractical”. They also introduce the notion of

equal model checking power of logics with different expressive power for a particular class of

models: two logics LG ,LG ′ have equal model checking power for a class of models MD if,

‡Timed trace theory [Bur89] assumes finite traces.

44 CHAPTER 3. SYMBOLIC LOOP DETECTION FOR FINITE STATE SYSTEMS

for every M ∈ MD , φ ∈ LG , the model checking problem M |= φ can be reduced to M ′ |= φ′

where M ′ ∈ MD , φ′ ∈ LG ′, and M ′ is obtained from M by simple algebraic transformation

such as Cartesian product and power set construction.

Ultes-Nitsche [UN02] shows that, for any ω-regular property φ and model M , satisfaction

of φ in M within fairness [NW97] corresponds to classical satisfaction as defined in Sect. 2.3 of

some φ′ in M where φ′ is a safety property depending on φ and M . Satisfaction within fairness

disregards a potential counterexample π in M if every finite prefix π[0..i] can be continued to a

witness of φ inM . In other words, the semantics [NW97] disregards a potential counterexample

on which M continuously chooses not to fulfil φ although it always could. By adding some

state bits and strong transition fairness (e.g., [Pel01]) one can construct an implementation

M ′ with the same set of finite behaviors as M that fulfills φ [NW97]. As a consequence, to

detect that a model satisfies φ within fairness but not in the classical sense the model needs

to be observed infinitely long. As this is practically impossible, Ultes-Nitsche concludes that

classical satisfaction seems too fine-grained [UN02]. However, it is not clear that satisfaction

within fairness is always the desired semantics. Too see this, consider the following fairness

constraint that might be necessary to guarantee classical satisfaction:

The device, which the programmer forgot to ask for whether it’s present and which

the program now may be waiting for indefinitely, will finally be plugged in by the

user.

Our reduction preserves the classical semantics.

Loop detection As mentioned in Sect. 1.3, the basic idea of using loop detection to find ac-

cepting paths is taken from explicit on-the-fly and SAT-based symbolic bounded model check-

ing [CVWY92, BCCZ99]. Sistla and Clarke also use guessing of a loop start in their proof of

PSPACE completeness of the model checking problem for PLTLB [SC85]. While they, too,

save the state at the loop start, they guess the length of the loop and check consistency between

the last state of the loop and the saved first state of the loop when the end of the loop is reached.

Restriction to reachability Jard and Jéron propose on-the-fly model checking for a subset

of PLTLF using reachability [JJ90]. Beer et al. extend CTL with regular expressions and

syntactically characterize a subset of formulae that can be checked with forward reachability

[BBDL98]. They obtain significant time and space savings. In their experience, more than 80%

of all practical formulae belong to that subset. Kupferman and Vardi’s work [KV01] shares the

idea to translate a safety property into a finite state automaton on finite words, which enables

forward reachability, but provides more complete results from a theoretical point of view. For a

discussion of [KV01] see Sect. 2.7.

Other Related in spirit is the well-known programming technique to detect presence of a cycle

in a linked list: Initialize two pointers to point to the first and second elements, respectively.

Move them forward through the list where the second pointer moves at twice the speed of

the first pointer. Stop with report of a cycle when they point to the same element, terminate

without reporting a cycle when the faster pointer reaches the end of the list.§ Finally, iterative

§Thanks to Irina Tuduce for the reminder.

3.5. RELATED WORK 45

squaring [BCM+92] non-deterministically guesses intermediate states of a path to speed up

computation of the transitive closure of a (transition) relation; similarly, but deterministically,

Savitch [Sav70] tries candidate intermediate states of computation sequences in his reduction

from non-deterministic space to deterministic space complexities of Turing machines.

3.5.2 Shortest Counterexamples

BDD-based symbolic and explicit-state model checking Finding a shortest counterexample

for a general property amounts to finding a shortest fair cycle, which is an NP-complete prob-

lem [CGMZ95]. Most BDD-based model checkers offer only heuristics to minimize the length

of counterexamples to such properties. For a comparative study on their performance and the

length of the generated counterexamples see [RBS00]. The double DFS [CVWY92] typically

used to search the state space in explicit state model checking does not find shortest counterex-

amples. Gastin et al. propose an algorithm to minimize the length of counterexamples, which

may visit a state an exponential number of times [GMZ04]. Hansen and Kervinen [HK05] sug-

gest a polynomial time, linear space algorithm. While experimental results show more regular

behavior than [GMZ04], the algorithm uses BFS and backwards exploration of the state space,

making it somewhat unpractical. A lazy algorithm is used by Latvala and Heljanko to find short

counterexamples in Streett automata [LH00].

Bounded model checking The first technique in widespread use that can produce shortest

counterexamples for general LTL properties is SAT-based bounded model checking [BCCZ99].

While [BCCZ99] was restricted to future time LTL, more recent implementations cover full LTL

[BC03], [CRS04], [LBHJ05]. Whether shortest counterexamples can be reported depends also

on the encoding of the property. Both, [BC03] and [LBHJ05] find shortest counterexamples.

[CRS04] achieves higher performance than [BC03] but sacrifices shortest counterexamples. A

detailed experimental comparison of [CRS04] and [LBHJ05] is not yet available.

Easy-to-read counterexamples The shortest counterexample is not necessarily the easiest

one to understand. Jin, Ravi, and Somenzi annotate those parts of a counterexample that con-

stitute inevitable progress to the error [JRS02]. Ravi and Somenzi then continue by removing

irrelevant events [RS04]. “Nice” (usually small) rather than arbitrary values of variables can

also make a counterexample easier to read. Groce and Kroening provide a solution for SAT-

based model checking, where that problem is most relevant [GK05].

Explaining counterexamples Recently, automated approaches to explain a counterexample

and locate the error have been proposed. Groce’s thesis on the topic contains many references

[Gro05].

Other [CV03] is a survey on counterexamples and [Gro05] also gives more general refer-

ences.

46 CHAPTER 3. SYMBOLIC LOOP DETECTION FOR FINITE STATE SYSTEMS

3.6 Summary

We have presented a source-to-source translation from fair repeated reachability to reachability

by adding a copy of the state variables to the original system, non-deterministically saving a

current state, and detecting a second occurrence of the saved state after all fairness constraints

have been met. The translation leads to an increase by a factor of |S| (where S is the set of

states in the original system) for most parameters relevant to explicit state model checking.

Radius and diameter, which are more relevant for symbolic model checking, grow only by a

small constant factor. If forward breadth-first reachability analysis is used the translation helps

to find shortest lasso-shaped counterexamples.

4
Extending to Infinite State

Systems

We all know Linux is great ... it does infinite loops in 5 seconds.

Linus Torvalds

In this section we extend the state-recording translation to some classes of infinite state sys-

tems, which have received considerable attention in the past and for which verification tools

are available: (ω−)regular model checking [KMM+01, WB98, BJNT00, BLW04a, AJNd03],

pushdown systems [BEM97, FWW97, EHRS00a, ES01], and timed automata [AD94, LPY97].

For each of these classes specialized sets of notations have developed. To aid a reader,

who is familiar with some of these classes, we adopt the notation used in some of the major

publications on each class of systems. Therefore, we present required notation for each class at

the beginning of the section describing its reduction rather than in Chap. 2.

We do not include fairness constraints in loop detection to simplify the exposition. Fairness

can be handled in the same way as for finite state systems.

4.1 Regular Model Checking

4.1.1 Preliminaries

The notation in this section is mostly borrowed from [BJNT00]. Let Σ be a finite alphabet. Reg-

ular sets (respectively relations) can be represented as finite-state automata (resp. transducers).

These are given as four tuple (Q, q0, δ, F) where Q is a finite set of states, q0 is the initial state,

δ : (Q × Σ) 7→ 2Q (resp. δ : (Q × (Σ × Σ)) 7→ 2Q) is the transition function, and F ⊆ Q∗ is

the set of accepting states.

A relation R ⊆ Σ∗ × Σ∗ is length-preserving iff ∀(w,w′) ∈ R . |w| = |w′|. A program is a

triple P = (Σ,ΦI , R) where ΦI ⊆ Σ∗ is a regular set of initial configurations and R ⊆ Σ∗×Σ∗

is a regular, length-preserving transition relation.

A configuration of a program P is a word w over Σ. Paths are finite or infinite sequences

of configurations π = π[0]π[1] . . ., such that ∀0 < i < |π| . (π[i − 1], π[i]) ∈ R. A path is

initialized if π[0] ∈ ΦI . Π(P) is the set of paths of P .

∗We do not have to deal with fairness constraints in this chapter, hence, there is no ambiguity.

47

48 CHAPTER 4. EXTENDING TO INFINITE STATE SYSTEMS

Definition 2 Let P = (Σ,ΦI , R) be a program with â0 ∈ Σ arbitrary but fixed. Then PS =
(ΣS,ΦI

S, RS) is defined as

ΣS = {st , lb, lc} ∪ (Σ × Σ)

ΦI
S = st ◦ {w × ŵ ∈ (Σ × Σ)∗ | |w| = |ŵ| ∧ w ∈ ΦI ∧ ŵ = â0

∗} ∪
lb ◦ {w × w ∈ (Σ × Σ)∗ | w ∈ ΦI}

RS = {((lo ◦ (w × ŵ)), (lo ′ ◦ (w′ × ŵ′))) ⊆ ({st , lb, lc} ◦ (Σ × Σ)∗)2 |
|w| = |ŵ| = |w′| = |ŵ′| ∧ (w,w′) ∈ R ∧
((lo = st ∧ lo ′ = st ∧ ŵ = ŵ′ = â0

∗) ∨ (1)
(lo = st ∧ lo ′ = lb ∧ ŵ = â0

∗ ∧ w′ = ŵ′) ∨ (2)
(lo = lb ∧ lo ′ = lb ∧ ŵ = ŵ′) ∨ (3)
(lo = lb ∧ lo ′ = lc ∧ ŵ = w′ = ŵ′) ∨ (4)
(lo = lc ∧ lo ′ = lc ∧ ŵ = ŵ′))} (5)

4.1.2 Reduction

Intuition and formal definition In the finite case the state to be saved was simply added

as a separate component to the state of the transformed system. A finite automaton can only

remember a finite amount of information. Hence, in order to apply the reduction to regular

model checking it is not possible to construct an automaton that first reads a state of the original

program and compares that with a saved copy. Instead, we extend the alphabet of the program

to tuples of letters to store and compare states position by position of a word. Other than that,

the construction in Def. 2 is the same as in the finite case.†

Still a program The following Lemma 7 shows that the reduced program is still a program.

Lemma 7 If P = (Σ,ΦI , R) is a program, so is PS = (ΣS,ΦI
S, RS).

Proof: Assume that ΦI is given by (QI , q0I , δI , FI). To represent an automaton (not)

saving the initial state we use separate copies of (QI , q0I , δI , FI), (Q6=
I , q0

6=
I , δ

6=
I , F

6=
I) and

(Q=
I , q0

=
I , δ

=
I , f

=
I). Then (QI

S, q0I
S, δI

S, FI
S) with

QI
S = Q

6=
I ∪Q=

I ∪ {qlo},

q0I
S = qlo ,

δI
S = {(qlo , st , q0

6=
I)} ∪ {(q 6=, (a, â0), q

6=′) | (q 6=, a, q 6=′) ∈ δ
6=
I } ∪

{(qlo , lb, q0
=
I)} ∪ {(q=, (a, a), q=′) | (q=, a, q=′) ∈ δ=

I }, and

FI
S = F

6=
I ∪ F=

I ,

is a finite automaton accepting ΦI
S.

Similarly, if R is given by (QR, q0R, δR, FR), we construct a finite transducer

(QR
S, q0R

S, δR
S, FR

S) to accept RS. We use separate copies of (QR, q0R, δR, FR) to leave the

saved word unchanged and check for it being â0
∗ (superscript 1, corresponding to disjunct 1

in Def. 2), save a word (sup. 2, corr. to subset (2)), leave the saved word unchanged (sup. 35,

†Remember that the cross product of sequences is defined component-wise, i.e., it returns a sequence of tuples

rather than a tuple of sequences.

4.1. REGULAR MODEL CHECKING 49

corr. to subsets (3) and (5)), and compare current and stored word (sup. 4, corr. to subset (4)).

QR
S = Q1

R ∪Q2
R ∪Q35

R ∪Q4
R ∪ {qlo},

q0R
S = qlo ,

δR
S = {(qlo, (st , st), q

1
0), (qlo , (st , lb), q2

0), (qlo, (lb, lb), q35
0), (qlo , (lb, lc), q4

0),
(qlo , (lc, lc), q35

0)} ∪
{(q1, ((a, â0), (a

′, â0)), q
1′) | (q1, (a, a′), q1′) ∈ δ1

R} ∪
{(q2, ((a, â0), (a

′, a′)), q2′) | (q2, (a, a′), q2′) ∈ δ2
R} ∪

{(q35, ((a, â), (a′, â)), q35′) | (q35, (a, a′), q35′) ∈ δ35
R } ∪

{(q4, ((a, a′), (a′, a′)), q4′) | (q4, (a, a′), q4′) ∈ δ4
R}, and

FR
S = F 1

R ∪ F 2
R ∪ F 35

R ∪ F 4
R

✷

Correctness Theorem 8 establishes correctness of the reduction.

Theorem 8 Let P = (Σ,ΦI , R) be a program, PS be defined as above, and ŵI ∈ â0
∗ with

|ŵI | = |w0|. Assume k > l ≥ 0.

(w0 . . . wl−1)(wl . . . wk−1)
ω ∈ Π(P)

⇔
(st ◦ (w0 × ŵI)) . . . (st ◦ (wl−1 × ŵI))(lb ◦ (wl × wl)) . . . (lb ◦ (wk−1 × wl))(lc ◦ (wk × wl))

∈ Π(PS)

Proof: Analogous to the proof of Thm. 5. ✷

Complexity Note, that each transition of δI
S is marked with a pair of letters whose second

element is either â0 or identical to the first element. Similar observations can be made for

transitions between states with superscripts 2 and 4 in δR
S. Hence, we trivially have

Theorem 9 Let P = (Σ,ΦI , R) be a program, and PS be defined as above. Then

|QI
S| = 2|QI | + 1 |δI

S| = 2 · |δI | + 2

|QR
S| = 4|QR| + 1 |δR

S| = (|Σ| + 3) · |δR| + 5

4.1.3 Example

Token passing and original system As an example of a parameterized system, consider token

passing as used, e.g., in [BJNT00]. An array of processes passes a single token from left to

right. Initially, the leftmost process has the token. Each transition either leaves the token where

it is, or passes it on to the right neighbor of the current owner. Processes can be in states t

or n depending on whether they do (t) or don’t have (n) the token. Hence, Σ = {n, t}. An

automaton and a transducer representing the initial states ΦI and the transition relation R are

shown in Fig. 4.1 (a) and (b).

The transformed system According to Def. 2, ΣS = {st , lb, lc} ∪
{(n, n), (n, t), (t, n), (t, t)}. ΦI

S and RS are given in Fig. 4.1 (c) and (d). From top to

bottom, the two (four) main branches of the automaton (transducer) correspond to the state sets

Q
6=
I and Q=

I (Q1
R, Q2

R, Q35
R , and Q4

R), respectively.

50 CHAPTER 4. EXTENDING TO INFINITE STATE SYSTEMS

t

n

(t,t)

(n,t) (n,n)(t,n)(n,n)

(a) initial configurations ΦI (b) transition relation R

st

(t,t)

(n,n)

lb

(n,a)^

0
^(t,a)

0

((t,a),(t,a))

((t,a),(n,a)) ((n,a),(t,a))((n,a),(n,a)) ((n,a),(n,a))

((t,t),(t,t))

((t,n),(n,n)) ((n,t),(t,t)) ((n,n),(n,n))((n,n),(n,n))

((t,a),(t,t))

((n,a),(n,n)) ((t,a),(n,n)) ((n,a),(n,n))0((n,a),(t,t))00

0

0

(st,st)

(lb,lc)

(lb,lb) v (lc,lc)

(st,lb)

0 0((t,a),(n,a)) 0

0((t,a),(t,a))

0
^ ^((n,a),(n,a))0

^ ^
0

^ ^ ^ ^ ^ ^
0 ((n,a),(t,a))0 ((n,a),(n,a))0

^^^^

^

^ ^

^ ^ ^ ^ ^ ^ ^ ^

(c) reduced initial configurations

ΦI
S (d) reduced transition relation RS

Figure 4.1: Example: token passing [BJNT00]

4.1. REGULAR MODEL CHECKING 51

a l,0

a l,1

a l,n

a l,0

a l,1

a l,n

a l,0

a l,1

a l,n

a l,0

a l,1

a l,n

a l,0

a l,1

a l,n

0a
^

0a
^

0a
^

0a
^

0a
^

0a
^

k + 1 + k + 1 + k = 3k + 2<

stst

a

a

a

0,0

0,1

a

a

a

... ...

l−1,0

l−1,1

l−1,n0,n

lb

...

a

a

a

k−1,0

k−1,1

k−1,n

...

lc

...
......

lb

...

Figure 4.2: The reduction preserves boundedness of local depth.

4.1.4 Discussion

On termination Checking reachability for a program P = (Σ,ΦI , R) is undecidable in gen-

eral [AK86]. Not only does this exclude a sound and complete algorithm for regular model

checking, but it also raises the question whether PS can be verified by a given algorithm if P
can. We have the following partial result: Bouajjani et al. developed a technique to compute the

transitive closure of a regular relation R [BJNT00, JN00]. A sufficient criterion for termination

of that computation is bounded local depth [BJNT00, JN00] of R. Our construction preserves

that property. Intuitively, a relation has local depth k if for any (w,w ′) ∈ R+ each position in

w needs to be rewritten no more than k times. Note that in any path πS of PS the projection of

πS onto lo will be a prefix of st ∗ lb+ lc+. Furthermore, ŵ changes its value in πS at most once

at the transition of lo from st to lb. Hence, with similar reasoning as for radius and diameter in

Sect. 3.3 we can infer that, if R has local depth k, RS has local depth ≤ 3k + 2. The factor of 3

increases if fairness constraints are added. For an illustration see Fig. 4.2.

Shortest Counterexamples As is, the transitive closure construction of [BJNT00, JN00] does

not preserve sufficient information to find a shortest counterexample. One could therefore de-

termine truth or falsity of a given specification using the transitive closure [BJNT00, JN00]

to reach a fixed point also in the case of an infinite radius. If the specification turns out to

be false, standard reachability checking (i.e., without acceleration) can be used to determine a

shortest counterexample, which has necessarily finite distance from the set of initial configura-

tions. A counterexample with shortest configurations (representing, e.g., the smallest number of

processes in a parameterized system) can be easily obtained once the reachable set of “bad” con-

figurations has been computed: choose the shortest bad configuration and search for a (shortest)

path to that configuration using finite state model checking.

ω-regular model checking The ideas of regular model checking have been extended to in-

finite words by regarding the finite automata used to represent sets of states and the transition

relation as Büchi automata on infinite words [BLW04a]. The techniques of [BLW04a] require

the Büchi automata to be weakly deterministic. A Büchi automaton is weak (1) if each of its

strongly connected components contains either only accepting or only non-accepting states and

(2) if the set of states can be partitioned into an ordered set of subsets such that each path in the

automaton progresses in descending order through these subsets. From the proof of Lemma 7

it’s easy to see that, if B is a weakly deterministic Büchi automaton (for the set of initial con-

figurations) or transducer (for the transition relation), so is BS. Clearly, repeated reachability

may not be sufficient to verify general LTL properties for ω−regular programs.

A program P = (Σ,ΦI , R) is an example of a system that satisfies the following property:

52 CHAPTER 4. EXTENDING TO INFINITE STATE SYSTEMS

If there is a counterexample in P to an ω-regular property φ then there is also a

counterexample in P to φ with a finite number of different configurations.

If this property is satisfied for some model M and ω-regular property φ, application of the

state-recording translation is sound with respect to the decision problem M
?

|= φ, i.e., a “bad”

configuration is reachable in MS if φ does not hold in M . While the systems in the next two

sections do not satisfy that property, existence of an infinite fair path can still always be deduced

by storing and comparing a finite amount of information.

4.2 Pushdown Systems

4.2.1 Preliminaries

Notation in this section is along the lines of [EHRS00a]. A pushdown system M is a four tuple

M = (P,Γ,∆, CI) where P is a finite set of control locations, Γ is a finite stack alphabet,

∆ ⊆ (P × Γ) × (P × Γ∗) is a finite set of transition rules, and CI ⊆ P × Γ is a finite set of

initial configurations.

A configuration is a pair 〈p, w〉‡ with p ∈ P and w ∈ Γ∗. A path is a (finite or infinite)

sequence of configurations π = π[0]π[1] . . ., where π[i] = 〈pi, wi〉, such that ∀i < |π| −
1 . ∃γi ∈ Γ, ∃ui, vi ∈ Γ∗ . wi = γivi ∧ wi+1 = uivi ∧ ((pi, γi), (pi+1, ui)) ∈ ∆. A path is

initialized if π[0] ∈ CI . Π(M) is the set of paths of M .

A head is a pair 〈p, γ〉 with p ∈ P and γ ∈ Γ. If c = 〈p, γw〉 is a configuration, head(c) =
〈p, γ〉. A head 〈p, γ〉 is repeating if there exist a path π in M and w ∈ Γ∗ such that |π| > 1,

π[0] = 〈p, γ〉, and π[|π| − 1] = 〈p, γw〉. heads(π) denotes the sequence of heads derived from

a path π.

Bouajjani et al. proved [BEM97] that (1) every path that ends in a configuration with a

repeating head can be extended to an infinite path, and (2) from every infinite path π a path

στ can be derived such that |σ| < ∞ and heads(τ) = (〈p0, γ0〉 . . . 〈pl−1, γl−1〉)
ω. I.e., if there

exists an infinite path in M , then there also exists one whose sequence of heads forms a lasso.

4.2.2 Reduction

Intuition Based on the results of [BEM97] it is sufficient to find repeating heads when check-

ing PLTLB formulae on pushdown systems. Hence, a reduction of repeated reachability to

reachability need only store and watch out for a second occurrence of a repeating head 〈p, γ〉
rather than an entire configuration. However, to infer from the second occurrence of a head that

this head is indeed repeating, one has to ensure that the stack height between the first and the

second occurrence never fell below the stack height at the first occurrence. To this end the stack

alphabet is extended such that each stack symbol has an additional flag bs (bottom of stack)

to remember a given stack height. When saving a head, this flag is set for the bottom element

pushed on the stack in the post-configuration. Whenever an element with bs = 1 is removed

from the stack without being replaced in the same transition, a loop error flag le is set.

‡Note that we do not need the notation for lassos in this chapter.

4.2. PUSHDOWN SYSTEMS 53

A minor difference to previous reductions In the previous examples, lo = lc signals a

second occurrence of a configuration immediately at that occurrence. However, the definition

of the transition rules for pushdown systems may not give access to the topmost element of the

stack in the post-configuration. If no new element is pushed on the stack a comparison with

a stored stack element cannot be performed. For this reason we introduce a one-state delay in

the case of pushdown systems for lo and the stored head. Hence, there is no need for an initial

configuration with that configuration already saved.

Formal definition Definition 3 shows the entire reduction. The transition relation is parti-

tioned into 5 sets again. While no state has been saved (subset (1)), lo = st and ¬le remain

constant, the initial values for p̂ and γ̂ are just copied, and no stack height need be remembered

(bs0 is false). Saving a state (subset (2)) can only occur if a non-empty word is pushed back

on the stack — otherwise, the next transition would immediately violate the above-mentioned

condition for the stack height of a repeating head. Taking a transition from subset (2) saves

the head 〈p, γ〉 (in the pre-configuration) in p̂ and γ̂ (in the post-configuration), sets lo to lb,

and marks the current stack height by setting bs to true for the bottom element pushed on the

stack. Transitions from subset (3) are taken while a second occurrence of the stored head has

not been seen, hence, lo as well as p̂ and γ̂ keep their values. In addition, the condition not to

fall below the stack height at the time of saving is checked. When this is the case, i.e., when an

element with bs true is popped from the stack and only an empty word is pushed back, the loop

error flag le is set to true. This prevents signalling a repeating head in the future by restricting

subsequent transitions to subset (3). When the stack height remains above the required level, le

keeps its value and the flag bs is set in the bottom element of the word pushed onto the stack

iff it was set in the symbol popped from the stack. A second occurrence of 〈p, γ〉 is signalled

by setting lo = lc when taking a transition from subset (4). le, p̂, and γ̂ keep their values.

Any remembered stack height is discarded. Transitions of the last subset (5) keep all additional

location components constant.

Correctness In the following we prove correctness of the reduction.

Theorem 10 Let M = (P,Γ,∆, cI) be a pushdown system and MS be defined as above. There

exists an initialized path π to a repeating head 〈p0, γ〉 in M if and only if there exists an initial-

ized path πS in MS with πS[|πS| − 2] = 〈(p0, p0, γ, lb, 0), w|πS|−2〉, where w|πS|−2(0) = γ, and

πS[|πS| − 1] = 〈(p, p0, γ, lc, 0), w|πS|−1〉.

Proof: “⇒”: Assume an initialized path π to a repeatable head 〈p0, γ〉. Hence, there exist l ≥ 0,

q0, . . . , ql−1 ∈ P , w0, . . . , wl−1 ∈ Γ∗, v ∈ Γ∗ where ∀i < l . π[i] = 〈qi, wi〉 and π[l] = 〈p0, γv〉.

By the definition of a repeating head there are k > l, p1, . . . , pk−l−1 ∈ P , u0, . . . , uk−l ∈ Γ+,

where u0 = uk−l[0] = γ, such that π can be extended to an infinite path πinf ∈ Π(M):

∀i < l . πinf [i] = π[i]
∀i ≥ l . πinf [i] = 〈p(i−l) mod (k−l),

u(i−l) mod (k−l)(uk−l[1] . . . uk−l[|uk−l| − 1])(i−l) div (k−l)v〉

54 CHAPTER 4. EXTENDING TO INFINITE STATE SYSTEMS

Definition 3 Let M = (P,Γ,∆, CI) be a pushdown system, let (p̂I , γ̂I) ∈ P × Γ be arbitrary

but fixed. Then, MS = (P S,ΓS,∆S, CI
S) is defined as

P S = P × P × Γ × {st , lb, lc} × IB

ΓS = Γ × IB

∆S = {(((p, p̂, γ̂, lo, le), (γ, bs)), ((p′, p̂′, γ̂′, lo′, le ′), (w′[0], bs′h) . . . (w
′[|w′| − 1], bs′0))) |

(((p, γ), (p′, w′)) ∈ ∆) ∧

(|w′| > 1 → ¬bs′h ∧ . . . ∧ ¬bs′1) ∧

((lo = st ∧ lo ′ = st ∧ ¬le ∧ ¬le ′ ∧ p̂ = p̂′ = p̂I ∧ γ̂ = γ̂ ′ = γ̂I ∧
(|w′| > 0 → ¬bs′0)) ∨

(1)

(lo = st ∧ lo′ = lb ∧ ¬le ∧ ¬le ′ ∧ p = p̂′ ∧ p̂ = p̂I ∧ γ = γ̂′ ∧ γ̂ = γ̂I∧
(|w′| > 0) ∧ bs′0) ∨

(2)

(lo = lb ∧ lo ′ = lb ∧ ((|w′| = 0 ∧ bs ∨ le) ↔ le ′) ∧
p̂ = p̂′ ∧ γ̂ = γ̂ ′ ∧ (|w′| > 0 → (bs↔ bs′0))) ∨

(3)

(lo = lb ∧ lo ′ = lc ∧ ¬le ∧ ¬le ′ ∧ p = p̂ = p̂′ ∧ γ = γ̂ = γ̂ ′ ∧
(|w′| > 0 → ¬bs′0)) ∨

(4)

(lo = lc ∧ lo ′ = lc ∧ ¬le ∧ ¬le ′ ∧ p̂ = p̂′ ∧ γ̂ = γ̂ ′ ∧ (|w′| > 0 → ¬bs′0)))} (5)

CI
S = {〈(pI , p̂I , γ̂I , st , 0), (γI , 0)〉 | 〈pI , γI〉 ∈ CI}

From that we construct an initialized finite path πS as follows:

∀i < l . πS[i] = 〈(qi, p̂I , γ̂I , st , 0), wi × 0|wi|〉
πS[l] = 〈(p0, p̂I , γ̂I , st , 0), (γ, 0) ◦ (v × 0|v|)〉
πS[l + 1] = 〈(p1, p0, γ, lb, 0), (u1 × 0|u1|−11) ◦ (v × 0|v|)〉
∀l + 1 < i < l + k . πS[i] = 〈(pi−l, p0, γ, lb, 0), (ui−l × 0|ui−l|−11) ◦ (v × 0|v|)〉

if |uk−l| > 1

πS[k] = 〈(p0, p0, γ, lb, 0), (γ, 0) ◦
◦ ((uk−l[1], 0) . . . (uk−l[|uk−l| − 2], 0)(uk−l[|uk−l| − 1], 1)) ◦ (v × 0|v|)〉

πS[k + 1] = 〈(p1, p0, γ, lc, 0), (u1 × 0|u1|) ◦
◦ ((uk−l(1), 0) . . . (uk−l[|uk−l| − 2], 0)(uk−l[|uk−l| − 1], 1)) ◦ (v × 0|v|)〉

otherwise

πS[k] = 〈(p0, p0, γ, lb, 0), (γ, 1) ◦ (v × 0|v|)〉
πS[k + 1] = 〈(p1, p0, γ, lc, 0), (u1 × 0|u1|) ◦ (v × 0|v|)〉

“⇐”: Assume an initialized path πS to πS[|πS| − 2] = 〈(p0, p0, γ, lb, 0), w|πS|−2〉, where

w|πS|−2[0] = γ, and πS[|πS| − 1] = 〈(p1, p0, γ, lc, 0), w|πS|−1〉. By Def. 3, ∃0 < l < |πS| − 2

such that πS[l] = 〈(p0, p̂I , γ̂I , st , 0), wl× 0|wl|〉 and wl[0] = γ. Clearly, the projection of πS[0, l]
on the first components of its state and stack is an initialized path in M to a repeatable head. ✷

4.2. PUSHDOWN SYSTEMS 55

4.2.3 Complexity

Locations and transitions The following theorem states the number of locations and transi-

tions in the transformed system.

Theorem 11 Let M = (P,Γ,∆, CI) be a pushdown system. MS has O(|P ||Γ||P |) locations

and O(|P ||Γ||∆|) transition rules.

Proof: The locations of M are extended in MS to store another location, a stack symbol, and a

small constant amount of additional state information. For ∆S, there are O(|∆|) transition rules

in subsets (1), (2), and (4), and O(|P ||Γ||∆|) in (3) and (5). ✷

Selecting an algorithm for analysis A number of algorithms has been proposed that can

be used to check reachability in a pushdown system (e.g., [BEM97, FWW97, EHRS00a]).

[EHRS00a] improves on previous results, the algorithms (for forward and for backward reach-

ability) as well as their analysis are clearly formulated, and an implementation [ES01] is avail-

able. We therefore chose [EHRS00a] as the basis for a more detailed complexity analysis of our

reduction. Below we give full details for the (more complicated) case of forward reachability

and only state the result for backward reachability, which can be obtained in a very similar way.

Analyzing forward reachability Algorithm 3 in [EHRS00a] can be used to check reacha-

bility for a pushdown system M = (P,Γ,∆, CI) where (p, γ, p′, w′) ∈ ∆ ⇒ |w′| ≤ 2. The

algorithm takes a finite state automaton AM = (Γ, Q, δ, P, F), which accepts a set of config-

urations of M , as input. The stack alphabet Γ is the input alphabet of AM . The set of states

Q consists of the locations of M , P , and internal states, Q1. P is also the set of initial states,

states in F ⊆ Q are final. δ is the transition relation. The algorithm transforms AM into

A′
M = (Γ, Q′, rel , P, F ′), which accepts the configurations that are reachable from configura-

tions accepted by AM . The state set Q is extended with a set Q2. It contains one state qr for

each transition rule r ∈ ∆ such that |w′| = 2. If AM is an automaton that accepts the set of

initial configurations CI , δ has size O(|P ||Γ|) and Q1 only requires a single final state qf . In

this case, the set of reachable configurations can be computed in O(|P ||∆|2 + |P ||Γ|) time.

In the following we show that a blow-up of O(|P ||Γ|) is sufficient when the algorithm is

applied to MS = (P S,ΓS,∆S, CI
S). Note that MS has a single, fixed initial value for each of

the added location components, and saving of current location and top stack symbol may only

occur once in each path of MS. Intuitively, as in the finite case, this amounts to checking |P ||Γ|
versions of M in parallel, rather than a system with O(|P ||Γ||P |) locations and O(|P ||Γ||∆|)
transition rules. The next lemma establishes that on any sequence of states of AMS the stored

location and stack symbol, which are present in all states of AMS other than qf , exhibit at most

one change from some (p̂, γ̂) to the initial values (p̂I , γ̂I). Theorem 13 then proves the overall

result.

Below we identify a state qrS with a transition rule rS. Therefore, we use

p(pS), p(q), p̂(pS), p̂(q), . . . to refer to the components of a state pS ∈ P S or q ∈ P S ∪ Q2,

and also p′(q), p̂′(q), . . . if q ∈ Q2.

56 CHAPTER 4. EXTENDING TO INFINITE STATE SYSTEMS

Lemma 12 LetM = (P,Γ,∆, CI) be a pushdown system where (p, γ, p′, w′) ∈ ∆ ⇒ |w′| ≤ 2.

When applied toMS withAMS acceptingCI
S, Algorithm 3 in [EHRS00a] adds only transitions

pS
γS

→ q′ to trans and q
γS

→ q′ to rel with pS ∈ P S, q ∈ P S ∪Q2, q′ ∈ {qf} ∪Q2, and

q′ ∈ Q2 ⇒ p̂(pS) = p̂′(q′) ∧ γ̂(pS) = γ̂′(q′) ∨ p̂′(q′) = p̂I ∧ γ̂
′(q′) = γ̂I

q ∈ P S ∧ q′ ∈ Q2 ⇒ p̂(q) = p̂′(q′) ∧ γ̂(q) = γ̂ ′(q′) ∨ p̂′(q′) = p̂I ∧ γ̂
′(q′) = γ̂I

q, q′ ∈ Q2 ⇒ p̂′(q) = p̂′(q′) ∧ γ̂′(q) = γ̂′(q′) ∨ p̂′(q′) = p̂I ∧ γ̂
′(q′) = γ̂I

Further, it only adds states pS to eps(q) if q ∈ {qf} ∪Q2 and such that

pS ∈ eps(q) ∧ q ∈ Q2 ⇒ p̂(pS) = p̂′(q) ∧ γ̂(pS) = γ̂′(q) ∨ p̂′(q) = p̂I ∧ γ̂
′(q) = γ̂I

Proof: (by induction)

Base case, lines 1 – 6. For each (pI
S, γI

S) ∈ CI
S, line 1 adds pI

S
γI

S

→ qf , pI
S ∈ P S to trans .

rel is initialized to ∅ in line 2. For each rS = (pS, γS, pS′, γS

1
′γS

0
′) ∈ ∆S line 5 adds pS′ γ

S
1
′

→ qrS

to trans , where pS′ ∈ P S and qrS ∈ Q2. Line 6 sets eps(q) to ∅ for all q.

Inductive case, lines 7 – 22. By i.a. the claim holds for line 10. For lines 11 – 22, note that

∆S has only transitions rS with p̂(rS) = p̂′(rS) ∧ γ̂(rS) = γ̂′(rS) ∨ p̂(rS) = p̂I ∧ γ̂(r
S) = γ̂I .

Let pS
γS

→ q ∈ trans and rS ∈ ∆S such that pS = pS(rS) ∧ γS = γS(rS).

Case 1 |wS′(rS)| = 1: Line 18 adds pS′(rS)
γS0

′(rS)
→ q to trans . Clearly, pS′(rS) ∈ P S.

Case 1.1 lo(pS) = st : By construction of ∆S, p̂(pS) = p̂I and γ̂(rS) = γ̂(pS) = γ̂I . By

i.a., q ∈ {qf} ∪Q2 and q ∈ Q2 ⇒ p̂′(q) = p̂I ∧ γ̂
′(q) = γ̂I .

Case 1.2 lo(pS) 6= st : By assumption and construction of ∆S, p̂′(rS) = p̂(rS) = p̂(pS)
and γ̂′(rS) = γ̂(rS) = γ̂(pS). By i.a., q ∈ {qf} ∪ Q2 and q ∈ Q2 ⇒ p̂′(q) =
p̂′(rS) ∧ γ̂′(q) = γ̂′(rS) ∨ p̂′(q) = p̂I ∧ γ̂

′(q) = γ̂I .

Case 2 |wS′(rS)| = 2: Line 20 adds qrS
γS0

′(rS)
→ q to rel . qrS ∈ Q2, the rest of the proof is

analogous to Case 1. Line 22 adds pS′′ γ
S
0
′(rS)
→ q to trans for each pS′′ ∈ eps(qrS). The

claim follows by i.a. on pS′′ ∈ eps(qrS) and qrS
γS0

′(rS)
→ q ∈ rel .

Case 3 |wS′(rS)| = 0: Line 13 adds pS′(rS) to eps(q), where pS′(rS) ∈ P S. The proof of the

claim for eps(q) is analogous to Case 1. Let q
γS′

→ q′ ∈ rel . Line 15 adds pS′(rS)
γS′

→ q′ to

trans . The claim follows by i.a. on q
γS′

→ q′ ∈ rel .

✷

Theorem 13 Let M = (P,Γ,∆, CI) be a pushdown system such that (p, γ, p′, w′) ∈ ∆ ⇒
|w′| ≤ 2. Algorithm 3 in [EHRS00a] runs on MS, with AMS accepting CI

S, in time and space

O(|P ||Γ|(|P ||∆|2))

Proof: The proof is with the previous Lemma along the lines of the original proof in

[EHRS00b]. We therefore only give the time complexity for each of the lines as used in the

proof [EHRS00b] in Tab. 4.1. ✷

4.2. PUSHDOWN SYSTEMS 57

line time MS remark

init O(|P ||Γ|(|∆|)) Sort each (pS, γS, pS′, wS′) ∈ ∆S into buckets

according to (pS, γS). With Thm. 11 there are

O(|P ||Γ||∆|) transition rules.
1 O(|P ||Γ|) Each added location component has a single fixed ini-

tial value.
2 O(|P ||Γ|(|P |)) rel = ∅, Q = P S ∪ {qf}, and F = {qf}.

5 O(|P ||Γ|(|∆|)) See init.

6 O(|P ||Γ|(|P ||∆|)) According to Lemma 12 we need to store at most

O(|P |) states for each of the O(|P ||Γ||∆|) states in

Q2.
8 O(|P ||Γ|(|P ||∆|2) + |P ||Γ|) Executed at most once for every transition in δ or

added in lines 15, 18, and 22.
15 O(|P ||Γ|(|P ||∆|2)) Q1 only consists of qf with no outgoing transitions.

Further, we have O(|P ||Γ||∆|) states q in Q2. By

Lemma 12 the number of target states q′ is limited

to O(|∆|), the number of source states p′ is O(|P |).
18 O(|P ||Γ|(|∆|2)) There are O(|P ||Γ||∆|) transitions in ∆S. By Lemma

12 we have O(|∆|) combinations of a particular pS′

and q′.
20 O(|P ||Γ|(|∆|2)) Like line 18.

22 O(|P ||Γ|(|P ||∆|2)) By Lemma 12 there are at most O(|P |) states in each

eps(qrS).

Table 4.1: Time complexity for algorithm 3 in [EHRS00a] when applied to pushdown system

MS

58 CHAPTER 4. EXTENDING TO INFINITE STATE SYSTEMS

γ2 γ2 γ2 γ2
γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1

γ0 γ0 γ0 γ0 γ0 γ0 γ0 γ0 γ0 γ0 γ0 γ0w(i)
γ2 γ2 γ2 γ2 γ2 γ2 γ2 γ2 γ2 γ2 γ2 γ2 γ2 γ2 γ2 γ2

γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1
γ0 γ0

p(i) p0 p0 p0 p1 p1 p1 p2 p2 p2 p3 p3 p3 p4 p4 p4 p5 p5 p5 p2 p2 p2 p3 p3 p3

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 4.3: The soonest second occurrence of a repeating head might not indicate the shortest

counterexample.

Analyzing backward reachability If the algorithm for backward reachability is used instead,

the increase in complexity is similar. A finite state automaton that accepts all “bad” configu-

rations 〈(p, p̂, γ̂, lc, 0), w〉 has O(|P |2|Γ|) states and O(|P |2|Γ|2) transitions. With similar rea-

soning as above we obtain:

Theorem 14 Let M = (P,Γ,∆, CI) be a pushdown system such that (p, γ, p′, w′) ∈ ∆ ⇒
|w′| ≤ 2. Algorithm 1 in [EHRS00a] computes the set of configurations from which a con-

figuration in {〈(p, p̂, γ̂, lc, 0), w〉 | p, p̂ ∈ P ∧ γ̂ ∈ Γ ∧ w ∈ (Σ, IB)∗} is reachable in MS in

time

O(|P ||Γ|(|P |2|∆| + |P ||Γ|))

and space

O(|P ||Γ|(|P ||∆|+ |P ||Γ|))

✷

4.2.4 Shortest Lasso-Shaped Counterexamples

Repeating heads are not enough Assume again that M = (P,Γ,∆, CI) is a pushdown sys-

tem such that (p, γ, p′, w′) ∈ ∆ ⇒ |w′| ≤ 2. In his thesis [Sch02], Schwoon shows how to

construct a shortest path to a reachable configuration. If applied to a pushdown system obtained

by the transformation in Def. 3, the soonest second occurrence of a repeating head can be found.

However, this is not sufficient to find shortest counterexamples.

Repeating prefixes Finding a shortest counterexample requires to extend the definition of a

repeating head to a repeating prefix: any configuration 〈p, w〉 with |w| > 0 is a prefix. It is

repeating iff there exist a path π and a word v with π[0] = 〈p, w〉 and π[|π| − 1] = 〈p, wv〉.

Example For an example see the path in Fig. 4.3. The second occurrence of the repeating head

(p3, γ0) can only be detected at i = 23 while the repeating prefix 〈p2, γ2γ1γ0γ2γ1γ0〉 indicates a

path whose heads form a lasso at i = 18.

4.3. TIMED AUTOMATA 59

Remarks The example also shows that the length of the prefix to be considered is O(|P ||Γ|).
On the other hand, once a path reaches a stack height of |P ||Γ| + 1 there must have been a

second occurrence of a repeating head: consider an initialized path π = 〈p0, w0〉 . . . 〈pk, wk〉
such that |wk| = |P ||Γ| + 1. Remember that the stack height grows or shrinks by at most one

per transition. For each 0 ≤ h ≤ |P ||Γ|+1 there exists 0 ≤ ih ≤ k such that all π[i] with i > ih
have stack height larger than h, i.e., ∀i > ih . |wi| > |wih| = h. Clearly, there must be h1 6= h2

such that head(π[ih1]) = head(π[ih2]). From the construction of the ih, π[0] . . . π[ih1] . . . π[ih2]
provides evidence that head(π[ih1]) is a reachable repeatable head. As a final remark, it is clear

that the length of any counterexample known to be present can be used to bound the length of a

repeating prefix.

4.3 Timed Automata

4.3.1 Preliminaries

Notation is mostly from [CGP99]. For x ∈ IR+
0 , let ⌊x⌋ and fr(x) denote the integer and

fractional parts of x.

A timed word over an alphabet Σ is a pair (α, τ) where α = α[0]α[1] . . . is a (finite or

infinite) word over Σ and τ is a non-decreasing sequence of time values τ [i] ∈ IR+
0 of the same

length.

Let X be a set of clock variables ranging over IR+
0 . The set of clock constraints C(X) is

defined as follows. If x, y ∈ X , n ∈ IN0, and ∼∈ {<,=, >} then x ∼ n and x − y ∼ n are

atomic clock constraints. If φ1, φ2 ∈ C(X) then also φ1 ∧ φ2 ∈ C(X).

A clock assignment for a set of clock variables X is a mapping v : X 7→ IR+
0 . For λ ⊆ X ,

we define

v[λ := 0](x) =

{
0 if x ∈ λ

v(x) otherwise

and for d ∈ IR+
0

(v + d)(x) = v(x) + d

If no doubt can arise we also write x instead of v(x). Satisfaction of a clock constraint φ by a

clock assignment v, denoted v |= φ, is defined in the natural way.

A timed automaton is a 6-tuple A = (Σ, S, S0, X, I, T) such that Σ is a finite alphabet, S

is a finite set of locations, S0 ⊆ S is a set of starting locations, X is a finite set of clocks,

I : S → C(X) is a mapping from locations to clock constraints, called location invariant, and

T ⊆ S × Σ × C(X) × 2X × S is a set of transition rules.

A is diagonal-free iff all clock constraints are of the form x ∼ n. For each x ∈ X , let its

ceiling cx denote the maximum n such that x ∼ n is a clock constraint in A. When appropriate,

we also write ci instead of cxi for some indexed clock xi.

A state of A is a pair (s, v) such that s ∈ S and v is a clock assignment to the clocks in X

with v |= I(s). (s, v) is initial iff s ∈ S0 and ∀x ∈ X . v(x) = 0.

(s, v)
d,(a,φ,λ)
→ (s′, v′) is a transition inA iff (s, a, φ, λ, s′) ∈ T , d ∈ IR+

0 , v′ = (v+d)[λ := 0],
∀0 ≤ d′ ≤ d . v + d′ |= I(s), v + d |= φ, and v′ |= I(s′).

60 CHAPTER 4. EXTENDING TO INFINITE STATE SYSTEMS

A path of A over a timed word (α, τ) is a sequence π : (s0, v0)(s1, v1) . . . with (si, vi) states

of A for all 0 ≤ i ≤ |π|, such that

• |π| = |α| + 1 if |α| is finite, |π| = ∞ otherwise,

• (s0, v0) is initial, and

• ∃(s0, α[0], φ0, λ0, s1) ∈ T . (s0, v0)
τ [0],(α[0],φ0,λ0)

→ (s1, v1) and

∀1 ≤ i < |π| − 1 .

∃(si, α[i], φi, λi, si+1) ∈ T . (si, vi)
τ [i]−τ [i−1],(α[i],φi,λi)

→ (si+1, vi+1).

If π = (s0, v0)(s1, v1) . . . is a path over (α, τ), we also write

(s0, v0)
α[0],τ [0]
→ (s1, v1)

α[1],τ [1]
→ . . .

Let v1 and v2 be two clock assignments. v1 and v2 are region-equivalent, v1
∼= v2, iff

• ∀x ∈ X . v1(x) > cx ∧ v2(x) > cx ∨ ⌊v1(x)⌋ = ⌊v2(x)⌋

• ∀x ∈ X . (v1(x) ≤ cx) ⇒ (fr(v1(x)) = 0 ⇔ fr(v2(x)) = 0)

• ∀x, y ∈ X . (v1(x) ≤ cx ∧ v1(y) ≤ cy) ⇒
(fr(v1(x)) ≤ fr(v1(y)) ⇔ fr(v2(x)) ≤ fr(v2(y)))

[v1] denotes the equivalence class of v1 in ∼=. If π = (s0, v0)(s1, v1) . . . is a path in A we let [π]
denote (s0, [v0])(s1, [v1])

Alur and Dill showed [AD94] that region-equivalence can be used to construct a finite ab-

straction of a timed automaton that is sufficient for model checking of LTL formulae. Let A be

a diagonal-free timed automaton. The region automaton of A, R(A) = (SR, SR0 , T
R), is a finite

automaton such that

SR = {(s, [v]) | (s, v) is a state of A},

SR0 = {(s0, [v0]) | (s0, v0) is initial} ⊆ SR, and

TR = {((s, [v]), a, (s′, [v′])) |

∃d ∈ IR+
0 , ∃(s, a, φ, λ, s′) ∈ T . (s, v)

d,(a,φ,λ)
→ (s′, v′)}.

Lemma 15 [CGP99] Let A be a diagonal-free timed automaton, let R(A) be defined as above.

A and R(A) are bisimilar by {((s, v), (s, [v]))}. ✷

Assume a transition with a guard that also contains Boolean or. Its clock constraint can be

rewritten into disjunctive normal form and the transition can be split accordingly [BDGP98].

Having both, Boolean and and or, we can also add logical negation to the syntax of clock con-

straints: negations can be pushed inwards and the negation of an atomic constraint can be repre-

sented as disjunction of two atomic constraints. From now on we use arbitrary combinations of

Boolean operators as well as relations from {<,≤,=,≥, >} in clock constraints on transitions.

Following [BDGP98], we do not include strictness (i.e., the time component of a timed word

must be strictly increasing) and non-Zenoness (the time component must be diverging) in our

definition as these can be enforced by intersection with (fair) timed automata.

4.3. TIMED AUTOMATA 61

4.3.2 Reduction

Storing clock regions rather than clock valuations We adopt the finite abstraction to the

region automaton in our reduction for timed automata and store the clock region rather than the

exact valuation of the clocks.

Assume a set of clocks X = {x0, . . . , xm}. A clock region over X can be represented by

specifying [AD94]

1. for every clock xj ∈ X (the) one of the intervals [0], (0; 1), [1], . . . , [cj], (cj;∞) xj is in,

and

2. for every pair of clocks xj1 , xj2 such that xj1 ∈ (d; d + 1) and xj2 ∈ (e; e + 1) with

d+ 1 ≤ cj1 and e+ 1 ≤ cj2 , whether fr(xj1) is smaller, equal to, or greater than fr(xj2).

The representation of part (1) requires an integer variable pj with range 0 . . . cj for each

clock xj . It holds the integral part of xj , ⌊xj⌋, if xj ≤ cj , or cj otherwise. An additional bit p=
j

per clock indicates whether xj = ⌊xj⌋. For part (2) we use an array of integer variables q0 . . . qm,

each ranging from 0 to m, to store a permutation of the clock indices 0 . . .m.§ The indices of

all clocks xj with xj ≤ cj are stored in the lower part of the array such that the fractional parts

of the corresponding clocks increase. The upper part of the array stores the indices of all clocks

xj with xj > cj. Finally, m additional bits q=
j indicate whether the fractional parts of clocks

xqj−1
, xqj are equal. Definition 4 formalizes the representation.

Definition 4 Let v be a clock assignment for a set of clocks X = {x0, . . . , xm}. r2b(v) is a

mapping of v to a set of representations of its region [v] as follows:

r2b : (X 7→ IR+
0) 7→ 2{0...c0}×...×{0...cm}×IBm+1×{0...m}m+1×IBm

such that

r2b(v) = {(p0, . . . , pm, p=
0 , . . . , p=

m, q0, . . . , qm, q=
1 , . . . , q=

m) |
(

∀0 ≤ j ≤ m . pj =

{

⌊xj⌋ if xj < cj
cj otherwise

)

∧

(∀0 ≤ j ≤ m . p=
j ⇔ xj = pj) ∧

(∀0 ≤ j1 ≤ m . ∃0 ≤ j2 ≤ m . j1 = qj2) ∧

(∀1 ≤ j ≤ m .
xqj−1 ≤ cqj−1 ∧ xqj ≤ cqj ∧ xqj−1 − pqj−1 ≤ xqj − pqj ∨ xqj > cqj) ∧

(∀1 ≤ j ≤ m . (q=
j ⇔ xqj−1 − pqj−1 = xqj − pqj) ∨ cqj < xqj)}

Note, that r2b could be made canonical by imposing an order on qj−1, qj if either xqj−1
−

pqj−1
= xqj − pqj or xqj−1

> cqj−1
∧ xqj > cqj rather than mapping to sets. The following

Lemma proves that regions are uniquely represented by disjoint sets of tuples. Hence, if two

clock assignments can be represented by the same tuple, their regions are equal and vice versa.

Lemma 16 Let v1, v2 be clock assignments over X . Then

[v1] = [v2] ⇒ r2b(v1) = r2b(v2) (4.1)

r2b(v1) ∩ r2b(v2) 6= ∅ ⇒ [v1] = [v2] (4.2)

§The original analysis [AD94] requires O(log((m+1)!)(m+1)) bits whereas we use O(log((m+1)m+1)(m+
1)) bits.

62 CHAPTER 4. EXTENDING TO INFINITE STATE SYSTEMS

Proof: Follows from the definitions of region-equivalence and r2b. ✷

Formal definition ǫ-transitions strictly increase the power of timed automata [BDGP98].

Therefore, we do not introduce separate transitions to store or compare a state but combine

this with existing transitions as in previous sections. If (s, v)
d,(a,φ,λ)
→ (s′, v′) is a transition in A

this leaves the choice of storing (s, [v+d]) or (s′, [(v+d)[λ := 0]]). As in the finite and regular

case we opt for the second variant. Definition 5 shows the reduction.

Definition 5 Let A = (Σ, S, S0, X, I, T) with X = {x0, . . . , xm} be a diagonal-free timed

automaton. Let ŝI ∈ S be arbitrary but fixed, let p̂0I = . . . = p̂mI = 0, p̂=
0 I ↔ . . .↔ p̂=

mI ↔ 1,

∀mj=0 . q̂jI = j, and q̂=
1 I ↔ . . .↔ q̂=

mI ↔ 1. Then AS = (Σ, SS, S0
S, X, IS, T S) is defined as:

SS = {(s, ŝ, p̂0, . . . , p̂m, p̂
=
0 , . . . , p̂

=
m, q̂0, . . . , q̂m, q̂

=
1 , . . . , q̂

=
m, lo) |

∀0 ≤ j1 ≤ m . ∃0 ≤ j2 ≤ m . j1 = q̂j2}
⊆ S × S × {0 . . . c0} × . . .× {0 . . . cm} × IBm+1 × {0 . . .m}m+1 × IBm × {st , lb, lc}

S0
S = {(s0, ŝI , p̂0I , . . . , p̂mI , p̂

=
0 I , . . . , p̂

=
mI , q̂0I , . . . , q̂mI , q̂

=
1 I , . . . , q̂

=
mI , st) | s0 ∈ S0} ∪

{(s0, s0, 0, . . . , 0, 1, . . . , 1, q̂0, . . . , q̂m, 1, . . . , 1, lb) | s0 ∈ S0} ⊆ SS

IS(sS) = I(s) where sS = (s, ŝ, p̂0, . . . , p̂m, p̂
=
0 , . . . , p̂

=
m, q̂0, . . . , q̂m, q̂

=
1 , . . . , q̂

=
m, lo)

T S = {((s, ŝ, p̂0, . . . , p̂m, p̂
=
0 , . . . , p̂

=
m, q̂0, . . . , q̂m, q̂

=
1 , . . . , q̂

=
m, lo),

a,Φ, λ,
(s′, ŝ′, p̂′0, . . . , p̂

′
m, p̂

=
0
′, . . . , p̂=

m
′, q̂′0, . . . , q̂

′
m, q̂

=
1
′, . . . , q̂=

m
′, lo ′)) |

(s, a, φ, λ, s′) ∈ T ∧
((lo = st ∧ lo ′ = st ∧ Ψinitial ∧ Ψunchanged ∧ (Φ ≡ φ)) ∨ (1)
(lo = st ∧ lo ′ = lb ∧ Ψinitial ∧ s

′ = ŝ′ ∧ (Φ ≡ φ ∧ Φsavecmp)) ∨ (2)
(lo = lb ∧ lo ′ = lb ∧ Ψunchanged ∧ (Φ ≡ φ)) ∨ (3)
(lo = lb ∧ lo ′ = lc ∧ Ψunchanged ∧ s′ = ŝ′ ∧ (Φ ≡ φ ∧ Φsavecmp)) ∨ (4)
(lo = lc ∧ lo ′ = lc ∧ Ψunchanged ∧ (Φ ≡ φ)))} (5)

where

Ψinitial ≡ ŝ = ŝI ∧ (
∧m
j=0 p̂j = p̂jI ∧ (p̂=

j ↔ p̂=
j I) ∧ q̂j = q̂jI) ∧ (

∧m
j=1 q̂

=
j ↔ q̂=

j I),

Ψunchanged ≡ ŝ = ŝ′ ∧ (
∧m
j=0 p̂j = p̂j

′ ∧ (p̂=
j ↔ p̂=

j
′) ∧ q̂j = q̂j

′) ∧ (
∧m
j=1(q̂

=
j ↔ q̂=

j
′))

4.3. TIMED AUTOMATA 63

and

Φsavecmp ≡ (
∧m
j=0 Φ1

j ∧ Φ1=
j) ∧ (

∧m
j=1 Φ2

j ∧ Φ2=
j)

with

(
∧m
j=0(xj ∈ λ⇒ p̂′j = 0 ∧ (Φ1

j ≡ 1)) ∧
(xj 6∈ λ⇒ (p̂j

′ < cj ⇒ (Φ1
j ≡ p̂j

′ ≤ xj < p̂j
′ + 1)) ∧

(p̂j
′ = cj ⇒ (Φ1

j ≡ cj ≤ xj)))) ∧

(
∧m
j=0(xj ∈ λ⇒ p̂=

j
′ ∧ (Φ1=

j ≡ 1)) ∧
(xj 6∈ λ⇒ (Φ1=

j ≡ p̂=
j
′ ↔ xj = p̂j

′))) ∧

(
∧m
j=1(xq̂j−1

′ ∈ λ⇒ (Φ2
j ≡ 1)) ∧

(xq̂j−1
′ 6∈ λ ∧ xq̂j ′ ∈ λ⇒ (Φ2

j ≡ xq̂j−1
′ − p̂q̂j−1

′
′ = 0)) ∧

(xq̂j−1
′ 6∈ λ ∧ xq̂j ′ 6∈ λ⇒ (Φ2

j ≡ (xq̂j−1
′ ≤ cq̂j−1

′ ∧ xq̂j ′ ≤ cq̂j ′ ∧
xq̂j−1

′ − p̂q̂j−1
′
′ ≤ xq̂j ′ − p̂q̂j ′

′ ∨
cq̂j ′ < xq̂j ′)))) ∧

(
∧m
j=1(xq̂j ′ ∈ λ⇒ q̂=

j
′ ∧ (Φ2=

j ≡ 1)) ∧
(xq̂j−1

′ ∈ λ ∧ xq̂j ′ 6∈ λ⇒ (Φ2=
j ≡ (q̂=

j
′ ↔ xq̂j ′ − p̂q̂j ′

′ = 0) ∨ cq̂j ′ < xq̂j ′)) ∧
(xq̂j−1

′ 6∈ λ ∧ xq̂j ′ 6∈ λ⇒ (Φ2=
j ≡ (q̂=

j
′ ↔ xq̂j−1

′ − p̂q̂j−1
′
′ = xq̂j ′ − p̂q̂j ′

′) ∨
cq̂j ′ < xq̂j ′)))

Correctness Lemma 17 states that AS can make a transition that stores or compares a state of

A iff the added location bits of AS represent the location and the region of the clock assignment

of the A-state in the post-state.

Lemma 17 Let A = (Σ, S, S0, X, I, T) be a timed automaton and AS be defined as above.

Then

(i) ((s, ŝI , p̂0I , . . . , p̂mI , p̂
=
0 I , . . . , p̂

=
mI , q̂0I , . . . , q̂mI , q̂

=
1 I , . . . , q̂

=
mI , st), v)

d,(a,Φ,λ)
→

((s′, s′, p̂′0, . . . , p̂
′
m, p̂

=
0
′, . . . , p̂=

m
′, q̂′0, . . . , q̂

′
m, q̂

=
1
′, . . . , q̂=

m
′, lb), v′)

⇔

(s, v)
d,(a,φ,λ)
→ (s′, v′) ∧

(p̂′0, . . . , p̂
′
m, p̂

=
0
′, . . . , p̂=

m
′, q̂′0, . . . , q̂

′
m, q̂

=
1
′, . . . , q̂=

m
′) ∈ r2b(v′)

(ii) ((s, s′, p̂0
′, . . . , p̂m

′, p̂=
0
′, . . . , p̂=

m
′, q̂0

′, . . . , q̂m
′, q̂=

1
′, . . . , q̂=

m
′, lb), v)

d,(a,Φ,λ)
→

((s′, s′, p̂0
′, . . . , p̂m

′, p̂=
0
′, . . . , p̂=

m
′, q̂0

′, . . . , q̂m
′, q̂=

1
′, . . . , q̂=

m
′, lc), v′)

⇔

(s, v)
d,(a,φ,λ)
→ (s′, v′) ∧

(p̂0
′, . . . , p̂m

′, p̂=
0
′, . . . , p̂=

m
′, q̂0

′, . . . , q̂m
′, q̂=

1
′, . . . , q̂=

m
′) ∈ r2b(v′)

Proof: Follows from Def. 4 and 5 with

(s, v)
0,(a,φ,λ)
→ (s′, v′) ⇒ ∀x ∈ X . x ∈ λ ∧ x′ = 0 ∨ x 6∈ λ ∧ x′ = x

✷

Now we can prove the existence of an infinite loop in A iff AS can reach a state such that

lo = lc.

64 CHAPTER 4. EXTENDING TO INFINITE STATE SYSTEMS

Theorem 18 Let A = (Σ, S, S0, X, I, T) be a timed automaton, AS be defined as above, and

k > l ≥ 0. A has a path π = (s0, v0)(s1, v1) . . . such that

[π] = (s0, [v0])
α[0]
→ . . .

α[l−2]
→ (sl−1, [vl−1])

α[l−1]
→ ((sl, [vl])

α[l]
→ . . .

α[k−2]
→ (sk−1, [vk−1])

α[k−1]
→)ω

if and only if AS has a path

πS = ((s0, ŝI , p̂0I , . . . , p̂mI , p̂
=
0 I , . . . , p̂

=
mI , q̂0I , . . . , q̂mI , q̂

=
1 I , . . . , q̂

=
mI , st), v0)

α[0]
→

. . .
α[l−2]
→

((sl−1, ŝI , p̂0I , . . . , p̂mI , p̂
=
0 I , . . . , p̂

=
mI , q̂0I , . . . , q̂mI , q̂

=
1 I , . . . , q̂

=
mI , st), vl−1)

α[l−1]
→

((sl, sl, p̂0, . . . , p̂m, p̂
=
0 , . . . , p̂

=
m, q̂0, . . . , q̂m, q̂

=
1 , . . . , q̂

=
m, lb), vl)

α[l]
→

. . .
α[k−2]
→

((sk−1, sl, p̂0, . . . , p̂m, p̂
=
0 , . . . , p̂

=
m, q̂0, . . . , q̂m, q̂

=
1 , . . . , q̂

=
m, lb), vk−1)

α[k−1]
→

((sk, sl, p̂0, . . . , p̂m, p̂
=
0 , . . . , p̂

=
m, q̂0, . . . , q̂m, q̂

=
1 , . . . , q̂

=
m, lc), vk)

Proof: “⇒”: Assume l > 0. Set πS[0] = (s0, . . . , st) according to Def. 5. πS[0] . . . πS[l−1] can

be constructed from π by taking transitions from (1). Using Lemma 17 we have the transition

of AS from πS[l−1] to πS[l] where (p̂0, . . . , p̂m, p̂
=
0 , . . . , p̂

=
m, q̂0, . . . , q̂m, q̂

=
1 , . . . , q̂

=
m) ∈ r2b(vl).

Transitions in (3) lead to πS[k − 1]. By assumption sl = sk and [vl] = [vk]. With Lemma 17

this gives the transition from πS[k − 1] to πS[k]. If l = 0, choose an initial state πS[l] such

that the stored location is sl, the stored region is the initial region, and lo = lb. Continue with

transitions from sets (3) and (4) as for l > 0.

“⇐”: Assume πS with k > l. By construction of AS there exists a path

π′ = (s0, v0)
α[0]
→ . . .

α[l−2]
→ (sl−1, vl−1)

α[l−1]
→ (sl, vl)

α[l]
→ . . .

α[k−2]
→ (sk−1, vk−1)

α[k−1]
→ (sk, vk)

in A. With Lemma 15 there is a path

π′
R = (s0, [v0])

α[0]
→ . . .

α[l−2]
→ (sl−1, [vl−1])

α[l−1]
→

(sl, [vl])
α[l]
→ . . .

α[k−2]
→ (sk−1, [vk−1])

α[k−1]
→ (sk, [vk])

in R(A). From the construction of AS, we have sl = sk, and, with Lemmas 16 and 17, [vl] =
[vk]. Hence,

π′′
R = (s0, [v0])

α[0)
→ . . .

α[l−2]
→ (sl−1, [vl−1])

α[l−1]
→ ((sl, [vl])

α[l]
→ . . .

α[k−2]
→ (sk−1, [vk−1])

α[k−1]
→)ω

is an infinite path in R(A), which by Lemma 15 gives π in A as required. ✷

Remark Note that, while A is assumed to be diagonal-free, AS might not. This is purely a

matter of convenience. For a reduction from timed automata to diagonal-free timed automata

see [BDGP98]. We could also admit difference constraints in the construction of AS similar to

that reduction.

4.4. RELATED WORK 65

4.3.3 Complexity

Theorem 19 Let A = (Σ, S, S0, X, I, T) be a timed automaton. AS has

O((Π
|X|−1
j=0 (cj + 1)) · |X|! · 22|X| · |S| · |S|) locations

and

O((Π
|X|−1
j=0 (cj + 1)) · |X|! · 22|X| · |S| · |T |) transitions.

The number of clock regions is equal to those of A.

Proof: The locations of A are extended to store another location and a clock region. There are

O((Π
|X|−1
j=0 (cj + 1)) · |X|! · 22|X|) of the latter [AD94]. The transformation adds at most |X|

constraints of the form xj1 − xj2 ∼ c. Making AS diagonal-free therefore adds another O(2|X|)
location bits [BDGP98]. The number of transitions can be derived in a similar way as in Thm. 6.

✷

4.3.4 Shortest Lasso-Shaped Counterexamples

As in the finite case (Sect. 3.4) the reduction can be used to find lasso-shaped counterexamples

with a minimal number of transitions for LTL properties if breadth-first search is used to deter-

mine reachability. Alternatively, using a priority queue instead of a queue in the reachability

algorithm, the lasso-shaped path that spends least time until the closure of the loop can be found

[BFH+01]. UPPAAL [LPY97] offers both possibilities.

4.4 Related Work

Reduction to reachability Bouajjani et al. independently used the same reduction to verify

liveness properties in regular model checking [BHV04]. They only sketch the reduction. No

complexity results are given and timed automata are not discussed. The reduction of Shilov et. al

[SYE+05] applies in principle also to infinite states systems if their prerequisites are satisfied.

However, they do not give concrete examples.

Restriction to reachability Aceto et al. [ABBL03] developed a specification language for

timed systems and proved for a subset that it can express precisely those properties that can be

checked by reachability in the timed system composed with a test automaton (basically, a timed

automaton with designated bad locations).

Proving termination with transition invariants Podelski and Rybalchenko use invariants

of the transition relation rather than of the set of reachable states to establish liveness proper-

ties of infinite state programs: roughly, a program satisfies a liveness property iff there exists

a disjunctively well-founded invariant of its (suitably restricted) transition relation [PR04]. In

[PR05, CPR05] they continue by applying predicate abstraction and counterexample-guided

abstraction refinement to transitions rather than states. Instead of working with transitions

directly one could apply the part of the state-recording translation that non-deterministically

66 CHAPTER 4. EXTENDING TO INFINITE STATE SYSTEMS

saves a state and then work with state-based invariants or abstractions. As liveness proper-

ties of infinite state systems do not necessarily have lasso-shaped counterexamples, our simple

loop-closing condition would have to be replaced with a well-foundedness check as used by

[PR04, PR05, CPR05].

Other Early work on liveness for regular model checking includes [BJNT00, PS00]. Pnueli

and Shahar [PS00] also use a copy of a current state to detect bad cycles in parameterized

systems. However, this is not performed as syntactic transformation of a system but as part of a

dedicated liveness checking algorithm. A variant of LTL geared towards parameterized systems

is proposed in [AJN+04]. [BLW04b] gives details on how to encode a broader set of properties

than [AJN+04] for (ω−)regular model checking, which can be used in conjunction with our

reduction. Algorithms to compute repeated reachability, on which we also base our reductions,

can be found for pushdown systems, e.g., in [BEM97], and for timed automata in [AD94].

4.5 Summary

We have extended the state-recording translation to some infinite state systems. Saving and

comparing configurations in regular model checking can be achieved by working with automata

on tuples of characters rather than individual characters. The transformation preserves bounded

local depth, which is a sufficient criterion for termination of an algorithm to compute the transi-

tive closure of the transition relation. Pushdown systems can be handled by storing the current

head and marking the stack height. When the saved head occurs a second time without the stack

height falling below the level at the time of saving, a loop has been detected. For timed automata

the region abstraction of a configuration is saved rather than the (infinite) configuration itself.

Note, that in all cases an existing algorithm to verify liveness for the respective class of systems

has been syntactically expressed in that class of systems. While for timed automata the trans-

formation can help to find lasso-shaped counterexamples with the least number of transitions,

finding shortest counterexamples for pushdown systems would require detection of repeating

prefixes.

5
Büchi Automata for Shortest

Counterexamples

The present letter is a very long one, simply because I had no leisure to make it shorter.

Blaise Pascal, Provincial Letters: Letter XVI

In the automaton-based approach to model checking, a PLTLB property is verified by searching

for loops in the synchronous product of a Kripke structure M , representing the model, and a

Büchi automaton B, accepting counterexamples for the property. To obtain shortest counterex-

amples,B must be able to accept these in a “short enough” way. In this chapter we formally de-

fine, when a Büchi automaton accepts shortest counterexamples (termed tight), and we present

necessary and sufficient conditions for tightness (Sect. 5.1). Section 5.2 examines whether ex-

isting approaches meet these conditions. It turns out that none of the constructions we looked

at fulfills the criteria for PLTLB. Therefore, in Sect. 5.3 we give a construction of a tight Büchi

automaton from a PLTLB formula. The construction is generalized to tighten arbitrary Büchi

automata in Sect. 5.4. Section 5.5 discusses related work and Sect. 5.6 gives a brief summary.

5.1 Tight Büchi Automata

Intuition If shortest counterexamples are desired in the automaton-based approach to model

checking, the product of the model M and the Büchi automaton B must have an initialized fair

path λ = 〈µ, ν〉 that can be represented as lasso of the same length as the shortest counterex-

ample α = 〈β, γ〉 in M . From Lemma 1 it can be inferred that a path λ = 〈µ, ν〉 in M × B

of the same length as the counterexample α = 〈β, γ〉 in M implies that the corresponding

path ρ = στω in B can be represented as the same type as 〈β, γ〉. In other words, the Büchi

automaton should adapt as a chameleon to the counterexamples present in the model.

Example Consider the scenarios in Fig. 5.1. The Büchi automaton B in the left scenario has

a path στω of the same structure as the counterexample βγω in M , leading to an equally short

counterexample (β × σ)(γ × τ)ω in the product M × B. The path of the Büchi automaton in

the right scenario has an unnecessarily long stem and loop. Note, that the length of the stem in

M × B is the maximum of the lengths of the stems in M and B, and the length of the loop in

M × B is the least common multiple of the lengths of the loops in M and B.

67

68 CHAPTER 5. BÜCHI AUTOMATA FOR SHORTEST COUNTEREXAMPLES

�✁✂✄ ☎✆✝✞✝✟ ✠✡ ☛☞

✌✞✌✍ ✎✏ ✑✒

✓✞✓✔ ✕✖ ✗✘

(β γ γ[0]) (σ)o xo (γ[1,2] γ γ γ γ[0]) (τ τ τ)o o o o x o o

✙✙✚
✚
✛✛✜
✜
✢✢✣
✣
✤✤✥
✥
✦✦✧
✧
★★✩
✩
✪✪✫
✫
✬✬✭
✭
✮✮✯
✯
✰✰✱
✱
✲✞✲✲✞✲✳✞✳✳✞✳ ✴✴✵✵

✶✶✷
✷
✸✸✹
✹
✺✺✻
✻
✼✼✽
✽
✾✾✿
✿
❀❀❁
❁
❂❂❃
❃
❄❄❅
❅
❆❆❇
❇
❈❈❉
❉
❊✞❊❊✞❊❋✞❋❋✞❋ ●●❍❍

■■❏
❏
❑❑▲
▲
▼▼◆
◆
❖❖P
P
◗◗❘
❘
❙❙❚
❚
❯❯❱
❱
❲❲❳
❳
❨❨❩
❩
❬❬❭
❭
❪✞❪❪✞❪❫✞❫❫✞❫ ❴❴❵❵ ❛❛❜❜ ❝❝❞❞ ❡✞❡

❡✞❡
❢✞❢❢✞❢ ❣❣❤❤ ✐✐❥❥ ❦❦❧❧ ♠♠♥♥ ♦✞♦

♦✞♦
♣♣ qqrr sstt ✉✉✈✈ ✇✇①① ②②③③ ④✞④

④✞④
⑤⑤ ⑥⑥⑦⑦ ⑧⑧

⑨⑨⑩⑩❶
❶

❷❷❸
❸
❹✞❹❹✞❹❺
❺
❻❻❼
❼

❽❽❾
❾

❿❿➀
➀

➁➁➂
➂

➃✞➃➄✞➄
➅➅
➅➅

➆➆
➆➆

➇✞➇➈✞➈
➉➉
➉➉

➊➊
➊➊

➋➋
➋➋

➌➌
➌➌

➍➍
➍➍

➎➎
➎➎

β γ γ γ

B

M

M x B

β γ γ γ γ γ

σ τ τ τ σ τ τ τ

β σ γ τ γ τ γ τxxxx

index 0 4 7 10 0 8 12 16

Figure 5.1: Scenarios with shortest and non-optimal counterexample

Formal definition Kupferman and Vardi [KV01] call an automaton on finite words tight if

it accepts shortest prefixes for violations of safety formulae. We extend that notion to Büchi

automata on infinite words.

Definition 6 Let B = (S, T, I, L, F) be a Büchi automaton. B is tight iff

∀α ∈ Lang(B) . ∀β, γ . (α = βγω ⇒
∃ρ ∈ ΠF (B) . (L(ρ) = α ∧ type(〈β, γ〉) ∈ type(ρ)))

Alternative criteria The left scenario in Fig. 5.1 suggests another, alternative formulation,

which may be more intuitive and is easier to prove for some automata: the subsequences

of α starting at indices 4, 7, 10, . . . are the same, as are those beginning at 5, 8, 11, . . ., and

6, 9, 12, On the other hand, the subsequences starting at the respective indices in a single

iteration (e.g., 4, 5, 6) are all different — otherwise a part of the loop could be cut out, contra-

dicting minimality. Hence, if B is tight, there must be an initialized fair path ρ with L(ρ) = α

with the following property: for each pair of indices i, j, if the subsequences of α starting at

i and j have the same future (α[i,∞] = α[j,∞]), then ρ maps i and j to the same state in B

(ρ[i] = ρ[j]). Theorem 20 establishes the equivalence of the criteria.

Theorem 20 Let B = (S, T, I, L, F) be a Büchi automaton. The following statements are

equivalent:

1. B is tight.

2. ∀α ∈ Lang(B) . ∀β, γ . (〈β, γ〉 is minimal for α⇒
∃ρ ∈ ΠF (B) . (L(ρ) = α ∧ type(〈β, γ〉) ∈ type(ρ)))

3. ∀α ∈ Lang(B) . ((∃β, γ . α = βγω) ⇒
(∃ρ ∈ ΠF (B) . (L(ρ) = α ∧ (∀i, j . α[i,∞] = α[j,∞] ⇒ ρ[i] = ρ[j]))))

4. ∀α ∈ Lang(B) . ∀β, γ . (〈β, γ〉 is minimal for α⇒
∃ρ ∈ ΠF (B) . ∃σ, τ . (L(ρ) = α ∧ ρ = στω ∧ |〈σ, τ〉| = |〈β, γ〉|))

5. ∀α ∈ Lang(B) . ∀β, γ . (α = βγω ⇒
∃ρ ∈ ΠF (B) . ∃σ, τ . (L(ρ) = α ∧ ρ = στω ∧ |〈σ, τ〉| = |〈β, γ〉|))

Proof: 5 ⇒ 4: Obvious, 〈β, γ〉 being minimal for α implies α = βγω.

5.1. TIGHT BÜCHI AUTOMATA 69

4 ⇒ 3: Assume α ∈ Lang(B) with 〈β, γ〉 minimal for α. Hence, there exists a path ρ in

ΠF (B) with L(ρ) = α and σ, τ such that ρ = στω with |〈σ, τ〉| = |〈β, γ〉|. Corollary 3 gives

|σ| = |β| and |τ | = |γ|. Let i, j with α[i,∞] = α[j,∞]. It remains to show that ρ[i] = ρ[j].
This is done by distinguishing 5 cases according to the positions of i and j w.r.t. to β and γ in

α. Note that only in the first and in the last case ρ[i] and ρ[j] actually play a role as in all other

cases 〈β, γ〉 cannot be minimal for α.

Case 1, i = j: Obvious.

Case 2, i < j ≤ |β| − 1:

α[i,∞] = α[j,∞] ⇒ α[0, i− 1] ◦ α[i,∞] = α[0, i− 1] ◦ α[j,∞]
⇒ α = β[0, i− 1] ◦ β[j, |β| − 1] ◦ γω

⇒ contradiction, 〈β, γ〉 is minimal for α

Case 3, |β| ≤ i < j < |β| + |γ|:

α[i,∞] = α[j,∞] ⇒ α[0, i− 1] ◦ α[i,∞] = α[0, i− 1] ◦ α[j,∞]
⇒ α = β ◦ (γ[0, i− 1 − |β|] ◦ γ[j − |β|, |γ| − 1])ω

⇒ contradiction, 〈β, γ〉 is minimal for α

Case 4, 0 ≤ i < |β| ≤ j < |β| + |γ|:

α[i,∞] = α[j,∞] ⇒ α[0, i− 1] ◦ α[i,∞] = α[0, i− 1] ◦ α[j,∞]
⇒ α = β[0, i− 1] ◦ (γ[j − |β|, |γ| − 1] ◦ γ[0, j − |β| − 1])ω

⇒ contradiction, 〈β, γ〉 is minimal for α

Case 5, |β| + |γ| ≤ i and/or j: Clearly, if i ≥ |β| + |γ|, then α[i,∞] = α[i − |γ|,∞]. Hence,

reduce to 1 – 4 by subtracting |γ| from i and/or j. In cases 2 – 4 we can stop. For case 1,

remember that |σ| = |β| and |τ | = |γ|; therefore, ρ[i] = ρ[i− |γ|] for any i ≥ |β| + |γ|.

3 ⇒ 2: Assume α = βγω ∈ Lang(B) and ρ a path in ΠF (B) with L(ρ) = α and

∀i, j . α[i,∞] = α[j,∞] ⇒ ρ[i] = ρ[j]. Let 〈β, γ〉 be minimal for α.

α = βγω ⇒ ∀i < |γ|, ∀k . α[|β| + i,∞] = (γω)[i,∞] = α[|β| + i+ |γ|k,∞]
⇒ ∀i < |γ|, ∀k . ρ[|β| + i] = ρ[|β| + i+ |γ|k]

Let σ = ρ[0, |β| − 1] and τ = ρ[|β|, |β| + |γ| − 1]. Hence, ρ = στω such that |σ| = |β| and

|τ | = |γ|.

2 ⇒ 1: Assume α = βγω ∈ Lang(B). Let 〈β ′, γ′〉 be minimal for α and ρ a path in ΠF (B) with

L(ρ) = α and type(〈β ′, γ′〉) ∈ type(ρ). Hence, there exist σ′, τ ′ with ρ = σ′τ ′
ω

, |σ′| = |β ′|,
and |τ ′| = |γ′|. Lemma 2 gives |β| ≥ |β ′| and |γ′| divides |γ|. With σ = ρ[0, |β| − 1] and

τ = ρ[|β|, |β|+ |γ| − 1] we have ρ = στω and type(〈β, γ〉) ∈ type(ρ).

1 ⇒ 5: Assume α = βγω ∈ Lang(B). Let ρ be a path in ΠF (B) with L(ρ) = α and

type(〈β, γ〉) ∈ type(ρ). Hence, there exist σ, τ with ρ = στω, |σ| = |β|, and |τ | = |γ|.
By definition of length of a lasso, |〈σ, τ〉| = |〈β, γ〉|. ✷

Basic facts The following propositions show general ways to obtain a tight Büchi automaton.

Both, the sum and the product, which correspond to language union and intersection, of two

70 CHAPTER 5. BÜCHI AUTOMATA FOR SHORTEST COUNTEREXAMPLES

tight Büchi automata are also tight. The third proposition suggests a saturation procedure. A

tight automaton is obtained by

1. adding states to a Büchi automaton such that for each pair of states si, sj there is a third

state accepting the intersection of the languages of si and sj,

2. adding a transition from si to sj for each pair of states si, sj if the language of sj is a

subset of the language of si with the first character chopped of, and, finally,

3. making every state initial that accepts a subset of the language of the automaton.

Proposition 21 Let B1 = (S1, T1, I1, L1, F1), B2 = (S2, T2, I2, L2, F2) be two tight Büchi

automata. Then B3 = B1 +B2 is tight.

Proof: Let α = 〈β, γ〉 ∈ Lang(B3) such that 〈β, γ〉 is minimal for α. By construction of

B3, either 1) α|AP1 ∈ Lang(B1) or 2) α|AP2 ∈ Lang(B2). Assume 1). There exists a path

ρ1 = σ1τ
ω
1 ∈ ΠF (B1) with |σ1| = |β|, |τ1| = |γ|, and L(ρ1) = α|AP1 . By definition of the sum

of automata ρ3 = ((σ1 × σ2), (τ1 × τ2)) ∈ ΠF (B3) with σ2 = β|AP2\AP1 and τ2 = γ|AP2\AP1

is a path in Π(B3) s.t. L(ρ3) = α. Clearly, |σ1 × σ2| = |β| and |τ1 × τ2| = |γ|. Case 2) is

analogous. ✷

Proposition 22 Let B1 = (S1, T1, I1, L1, F1), B2 = (S2, T2, I2, L2, F2) be two tight Büchi

automata. Then B3 = B1 × B2 is tight.

Proof: Let α = 〈β, γ〉 ∈ Lang(B3) such that 〈β, γ〉 is minimal for α. By Lemma 3 〈β, γ〉
is unique. Since α|AP1 ∈ Lang(B1) and α|AP2 ∈ Lang(B2), there exist paths ρ1 = σ1τ

ω
1 ∈

ΠF (B1) and ρ2 = σ2τ
ω
2 ∈ ΠF (B2) with |σ1| = |σ2| = |β| and |τ1| = |τ2| = |γ|. By definition of

the synchronous product there is a path ρ3 = ((σ1 × σ2), (τ1 × τ2)) ∈ ΠF (B3) with L(ρ3) = α.

Clearly, |σ1 × σ2| = |β| and |τ1 × τ2| = |γ|. ✷

Proposition 23 Let B = (S, T, I, L, F) be a Büchi automaton. B is tight if

(∀s1, s2 ∈ S . ∃s3 ∈ S . Lang(B, s1) ∩ Lang(B, s2) = Lang(B, s3)) ∧ (1)

(∀s1, s2 ∈ S . Lang(B, s2) ⊆ {α[1,∞] | α ∈ Lang(B, s1)} ⇒ (s1, s2) ∈ T) ∧ (2)

(∀s ∈ S . Lang(B, s) ⊆ Lang(B) ⇒ s ∈ I) (3)

Proof: Let α ∈ Lang(B). By (1), for each position i in α there exists at least one minimal state

smin
i with α[i,∞] ∈ Lang(B, smin

i) and ∀s′ ∈ S . α[i,∞] ∈ Lang(B, s′) ⇒ Lang(B, smin
i) ⊆

Lang(B, si). As α[i,∞] ∈ Lang(B, smin
i), there is s′i+1 with (smin

i , s′i+1) ∈ T and α[i+1,∞] ∈
Lang(B, s′i+1). Clearly, Lang(B, smin

i+1) ⊆ Lang(B, s′i+1) ⊆ {α′[1,∞] | α′ ∈ Lang(B, smin
i)}.

Hence, with (2), (smin
i , smin

i+1) ∈ T . Further, with (1) and (3), smin
0 is an initial state. By choosing

the same state smin for any i, j such that α[i,∞] = α[j,∞] we can construct a path ρ in ΠF (B)
with L(ρ) = α and α[i,∞] = α[j,∞] ⇒ ρ[i] = ρ[j]. Tightness follows from Thm. 20. ✷

5.2. (NON-) OPTIMALITY OF SPECIFIC APPROACHES 71

{p, X G q, p & X G q} {q, G q, X G q}p & q

model M Büchi automaton B

Figure 5.2: Model M and Büchi automaton B
p∧XGq
GPVW resulting in non-optimal counterexample

5.2 (Non-) Optimality of Specific Approaches

5.2.1 Gerth et al. (GPVW)

Motivation and example The approach by Gerth et al. (GPVW) [GPVW96] for future time

LTL forms the basis of many algorithms to construct small Büchi automata, which benefits ex-

plicit state model checking but is also used, e.g., for symbolic model checking in VIS [VIS96].

Figure 5.2 shows an example that GPVW does not, in general, lead to tight automata. The

model, M , has a single state with propositions p, q true. B
p∧XGq
GPVW accepts counterexamples to

¬(p ∧ XGq). Its states are labeled with the content of the Old -set∗; the Next-set is {Gq} for

both nodes. Paths starting from the initial state of B
p∧XGq
GPVW fulfill p ∧ XGq, those starting from

the fair state satisfy Gq. M has a single, infinite path satisfying G(p ∧ q). While this is a

counterexample of length 1, the shortest initialized fair lasso in the product M × B
p∧XGq
GPVW has

length 2. Note that adding transitions or designating more initial states is not enough to make

B
p∧XGq
GPVW tight: an additional state is required. Non-optimality of GPVW is shared by many of

its descendants, e.g., [SB00].

Bound on excess length The following theorem establishes a bound on the excess length of

counterexamples to some PLTLF formula φ resulting from an automaton that was constructed

with the algorithm of [GPVW96]. The bound is linear in the future operator depth of φ.

Theorem 24 Let φ be a PLTLF property and B = B
¬φ
GPVW be a Büchi automaton constructed

with GPVW [GPVW96]. Let α = 〈β, γ〉 be a counterexample to φ. Then, there is an initialized

fair path ρ = 〈σ, τ〉 in B with L(ρ) = α and |σ| ≤ |β| + (hf (¬φ) + 1)|γ| and |τ | = |γ|.

Proof: Assume α = βγω ∈ Lang(B). Hence, there exists a path ρ′ in ΠF (B) with L(ρ′) = α.

Construct ρ ∈ ΠF (B) as follows:

1. On the stem, just copy ρ′: ∀0 ≤ i < |β| . ρ[i] = ρ′[i].

2. On the loop, modify ρ′ — while preserving acceptance of α — such that a U-formula

is fulfilled by satisfying its eventuality part as soon as possible. Since φ is a future time

formula, this will always be the case within at most |γ| steps. Similarly, if α permits to

fulfil an R-formula by making its eventuality part true, this is done and it is done as soon

as possible. Finally, for each ∨-formula, choose the same expansion in each iteration of

the loop. As a result, each subformula is expanded in the same way at a given position i

in the loop in different iterations of the loop. Formally, we have:

∗We assume algorithm and terminology as in [GPVW96].

72 CHAPTER 5. BÜCHI AUTOMATA FOR SHORTEST COUNTEREXAMPLES

(a) ∀i ≥ |β| . ∀ψ = ψ1 U ψ2 ∈ Old(ρ[i]) . ∃0 ≤ j < |γ| . ψ2 ∈ Old(ρ[i+ j]) ∧ (∀0 ≤
j′ < j . α, i+ j ′ 6|= ψ2) ∧ (ψ ∈ Next(ρ[i+ j]) ⇒ Xψ ∈ Old(ρ[i+ j]))

(b) ∀ψ = ψ1 R ψ2 . ((∃i ≥ |β| . α, i |= ψ1) ⇒ (∀i ≥ |β| . (ψ ∈ Old(ρ[i]) ⇒
(∃0 ≤ j < |γ| . ψ1 ∈ Old(ρ[i + j]) ∧ (∀0 ≤ j ′ < j . α, i + j ′ 6|= ψ1) ∧ (ψ ∈
Next(ρ[i+ j]) ⇒ Xψ ∈ Old(ρ[i+ j]))))))

(c) ∀i ≥ |β| . ∀ψ = ψ1 ∨ ψ2 ∈ Old(ρ[i]) . ((ψ1 6∈ Old(ρ[i]) ⇒ ∀k . (ψ ∈ Old(ρ[i +
k|γ|]) ⇒ ψ2 ∈ Old(ρ[i+k|γ|])))∧(ψ2 6∈ Old(ρ[i]) ⇒ ∀k . (ψ ∈ Old(ρ[i+k|γ|]) ⇒
ψ1 ∈ Old(ρ[i+ k|γ|]))))

It remains to show that ρ has the desired shape. We note the following (obvious) fact: From

the construction of [GPVW96], each formula in Old(ρ[i]) is a subformula of one in New(ρ[i])
and each formula in Next(ρ[i]) is a subformula of one in Old(ρ[i]). Hence, each formula in

some Old(ρ[i + 1]) is a subformula of a formula in Old(ρ[i]): ∀i ≥ 0 . ∀ψ1 ∈ Old(ρ[i +
1]) . ∃ψ2 ∈ Old(ρ[i]) . ψ1 ∈ sub(ψ2).

We now prove by induction that the Old -sets of ρ become stable after at most hf (φ) + 1
loop iterations:

∀k ≥ 0 . ∀0 ≤ i < |γ| . ∀k′ > k .

{ψ | ψ ∈ Old(ρ[|β| + k|γ| + i]) ∧ hf (ψ) > hf(φ) − k} =
{ψ | ψ ∈ Old(ρ[|β| + k′|γ| + i]) ∧ hf(ψ) > hf (φ) − k}

Base case. k = 0: With the fact stated above, no formula in some Old-, Next-, or New -set can

have future operator depth larger than φ. Hence, ∅ = ∅.

Inductive case. Assume the claim holds for k − 1 ≥ 0.

“⊆” Let ψ ∈ Old(ρ[|β| + k|γ| + i]) with hf(ψ) = hf (φ) − k + 1. ψ is present in

Old(ρ[|β| + k|γ| + i]) either because of an expansion of some ψ ′ ∈ Old(ρ[|β| +
k|γ|+ i]) with ψ ∈ sub(ψ′) or because ψ is contained in Next(ρ[|β|+k|γ|+ i−1]).

1. ψ is present because of an expansion of ψ′ ∈ Old(ρ[|β| + k|γ| + i]).

(a) If ψ′ is temporal, hf(ψ
′) > hf(ψ). By i.a., ψ′ will be present in Old(ρ[|β|+

k′|γ|+i]) for all k′ > k. By the construction of ρ above,ψ′ will be expanded

in the same way for each k′ as for k. Hence, ψ ∈ Old(ρ[|β| + k′|γ| + i]).

(b) If ψ′ is Boolean, let ψ′′ be the largest Boolean superformula of ψ′ in sub(φ).
ψ′′ is present in Old(ρ[|β| + k|γ| + i]) either because of an expansion of a

temporal formula ψ′′′ in Old(ρ[|β| + k|γ| + i]) or because ψ′′′ = Xψ′′ ∈
Old(ρ[|β| + k|γ| + i − 1]). In both cases hf(ψ

′′′) > hf (ψ). I.a. and the

construction of ρ guarantee the presence of ψ′′ in Old(ρ[|β|+k′|γ|+ i]) for

all k′ > k. The construction of ρ gives ψ′, ψ ∈ Old(ρ[|β| + k′|γ| + i]).

2. ψ is contained in Next(ρ[|β| + k|γ| + i− 1]).

(a) If Xψ ∈ Old(ρ[|β| + k|γ| + i − 1]), i.a. and the construction of ρ prove

ψ ∈ Old(ρ[|β| + k′|γ| + i]) for all k′ > k.

(b) Otherwise, ψ is a U- or R-formula. In that case, the same reasoning can be

applied again. Because of the construction of ρ, at most |γ| steps backward

(i.e., 2 (b)) are required. Then either one of the cases 1 (a), 1 (b), or 2

(a) holds, a contradiction arises (a U-formula must be fulfilled within |γ|

5.2. (NON-) OPTIMALITY OF SPECIFIC APPROACHES 73

... n−1n−210

¬G((c 6= n − 1) U ((c = n − 1) ∧
((c 6= n − 2) U ((c = n − 2) ∧
. . .

((c 6= 0) U (c = 0))
. . .

))
))

¬(F(G(O((c = 0) ∧
O((c = 1) ∧
. . .

O(c = n − 1)
. . .

)
))))

(a) model (b) property for GPVW (c) property for KPR

Figure 5.3: Simple modulo-n counter with properties resulting in counterexamples of excess

length linear in the future/past operator depth of the formulae.

steps), or ψ is a R-formula, which is fulfilled by its right argument being

continuously true.

“⊇” The proof is symmetrical to the “⊆”-case.

From the construction of [GPVW96] and the construction of ρ it is easy to see that stabi-

lization of the Old -sets implies stabilization of the corresponding Next-sets:

∀k ≥ 0 . ∀0 ≤ i < |γ| . ∀k′ > k .

{ψ | ψ ∈ Next(ρ[|β| + k|γ| + i]) ∧ hf (ψ) > hf (φ) − k} =
{ψ | ψ ∈ Next(ρ[|β| + k′|γ| + i]) ∧ hf(ψ) > hf (φ) − k}

A state in B is uniquely determined by its Old - and Next-sets. It takes at most hf (φ) + 1
loop iterations before both, Old- and Next-sets, become stable. I.e., ρ has the desired shape. ✷

Approximate tightness of the bound The bound stated above is tight insofar as there is an

example of a model and property such that the algorithm of Gerth et al. [GPVW96] produces a

counterexample exhibiting excess length linear in the future operator depth of the formula (see

Fig. 5.3 (a), (b)).

5.2.2 Kesten et al. (KPR)

Tightness for PLTLF In a Büchi automaton B
φ
KPR generated by the algorithm of Kesten et

al. [KPR98] each state variable corresponds to a subformula ψ of φ (see Tab. 2.2). This directly

proves tightness of B
φ
KPR for a PLTLF formula φ:

Theorem 25 Let φ be a future time LTL formula, let B
φ
KPR be defined as in Sect. 2.6. Then

B
φ
KPR is tight.

Proof: Every two states in B = B
φ
KPR differ in the valuation of at least one state variable, and

therefore specify a different, non-overlapping future (which includes presence). According to

Thm. 20, a Büchi automaton B is tight iff for each accepted word α there exists a path ρ in

ΠF (B) with L(ρ) = α and ∀i, j . (α[i,∞] = α[j,∞] ⇒ ρ[i] = ρ[j]). Clearly, α[i,∞] =
α[j,∞] have the same future, hence, on each run in B we have α[i,∞] = α[j,∞] ⇒ ρ[i] =
ρ(j). ✷

74 CHAPTER 5. BÜCHI AUTOMATA FOR SHORTEST COUNTEREXAMPLES

Bound on excess length What is useful for future time hurts tightness when past operators are

included: B
φ
KPR also distinguishes states of an accepted word that have different past but same

future. Lemma 4 states that a past time formula can distinguish only finitely many iterations of a

loop. This can be used to establish an upper bound on the excess length of a counterexample to

a PLTLB formula obtained from a Büchi automaton that was constructed with KPR [KPR98]:

Theorem 26 Let φ be a PLTLB property and B = B
¬φ
KPR a Büchi automaton constructed with

KPR [KPR98]. Let α = 〈β, γ〉 be a counterexample to φ. Then, there is an initialized fair path

ρ = 〈σ, τ〉 in B with L(ρ) = α and |σ| ≤ |β| + (h(¬φ) + 1)|γ| and |τ | = |γ|.

Proof: The states of B each correspond to a subset of {ψ | ψ ∈ sub(¬φ)} ∪ {◦ψ | ◦ ∈
{X,Y} ∧ ψ ∈ sub(¬φ)}. By Lemma 4, a PLTLB formula cannot distinguish iterations of

the loop that occur after the h(¬φ)-th iteration. More formally, for any lasso α = 〈β, γ〉, any

PLTLB formula ψ, and any i ≥ |β| + h(ψ)|γ|, α[i,∞] |= ψ iff α[i + |γ|,∞] |= ψ. Hence, by

the correctness of the construction, one can derive an initialized fair path ρ in B from α. By

Lemma 4, a loop of length γ starts in ρ after at most h(¬φ) + 1 iterations of the loop in α have

passed (note that the past time operator depth of the formulae labelling the states of B may be

h(¬φ) + 1). ✷

Approximate tightness of the bound For an example that exhibits excess length, which is

linear in the past operator depth of the formula, consider the simple modulo-n counter and

property in Fig. 5.3 (a), (c) (adapted from [BC03]). The innermost formula O(c = n − 1)
remains true from the end of the first loop iteration in the counter, O((c = n − 2) ∧ (O(c =
n−1))) becomes and remains true n−1 steps later, etc. Hence, a loop in B

¬φ
KPR is only reached

after O(n2) steps of the counter have been performed. Clearly, the shortest counterexample is

a single iteration of the loop with O(n) steps.

A (too) costly solution Every PLTLB formula can be transformed into a future time LTL

formula equivalent at the beginning of a sequence [Gab89]. Due to [LMS02] we can expect an

at least exponential worst-case increase in the size of the formula. Rather than translating an

LTL formula with past into a pure future version, we follow a different path in the next section.

5.3 A Tight Look at LTL Model Checking

Theorem 26 states that a Büchi automaton constructed with KPR [KPR98] accepts a shortest

counterexample with a path that may have an overly long stem but a loop of the same length as

that of the counterexample. Bounded model checking [BCCZ99] has been extended recently to

include past time operators [BC03, CRS04, LBHJ05]. Of these, [BC03, LBHJ05] use virtual

unrolling of the transition relation to find shortest counterexamples if past time operators are

present. Inspired by [LBHJ05], we adapt this approach to construct a tight Büchi automaton for

PLTLB based on KPR [KPR98].

5.3.1 Virtual Unrolling for Bounded Model Checking of PLTLB

Encoding BMC for PLTLF In bounded model checking, typically one fresh Boolean vari-

able xi,ψ is introduced for each pair of relative position in the path (0 ≤ i ≤ k) and subformula

5.3. A TIGHT LOOK AT LTL MODEL CHECKING 75

ψ of φ, such that xi,ψ is true iff ψ holds at position i. On a lasso-shaped path, the truth of a future

time formula φ at position i may depend on the truth of some of its subformulae ψ at positions

i′ > i. While those are not available directly, the truth of a future time formula at a given posi-

tion within the loop does not change between different iterations of the loop. Hence, the truth

value of ψ at position 0 ≤ i < k−l in any iterationm ≥ 0 of the loop can be substituted with the

truth value of ψ at position i in the first iteration: ρ[l+m(k−l)+i,∞] |= ψ ⇔ ρ[l+i,∞] |= ψ.

A single unrolling of the loop is therefore sufficient, resulting in a shortest counterexample.

The problem with PLTLB When past time operators are admitted, this is no longer true. By

Lemma 4, the truth of a subformula ψ may change between the first hp(ψ) iterations of the loop

before it reaches a stable value at iteration hp(ψ)+1. Hence, only after hp(ψ)+1 iterations can

the truth value of ψ in some iterationm > hp(ψ)+1 of the loop be replaced by the truth value of

ψ in iteration hp(ψ)+1: ρ[l+m(k− l)+ i,∞] |= ψ ⇔ ρ[l+(hp(ψ)+1)(k− l)+ i,∞] |= ψ. A

naive approach for checking a past time formula φwould still have one Boolean variable per pair

of relative position in the path and subformula. However, the approach would have to ensure

that the path ends with hp(φ) + 1 copies of the loop. This would lead to a more complicated

formulation of loop detection and would not allow to find shortest counterexamples. A less

naive, but still suboptimal solution might not guarantee a high enough number of loop unrollings

directly, but could include the variables representing the truth of properties in the loop detection.

That approach could not ensure shortest counterexamples either.

Solution Benedetti and Cimatti [BC03] showed how to do better: note, that some subformulae

ψ of φ have lower past operator depth, and, therefore, require fewer loop iterations to stabilize.

In particular, atomic propositions remain stable from the first iteration onward. It is sufficient

to perform a single unrolling of the loop. Rather than having only one Boolean variable xi,ψ
per pair of relative position i in the path and subformula ψ, there are now as many variables per

pair (i, ψ) as iterations of the loop are required for that subformula to stabilize. Each variable

corresponds to the truth value of ψ at the same relative position i but in a different iteration m

of the loop: xi,ψ,m ⇔ ρ[i + m(k − l),∞] |= ψ with 0 ≤ i ≤ k ∧ 0 ≤ m ≤ hp(ψ) (the value

of xi,ψ,m may not be well-defined if m > 0 ∧ i < l). This virtual unrolling of the loop leads to

shortest counterexamples.

5.3.2 A Tight Büchi Automaton for PLTLB

Same problem, same solution A Büchi automaton constructed with KPR [KPR98] suffers

from similar problems as the naive approaches to bounded model checking of PLTLB. The

automaton has a single variable representing the truth of a subformula in a given state. For

a loop in the product of the model and the automaton to occur, the truth of all subformulae

must have stabilized. Hence, we adopt the same idea as outlined above to obtain a tight Büchi

automaton.

Definition The following definition formally states the construction of a tight Büchi automa-

ton for PLTLB.

76 CHAPTER 5. BÜCHI AUTOMATA FOR SHORTEST COUNTEREXAMPLES

Definition 7 We symbolically construct a Büchi automaton B
φ
SB =

(V φ
SB , S

φ
SB , T

φ
SB , I

φ
SB , L

φ
SB , F

φ
SB) for a PLTLB formula φ as follows. APφ = {p |

p is an atomic proposition in sub(φ)}, V
φ
SB = V φ ∪ {lo}, where all state variables in V φ

are Boolean and lo has range {st , lb, le}, S
φ
SB = Sφ, T

φ
SB = T φ ∧ (lo 6= st → lo ′ 6= st),

I
φ
SB = Iφ ∧ xφ,0, F

φ
SB = F φ ∪ {lo = le}, and L

φ
SB(s) = {p | xp,0(s) = 1}. V φ, Sφ, T φ, Iφ, and

F φ are defined recursively in Tab. 5.1.

Each subformula ψ of φ is represented by hp(ψ) + 1 state variables xψ,m. We refer to the

m in xψ,m as generation below. One more state variable lo (for lasso, see also Sect. 3.1) with

values stem, loop body, and loop end is added. As long as lo has value st (on the stem), only

variables in generation 0 are constrained according to the recursive definition of PLTLB. When

lo becomes lb (on the loop), the definitions apply to all generations. While lo = lb (the end of

a loop iteration is not yet reached), xψ,m is defined in terms of current and next-state values of

variables in the same generation. When lo = le (at the end of a loop iteration), the next-state

values are obtained from the next generation of variables if the present generation is not already

the last. The fairness constraints, which guarantee the correct fixed point for U formulae, are

only applied to the last generation of the corresponding variables.

The intuition is as follows. Starting with generation 0 on the stem and the first iteration of

the loop, each generation m of xψ,m represents the truth of ψ in one loop iteration, the end of

which is signaled by lo = le. Formally, for m < hp(ψ), xψ,m(i) holds the truth of ψ at position

i of a word iff lo has had value le for m times prior to the current state. From the hp(ψ)-th
occurrence of lo = le , xψ,hp(ψ) continues to represent the truth of ψ.

Note that lo is an oracle.† The valuation of this variable on an arbitrary run may not corre-

spond to the situation it is named after. However, for B
φ
SB to correctly recognize {α | α |= φ},

it is not relevant which generation holds the truth at a given position. It is only required that at

each position some generation represents truth correctly, each generation passes on to the next

at some point, and ultimately, depending on ψ, the last generation hp(ψ) continues to hold the

proper values.

For tightness, the variables of a given generation need to be able to take on the same values

in every iteration of the loop, regardless of whether they currently hold the truth or not. This

requires breaking the links to previous iterations for variables of generation 0 representing Y

and S formulae at each start of a loop iteration after the first. In addition, Y- and S-variables of

generations > 0 may not be constrained by past values at the beginning of the loop body. On a

shortest run on some lasso-shaped word α, lo will correctly signal loop body and loop end.

Correctness, completeness, tightness In the following we establish that the language ofB
φ
SB

is indeed φ and that B
φ
SB is tight.

Theorem 27 Let φ be a PLTLB formula, let B
φ
SB be defined as above. Then, Lang(Bφ

SB) =
{α | α |= φ} and B

φ
SB is tight.

Proof: By Lemma 28 and 29. ✷

Lemma 28 Lang(Bφ
SB) = {α | α |= φ}

†If the automaton is combined with the state-recording translation, lo can be provided by the translation, see

also Sect. 7.2.

5.3. A TIGHT LOOK AT LTL MODEL CHECKING 77

ψ definition

p

V ψ = {xp,0}
Sψ = xp,0 ↔ p

Tψ = 1
Iψ = 1
Fψ = ∅

¬ψ1

V ψ = V ψ1 ∪
⋃hp(ψ)
m=0 {xψ,m}

Sψ = Sψ1 ∧
∧hp(ψ)
m=0 (xψ,m ↔ ¬xψ1,m)

Tψ = 1
Iψ = Iψ1

Fψ = Fψ1

ψ1 ∨ ψ2

V ψ = V ψ1 ∪ V ψ2 ∪
⋃hp(ψ)
m=0 {xψ,m}

Sψ = Sψ1 ∧ Sψ2 ∧
∧hp(ψ)
m=0 (xψ,m ↔ xψ1,min(m,hp(ψ1)) ∨ xψ2,min(m,hp(ψ2)))

Tψ = Tψ1 ∧ Tψ2

Iψ = Iψ1 ∧ Iψ2

Fψ = Fψ1 ∪ Fψ2

Xψ1

V ψ = V ψ1 ∪
⋃hp(ψ)
m=0 {xψ,m}

Sψ = Sψ1

Tψ = Tψ1 ∧ (lo = st → (xψ,0 ↔ x′ψ1,0
))

∧ (lo = lb →
∧hp(ψ)−1
m=0 (xψ,m ↔ x′ψ1,m

))

∧ (lo = le →
∧hp(ψ)−1
m=0 (xψ,m ↔ x′ψ1,m+1))

∧ (lo 6= st → (xψ,hp(ψ) ↔ x′ψ1,hp(ψ1)
))

Iψ = Iψ1

Fψ = Fψ1

ψ1 U ψ2

V ψ = V ψ1 ∪ V ψ2 ∪
⋃hp(ψ)
m=0 {xψ,m}

Sψ = Sψ1 ∧ Sψ2

Tψ = Tψ1 ∧ Tψ2 ∧ (lo = st → (xψ,0 ↔ xψ2,0 ∨ (xψ1,0 ∧ x
′
ψ,0)))

∧ (lo = lb →
∧hp(ψ)−1
m=0 (xψ,m ↔ xψ2,min(m,hp(ψ2)) ∨ (xψ1,min(m,hp(ψ1)) ∧ x

′
ψ,m)))

∧ (lo = le →
∧hp(ψ)−1
m=0 (xψ,m ↔ xψ2,min(m,hp(ψ2)) ∨ (xψ1,min(m,hp(ψ1)) ∧ x

′
ψ,m+1)))

∧ (lo 6= st → (xψ,hp(ψ) ↔ xψ2,hp(ψ2) ∨ (xψ1,hp(ψ1) ∧ x
′
ψ,hp(ψ))))

Iψ = Iψ1 ∧ Iψ2

Fψ = Fψ1 ∪ Fψ2 ∪ {{¬xψ,hp(ψ) ∨ xψ2,hp(ψ2)}}

Yψ1

V ψ = V ψ1 ∪
⋃hp(ψ)
m=0 {xψ,m}

Sψ = Sψ1

Tψ = Tψ1 ∧ (lo = st → (x′ψ,0 ↔ xψ1,0))

∧ (lo = lb →
∧hp(ψ)−1
m=0 (x′ψ,m ↔ xψ1,m))

∧ (lo = le →
∧hp(ψ)−2
m=0 (x′ψ,m+1 ↔ xψ1,m))

∧ (lo 6= st → (x′ψ,hp(ψ) ↔ xψ1,hp(ψ1)))

Iψ = Iψ1 ∧ (xψ,0 ↔ 0)
Fψ = Fψ1

ψ1 S ψ2

V ψ = V ψ1 ∪ V ψ2 ∪
⋃hp(ψ)
m=0 {xψ,m}

Sψ = Sψ1 ∧ Sψ2

Tψ = Tψ1 ∧ Tψ2 ∧ (lo = st → (x′ψ,0 ↔ x′ψ2,0
∨ (x′ψ1,0

∧ xψ,0)))

∧ (lo = lb →
∧hp(ψ)−1
m=0 (x′ψ,m ↔ x′

ψ2,min(m,hp(ψ2))
∨ (x′

ψ1,min(m,hp(ψ1))
∧ xψ,m)))

∧ (lo = le →
∧hp(ψ)−1
m=0 (x′ψ,m+1 ↔ x′

ψ2,min(m+1,hp(ψ2)) ∨ (x′
ψ1,min(m+1,hp(ψ1))

∧ xψ,m)))

∧ (lo 6= st → (x′
ψ,hp(ψ) ↔ x′

ψ2,hp(ψ2)
∨ (x′

ψ1,hp(ψ1) ∧ xψ,hp(ψ))))

Iψ = Iψ1 ∧ Iψ2 ∧ (xψ,0 ↔ xψ2,0)
Fψ = Fψ1 ∪ Fψ2

Table 5.1: Property-dependent part of a tight Büchi automaton

78 CHAPTER 5. BÜCHI AUTOMATA FOR SHORTEST COUNTEREXAMPLES

Proof: (Correctness) We show that on every initialized fair path in

(V φ
SB , S

φ
SB , T

φ
SB , I

φ, L
φ
SB , F

φ
SB) the values of xψ,mi(i) represent the validity of the

subformula ψ at position i, where mi is either the number of (lo = le)’s seen

so far or hp(ψ), whichever is smaller. Formally, let ρ be an initialized fair path

with L
φ
SB (ρ) = α in (V φ

SB , S
φ
SB , T

φ
SB , I

φ, L
φ
SB , F

φ
SB). For each position i in α, let

mi = min(|{j | (j ≤ i − 1) ∧ lo(ρ(j)) = le}|, hp(ψ)). Inspection of Tab. 5.1 shows

that the constraints on the xψ,mi(i) are the same as the constraints on the corresponding xψ(i)
in Tab. 2.2. Hence, α[i,∞] |= ψ ⇔ xψ,mi(ρ(i)).

(Completeness) We show that there is an initialized fair path ρ in

(V φ
SB , S

φ
SB , T

φ
SB , I

φ, L
φ
SB , F

φ
SB) with L

φ
SB(ρ) = α for each word α. Choose a set of indices

U = {i0, i1, . . .} (for “up”) such that lo(ρ(i)) = le ↔ i ∈ U . Further, choose ls ≤ i0 and set

lo(ρ(j)) = st ↔ j < ls . We inductively construct a valuation for xψ,m(i) for each subformula

ψ of φ, m ≤ hp(ψ), and i ≥ 0. If ψ is an atomic proposition p, set xp,0(i) ↔ (α[i,∞] |= p). If

the top level operator of ψ is Boolean, the valuation follows directly from the semantics of the

operator. For X, each xψ,m(i) is defined at most once in Tab. 5.1. ψ = Yψ1 is similar. Note

that hp(ψ) = hp(ψ1) + 1. Therefore, m runs only up to hp(ψ) − 2 if lo = le; m = hp(ψ) − 1
is covered by the case for lo 6= st in the line below. xψ,m(i) is unconstrained if m = 0 and

i − 1 ∈ U as well as if m ≥ 1 and i ≤ ls . For ψ = ψ1 U ψ2, start with generation hp(ψ).
If xψ2,hp(ψ2) remains false from some im on, assign ∀i ≥ im . xψ,hp(ψ)(i) ↔ 0. Now work

towards decreasing i from each in with xψ2,hp(ψ2)(in) ↔ 1, using line 4 in the definition of T

for U. Continue with generation hp(ψ) − 1. Start at each i ∈ U by obtaining xψ,hp(ψ)−1(i)
from the previously assigned xψ,hp(ψ)(i+ 1) via line 3. Then work towards decreasing i again,

using lines 1 or 2 in the definition of T until xψ,hp(ψ)−1 is assigned for all i. This is repeated in

decreasing order for each generation 0 ≤ m < hp(ψ)− 1. For S, start with xψ,0(0) and proceed

towards increasing i, also increasing m when i ∈ U (lines 1 – 3 in the definition of T for S).

When m = hp(ψ) is reached, assign xψ,hp(ψ)(i) for all i using the fourth line in the definition

of T . Then, similar to U, work towards decreasing m and i from each i ∈ U . Fairness follows

from the definition of U , ls , and the valuation chosen for U.

The claim is now immediate by the definition of I
φ
SB . ✷

Lemma 29 B
φ
SB is tight.

Proof: We show inductively that the valuations of the variables xψ,m(i) can be chosen such that

the valuation at a given relative position in a loop iteration is the same for each iteration in a

generation m. Formally, let α = βγω with α |= φ. There exists a run ρ on α such that for all

subformulae ψ of φ

∀m ≤ hp(ψ) . ∀i1, i2 ≥ |β| . ((∃k ≥ 0 . i2 − i1 = k|γ|) ⇒ (xψ,m(ρ(i1)) ↔ xψ,m(ρ(i2))))

Atomic propositions, Boolean connectives, and X are clear. Y is also easy, we only have to

assign the appropriate value from other iterations when xψ,m(i) is unconstrained. For ψ = ψ1 U

ψ2, by the induction hypothesis, xψ2,hp(ψ2) is either always false (in which case we assigned

xψ,hp(ψ)(i) to false according to the proof of Lemma 28) or becomes true at the same time in

each loop iteration. Hence, the claim holds for generation hp(ψ). From there we can proceed

to previous generations in the same manner as in the proof of Lemma 28. For S we follow the

order of assignments from the proof of Lemma 28. By induction, the claim holds for generation

5.4. GENERALIZATION 79

hp(ψ). From there, we proceed towards decreasing i and m. We use, by induction, the same

valuations of subformulae and the same equations (though in reverse direction) as we used to

get from xψ,0(0) to generation hp(ψ). ✷

Complexity We immediately have the following corollary. Note, that the size of a Büchi

automaton that is tight in the original sense of [KV01] (i.e., it recognizes shortest violating

prefixes of safety properties) is doubly exponential in |φ| [KV01].

Corollary 30 Let φ be a PLTLB formula. There is a tight Büchi automatonB with Lang(B) =
φ with O(2|φ|

2
) states. A symbolic representation of B can be constructed in O(|φ|2) time and

space.

Remarks The same optimization as mentioned in Sect. 2.2 for KPR [KPR98] can be applied.

It replaces state variables for Boolean connectives with macros in order to reduce the number

of BDD variables in the context of symbolic model checking with BDDs. Note also, that for

a PLTLF formula φ, B
φ
SB mostly reduces to B

φ
KPR: only one state variable xψ,0 is introduced

per formula, the remaining implications lo = st and lo 6= st have the same right hand sides,

and fairness is defined on generation 0. Finally, remember that bit-set degeneralization must be

used rather than Choueka’s flag construction to preserve tightness after degeneralization (see

also Sect. 2.3).

5.3.3 Partial Unrolling

A similar optimization can be applied to the tight Büchi automaton as sketched in [HJL05]:

virtual unrolling need not be performed to the full past operator depth of the formula, but can

be adjusted according to the user’s needs. In fact, if hp(ψ) in Def. 7 is replaced with h′p(ψ) =

min(hp(ψ), n) for some n ≥ 0, the construction above still yields an automatonB
φ
SB ,n such that

Lang(Bφ
SB ,n) = {α | α |= φ}. The case n = 0 leads to an automaton that is, apart from the

oracle lo, very similar to [KPR98]. The case n ≥ hp(φ) gives a tight automaton. While B
φ
SB ,n

may not be tight for n < hp(φ), it is smaller than B
φ
SB , and, therefore, it may allow the user to

trade performance for counterexample length.

5.4 Generalization

Definition The construction in the previous section deals only with a too long stem σ. In

Def. 8 we show how to generalize the construction of a tight Büchi automaton for a PLTLB

formula to obtain a tight Büchi automaton Bt from an arbitrary Büchi automaton B. Let α =
βγω be a lasso shaped counterexample, let ρ = στω be a run on α. ρ may have both, a too long

stem σ (i.e., σ continues on γω), and a loop τ such that lcm(|τ |, |γ|) 6= |γ|. To fit ρ = στω

in the shape of α = βγω we form a run ρt = σtτ
ω
t with |σt| = |β| and |τt| = |γ|. The states

of ρt are vectors of states of ρ. The construction of σt is easy, it basically just copies the first

|β| states from ρ. To obtain τt we “wind up” in zig-zag manner potentially remaining states

from σ and enough repetition of τ to form a loop of vectors. The role of the oracle lo, as in the

previous section, is to indicate loop start and end so that the parallel parts of the original run

80 CHAPTER 5. BÜCHI AUTOMATA FOR SHORTEST COUNTEREXAMPLES

Definition 8 Let B = (S, T, I, L, F) be a generalized Büchi automaton. Then Bt is defined as

Bt = (St, Tt, It, Lt, Ft) with

St =
⋃|S|
m=0

⋃|F ||S|
n=1 {(s1, . . . , sm, (l1, f1,1 . . . , f1,|F |), . . . , (ln, fn,1 . . . , fn,|F |), lo)}

where

s1, . . . , sm, l1, . . . , ln ∈ S ∧
L(s1) = . . . = L(sm) = L(l1) = . . . = L(ln) ∧
f1,1, . . . , fn,|F | ∈ IB ∧
lo ∈ {st , lb, le}

Tt = {((s1, . . . , sm, (l1, f1,1, . . . , f1,|F |), . . . , (ln, fn,1, . . . , fn,|F |), lo),
(s′1, . . . , s

′
m, (l

′
1, f

′
1,1, . . . , f

′
1,|F |), . . . , (l

′
n, f

′
n,1, . . . , f

′
n,|F |), lo

′)) |

(lo = st → (s1, s
′
1) ∈ T) ∧

(lo = lb →
∧m
p=1(sp, s

′
p) ∈ T ∧∧n

q=1(lq, l
′
q) ∈ T ∧∧n

q=1

∧|F |
k=1(f

′
q,k → l′q ∈ Fk ∨ fq,k)) ∧

(lo = le → (
∧m−1
p=1 (sp, s

′
p+1) ∈ T) ∧ (sm, l

′
1) ∈ T ∧

(
∧n−1
q=1 (lq, l

′
q+1) ∈ T) ∧ (ln, l

′
1) ∈ T ∧∧|F |

k=1(f
′
1,k → l′1 ∈ Fk) ∧∧n−1

q=1

∧|F |
k=1(f

′
q+1,k → l′q+1 ∈ Fk ∨ fq,k) ∧∧|F |

k=1 fn,k) ∧
(lo 6= st → lo ′ 6= st)}

It = {(s1 . . . , sm, (l1, f1,1, . . . , f1,|F |), . . . , (ln, fn,1, . . . , fn,|F |), lo) |
(m > 0 → s1 ∈ I) ∧ (m = 0 → l1 ∈ I ∧ lo 6= st)}

Lt = (s1 . . . , sm, (l1, f1,1, . . . , f1,|F |), . . . , (ln, fn,1, . . . , fn,|F |), lo)
7→ L(s1) = . . . = L(sm) = L(l1) = . . . = L(ln)

Ft = {{(s1 . . . , sm, (l1, f1,1, . . . , f1,|F |), . . . , (ln, fn,1, . . . , fn,|F |), le)}}

can be connected accordingly. In effect, several parts of the original run on α in B now run in

parallel in Bt.

Correctness, completeness, tightness Below we prove that the construction yields a tight

automaton that accepts the same language as the original automaton.

Lemma 31 Lang(B) = Lang(Bt).

Proof: “⊆”: Let ρ be a run on α in B. Technically, we construct a run ρt in Bt, which need not

accept α in a shortest way, by embedding ρ in Bt. We set m = 0, n = 1:

∀i ≥ 0 . ρt[i] = ((ρ[i], f1,1[i], . . . , f1,|F |[i]), lo[i])

By definition of a run ρ is fair. Hence, there are infinite sequences of indices ξk of states in ρ

for each Fk such that

5.4. GENERALIZATION 81

1. ξk contains only indices of fair states: ∀j ≥ 0 . ρ[ξk[j]] ∈ Fk; and

2. (note: “position” ≡ index in ξ) all indices at position j+1 of ξk are larger than the largest

index at position j of ξk′ for any k′: ∀j ≥ 0 . ∀1 ≤ k, k′ ≤ |F | . ξk[j] < ξk′[j + 1].

We define ξmax as the sequence of the maximal indices in ξk: ∀j ≥ 0 . ξmax[j] = max
|F |
k=1ξk[j].

ξmax gives us a sequence of intervals in ρ such that all fairness constraints are fulfilled in any

such interval. We define a recursive function iv that relates an index in ρ to its interval:

iv(0) = 0

iv(i+ 1) =

{
iv(i) if i 6= ξmax[iv(i)]
iv(i) + 1 otherwise

Now we can finally set
f1,k[i] ↔ i ≥ ξk(iv(i))
lo[i] = lb ↔ i 6= ξmax(iv(i))
lo[i] = le ↔ i = ξmax(iv(i))

“⊇”: Let ρt be a run on α in Bt. We extract a run ρ on α in B by selecting one (component-)

state from each from each (vector-) state in ρt. Let gen(i) be defined as follows:

gen(0) = 1

gen(i+ 1) =






gen(i) if lo(ρt[i]) 6= le

gen(i) + 1 otherwise, if lo(ρt[i]) = le ∧ gen(i) < m+ n

m+ 1 otherwise, if lo(ρt[i]) = le ∧ gen(i) = m+ n

With that, ρ, defined by

ρ[i] =

{
sgen(i)(ρt[i]) if gen(i) ≤ m

lgen(i)−m(ρt[i]) otherwise

is a run on α in B: ρ[0] =

{
s1(ρt[0]) if m > 0
l1(ρt[0]) otherwise

is, by definition of It, an initial state in B.

Further, by definition of Tt, (ρ[i], ρ[i + 1]) ∈ T . As ρt is fair, lo has value le infinitely often,

and therefore gen(i) = m + n and gen(i + 1) = m + 1 infinitely often. Fairness of ρ follows

then directly from the definition of Tt. Finally, L(ρt[i]) = L(ρ[i]). ✷

Lemma 32 Bt is tight.

Proof: Let ρ = στω be a run in B on a counterexample α = βγω. Assume that |σ| ≥ |β|
(otherwise, extend σ with as many τ ’s as necessary). The “excess part” of σ, σ[|β|, |σ| −
1], forms tuples with characters from γ. Note that there are at most |S| different states of B

available for each position of |γ| to form a tuple. We therefore assume that |σ[|β|, |γ| − 1]| ≤
|S||γ|. Otherwise, there are 0 ≤ l1 < l2 ≤ |S| such that ρ[|β| + l1|γ|] = ρ[|β| + l2|γ|], and σ

can be shortened accordingly. For a similar bound on the length of a combined loop in α and ρ,

consider that a fair loop in B might take at most |F ||S| steps, hence, the combined loop takes

at most |F ||S||γ| steps.

We construct a run ρt = σtτt
ω on α in Bt by “winding-up” ρ. In a single iteration of the

loop τt, the first part of the states of τt, (s1[0], . . . , sm[0]), . . . , (s1[γ| − 1] . . . , sm[γ| − 1], must

82 CHAPTER 5. BÜCHI AUTOMATA FOR SHORTEST COUNTEREXAMPLES

be capable of holding all states of σ[|β|, |σ|−1]; the second part, (l1[0], . . . , ln[0]), . . . , (l1[|γ|−
1], . . . , ln[|γ| − 1]), has to hold lcm(|τ ||γ|) states. Hence, we set:

m = ⌈ |σ|−|β|
|γ|

⌉ n = lcm(|τ |,|γ|)
|γ|

σt is straight-forward: only s1[i] is relevant and is set to σ[i]. s2[i], . . . , sm[i] can be set to “don’t

care”, denoted “−”, as can l1[i], . . . , ln[i].

∀0 ≤ i < |β| . σt[i] = (σ[i],−, . . . ,−, (−, 0, . . . , 0), . . . , (−, 0, . . . , 0), st)

We can now define τt as follows:

∀0 ≤ i < |γ| . τt[i] =
(s1[i], . . . , si[i], (l1[i], f1,1[i], . . . , f1,|F |[i]), . . . , (lj [i], fj,1[i], . . . , fj,|F |[i]), lo[i])

with

∀0 ≤ i < |γ| .

∀1 ≤ p ≤ m . sp[i] =

{

σ[|β| + i + (p − 1)|γ|] if p < m ∨ i < (|σ| − |β|)mod|γ|
τ [i − (|σ| − |β|)mod|γ|] otherwise

∧ ∀1 ≤ q ≤ n . lq[i] = τ [((i + |γ| − (|σ| − |β|)mod|γ|)mod|γ| + (q − 1)|γ|)mod|τ |]

∧ ∀1 ≤ q ≤ n . ∀1 ≤ k ≤ |F | .

fq,k[i] ↔ (∃q̂, î . ((1 ≤ q̂ < q ∧ 0 ≤ î < |γ|) ∨ (q̂ = q ∧ 0 ≤ î ≤ i)) ∧

τ [((̂i + |γ| − (|σ| − |β|)mod|γ|)mod|γ| + (q̂ − 1)|γ|)mod|τ |] ∈ Fk)

∧ lo[i] = lb ↔ i 6= |γ| − 1 ∧ lo[i] = le ↔ i = |γ| − 1

✷

Remarks The bounds in the above construction can be restricted significantly for some con-

structions to obtain Büchi automata. Theorem 24 shows that for GPVW [GPVW96] the excess

length of the stem is linear in the operator depth and that the loop is as short as required.

5.5 Related Work

5.5.1 Virtual unrolling

Virtual unrolling has first been described by Benedetti and Cimatti [BC03]. The work most

directly related to ours is the one by Latvala et al.[LBHJ05], which inspired the tight encoding.

Compared to [BC03] the encoding in [LBHJ05] is simpler and generates smaller problems for

the SAT solver. It has also been extended to be incremental and complete [HJL05]. Jonsson

and Nilsson use vectors of states to construct a Büchi automaton (termed “history transducer”),

which represents or approximates the transitive closure of the transition relation of an infinite

state system in the context of regular model checking [JN00].

5.5. RELATED WORK 83

5.5.2 Tight automata

For comments on the original notion of tight automata see Sect. 2.7. Awedh and Somenzi

remark the lack of tight Büchi automata in their approach to make bounded model checking

complete [AS04]. Gastin et al. make the same observation in their work on finding shortest fair

cycles with SPIN [GMZ04]. Awedh and Somenzi hint that using edge-labeled Büchi automata

may produce shorter counterexamples [AS04]. We conjecture that there is a conversion between

node- and edge-labeled Büchi automata that preserves tightness.

5.5.3 Translating PLTLB into automata

First approaches Wolper, Vardi, and Sistla first showed how to compile PLTLB directly into

Büchi automata [WVS83, VW94]. Based on that, Vardi and Wolper proposed the automata-

theoretic approach to model checking [VW86]. The tableau construction, which is a foundation

for most of the following work, was presented by Lichtenstein and Pnueli as part of a practical

model checking algorithm for linear temporal logic [LP85].

Focus on symbolic model checking In symbolic model checking, a compact symbolic rep-

resentation of the automaton has mostly been preferred to a small number of states. Büchi

automata for that purpose are usually symbolic implementations of the tableau construction in

[LP85]. Burch et al. use a variant of the tableau to show how to reduce model checking of

future time LTL to symbolic model checking of fair CTL [BCM+92]; implementation for SMV

[McM93], proofs, and experimental evaluation of the approach are presented in [CGH97]. A

self-contained presentation of symbolic model checking of PLTLB can be found in [KPR98].

Schneider and Schuele [Sch01, SS04] use the temporal hierarchy [MP90] to generate improved

automata on infinite words and encodings for bounded model checking.

Focus on explicit state model checking The number of states in the product of the model and

the Büchi automaton for the property determines to a large extent the amount of work an explicit

state model checker has to do. As a consequence, there is much work that shows how to obtain

smaller Büchi automata from a PLTLB formula. Gerth et al. [GPVW96] pioneered this line of

research for future time LTL. A key to their approach is not to establish whether all subformulae

hold at a certain state, but to track only a subset of subformulae needed to establish validity of

the specification. As an example, it is not necessary to follow both sides of a disjunct (be it part

of the original formula or due to the expansion of an U-operator) at the same time or to care

for the validity of Fp in the initial state when the specification is XFp. However, this makes

it impossible for most constructions based on [GPVW96] to accept shortest counterexamples.

Couvreur [Cou99] removes some of the formulae making up a state in [GPVW96]. Daniele et

al. [DGV99] propose a general framework for algorithms based on [GPVW96] and present an

improved algorithm. Somenzi and Bloem add a pre- and post-processing stage to the framework

of Daniele et al. [SB00]. In the pre-processing stage they rewrite the PLTLB formula to obtain

a smaller formula to start with. In the post-processing stage they use simulation to further

reduce the size of the automaton. Etessami and Holzmann came up with a similar approach

[EH00]. To improve performance of the translation itself, Gastin and Oddoux change the core

of the algorithm by first translating into a very weak alternating automaton and only then into

84 CHAPTER 5. BÜCHI AUTOMATA FOR SHORTEST COUNTEREXAMPLES

a Büchi automaton [GO01]. They also perform optimizations on the fly rather than in the post-

processing stage to keep intermediate results small. They extend their approach to full PLTLB

in [GO03]. Sebastiani and Tonetta focus on producing more deterministic rather than smaller

Büchi automata to obtain a smaller product of model and Büchi automaton [ST03].

Translating safety properties Several authors consider translation of linear time safety prop-

erties into automata on finite words. For [KV01] see Sect. 2.7. Latvala implements an opti-

mized translation for intentionally or accidentally safe formulae based on [KV01] that includes

a check whether a formula is pathologically safe or not a safety formula at all [Lat03]. A

similar, though less optimized approach is by Geilen [Gei01]. He produces automata to recog-

nize both bad and good prefixes. The automated software engineering group at NASA Ames

has developed several translations geared towards testing and monitoring executions (i.e., finite

traces), e.g., [HR01a, GH01, HR02]. In [HR01a] and [GH01] different translations of future

time LTL adapted to finite traces are presented. (Non-)occurrence of eventualities is only con-

sidered up to the end of a trace. Based on the belief that past time LTL is more appropriate for

monitoring [HR01a], Havelund and Roşu present a translation from a version of past time LTL

that has been extended with operators useful for monitoring execution traces [HR02]. Earlier

approaches to monitoring include [HLR94, JPO95]. Both essentially limit support to formulae

of the form Gp. Hence, the user must make sure that p represents an appropriate past formula

implemented, e.g., with history variables.

Testing of translations Daniele et al. introduced a test method for the translation of linear

temporal logic formulae into Büchi automata based on random formulae [DGV99]. Tauriainen

and Heljanko present a comprehensive approach and implementation for LTL formula transla-

tion into Büchi automata [TH02].

5.6 Summary

We have extended the notion of a tight automaton by Kupferman and Vardi [KV01], which

accepts shortest bad prefixes for safety properties, to Büchi automata. A necessary and sufficient

criterion for a Büchi automaton to be tight is, that for each counterexample π in the language

of the automaton there is a run ρ such that states in π with the same future are accepted from

the same state in ρ (i.e., π[i,∞] = π[j,∞] ⇒ ρ[i] = ρ[j]). This was used to prove that a Büchi

automaton constructed with the algorithm of Kesten et al. [KPR98] is tight for future time LTL

but may produce counterexamples with excess length linear in the past operator depth of the

property. The algorithm by Gerth et al. [GPVW96] may lead to counterexamples with excess

length linear in the future operator depth. As the two most common approaches to construct

Büchi automata do not lead to tight automata, we have, inspired by the work of Latvala et

al. [LBHJ05], adapted virtual unrolling as introduced by Benedetti and Cimatti [BC03] for

bounded model checking to Büchi automata. This lead to a translation from PLTLB to a tight

automaton as well as to a more general construction to make an arbitrary Büchi automaton tight.

6
Variable Optimization

Optimization hinders evolution.

Alan Perlis

The overhead induced by the state-recording translation mostly stems from the additional in-

stance of the state variables of K present in KS. Several variants of variable optimization try

to alleviate that overhead by restricting loop detection to a subset of variables.

Intuition and Definition Assume some Kripke structure K = (S, T, I, L, F) and let V ′ ⊆ V

be a subset of its state variables. LetKS|V ′ denote the variant ofKS that stores only a projection

of the presumed loop start sl onto the variables in V ′ and, correspondingly, compares only the

projection of the current state sk onto the variables in V ′ to the stored projection of sl. As

KS|V ′ has fewer state variables than KS, we can hope for improved performance. Definition 9

formally states the construction of KS|V ′ . Note that variable optimization is source-to-source

and can even be applied manually to KS.

Outline We start by proving the following fact: if no counterexample can be found using an

arbitrary subset of state variables V ′ ⊆ V for loop detection in KS|V ′ , then clearly no coun-

terexample is present in the original system K either. As removing arbitrary variables from

loop detection may obviously lead to spurious counterexamples, we propose increasingly ag-

gressive methods — i.e., smaller and smaller sets V ′ — that avoid spurious counterexamples.

First, it’s easy to see that constants and input variables can be removed without incurring spu-

rious counterexamples. Then we show that cone of influence reduction carries over to variable

optimization from the standard model checking algorithm as well. Finally, abstraction refine-

ment is used to obtain a sound and complete algorithm for variable optimization with arbitrary

sets V ′.

6.1 The General Case

Result The following theorem states that if a property passes with a reduced set of variables

V ′ in loop detection it will also pass when the full set of variables V is used:

Theorem 33 Let K = (S, T, I, L, F = {F0}) be a fair Kripke structure, let V be its set of state

variables, and let V ′ ⊆ V be a (potentially empty) subset of its state variables. With KS as in

85

86 CHAPTER 6. VARIABLE OPTIMIZATION

Definition 9 Let K = (S, T, I, L, F = {F0}) be a fair Kripke structure and let V ′ ⊆ V

be a subset of its state variables. Let ŝ0 ∈ S|V ′ be arbitrary but fixed. Then KS|V ′ =
(SS|V ′ , T S|V ′ , IS|V ′ , LS|V ′ , F S|V ′) is defined as:

SS|V ′ = S × S|V ′ × {st , lb, lc} × IB

IS|V ′ = {(s0, ŝ0, st , 0) | s0 ∈ I} ∪
{(s0, s0|V ′ , lb, f) | s0 ∈ I ∧ (f → s0 ∈ F0)}

TS|V ′ = {((s, ŝ, lo, f), (s′, ŝ′, lo′, f ′)) | (s, s′) ∈ T ∧
((lo = st ∧ lo′ = st ∧ ¬f ∧ ¬f ′ ∧ ŝ = ŝ′ = ŝ0) ∨ (1)
(lo = st ∧ lo′ = lb ∧ ¬f ∧ (f ′ → s′ ∈ F0) ∧ ŝ = ŝ0 ∧ (s′|V ′) = ŝ′) ∨ (2)
(lo = lb ∧ lo′ = lb ∧ (f → f ′) ∧ (f ′ → f ∨ s′ ∈ F0) ∧ ŝ = ŝ′) ∨ (3)
(lo = lb ∧ lo′ = lc ∧ f ∧ f ′ ∧ ŝ = (s′|V ′) = ŝ′) ∨ (4)
(lo = lc ∧ lo′ = lc ∧ f ∧ f ′ ∧ ŝ = ŝ′))} (5)

LS|V ′ ((s, ŝ, lo, f)) = L(s)

FS|V ′ = ∅

Def. 1 and KS|V ′ as in Def. 9 we have

R(KS|V ′) ∩ {sS|V ′ ∈ SS|V ′ | lc(sS|V ′)} = ∅ ⇒ R(KS) ∩ {sS ∈ SS | lc(sS)} = ∅

Proof: We prove the reverse direction. Assume R(KS) ∩ {sS ∈ SS | lc(sS)} 6= ∅. Hence,

there is an initialized path πS = (s0, ŝ0, lo0, f0) . . . (sk, sl, lc, 1) to some (sk, sl, lc, 1) = sS ∈
R(KS) ∩ {sS ∈ SS | lc(sS)}. It’s now easy to see that πS with its second component projected

onto V ′ is an initialized path in KS|V ′ to (sk, sl|V ′ , lc, 1) = sS|V ′ ∈ R(KS|V ′)∩ {sS|V ′ ∈ SS|V ′ |
lc(sS|V ′)}. ✷

Variable optimization as existential abstraction Variable optimization is an instance of ex-

istential abstraction [CGL94] or, more specifically, variable projection (e.g, [BGG02]). Hence,

for the proof of Thm. 33 we could have simply appealed to Corollary 5.7 in [CGL94]. We

preferred to give the direct proof because of its simplicity.

6.2 Removing Constants

Constants after initialization A variable v is constant after initialization if its value doesn’t

change after the initial state: ∀(s, s′) ∈ T . v(s) = v(s′).

Result The following theorem states the obvious fact that such constants need neither be

stored nor compared in the state-recording translation.

Theorem 34 Let K = (S, T, I, L, F = {F0}) be a fair Kripke structure, let V be its set of state

variables, and let Vc ⊆ V be its set of variables constant after initialization. With KS as in

Def. 1 and KS|V \Vc as in Def. 9 we have

R(KS|V \Vc) ∩ {sS|V \Vc ∈ SS|V \Vc | lc(sS|V \Vc)} 6= ∅ ⇔ R(KS) ∩ {sS ∈ SS | lc(sS)} 6= ∅

6.3. REMOVING INPUT VARIABLES 87

In addition, if sS ∈ SS with lc(sS) true is reachable via πS in KS then some sS|V \Vc ∈ SS|V \Vc

with lc(sS|V \Vc) true is reachable in KS|V \Vc via πS|V \Vc such that πS and πS|V \Vc agree on all

state variables present in both, KS and KS|V \Vc .

Proof: Trivial. ✷

Identifying constants after initialization In our experiments we syntactically identify a vari-

able as a constant after initialization

1. if it is unconditionally assigned its current state value as its next state value in an ASSIGN
statement, or

2. if it is unconditionally assigned its current state value as its next state value in a TRANS
statement, or

3. if it is constrained by an INVAR statement to a constant value.

We do not look for constants after initialization in the Büchi automaton representing the prop-

erty.

6.3 Removing Input Variables

Kroening and Strichman proved in the context of bounded model checking [BCCZ99] that input

variables can be ignored when computing the recurrence diameter for simple liveness properties

of the form Fp [KS03]. Eén and Sörensson [ES03] use the same idea in temporal induction for

safety properties in incremental bounded model checking [Sht01, WKS01]. We now extend this

idea to the state-recording translation.

Transition input variables A variable v is a transition input variable if its value in the next

state is neither constrained by its value in the current state nor by the values of other variables

in the current and next states:

∀(s, s′) ∈ T . ∀x in the range of v . ∃(s, s′′) ∈ T . s′|V \v = s′′|V \v ∧ v(s
′′) = x

Note that, contrary to what would be expected for a “proper” input variable, we don’t make any

assumptions on the potential values of v in an initial state.

Result Intuitively, we can ignore transition input variables in the state-recording translation

because we can set them to an arbitrary value (and, hence, to the same value as in sl) when

closing the loop in sk:

Theorem 35 Let K = (S, T, I, L, F = {F0}) be a fair Kripke structure, let V be its set of state

variables, and let Vi ⊆ V be its set of transition input variables. With KS as in Def. 1 and

KS|V \Vi as in Def. 9 we have

R(KS|V \Vi) ∩ {sS|V \Vi ∈ SS|V \Vi | lc(sS|V \Vi)} 6= ∅ ⇔ R(KS) ∩ {sS ∈ SS | lc(sS)} 6= ∅

88 CHAPTER 6. VARIABLE OPTIMIZATION

In addition, if sS ∈ SS with lc(sS) true is reachable via πS in KS then some sS|V \Vi ∈ SS|V \Vi

with lc(sS|V \Vi) true is reachable in KS|V \Vi via πS|V \Vi such that πS and πS|V \Vi agree on all

state variables present in both, KS and KS|V \Vi .

Proof: The “⇐”-direction of the first claim and the second claim follow from the proof of

Thm. 33. For “⇒” note that in Def. 9 (as in the unoptimized case, see Def. 1) fair states

need to be seen strictly before the loop can be closed. Hence, it is sufficient to prove the

following implication: if π̃ = s0 . . . sl . . . s̃k is an initialized finite path in K with k > l > 0
and v(s̃k) = v(sl) for all variables v ∈ V \ Vi, then π̃ with its last state replaced by sl is

an initialized finite path in K with k > l > 0 and sk = sl. By assumption, (sk−1, s̃k) ∈ T .

Construct a sequence of states s̃k = t0, t1, . . . , t|Vi| = sl such that all tj , tj+1 differ at most by the

value of one variable in Vi. By definition, for each tj , tj+1, (sk−1, tj) ∈ T iff (sk−1, tj+1) ∈ T .

Hence, (sk−1, sl) ∈ T . ✷

Transition input variables in the property If the Kripke structure being transformed is the

product of a model M and a Büchi automaton B generated from a PLTLB formula, the set of

transition input variables has to be determined with respect to the product M ×B. Hence, input

variables of M that appear in the PLTLB formula to be verified may need to be included in the

loop detection.

Identifying transition input variables In our experiments we use a syntactic approach to

conservatively identify transition input variables. A transition input variable may not appear in

either of the following contexts:

1. an INVAR statement,

2. a DEFINE statement,

3. in the scope of a next operator in an ASSIGN statement, or

4. in the scope of a next operator in a TRANS statement.

We make an exception to these rules for the _process_selector_ system variable and

sometimes use knowledge of the model to identify more input variables. We do not look for

transition input variables in the Büchi automaton representing the property.

6.4 Cone of Influence Reduction for Loop Detection

Baumgartner et al. [BKA02] observed that the diameter of a system need only be computed for

the variables in the cone of influence (e.g., [CGP99]) of the property. This idea carries over to

the state-recording translation.

The fair cone of influence The fair cone of influence of a Kripke structure K =
(S, T, I, L, F) w.r.t. some PLTLB formula φ is the set of all variables that influence the be-

havior of K w.r.t. fairness and variables occurring in φ. Formally, Vcoi ⊆ V is the smallest set

6.4. CONE OF INFLUENCE REDUCTION FOR LOOP DETECTION 89

containing all variables occurring in φ and fulfilling

∀s1, s2 ∈ S . (s1|Vcoi = s2|Vcoi ⇒
(∀s′1 ∈ S . ((s1, s

′
1) ∈ T ⇒ ∃s′2 ∈ S . (s′1|Vcoi = s′2|Vcoi ∧ (s2, s

′
2) ∈ T))) ∧

(∀0 ≤ m ≤ f . (s1 ∈ Fm ⇔ s2 ∈ Fm)))

Result Theorem 36 shows that only variables in the fair cone of influence need to be consid-

ered in loop detection. Additional intuition for the correctness of the theorem can be gleaned

from the possibility to apply standard cone of influence reduction before the state-recording

translation.

Theorem 36 Let K = (S, T, I, L, F = {F0}) be a fair Kripke structure, let V be its set of state

variables, and let Vcoi ⊆ V be its fair cone of influence. With KS as in Def. 1 and KS|Vcoi as in

Def. 9 we have

R(KS|Vcoi) ∩ {sS|Vcoi ∈ SS|Vcoi | lc(sS|Vcoi)} 6= ∅ ⇔ R(KS) ∩ {sS ∈ SS | lc(sS)} 6= ∅

Proof: Again, the implication from right to left follows from Thm. 33. For “⇒” assume

that some sS|Vcoi ∈ SS|Vcoi with lc(sS|Vcoi) true is reachable in KS|Vcoi . Let πS|Vcoi =
(s0, ŝ0, st , 0) . . . (sl, sl|Vcoi, lb, 0) . . . (sm, sl|Vcoi, lb, 1) . . . (sk, sl|Vcoi, lc, 1) with k > m ≥ l ≥ 0,

sm ∈ F0, and sk|Vcoi = sl|Vcoi be a finite initialized path leading to sS|Vcoi = (sk, sl|Vcoi, lc, 1).∗

We inductively show that s0 . . . sl . . . sm . . . sk can be extended to an infinite initialized path π

in K with π|Vcoi = (s0 . . . sl−1(sl . . . sm . . . sk−1)
ω)|Vcoi. With sm ∈ F0 and by the definition

of Vcoi we have that ∀n ≥ 0 . π[m + n(k − l)] ∈ F0 and, hence, any such π is fair. The

claim then follows from Thm. 5. The base case is given by π[0, k] = s0 . . . sl . . . sm . . . sk
being a finite initialized path in K with π[k]|Vcoi = π[l]|Vcoi according to Def. 9. For the in-

ductive case let π[0, i] with i ≥ k be an extension of π[0, k] in K such that π[0, i]|Vcoi =
(s0 . . . sl−1(sl . . . sm . . . sk)

ω)[0, i]|Vcoi . By inductive assumption π[i]|Vcoi = π[i − (k − l)]|Vcoi .
Hence, with the definition of Vcoi, there is si+1 such that si+1|Vcoi = π[i− (k − l) + 1]|Vcoi and

(π[i], si+1) ∈ T . Clearly, (π[0, i] ◦ si+1)|Vcoi = (s0 . . . sl−1(sl . . . sm . . . sk)
ω)[0, i+ 1]|Vcoi. ✷

Combination with removal of constants and transition input variables It’s not hard to see

that Thms. 34, 35, and 36 can be combined:

Theorem 37 Let K = (S, T, I, L, F = {F0}) be a fair Kripke structure with a total transition

relation T . Let V be its set of state variables, Vc ⊆ V its variables constant after initialization,

Vi ⊆ V its set of transition input variables, and Vcoi its fair cone of influence. With V ′ =
Vcoi \ (Vc ∪ Vi), K

S as in Def. 1, and KS|V ′ as in Def. 9 we have

R(KS|V ′) ∩ {sS|V ′ ∈ SS|V ′ | lc(sS|V ′)} 6= ∅ ⇔ R(KS) ∩ {sS ∈ SS | lc(sS)} 6= ∅

Proof: The “⇐”-direction follows from Thm. 33. We only sketch

the reverse direction. Start by assuming an initialized path πS|V ′ =
(s0, ŝ0, st , 0) . . . (sl, sl|V ′ , lb, 0) . . . (sm, sl|V ′ , lb, 1) . . . (sk, sl|V ′ , lc, 1) with k > m ≥ l ≥ 0,

sm ∈ F0, and sk|V ′ = sl|V ′ leading to some violating state sS|V ′ = (sk, sl|V ′ , lc, 1). Transform

sk into s̃k as in the proof of Thm. 35 such that sl|Vcoi = s̃k|Vcoi. Continue from there with

π[0, k] = s0 . . . s̃k as in the proof of Thm. 36. ✷

∗Note that we are a bit sloppy here: in principle we’d have to establish that sS|Vcoi and πS|Vcoi must be of that

shape as in the proof of Thm. 5. To avoid unnecessary detail we refer the reader to that proof instead.

90 CHAPTER 6. VARIABLE OPTIMIZATION

Finding the fair cone of influence For the experiments we again use a syntactic scheme to

identify the cone of influence. A variable v depends on another variable w if one of the following

conditions is met:

1. v and w appear in the same INIT statement,

2. v and w appear in the same INVAR statement,

3. v and w appear in the same TRANS statement and v is in the scope of a next operator,

or

4. v and w appear in the same ASSIGN statement and v is in the scope of an init or next
operator.

The fair cone of influence is defined as the smallest set Vcoi that contains (1) the variables

appearing in the property and in fairness constraints and (2) all variables on which those in Vcoi
depend. All variables in the Büchi automaton representing the property are considered part of

the fair cone of influence. In addition, the transition relation of K must be required to be total.

Influence on counterexamples The previous variable optimizations require hardly any extra

effort to reconstruct a counterexample inK from one inKS|V ′ . In particular, shortest counterex-

amples can be found (see Sect. 3.4). As when standard cone of influence reduction is applied

to the system K, a counterexample found in KS|V ′ may need some reconstruction effort to ob-

tain a counterexample in the full system K. Specifically, its stem and/or loop may need to be

extended. Therefore, shortest counterexamples cannot be guaranteed. As an aside, note that

classical cone of influence reduction has to be applied to K rather than to KS; otherwise, all

variables being stored and compared will end up in the cone of influence.

6.5 Abstraction Refinement for Loop Detection

Motivation Abstraction refinement has already proven to be an effective means for combat-

ting state explosion (e.g., [CGJ+03]), especially so when the property is true [BGG02]. Ex-

perimental results (see Chap. 7) show that the overhead of the state-recording translation is

considerably higher when a property passes than when it fails. The previous instances of vari-

able optimization made sure that both a passing and a failing result from the optimized system

carries over to the unoptimized system. To investigate whether removing more variables from

loop detection at the price of admitting spurious counterexamples might help, we implemented

a simple abstraction refinement scheme for the set of variables used in loop detection.

Algorithm Figure 6.1 shows the algorithm, which follows the general scheme outlined in

Fig. 2.2. check_reachable(K , S ′) determines whether a state in S ′ is reachable in K. If yes, a 0
result and a path leading to such state are returned. Otherwise, the result is 1 and an empty path.

The first line assigns a set of state variables to Vmax such that no spurious counterexamples can

occur; we chose Vmax = Vcoi \ (Vc ∪ Vi) based on Thm. 37. In line 2, V ′ is initialized with

an arbitrary subset of Vmax — we start with V ′ = ∅. The algorithm then applies Thm. 33 (line

4). If no counterexample is found in line 4, we are done (lines 5, 6). Otherwise, if V ′ = Vmax,

6.6. UTILITY OF ... 91

Require: a fair Kripke structure K = (S, T, I, L, F) with state variables V

Ensure: return 1 iff Lang(K) = ∅
1: let Vmax such that V ′ = Vmax prevents spurious counterexamples

2: let V ′ ⊆ Vmax
3: loop

4: let (result , πS|V ′) := check_reachable(KS|V ′ , {sS|V ′ ∈ SS|V ′ | lc(sS|V ′)})
5: if result = 1 then

6: return 1
7: else if V ′ = Vmax then

8: return 0
9: else if s(πS|V ′ [l]) = s(πS|V ′ [k]) then

10: return 0
11: else

12: let V ′ := V ′ ∪ V ′′ for some ∅ ⊂ V ′′ ⊆ Vmax \ V
′

13: end if

14: end loop

Figure 6.1: Abstraction refinement for loop detection

the counterexample must be real (lines 7, 8). If V ′ ⊂ Vmax a quick check is made in line 9 to

determine whether the counterexample is real despite V ′ 6= Vmax and 0 is returned if the check

is successful (the algorithm in Fig. 6.1 would be sound and complete without this step). If not,

the counterexample must be spurious. Hence, we add some variables from Vmax \ V ′ to V ′

according to the following scheme (lines 11, 12): If V ′ = ∅, add all variables appearing in the

property and in fairness constraints; otherwise, add all variables on which the variables already

contained in V ′ depend. Now we repeat the loop with a strictly larger set V ′.

The algorithm makes only a very limited attempt to reconstruct a counterexample in the un-

optimized system. It also follows a static refinement scheme based on the dependency relation

of the state variables rather than analyzing a spurious counterexample. Still, it turns out to be

quite helpful to improve performance in problematic cases.

Result Theorem 38 states that the algorithm is sound and complete.

Theorem 38 Let K = (S, T, I, L, F = {F0}) be a fair Kripke structure. The algorithm in

Fig. 6.1 terminates and returns 1 iff

R(KS) ∩ {sS ∈ SS | lc(sS)} 6= ∅

Proof: Correctness follows from Thm. 33 (line 6), the assumption in line 1 (line 8), and Def. 9

(line 10). Line 12 and finiteness of Vmax give termination. ✷

6.6 Utility of ...

... removing constants and input variables Removing constants and input variables in the

state-recording translation as shown in Thms. 34, 35 is independent of reductions such as stan-

dard cone of influence reduction [CGP99] or more general instances of existential abstraction

92 CHAPTER 6. VARIABLE OPTIMIZATION

MODULE model
VAR
 a: boolean;
 b: boolean;
INIT
 a
TRANS
 a -> next(b)

MODULE buechi(b)
VAR
 s:{s0};
INVAR
 (s=s0) -> !b
FAIRNESS
 s=s0

MODULE main
VAR
 mo: model;
 ba: buechi(mo.b);
SPEC
 !EG 1

Figure 6.2: This example for SMV shows that the state-recording translation can prove a prop-

erty to be true with an empty set of variables in loop detection.

[CGL94] typically performed on the system as a whole. Hence, given noticeable performance

benefits (see Chap. 7) and absence of influence on the length of a potential counterexample,

these should always be applied.

... removing the fair cone of influence The situation is different when removing variables not

in the cone of influence of the property (Thm. 36): one can equally well perform standard cone

of influence reduction on the system before applying the state-recording translation and expect

greater impact on performance.† We have included it here to investigate the performance impact

of removing more variables than just constants and input variables and, more importantly, as an

easy-to-get upper bound for the abstraction refinement algorithm in Fig. 6.1.

... using abstraction refinement Similar reservations could be brought forward w.r.t. the al-

gorithm in Fig. 6.1: why not apply abstraction refinement to the original system and the state-

recording translation to the abstracted versions of the system. However, our scheme is not only

an intuitive example to study the performance of more aggressive variants of variable optimiza-

tion, but is also useful in its own right. Consider the example in Fig. 6.2 in the language of

SMV [McM93, CCO+]. We wish to verify that Fb holds in the module model. Hence, module

buechi encodes a Büchi automaton accepting witnesses to G¬b. The system can be veri-

fied after applying the state-recording translation with an empty set of variables used for loop

detection, while the system abstracted to the variables mo.b and ba.s has a spurious coun-

terexample. In general, variable optimization with V ′ = ∅ may succeed to prove that a property

φ holds if each initialized path either does not fulfill all fairness constraints or finishes being a

finite informative witness [KV01] to φ before all fairness constraints have been fulfilled.

6.7 Related Work

6.7.1 Completeness in bounded model checking

Relation to simple path constraint Part of the inspiration for variable optimization and

probably the most closely related idea comes from completeness of bounded model check-

ing [BCCZ99]: a standard method to achieve completeness for BMC is checking in regular

†Due to time constraints we have not performed an experimental evaluation of this claim.

6.7. RELATED WORK 93

intervals whether the current bound k exceeds the length of any potential shortest counterex-

ample in the model [BCCZ99, SSS00, BKA02, ES03, KS03, CKOS05, AS04, HJL05, AS06].

The corresponding constraint, often termed simple path after [AS04], requires that the current

bound k allows for a loop-free path of length k + 1 in the model. Here, “loop-free” is to be

understood in a wide sense. The fixed subset of variables V ′ used to check whether two states

of a path should be considered equal and, therefore, close a loop includes not only variables of

the model but also those representing property and fairness constraints. The proof of correct-

ness for a particular simple path constraint usually involves the following sequence of steps: (1)

assume some “shortest” counterexample π not fulfilling the simple path constraint, (2) identify

two states π[i], π[j] that must agree on a fixed subset V ′ of the state variables, and (3) derive

a shorter counterexample π̃ by continuing after π[i] with π[j + 1,∞] (which might have to be

suitably modified). This proves the claim by contradiction. Step (3) is very similar to variable

optimization: given that sl and sk agree on a subset of state variables V ′ it must be established

that continuing with (sl . . . sk−1)
ω after s0 . . . sk−1 leads to a counterexample. A reduced set of

state variables is used in the simple constraint by, e.g., [BKA02, KS03, ES03].

Specific works Baumgartner et al. ignore input variables and variables outside the cone of

influence when computing the diameter of netlists [BKA02].

Kroening and Strichman proved that input variables can be ignored when computing the

recurrence diameter for simple liveness properties of the form Fp [KS03]. They also ignore an

input variable v if v appears in the property. That does not extend to arbitrary properties: con-

sider a model with just two input variables, a Boolean trigger t and an integer i. The recurrence

diameter is 0, but the shortest witness for G(t⇒ (F(i = 0)∧F(i = 1)∧. . .∧F(i = n)))∧GFt

has n states. They also show that the bounded cone of influence [BCRZ99] can be used to ob-

tain an even smaller recurrence diameter. Implementing this construction for the state-recording

translation requires introducing a counter and using a more complicated formulation of loop

closure. Furthermore, the construction only affects the comparison of the current and the saved

states; it is still necessary to save all variables in the cone of influence of the presumed loop

start. Hence, we doubt that a BDD-based implementation of the state-recording translation

would benefit much.

Eén and Sörensson remove input and output variables from their simple path constraint

when they perform temporal induction for safety properties in incremental BMC [ES03].

Influence of removing input variables on termination depth Removing input variables may

exponentially decrease the depth at which a property is proved in [KS03, ES03]. We conjecture

that only a linear reduction can be achieved with our method. Note, though, that the main

purpose of our reduction is to achieve smaller BDDs rather than a decrease in termination depth.

Output variables as a special case If output variables that do not appear in the property

are removed from loop detection in the state-recording translation, shortest counterexamples

cannot be guaranteed anymore. Note that such output variables are not part of the cone of influ-

ence; hence, they are removed with other variables not in the cone of influence when Thm. 36 is

applied. The example in Fig. 6.3 shows how ignoring output variables may shorten a counterex-

ample. The shortest counterexample in the unoptimized system is (0, 0)(1, 0)(1, 1)ω (states are

denoted as (x, y)). Leaving y out of loop detection gives (0)(1)ω. On the other hand, such coun-

94 CHAPTER 6. VARIABLE OPTIMIZATION

MODULE model
VAR
 x: boolean;
 y: boolean;
ASSIGN
 init(x) := 0;
 next(x) := 1;
 init(y) := 0;
 next(y) := x;

MODULE buechi(x)
VAR
 s:{s0,s1};
INVAR
 s=s1 -> x=1
TRANS
 s=s1 -> next(s)=s1
FAIRNESS
 s=s1

MODULE main
VAR
 mo: model;
 ba: buechi(mo.x);
SPEC
 !EG 1

Figure 6.3: This example for SMV shows that removing output variables from loop detection in

the state-recording translation can lead to shorter counterexamples in the optimized

system than in the full system.

terexample can always be extended to a full counterexample by letting the loop start and end

with one state delay, as then all variables on which the output variables depend have stabilized.

Removing output variables from loop detection that do appear in the property may lead to

incorrect results in the state-recording translation; Eén and Sörensson have a corresponding

restriction.

6.7.2 Identifying input variables and variable dependencies

Papers with strong roots in hardware verification [BKA02, KS03] typically assume that input

variables are a separate syntactic entity and that the next state value of a state variable is a func-

tion of the current state and the input. This makes identification of input variables, dependent

variables and the cone of influence pretty straightforward. The original SMV [McM93] does

not allow a variable to be declared as input variable. While NuSMV [CCG+02] added that fea-

ture, many benchmarks were written either before its introduction or refrain from using it for

compatibility reasons. Hence we needed to devise criteria to identify input variables and vari-

able dependencies based on a relational representation of the system. Eén and Sörensson took

a similar approach [ES03]. They assume that the system is given as propositional formulas that

describe the set of initial states and the transition relation. Input variables may occur neither in

the initial state formula nor in the scope of a next operator in the transition relation.

6.7.3 Abstraction and refinement

Abstraction and automated abstraction refinement have been widely investigated. The following

discussion can therefore be only selective; for more related work see, e.g., [CGJ+03]. As has

been mentioned, variable optimization is an instance of existential abstraction [CGL94], more

specifically, variable projection (e.g., [BGG02]). This is similar to removing entire processes

or subsystems as in [BSV93, Kur94, LNA99] or (less useful in our case) cutting connections

between some subsystems [LPJ+96] as well as using overlapping variable projection [GD98].

We focus mostly on the approaches just mentioned below. In particular we do not cover pred-

icate abstraction [GS97] and the (highly successful) related automated refinement approaches

[BR02, HJMS02, CCG+04].

6.7. RELATED WORK 95

Over- and under-approximation Existential abstraction over-approximates the reachable set

of states. Lee et al. use under-approximations to obtain definite results for failing properties

[LPJ+96]. Lind-Nielsen and Andersen combine over- and under-approximations to cover all of

CTL [LNA99]. Note that in our case under-approximation by universal abstraction of variables

with a range of size larger than 1 makes no sense: as we compare for equality no state such that

lc is true would be reachable.

Automated abstraction refinement Balarin and Sangiovanni-Vincentelli [BSV93] and Kur-

shan [Kur94] were among the first to present automated abstraction refinement schemes. They

focus on removing entire components or components and selected connections between com-

ponents. Clarke et al. [CGJ+03] extended the principle to the more general framework of

[CGL94].

Reconstruction We only perform a simplistic reconstruction to see whether the counterex-

ample in the abstract corresponds to a real counterexample: we have a finite path in the original

system and only check whether it happens to close a loop between two particular states sl and

sk. We could also try whether any state is reachable from sSk−1 such that lc(sSk) is true and

s(sSk) = s(sSl). Other approaches abstract the system; hence, reconstruction requires more

effort. A typical approach performs forward reachability from the initial states or backward

reachability from the bad states in the unabstracted system and intersects the states reached in

each step with the corresponding step in the abstract counterexample (e.g., [Kur94, CGL94]).

When a bad state (for forward reachability) or an initial state (for backward reachability) is hit,

the unabstracted counterexample must be real. Otherwise, an empty intersection between the

states reached in the system and the abstract counterexample will occur at some point. As re-

construction is also subject to state explosion, some approaches proceed iteratively here as well

[BSV93, BGG02]. When both, over- and under-approximations are used, reconstruction may

not be required at all [LPJ+96, LNA99].

Refinement We use a static refinement strategy that follows the dependencies between state

variables without looking at the spurious counterexample. The sets of variables we add in an

iteration correspond to the sets of variables with a fixed distance from the variables occurring

in the specification or fairness constraints in the graph induced by the dependency relation. The

same strategy is used by Lind-Nielsen and Andersen [LNA99]. The sets of variables used in an

iteration correspond to the bounded cone of influence as employed for optimizations in bounded

model checking [BCRZ99, KS03]. Balarin and Sangiovanni-Vincentelli add processes also in

the order of their dependency relation but only until a counterexample has been removed. We

could also only add one or more of the variables that are different in s(sSk) = s(sSl). Lee et

al. follow a greedy strategy: they tentatively add each subsystem and finally choose the one

which gives the largest reduction in terms of undesired states [LPJ+96]. Clarke et al. extend

automated refinement to more general abstractions by partitioning the state in the abstract coun-

terexample that can not be continued in the unabstracted system [CGJ+03]. Many authors also

have the cone of influence as an upper bound of refinement [BSV93, Kur94, LNA99, BGG02].

Govindaraju and Dill [GD98] and Lind-Nielsen and Andersen [LNA99] reuse results from pre-

vious iterations. We could restart subsequent iterations from the set of states in which no loop

start has been guessed yet.

96 CHAPTER 6. VARIABLE OPTIMIZATION

Explicit state model checking SPIN offers a command line switch to store only hash values

rather than entire states on the depth-first search stack to reduce memory consumption, though

at the price of decreased performance [Hol03]. This is normally used as an add-on to the

remotely related bitstate hashing, which has been introduced by Holzmann to reduce the amount

of memory required to store the set of reached states during state space traversal [Hol88, Hol03].

While bitstate hashing may miss some states during state space traversal, the coverage achieved

when using it is typically higher than what could be achieved without due to limited memory

resources [Hol98].

Abstraction (refinement) in loop detection We are not aware of any work directly applying

abstraction or abstraction refinement only to loop detection other than the SPIN command line

switch just mentioned. As an example bounded model checking could apply a similar optimiza-

tion for the loop closing condition.

6.8 Summary

Variable optimization targets the most important source of overhead in the state-recording trans-

lation by selectively removing variables from loop detection. Constants and input variables can

be both ignored while guaranteeing that shortest counterexamples are found. Experimental re-

sults indicate no adverse effects, so these optimizations should always be enabled when using

the state-recording translation. Removing all variables outside the cone of influence from loop

detection sacrifices shortest counterexamples, but further improves performance. It is mainly

useful as an upper bound for the most aggressive variant of variable optimizations presented

here, which applies an abstraction refinement scheme to variable optimization: starting with

few or even no variables, the set of variables used for loop detection is increased until either the

property is proven to hold or a real counterexample is found. For properties that turn out to be

true the gain in performance can be more than 2 orders of magnitude.

7
Experiments

Facts are the enemy of truth.

Miguel de Cervantes Saavedra, Don Quixote

In this chapter we evaluate the practical benefits of the state-recording translation and of tight

Büchi automata in BDD-based symbolic model checking. A toy example demonstrates a po-

tential exponential speed-up of forward reachability checking with the state-recording trans-

lation in comparison to a classical model checking algorithm. More realistic figures are then

obtained on real-world examples for both time and memory usage. The length of counterexam-

ples reported by classical model checking and by the state-recording translation is compared.

SAT-based bounded model checking as an alternative method to find shortest counterexamples

is evaluated against BDD-based reachability checking with the state-recording translation. Im-

pact on resource usage of using a tight encoding and of performing variable optimization is

evaluated. Finally, using tight automata with a classical symbolic model checking algorithm is

examined.

7.1 A Forward Jumping Counter

The example Our translation may lead to a model that can be verified exponentially faster.

Consider the n-bit counter shown in Fig. 7.1. It can jump forward from state i to an arbitrary

state j > i. Only in the last state p is true. For the correct version Fp holds, self-loops are

added to generate an erroneous version. A standard algorithm for symbolic model checking

[BCM+92] needs O(2n) backward iterations to verify the correct counter. If the state-recording

translation is applied, a constant number of forward iterations suffices as r, d ≤ 2. Note that the

experiment in this section was performed using the translation for simple liveness properties as

shown in Fig. 3.3 (c). However, the results are also valid if Def. 1 is employed.

...
p

n
2 −20 1

n
2 −1

Figure 7.1: Forward jumping counter

97

98 CHAPTER 7. EXPERIMENTS

0.01

0.1

1

10

100

1000
3600

10000

0 16 32 48 64 80 96 112 128

C
P

U
 ti

m
e

[s
ec

]

Number of bits

CPU time, correct version

live, no fwd
live, fwd

state-recording

0.01

0.1

1

10

100

1000
3600

10000

0 16 32 48 64 80 96 112 128

C
P

U
 ti

m
e

[s
ec

]

Number of bits

CPU time, erroneous version

live, no fwd
live, fwd

state-recording

Figure 7.2: Forward jumping counter — state-recording translation versus standard approach

versus forward model checking

Platform and resource bounds We used the model checker of the VIS system (v. 1.4)

[VIS96] to verify the forward jumping counter. Apart from backward (standard) symbolic

model checking [BCM+92] VIS also provides an implementation of the symbolic forward

model checking algorithm by Iwashita et al. [INH96]. The experiments were performed on

an Intel PC running at 800 MHz with 1.5 GB RAM, a wall clock limit was set at one hour.

Results The results confirm that standard and forward model checking require exponentially

many iterations to verify the correct model while the translated version only needs a constant

number of iterations in the correct case. All algorithms can find a counterexample with a con-

stant number of iterations. Fig. 7.2 shows that both classical and forward model checking need

time exponential in n. The translated variant can be checked in linear time. The standard algo-

rithm is more than 25 % faster than forward model checking. A counterexample is found in the

erroneous version in linear time by all algorithms. Performing forward model checking on the

translated variant gives similar results as performing standard model checking.

7.2 Real-World Examples

In this section we report on a series of experiments with examples of nontrivial complexity.

Models Most models are taken from a collection of benchmarks [Yan] by Bwolen Yang, one

is from the work of Latvala et al. [LBHJ05], and one is from previous work of the author

[SB03]. For “1394” and “dme” we use instances of different sizes as indicated by the numerical

parameters. Table 7.1 provides a brief description of the models.

Properties Templates of the properties used are given in Tab. 7.2. If a property was also used

in [LBHJ05], it is referred to as “L”. The negated version of a property “p” is marked “¬ p”.

One of the properties was made a liveness property by prefixing it with F. Other properties were

made more interesting by requiring left sides of implications to hold infinitely often (marked

“nv” for non-volatile). Some of the remaining properties had already been used in [SB04].

7.2. REAL-WORLD EXAMPLES 99

model state bits description source

1394-3/4-2 97/137 IEEE 1394 FireWire tree identify protocol with 3 or 4 nodes and

2 ports per node

[SB03]

abp4 30 alternating bit protocol for 4 bits [Yan]

bc57-sensors 78 reactor system model [Yan]

brp 45 bounded retransmission protocol [Yan]

dme5/6 90/108 asynchronous distributed mutual exclusion circuit with 5 or 6

nodes

[Yan]

pci 64 PCI Bus protocol [Yan]

prod-cons 26 producer consumer [Yan]

production-cell 54 production cell control model [Yan]

srg5 8 5 bit shift register [LBHJ05]

Table 7.1: Real-world examples: models

model property truth pod template

1394-3/4-2 0 t 1 (F(G(p))) → (¬((q) S (r)))
¬ 0 f 1 ¬((F(G(p))) → (¬((q) S (r))))

1 t 0 F((p) ∨ ((q ∨ (r)))
¬ 1 f 0 ¬(F((p) ∨ ((q ∨ (r))))

2 t 4 G((O((p) ∧ (O((¬(p)) ∧ (O((p) ∧ (O(¬(p))))))))) → (F(G(X(¬(p))))))
3 t 6 G((O((p)∧(O((¬(p))∧(O((p)∧(O((¬(p))∧(O((p)∧(O(¬(p))))))))))))) → (F(G(X(¬(p))))))
4 t 8 G((O((p) ∧ (O((¬(p)) ∧ (O((p) ∧ (O((¬(p)) ∧ (O((p) ∧ (O((¬(p)) ∧ (O((p) ∧

(O(¬(p))))))))))))))))) → (F(G(X(¬(p))))))
abp4 0 t 0 G(F(p))

L f 2 G((p) → (Y(H(q))))
¬ L t 2 ¬(G((p) → (Y(H(q)))))

bc57-sensors 0 t 2 G(F((p) ∧ (O((q) ∧ (F((r) ∧ (O(s))))))))
¬ 0 f 2 ¬(G(F((p) ∧ (O((q) ∧ (F((r) ∧ (O(s)))))))))

brp L t 2 F(G((p) → (O((q) → (O(r))))))
¬ L f 2 ¬(F(G((p) → (O((q) → (O(r)))))))

¬ L, nv f 2 ¬((F(G((p) → (O((q) → (O(r))))))) ∧ ((G(F(p))) ∧ (G(F(q)))))
dme5/6 L f 2 G((p) → ((p) T ((¬(p)) T (¬(q))))

¬ L f 2 ¬(G((p) → ((p) T ((¬(p)) T (¬(q))))))
¬ L, nv f 2 ¬((G((p) → ((p) T ((¬(p)) T (¬(q)))))) ∧ (G(F(p))))

pci L f 4 G((p) → (G(((q) ∧ (Y((r) ∧ (O((s) ∧ (O((t) ∧ (O(u))))))))) →
(O((v) ∧ (O((w) ∧ (¬(O(x))))))))))

¬ L f 4 ¬(G((p) → (G(((q) ∧ (Y((r) ∧ (O((s) ∧ (O((t) ∧ (O(u))))))))) →
(O((v) ∧ (O((w) ∧ (¬(O(x)))))))))))

F L f 4 F(G((p) → (G(((q) ∧ (Y((r) ∧ (O((s) ∧ (O((t) ∧ (O(u))))))))) →
(O((v) ∧ (O((w) ∧ (¬(O(x)))))))))))

prod-cons 0 f 1 ((G(¬(p))) ∧ (G(F((q) ∧ ((q) S (r)))))) ∧ (G(F(((q) ∧ ((q) S (r))) → ((s) S (t)))))
¬ 0 f 1 ¬(((G(¬(p))) ∧ (G(F((q) ∧ ((q) S (r)))))) ∧ (G(F(((q) ∧ ((q) S (r))) → ((s) S (t))))))

1 t 4 G((p) → ((p) S ((q) S ((r) S ((s) S (t))))))
¬ 1, nv f 4 ¬((G((p) → ((p) S ((q) S ((r) S ((s) S (t))))))) ∧ (G(F(p))))

2 f 0 G((p) → (F(((q) ∧ (r)) ∧ (s))))
3 f 0 G((p) → (F(q)))
4 t 0 G((p) → (F(q)))

production-cell 0 t 6 G(F(((p) ∨ (q)) ∧ (O((r) ∧ (O(((s) ∨ (t)) ∧ (O((u)∧
(O(((s) ∨ (t)) ∧ (O(((v) ∨ (w)) ∧ (O(x))))))))))))))

¬ 0 f 6 ¬(G(F(((p) ∨ (q)) ∧ (O((r) ∧ (O(((s) ∨ (t)) ∧ (O((u)∧
(O(((s) ∨ (t)) ∧ (O(((v) ∨ (w)) ∧ (O(x)))))))))))))))

1 t 12 G(F(((p) ∨ (q)) ∧ (Y(O((r) ∧ (Y(O(((s) ∨ (t)) ∧ (Y(O((u)∧
(Y(O(((s) ∨ (t)) ∧ (Y(O(((v) ∨ (w)) ∧ (Y(O(x))))))))))))))))))))

¬ 1 f 12 ¬(G(F(((p) ∨ (q)) ∧ (Y(O((r) ∧ (Y(O(((s) ∨ (t)) ∧ (Y(O((u)∧
(Y(O(((x) ∨ (t)) ∧ (Y(O(((v) ∨ (w)) ∧ (Y(O(x)))))))))))))))))))))

2 t 10 G(F(((¬(p)) ∨ (¬(q))) ∧ (O((¬(r)) ∧ (Y(O(((¬(s)) ∨ (¬(t))) ∧ (O((¬(u)) ∧
(Y(O(((¬(s)) ∨ (¬(t))) ∧ (Y(O(((¬(v)) ∨ (¬(w))) ∧ (Y(O(x))))))))))))))))))

¬ 2 f 10 ¬(G(F(((¬(p)) ∨ (¬(q))) ∧ (O((¬(r)) ∧ (Y(O(((¬(s)) ∨ (¬(t))) ∧ (O((¬(u)) ∧
(Y(O(((¬(s)) ∨ (¬(t))) ∧ (Y(O(((¬(v)) ∨ (¬(w))) ∧ (Y(O(x)))))))))))))))))))

srg5 L t 4 (((F(G(¬(p)))) ∧ (G(F(q)))) ∧ (G(F(r)))) → (F((s) S ((t) S ((u) S ((v) S (w))))))
¬ L f 4 ¬((((F(G(¬(p)))) ∧ (G(F(q)))) ∧ (G(F(r)))) → (F((s) S ((t) S ((u) S ((v) S (w)))))))

¬ L, nv f 4 ¬(((((F(G(¬(p)))) ∧ (G(F(q)))) ∧ (G(F(r)))) →
(F((s) S ((t) S ((u) S ((v) S (w))))))) ∧ (((F(G(¬(p)))) ∧ (G(F(q)))) ∧ (G(F(r)))))

Table 7.2: Real-world examples: templates of the properties

100 CHAPTER 7. EXPERIMENTS

Platform and resource bounds All experiments were performed on an Intel Pentium IV at

2.8 GHz with 2 GB RAM running Linux 2.4.18. We used NuSMV 2.2.2 [CCG+02, NuS] and

Cadence SMV build 10-11-02p46 [McM] as model checkers for all experiments except for the

comparison between SAT- and BDD-based methods to find shortest counterexamples. There,

bounded model checking was performed with build 050429-CAV-final of a modified NuSMV

2.2.3, which implements an incremental version of the encoding of [LBHJ05]. It was pre-

sented in [HJL05] and is available from [HJL]. As SAT solvers we used zChaff 2004.11.15

[ZMMM01, zCh] and MiniSat 1.12 [ES04, ES]. In that comparison, model checking of

the state-recording translation was performed with the corresponding unmodified version of

NuSMV 2.2.3. Time and memory usage were limited to one hour and 1.5 GB for each run in

all experiments.

Algorithms We use three different algorithms for fair cycle detection:

• L2S This denotes the state-recording translation as described in Chap. 3 with BDD-based

invariant checking.

• Live This is the standard approach to perform LTL model checking in NuSMV

[CCGR00]: BDD-based symbolic model checking for CTL [BCM+92] is employed to

check ¬EG1 under fairness.

• BMC This is incremental SAT-based bounded model checking [HJL05].

Encoding of the property We use an optimized encoding of the tight Büchi automaton pre-

sented in Chap. 5 to encode the property with “L2S”. The level of virtual unrolling can be chosen

between no unrolling and full virtual unrolling to the past operator depth of the formula. The

encoding is tightly integrated with the state-recording translation. As an example, the signals

indicating the state of the loop are provided directly by the reduction rather than being separate

input variables. Fairness is handled similar to to [LBHJ05]. In fact, the implementation started

as an adaptation of the BMC encoding in [LBHJ05]. Only then a tight Büchi automaton was

extracted from the construction. The original implementation was kept for (slightly) superior

performance. The specification is given as INVARSPEC¬lc with NuSMV and as AG¬lc with

Cadence SMV.

For “Live” with a non-tight Büchi automaton we use NuSMV’s ltl2smv tool, which im-

plements the encoding of Kesten et al. [KPR98]. Ltl2smv is invoked either explicitly (for Ca-

dence SMV and for NuSMV in the comparison of a tight and a non-tight Büchi automaton

with “Live”) or implicitly as part of the operation of NuSMV when LTLSPEC is used (for the

comparison of “L2S” and “Live”). For “Live” with a tight Büchi automaton we use our own

implementation of the translation from PLTLB to a tight Büchi automaton from Sect. 5.3.

For “BMC” the built-in encoding [HJL05] of the modified NuSMV is used.

Degrees of tightness We distinguish between the following degrees of tightness:

• tight stands for virtual unrolling up to the past operator depth of the formula. An example

is the tight Büchi automaton from Sect. 5.3.

7.2. REAL-WORLD EXAMPLES 101

• not tight stands for no virtual unrolling at all. An example is a Büchi automaton con-

structed with [KPR98].

• maxunrolln stands for partial unrolling: each occurrence of hp(ψ) is replaced with

min(hp(ψ), n) in Tab. 5.1 (see also Sect. 5.3.3).

Variants of variable optimization We use the following variants of variable optimization:

• none means no variable optimization,

• ic combines removing constants after initialization and transition input variables

(Thms. 34, 35),

• ic(none) stands for “ic” if the set of constant and transition input variables is not empty,

for “none” otherwise,

• coi denotes including only variables in the fair cone of influence that are neither constant

nor transition input variables (Thm. 37), and

• absref is abstraction refinement on the set of variables used in loop detection (Thm. 38).

Settings If a model-specific variable order is provided with the model, it is used for all exper-

iments with “L2S” and “Live” except in the comparison between “L2S” and “BMC”. Original

state variables and the copies arising in the state-recording translation are always interleaved

when “L2S” is used. Dynamic reordering of variables and cone of influence reduction are dis-

abled. Restriction to the reachable set of states is enabled explicitly in all cases but “L2S”

with NuSMV (where this is assumed to be part of the algorithm employed for INVARSPEC
[CCO+]). Checking for completeness is disabled in “BMC”.

Presentation of results We use scatter plots to compare the time or memory usage of two

approaches a and b, where a on the x-axis corresponds to the “new” and b on the y-axis to

the “standard” approach, respectively. Both axes have a logarithmic scale. An instance of the

problem is solved with both approaches and a data point is obtained by taking the tuple (resource

usage with a, resource usage with b). Smaller values, which are closer to the origin, are better.

Hence, a data point above the y = x-diagonal indicates an advantage for the “new” approach a

in that particular instance. Experiments where the property holds are marked with a filled green

square, those where it is false with an empty red triangle. Three special values denote time out

(“to”), memory out (“mo”), and other errors (“er”). In all instances of the latter Cadence SMV

reports problems with a file that could not be resolved.

When comparing lengths of counterexamples we use bar charts. The “new” approach is

the left red bar, while the “standard” approach is the right green bar. The results are sorted in

ascending order w.r.t. the “standard” approach. Shorter lengths are better.

Raw data is provided in Appendix B.

102 CHAPTER 7. EXPERIMENTS

7.2.1 State-Recording Translation versus Standard Approach

In this subsection we compare the performance of forward reachability checking with the

state-recording translation (“L2S”) to that of the standard method of checking linear properties

[BCM+92, CGH97] (“Live”) in BDD-based symbolic model checkers. A non-tight encoding

of the property is used and no restriction on the past operator depth of the formula is applied.

Figure 7.3 shows the results. The left column is for NuSMV, the right column for Cadence

SMV. From top to bottom the rows are CPU time (in seconds), memory usage (in BDD nodes),

and, for false properties, length of the resulting counterexamples (in states).

Neither method has a clear advantage in terms of CPU time if the property under considera-

tion is false: “L2S” is faster in about two thirds of the experiments with NuSMV while “Live” is

faster in more cases with Cadence SMV. If the property is true, it can almost always be verified

faster with the standard approach. In most cases “Live” uses less memory than “L2S”. Coun-

terexamples obtained with “L2S” are substantially shorter than those obtained with “Live”.

7.2.2 BDD- versus SAT-based Model Checking of the Tight Encoding

In this subsection we investigate how finding shortest counterexamples with BDD-based sym-

bolic model checking and the state-recording translation (“L2S”) compares to the SAT-based

bounded model checking variant that inspired our tight Büchi automaton [LBHJ05] (“BMC”).

As the implementation of [LBHJ05] is based on NuSMV, Cadence SMV is not used in this set

of experiments. Only properties that proved false are included and only the tight encoding is

used. Our set of models and properties includes the ones from [LBHJ05].

The results are plotted in Fig. 7.4. The left column is for zChaff, the right is for MiniSat.

CPU time is shown in the upper row (in seconds), memory usage in the lower row (in bytes).

Although slightly more examples are solved faster with “BMC”, neither algorithm has a

clear advantage. Each algorithm outperforms the other by more than an order of magnitude

for some examples. With respect to memory usage SAT-based bounded model checking is the

better choice in most cases. [LBHJ05] also detects shortest informative counterexamples to

safety properties [KV01], which can be shorter than the shortest lasso-shaped counterexample.

Such a counterexample is reported for “pci,¬ L”, but it is not shorter than the one found with

“L2S”.

7.2.3 The Cost of Tightness

In this subsection we determine the impact of using encodings with different degrees of tight-

ness on performance and on length of counterexamples.

Figure 7.5 shows the results. Again, NuSMV is on the left and Cadence SMV on the right,

with CPU time in the top, memory usage in the middle, and length of counterexamples in the

bottom row. We include only experiments with past operator depth at least 1 and where a result

was obtained within the resource bounds for at least one degree of tightness. Moreover, we omit

results that are identical to “tight”, i.e., results for “maxunroll1” are shown only for hp(φ) > 1,

and for “maxunroll2” only for hp(φ) > 2. Resource usage for each degree of tightness is

depicted as the ratio∗ (i.e., the speed-up or slow-down) between the CPU time or memory usage

∗For the absolute values see App. B

7.2. REAL-WORLD EXAMPLES 103

er
mo
to

 3600

 1000

 100

 10

 1

 0.1

ermoto 3600 1000 100 10 1 0.1

Li
ve

, n
ot

 ti
gh

t,
N

uS
M

V
 [

se
co

nd
s]

L2S, not tight, ic(none), NuSMV [seconds]

false
true

er
mo
to

 3600

 1000

 100

 10

 1

 0.1

ermoto 3600 1000 100 10 1 0.1

Li
ve

, n
ot

 ti
gh

t,
C

ad
. S

M
V

 [
se

co
nd

s]

L2S, not tight, ic(none), Cad. SMV [seconds]

false
true

CPU time

er
mo
to

7.5e8

1e7

1e6

1e5

1e4

1e3
ermoto7.5e81e71e61e51e41e3

Li
ve

, n
ot

 ti
gh

t,
N

uS
M

V
 [

B
D

D
 n

od
es

]

L2S, not tight, ic(none), NuSMV [BDD nodes]

false
true

er
mo
to

7.5e8

1e7

1e6

1e5

1e4

1e3
ermoto7.5e81e71e61e51e41e3

Li
ve

, n
ot

 ti
gh

t,
C

ad
. S

M
V

 [
B

D
D

 n
od

es
]

L2S, not tight, ic(none), Cad. SMV [BDD nodes]

false
true

Memory usage

 0

 100

 200

 300

 400

le
ng

th
 [

st
at

es
]

sample

L2S, not tight, ic(none) NuSMV
Live, not tight, ic(none), NuSMV

 0

 100

 200

 300

 400

le
ng

th
 [

st
at

es
]

sample

L2S, not tight, ic(none) Cad. SMV
Live, not tight, ic(none), Cad. SMV

Length of counterexamples

Figure 7.3: State-recording translation (“L2S”) versus standard approach (“Live”)

104 CHAPTER 7. EXPERIMENTS

er
mo
to

 3600

 1000

 100

 10

 1

 0.1

ermoto 3600 1000 100 10 1 0.1

B
M

C
/z

C
ha

ff,
 ti

gh
t

[s
ec

on
ds

]

L2S, tight, ic(none), NuSMV [seconds]

false
true

er
mo
to

 3600

 1000

 100

 10

 1

 0.1

ermoto 3600 1000 100 10 1 0.1

B
M

C
/M

in
iS

at
, t

ig
ht

 [
se

co
nd

s]

L2S, tight, ic(none), NuSMV [seconds]

false
true

CPU time

er
mo
to

1.5G
1G

100M

10M

1M

ermoto 1.5G1G100M10M1M

B
M

C
/z

C
ha

ff,
 ti

gh
t

[b
yt

es
]

L2S, tight, ic(none), NuSMV [bytes]

false
true

er
mo
to

1.5G
1G

100M

10M

1M

ermoto 1.5G1G100M10M1M

B
M

C
/M

in
iS

at
, t

ig
ht

 [
by

te
s]

L2S, tight, ic(none), NuSMV [bytes]

false
true

Memory usage

Figure 7.4: Finding shortest counterexamples using BDDs and the state-recording translation

(“L2S”) versus using SAT-based bounded model checking (“BMC”)

7.2. REAL-WORLD EXAMPLES 105

of that degree and the corresponding value of the non-tight case on a logarithmic scale. Hence,

the results for “not tight” are all 1. They are marked by the straight red line. The other (pink)

line represents the results for “tight”; filled green triangles mark results for “maxunroll1”, empty

blue squares for “maxunroll2”. The results are sorted in ascending order of the ratio between

“tight” and “not tight”.

While some examples can be solved using less time or memory with a tight encoding, for

more than half of the cases tightness comes at a cost. A shorter counterexample is obtained for

three combinations of a model and a property, in one of these the reduction is substantial. Raw

data shows no correlation between a reduction in resource usage and a reduction in length of

a counterexample. Compared to full tightness, limiting the maximum level of unrolling leads

to more well-behaved resource usage and — for our examples — counterexamples of the same

length. The intuition that more virtual unrolling tends to incur higher resource usage is (weakly)

supported by our results.

7.2.4 Comparing Variants of Variable Optimization

We now compare the impact of the different variants of variable optimization.

Figures 7.6 and 7.7 show time and memory usage, respectively. Results for false and true

properties are shown separately in the left and right columns. Top and bottom rows correspond

to NuSMV and Cadence SMV. Both, tight and non-tight encodings are included. Only experi-

ments where a result was obtained within time and memory bounds for at least one variant are

plotted. The results are depicted in a similar way as in the previous subsection: all results are

shown as the ratio (speed-up/slow-down) between CPU time or memory usage of one variant

and that of “none” using a logarithmic scale. Hence, the straight red line corresponds to “none”,

the pink line to “absref”, the green filled triangles to “ic”, and the empty blue squares to “coi”.

The results are sorted in ascending order of the ratio between “ic” and “none”.

The results show that “ic” almost always leads to lower resource usage. The few exceptions

where higher resource usage is incurred are all examples with less than 2 seconds run time.

Reducing the set of variables in loop detection from “ic” to “coi” leads to a further reduction in

time and memory consumption in about half of the cases. There seem to be no major differences

between true and false properties for “ic” and “coi”. That changes for “absref”. If the property

is false, and when compared to “none”, “absref” is helpful more often than not for run time and

memory usage with Cadence SMV and for memory usage with NuSMV. However, compared

to “coi”, there is hardly a benefit and often a penalty. If, on the other hand, the property is true,

“absref” often leads to significant speed-up and reduced memory consumption. In a number of

cases a property can be proven to be true in a few seconds using “absref” although it timed or

mem’ed out with “none”, “ic”, and “coi”. Still, “absref” does not make BDD-based verification

of a true property faster with “L2S” than with “Live”, even if no abstraction at all is applied in

the “Live” case.

7.2.5 A Tight Büchi Automaton in the Standard Approach

The last set of experiments examines whether it is beneficial to use a tight Büchi automaton in

the standard approach to LTL model checking.

The results are shown in Fig. 7.8. The order of diagrams is the same as for “L2S” versus

106 CHAPTER 7. EXPERIMENTS

 1000 1000

 100

 10

 1

 0.316
 0 28

ru
n

tim
e

[r
at

io
]

sample

L2S, not tight, ic(none), NuSMV
L2S, maxunroll1, ic(none), NuSMV
L2S, maxunroll2, ic(none), NuSMV
L2S, tight, ic(none), NuSMV

 1000 1000

 100

 10

 1

 0.316
 0 28

ru
n

tim
e

[r
at

io
]

sample

L2S, not tight, ic(none), Cad. SMV
L2S, maxunroll1, ic(none), Cad. SMV
L2S, maxunroll2, ic(none), Cad. SMV
L2S, tight, ic(none), Cad. SMV

CPU time

 1000 1000

 100

 10

 1

 0.316
 0 28

m
em

or
y

us
ag

e
[r

at
io

]

sample

L2S, not tight, ic(none), NuSMV
L2S, maxunroll1, ic(none), NuSMV
L2S, maxunroll2, ic(none), NuSMV
L2S, tight, ic(none), NuSMV

 1000 1000

 100

 10

 1

 0.316
 0 28

m
em

or
y

us
ag

e
[r

at
io

]

sample

L2S, not tight, ic(none), Cad. SMV
L2S, maxunroll1, ic(none), Cad. SMV
L2S, maxunroll2, ic(none), Cad. SMV
L2S, tight, ic(none), Cad. SMV

Memory usage

 0

 75

 150

le
ng

th
 [

st
at

es
]

sample

L2S, tight, ic(none)
L2S, not tight, ic(none)

Length of counterexample

Figure 7.5: Comparing degrees of tightness

7.2. REAL-WORLD EXAMPLES 107

 100 100

 10

 1

 0.1

 0.01

 0.001

 0.0001
 0 44

ru
n

tim
e

[r
at

io
]

sample

L2S, none, false, NuSMV
L2S, ic, false, NuSMV
L2S, coi, false, NuSMV
L2S, absref, false, NuSMV

 100 100

 10

 1

 0.1

 0.01

 0.001

 0.0001
 0 22

ru
n

tim
e

[r
at

io
]

sample

L2S, none, true, NuSMV
L2S, ic, true, NuSMV
L2S, coi, true, NuSMV
L2S, absref, true, NuSMV

 100 100

 10

 1

 0.1

 0.01

 0.001

 0.0001
 0 44

ru
n

tim
e

[r
at

io
]

sample

L2S, none, false, Cad. SMV
L2S, ic, false, Cad. SMV
L2S, coi, false, Cad. SMV
L2S, absref, false, Cad. SMV

 100 100

 10

 1

 0.1

 0.01

 0.001

 0.0001
 0 21

ru
n

tim
e

[r
at

io
]

sample

L2S, none, true, Cad. SMV
L2S, ic, true, Cad. SMV
L2S, coi, true, Cad. SMV
L2S, absref, true, Cad. SMV

Figure 7.6: Comparing degrees of variable optimization: CPU time

 100 100

 10

 1

 0.1

 0.01

 0.001

 0.0001
 0 44

m
em

or
y

us
ag

e
[r

at
io

]

sample

L2S, none, false, NuSMV
L2S, ic, false, NuSMV
L2S, coi, false, NuSMV
L2S, absref, false, NuSMV

 100 100

 10

 1

 0.1

 0.01

 0.001

 0.0001
 0 22

m
em

or
y

us
ag

e
[r

at
io

]

sample

L2S, none, true, NuSMV
L2S, ic, true, NuSMV
L2S, coi, true, NuSMV
L2S, absref, true, NuSMV

 100 100

 10

 1

 0.1

 0.01

 0.001

 0.0001
 0 44

m
em

or
y

us
ag

e
[r

at
io

]

sample

L2S, none, false, Cad. SMV
L2S, ic, false, Cad. SMV
L2S, coi, false, Cad. SMV
L2S, absref, false, Cad. SMV

 100 100

 10

 1

 0.1

 0.01

 0.001

 0.0001
 0 21

m
em

or
y

us
ag

e
[r

at
io

]

sample

L2S, none, true, Cad. SMV
L2S, ic, true, Cad. SMV
L2S, coi, true, Cad. SMV
L2S, absref, true, Cad. SMV

Figure 7.7: Comparing degrees of variable optimization: memory usage

108 CHAPTER 7. EXPERIMENTS

“Live”: NuSMV in the left column, Cadence SMV in the right column, CPU time (in seconds)

in the top row, memory usage (in BDD nodes) in the middle row, and length of the resulting

counterexamples (in states) if the property is false.

The results show that more often than not longer counterexamples are reported by both,

NuSMV and Cadence SMV. Making matters worse, significantly more CPU time is spent and

memory is needed with a tight automaton for almost all examples.

7.3 Summary

Although the state-recording translation doubles the number of state variables in the worst case,

on many practical examples the overhead of the translation turns out to be quite reasonable.

Falsification of a property often takes less time and memory when the state-recording trans-

lation is used. A simple liveness property of a forward-jumping counter can even be verified

exponentially faster with the state-recording translation than with a traditional symbolic model

checking algorithm for liveness [BCM+92].

Experimental results confirm that the performance of the state-recording translation in

BDD-based symbolic model checking depends to a large part on the set of variables included

in loop detection. Reducing that set benefits both run time and memory usage. Performing

abstraction refinement on the set of variables used for loop detection can improve performance

by more than 2 orders of magnitude for passing properties, while it incurs a penalty for failing

properties. Similar observations on the effect of abstraction refinement have been made by, e.g.,

[BGG02, LS06].

The standard algorithm for finding a fair cycle in symbolic model checking [CGMZ95] typ-

ically does not produce a shortest fair cycle. That can be found by applying the state-recording

translation and performing a breadth-first reachability check. Our experimental results show a

substantial reduction in the length of counterexamples to linear time properties when the lat-

ter approach is employed. The additional step from the (non-tight) automaton [KPR98] to the

tight Büchi automaton from Sect. 5.3 only leads to a marginal further improvement; using a

tight automaton comes at a cost in terms of run time and memory consumption. For that reason

Cimatti et al. did not implement virtual unrolling in their approach [CRS04] to bounded model

checking [Cim05]. While the benefit of a tight automaton may not show up on all examples,

we believe that the user should have the option to decide whether shortest counterexamples are

desirable. Limiting the amount of virtual unrolling between no and full unrolling allows a user

to trade an increase in resource usage for a decrease in counterexample length. Using the tight

automaton with a standard model checking algorithm [BCM+92] in many cases results in longer

counterexamples and increased resource usage. The combination of breadth-first reachability

checking of the state-recording translation and an optimized implementation of the tight Büchi

automaton gives a BDD-based method to find shortest counterexamples that is competitive with

a SAT-based bounded model checker [HJL05] for that purpose.

7.3. SUMMARY 109

er
mo
to

 3600

 1000

 100

 10

 1

 0.1

ermoto 3600 1000 100 10 1 0.1

Li
ve

, n
ot

 ti
gh

t,
N

uS
M

V
 [

se
co

nd
s]

Live, tight, NuSMV [seconds]

false
true

er
mo
to

 3600

 1000

 100

 10

 1

 0.1

ermoto 3600 1000 100 10 1 0.1

Li
ve

, n
ot

 ti
gh

t,
C

ad
. S

M
V

 [
se

co
nd

s]

Live, tight, Cad. SMV [seconds]

false
true

CPU time

er
mo
to

7.5e8

1e7

1e6

1e5

1e4

1e3
ermoto7.5e81e71e61e51e41e3

Li
ve

, n
ot

 ti
gh

t,
N

uS
M

V
 [

B
D

D
 n

od
es

]

Live, tight, NuSMV [BDD nodes]

false
true

er
mo
to

7.5e8

1e7

1e6

1e5

1e4

1e3
ermoto7.5e81e71e61e51e41e3

Li
ve

, n
ot

 ti
gh

t,
C

ad
. S

M
V

 [
B

D
D

 n
od

es
]

Live, tight, Cad. SMV [BDD nodes]

false
true

Memory usage

 0

 100

 200

 300

 400

le
ng

th
 [

st
at

es
]

sample

Live, tight, NuSMV
Live, not tight, NuSMV

 0

 100

 200

 300

 400

le
ng

th
 [

st
at

es
]

sample

Live, tight, Cad. SMV
Live, not tight, Cad. SMV

Length of counterexamples

Figure 7.8: Tight versus not tight automaton with “Live”

8
Conclusion

Paradoxically, Fdead is a liveness property.

It even appears to be true for animals and humans...

Markus Müller-Olm, Liveness Manifesto [PSZ]

8.1 Contributions

The distinction between liveness and safety properties is still fundamental in verification. Prov-

ing safety and liveness properties are different problems with different decidability results, al-

gorithms, tools, and papers. Safety properties are considered more important in practice than

liveness properties. In addition, performance issues can prevent liveness properties from being

verified on models of equal size or level of detail as the corresponding safety properties. Still,

proving termination remains an important task. In a workshop on verification “Beyond Safety”,

Andreas Podelski remarked [Pod04]

The issue “liveness less useful than safety” becomes obsolete once we have shown

that the good methods for checking safety are, in fact, methods for checking live-

ness (we are working on it).

This dissertation is a step in that direction.

State-recording translation We presented a reduction from checking fair repeated reacha-

bility to checking reachability for finite state systems. The so-called state-recording translation

extends a finite state system such that it can nondeterministically save a copy of the current

state of the original state variables. It then waits until all fairness constraints have been met.

When this is the case, and a second occurrence of the saved state is seen, an initialized fair

lasso-shaped path, i.e., a counterexample to the property, has been found. The translation leads

to a quadratic blowup in the size of the state space and a small, constant increase in the radius

and diameter of the system. It is applicable to all ω-regular properties.

Optimizations Two optimizations proved vital to make the state-recording translation work

in practice. First, BDD variables representing original state variables must be interleaved with

their copies introduced by the state-recording translation. Second, variable optimization consid-

ers only a subset of the state variables for loop detection. Experimental results confirm that the

overhead of the translation depends to a large part on the variables included in loop detection.

111

112 CHAPTER 8. CONCLUSION

Extension to infinite state systems We extended the translation to some classes of infinite

state systems, namely, regular model checking [KMM+01, WB98, BJNT00], pushdown sys-

tems [BEM97, FWW97, EHRS00a], and timed automata [AD94]. In all cases the reduction

expresses an existing algorithm for liveness checking of this class of systems syntactically in

this class: it “pulls the algorithm into the model.”

Experimental evaluation: overhead of state-recording translation We conducted a num-

ber of experiments with finite state systems, which show that the transformed system can be

verified with acceptable overhead in practice. To our pleasant surprise, for some systems even a

considerable speed-up can be obtained. We gave an example where the speed-up is exponential.

Finding shortest counterexamples Counterexamples are a salient feature of model check-

ing. They help users to find errors and, more recently, are also used as part of model checking

algorithms or to locate errors automatically. If a counterexample is to be interpreted by a human

(and most still are), it should provide (only) information guiding the user to the error. Hence,

short counterexamples can be helpful. If breadth-first reachability checking is performed on

the transformed system, shortest fair cycles are obtained. In the automaton-based approach to

model checking this cycle is a cycle in the product of the model and a Büchi automaton ac-

cepting counterexamples to the specification. Hence, the Büchi automaton for the specification

must be such that it does not prevent a shortest counterexample in the model to be found.

Extending tightness to Büchi automata A finite automaton on finite words is tight if it ac-

cepts shortest prefixes to safety properties [KV01]. We extended that notion to Büchi automata

and provided necessary and sufficient criteria for tightness. We proved that frequently used

translations from LTL with (Kesten et al. [KPR98]) or without (Gerth et al. [GPVW96]) past to

Büchi automata do not yield tight Büchi automata. We showed that resulting counterexamples

may have excess length linear in the length of the specification. We adapted a construction

[LBHJ05, BC03] from bounded model checking to Büchi automata in order to get a translation

from full LTL or from an arbitrary Büchi automaton into a tight Büchi automaton.

Experimental evaluation: finding shortest counterexamples We combined the tight Büchi

automaton with the state-recording translation and obtained a practical algorithm to find shortest

counterexamples to linear time properties with a BDD-based symbolic model checker. Our ex-

perimental results indicate competitive performance with SAT-based bounded model checking

[HJL05]. They also show a clear benefit of using a model checking algorithm that finds short-

est cycles: counterexamples produced by using breadth-first search in the transformed model

are on average one third shorter than counterexamples produced by the traditional algorithm

[CGMZ95] in the original model. The benefit of using a tight automaton for full LTL proved

negligible.

8.2 Future Work

Extending application areas The state-recording translation has already been picked up by

a number of researchers. McMillan uses it to verify liveness properties with his interpolation-

8.2. FUTURE WORK 113

based approach [McM03]. Claessen also reports good performance of that combination [Cla06].

Edelkamp and Jabbar apply the translation in the context of directed, external, and distributed

explicit-state model checking [EJ06]. Preliminary experiments [BHJ+06] indicate problem-

atic performance with induction-based bounded model checking [ES03], which may be due

to a high degree of non-determinism w.r.t. the encoding of the property in our current imple-

mentation [Hel06]. Other potential application areas include runtime monitoring and testing.

In runtime monitoring it might be useful to store more than one potential loop start. Short-

est counterexamples could also benefit abstraction refinement schemes that need to reconstruct

counterexamples as the reconstruction itself might explode [BGG02]. Short counterexamples

might also be of interest in the domain of planning.

8.2.1 State-Recording Translation

Powerful yet efficient reductions Reductions from logics more powerful than PLTLB to

reachability have been suggested [SYE+05]. However, the methods of [SYE+05] incur a high

penalty in performance, which puts their practical application largely out of reach. One direc-

tion for future work is therefore to try increasing the power of the state-recording translation

while retaining its (relative) efficiency. For that, a theoretical framework to characterize and

classify reductions from one logic to another, where the reductions are allowed to modify both

model and formula, could prove to be a helpful tool. The notion of “model checking power” in-

troduced by Shilov et al. [SYE+05] is a potential starting point. Another point for consideration

is the fact that we pulled an existing algorithm for verifying liveness properties into the model

in all our examples.

Optimization We have mostly focused on variable optimization as it directly targets the

source of the overhead of the state-recording translation. A number of other optimizations

come to mind. The state-recording translation can be combined with the counter-based ap-

proach by limiting the search depth of the breadth-first search using any bound that guarantees

that a potential shortest counterexample is preserved. Empirical evidence suggests that many

practical systems have a relatively small radius, which can be computed using a structural algo-

rithm [BKA02]. However, a practical method to derive small bounds on the length of a shortest

counterexample for ω-regular properties is not yet available. Our current implementation may

guess a loop start at any state. Heuristics, which limit the set of potential loop starts, could also

help to reduce the overhead of the translation. In an explicit state setting it might be useful to

guess a loop start only if a state is initial or has at least two incoming transitions.∗ Another

restriction (applied, e.g., in distributed explicit state model checking [BBČ02]) might also be

useful in a symbolic setting: no loop start should be guessed when the system has not yet en-

tered a fair strongly connected component. Computing the latter for the product of the model,

M , and the Büchi automaton representing the property, B, is clearly equivalent to solving the

original model checking problem; for smaller properties, e.g., when searching for a witness of

FGp, the computation should be feasible for B. This could give some of benefits of the nested

depth-first search algorithm in explicit state model checking [CVWY92], which only starts the

nested search in an accepting state, while retaining shortest counterexamples.

∗This suggestion was made by a participant at CAV/ISSTA 2004 in Boston whose name I unfortunately forgot.

114 CHAPTER 8. CONCLUSION

Criteria when state-recording improves performance We currently don’t have criteria,

which allow to determine a priori whether a model can be model checked faster with or without

state-recording translation applied. Given that performance between both methods may vary by

more than an order of magnitude such criteria are desirable.

Experimental comparison with bounded liveness checking Finally, it would be interesting

to perform an experimental comparison of the performance of bounded liveness checking with

optimal bounds and the state-recording translation.

8.2.2 Infinite State Systems

Criteria for infinite state systems For infinite state systems more general criteria for the

applicability of the state-recording translation should be sought. Considering examples where

liveness is undecidable and seeing why the state-recording translation cannot be used could help

to understand the limits of the transformation.

Termination in regular model checking Regular model checking is undecidable in general

[AK86]. Clearly, we cannot expect that computing the transitive closure of the transition rela-

tion terminates on the transformed model when it doesn’t on the original model. However, it is

an open question whether that computation terminates on the transformed model in all cases in

which it does on the original model.

Reducing overhead for timed automata Clock zones [Alu99] have been very helpful to

increase performance of model checking timed automata. They might, therefore, also help to

limit the overhead of the state-recording translation for timed automata.

Experimental evaluation Finally, only limited experimental evaluation of the state-recording

translation has been performed for infinite state systems so far [BHV04].

8.2.3 Tight Büchi Automata

Experimental evaluation of excess length of [GPVW96] Due to their size, both the tight

automaton for PLTLF [KPR98] and our tight automaton for PLTLB are not well-suited for

explicit-state model checking. Our results indicate that the step from [KPR98] to an automaton

that is tight for full LTL has limited benefits. We are not aware of a corresponding empiri-

cal study that determines the excess length of counterexamples produced by automata such as

[GO01], which are preferred in an explicit setting, compared to those produced by [KPR98] or

by the tight automaton from Sect. 5.3. Such a study could help to decide whether it is worth-

while to come up with tight(er) automata for explicit state model checking.

Small tight automata If it turns out that small tight automata are desirable, we should try to

understand precisely which features of the construction of [GPVW96] prevent it from accepting

shortest counterexamples. An initial observation is that [GPVW96] follows a lazy approach in

evaluating the truth of subformulae: it only tracks the truth of those subformulae, which it

8.2. FUTURE WORK 115

deems necessary to establish truth of the specification. In contrast, [KPR98] tracks the truth of

all subformulae simultaneously. Finding middle ground here could be a first step to a tight(er)

automaton than [GPVW96]. Another open question is how the various optimizations, which

have been suggested for [GPVW96], influence tightness of an automaton.

Tightness for true properties Tightness of a Büchi automaton representing the property to

be verified ensures that the encoding of the property does not hurt the length of potential coun-

terexamples. The complementary property seems also desirable: if the property turns out to

be true, the encoding of a property as a Büchi automaton should not lead to larger termination

depths than required by the model to be verified. Empirical evidence shows that [KPR98] leads

to higher termination depths than [SB00] in bounded model checking [AS06]. We also have

preliminary theoretical results that virtual unrolling doesn’t lead to smaller termination depths

in the bounded model checking approach of Heljanko et al. [HJL05].

Missing theory Given the emergence of specification languages such as PSL [Acc], efficient

translations from extended linear temporal logics [Wol83, SVW87, VW94] to tight Büchi au-

tomata would be interesting. We also lack a lower bound on the size of a tight automaton for

PLTLB. Further, it is unclear how our results transfer to other classes of automata, be it Muller,

Rabin, or Streett automata on infinite words or automata on infinite trees. Among the basic facts

that we have established for tight automata is preservation of tightness under language union

and intersection using Büchi automata. We have not looked yet at complementation. Finally,

Chap. 5 gives two procedures to make an arbitrary Büchi automaton tight. Nothing is known

about their relative merits.

Tightness + ? Another area for future research is the combination of tightness with other

approaches that aim to make counterexamples easier to understand [JRS02, RS04, GK05]. The

ideas of obtaining “nice” values from a SAT solver [GK05] and of fate and free will in error

traces [JRS02] seem orthogonal to obtaining shortest counterexamples. However, if complex

state changes in the model are split into atomic steps that change only one or few state variables,

the shortest counterexample has a high likelihood to also exhibit the fewest changes of state

variables. Clearly, there might be a negative impact on the number of reachable states in the

model.

Optimization We have not yet extensively optimized the encoding of a tight automaton for

the state-recording translation. Recent work in bounded model checking [LBHJ05, HJL05]

should be used to identify opportunities.

A
Proofs and Auxiliary Lemmas

Lemma 1 Let 〈β, γ〉 be a minimal lasso for α, 〈β ′, γ′〉 a minimal lasso for α′, and α′′ = α×α′.

Then there are finite sequences β ′′, γ′′ such that 〈β ′′, γ′′〉 is a minimal lasso for α′′, |β ′′| =
max(|β|, |β ′|), and |γ ′′| = lcm(|γ|, |γ′|).

Proof: Let ls = max(|β|, |β ′|), ll = lcm(|γ|, |γ′|). Define β ′′ = α′′(0) . . . α′′(ls − 1), γ′′ =
α′′(ls) . . . α

′′(ls + ll − 1). Clearly, α′′ = β ′′γ′′
ω

. Now assume, there exist β̂ ′′, γ̂′′, such that

α′′ = 〈β̂ ′′, γ̂′′〉 and |〈β̂ ′′, γ̂′′〉| < |〈β ′′, γ′′〉|.

Assume first that |β̂ ′′| < |β ′′|. W.l.o.g. |β ′| ≤ |β|. By projecting β̂ ′′, γ̂′′ onto their first

components we can extract β̂, γ̂ with α = β̂γ̂ω and |β̂| < |β|. Further, there exists 0 ≤ i < |γ|
such that γrot = γ(i) . . . γ(|γ| − 1)γ(0) . . . γ(i − 1) with |γrot| = |γ| and γrot

ω = γ̂ω. Hence,

〈β̂, γrot〉 = 〈β, γ〉 with |〈β̂, γrot〉| < |〈β, γ〉|, a contradiction.

Now assume |γ̂′′| < |γ′′|. W.l.o.g. |γ| does not divide |γ̂′′|. By projecting γ̂′′ onto its first

component we can extract γ̂ with γω = γ̂ω and |γ| does not divide |γ̂|.

Case 1, |γ̂| < |γ|: α = 〈β, γ̂〉 with |〈β, γ̂〉| < |〈β, γ〉|, contradiction.

Case 2, |γ| < |γ̂| < 2|γ|: Let δ = γ(0) . . . γ(|γ̂| − |γ| − 1). Hence, by Lemma 39, α = 〈β, δ〉
with |〈β, δ〉| < |〈β, γ〉|, contradiction.

Case 3, 2|γ| < |γ̂|: Can be reduced to 2. ✷

Lemma 39 Let α, β, γ be sequences such that β 6= ǫ, |α| ≥ |β|, αβ = γ, and αω = γω. Then

also βω = γω.

Proof: We prove inductively that αiβi = γi. The claim follows, as i = |γ| implies β i = β |γ| =
γ|β|. Base case, i = 1: by definition of α, β, γ. Inductive case: assume αiβi = γi. Therefore,

αi is a prefix, and βi a suffix of γi+1. The remaining “gap” has length γ. From αω = γω, we

have that αi+1 and (αi+2)(0) . . . (αi+2)(min(|αi+2|, |γi+1|) − 1) are prefixes of γi+1. Further,

with αβ = γ, β is a prefix of α. Hence, we can fill the “gap” with αβ. ✷

Lemma 2 Let α = βγω = β ′γ′
ω

with 〈β, γ〉 minimal for α. Then |β ′| ≥ |β| and |γ| divides

|γ′|.

Proof: First, assume |β ′| < |β|.

βγω = β ′γ′
ω ⇒ ∃0 ≤ i < |γ| . γrot = γ[i, |γ| − 1] ◦ γ[0, i− 1] ∧ γrot

ω = γ′
ω

⇒ α = β ′γrot
ω with |〈β ′, γrot〉| < |〈β, γ〉|

⇒ contradiction, 〈β, γ〉 is minimal for α

117

118 APPENDIX A. PROOFS AND AUXILIARY LEMMAS

Now, assume |γ| does not divide |γ ′|. From βγω = β ′γ′
ω

we have

∃0 ≤ i < |γ′| . γ′rot = γ′[i, |γ′| − 1] ◦ γ′[0, i− 1] ∧ γ′rot
ω

= γω

Assume further that |γ| < |γ ′rot |. Hence, there exist j > 0 and γ ′′ with 0 < |γ′′| < |γ|
such that γjγ′′ = γ′rot . By Lemma 39, γ′′

ω = γ′rot
ω = γω, and, therefore, α = βγ ′′

ω
with

|〈β, γ′′〉| < |〈β, γ〉|, a contradiction. The case |γ| > |γ ′
rot | is similar. ✷

B
Raw Data

NuSMV Cadence SMV

L2S Live L2S Live

model property time mem len time mem len time mem len time mem len

1394-3-2 0 1.1 840 − 0.1 82 − 0.3 84 − er er er

¬ 0 6.8 1223 11 69.5 119 16 7.0 917 11 er er er

1 10.6 1536 − 5.2 496 − 9.6 1032 − er er er

¬ 1 6.7 1454 11 16.1 157 12 5.7 801 11 er er er

1394-4-2 0 123.3 24872 − 1.6 1173 − 0.6 174 − er er er

¬ 0 396.7 32988 16 to to to 212.0 17568 16 er er er

1 680.1 44539 − 548.4 7037 − 306.5 20905 − er er er

¬ 1 405.6 38455 16 785.0 2356 20 182.6 15159 16 er er er
abp4 0 97.1 3471 − 1.0 256 − 107.6 10076 − 1.6 160 −

L 14.3 841 19 1.0 234 37 21.1 2507 19 0.9 147 34

¬ L 0.2 149 − 0.1 10 − 0.2 69 − 0.1 16 −
bc57-sensors ¬ 0 205.7 3694 103 139.7 213 112 127.9 8567 103 154.4 1367 109

0 to to to 49.8 180 − mo mo mo 91.2 1421 −
brp ¬ L 0.4 149 1 4.6 46 6 0.6 74 1 4.0 289 2

¬ L, nv 98.8 1575 24 14.2 122 68 185.9 18421 24 7.0 484 39
L to to to 0.9 494 − mo mo mo 3.4 214 −

dme5 L 352.8 1432 103 1362.1 356 343 312.6 6834 103 71.7 2020 295

¬ L 0.9 143 1 10.6 112 1 0.5 117 1 12.8 832 1

¬ L, nv 315.3 1245 99 1434.8 330 344 313.9 7324 99 50.2 1339 151

dme6 L 956.1 2969 123 to to to 1096.7 15143 123 201.9 3650 335

¬ L 1.4 330 1 27.4 183 1 0.5 103 1 33.8 1465 1

¬ L, nv 842.6 2564 119 to to to 939.5 14534 119 155.4 2403 171

pci L mo mo mo 140.5 235 23 mo mo mo 76.2 1014 25
¬ L 0.4 224 1 to to to 0.3 126 1 1811.6 2534 1

F L mo mo mo 143.8 139 22 mo mo mo 44.8 974 27

prod-cons 0 6.2 218 21 329.9 70 36 4.4 660 21 526.8 1667 53

¬ 0 16.3 488 26 3.0 311 69 11.5 1406 26 2.6 202 48

1 1004.1 11862 − 0.2 97 − 744.2 44461 − 0.2 39 −
¬ 1, nv 1.3 281 21 1.9 250 33 1.5 280 21 0.9 124 65

2 3.4 220 24 68.0 216 58 4.5 560 24 142.6 567 57

3 2.8 215 24 7.9 241 42 3.8 614 24 47.7 698 64
4 1168.2 16054 − 1.2 404 − 958.6 62493 − 6.2 141 −

production-cell 0 8.0 313 − 1.3 222 − 5.5 512 − 3.3 90 −
¬ 0 4.9 163 83 0.7 300 85 3.4 390 83 0.8 87 84

1 13.8 381 − 4.1 184 − 7.8 823 − 9.3 94 −
¬ 1 10.7 314 126 1.4 241 146 6.4 655 126 1.1 87 145

2 13.9 373 − 3.1 179 − 8.0 827 − 7.0 100 −
¬ 2 10.4 311 125 1.2 233 126 6.0 665 125 1.0 94 126

srg5 L 0.1 47 − 0.1 9 − 0.1 25 − 0.1 6 −
¬ L 0.1 30 1 0.4 120 16 0.1 24 1 0.6 20 1

¬ L, nv 0.2 145 6 0.2 31 15 0.4 120 6 0.2 11 15

Table B.1: “L2S, not tight, ic (none)” versus “Live, not tight” — CPU time [seconds], memory

usage [1000 BDD nodes], counterexample length [states]

119

120 APPENDIX B. RAW DATA

L2S BMC

zChaff MiniSat

model property time mem time mem time mem

1394-3-2 ¬ 0 7.6 36.7 9.9 30.1 9.4 23.9

¬ 1 6.7 38.3 8.7 35.3 8.7 25.9

1394-4-2 ¬ 0 412.1 748.8 496.0 191.5 361.5 99.6

¬ 1 406.6 793.8 496.1 186.9 441.9 108.2

abp4 L 7.3 23.7 31.0 30.6 6.2 21.6

bc57-sensors ¬ 0 210.9 159.7 1307.0 353.2 1852.3 256.5
brp ¬ L 0.3 13.6 0.1 1.0 0.1 1.0

¬ L, nv 102.0 113.0 714.1 172.5 to to

dme5 L 349.1 71.1 to to to to

¬ L 1.0 17.4 0.1 1.0 0.1 1.0

¬ L, nv 360.8 63.3 to to to to

dme6 L 984.4 133.6 to to to to

¬ L 1.6 18.4 0.1 12.9 0.1 12.4

¬ L, nv 868.2 115.6 to to to to
pci L mo mo 1453.4 197.8 1642.7 362.7

¬ L 0.8 17.5 0.3 14.7 0.2 13.4

F L mo mo 562.9 123.7 1061.5 257.6

prod-cons 0 103.2 103.4 19.0 33.0 22.2 27.6

¬ 0 250.4 175.9 53.0 46.5 534.9 158.2

¬ 1, nv 61.1 69.7 20.2 33.8 33.7 31.4

2 61.6 73.9 2.1 24.9 27.7 28.7

3 62.8 77.4 15.7 31.7 28.7 31.4
production-cell ¬ 0 15.4 25.2 to to 1325.6 159.6

¬ 1 to to 79.5 148.7 281.9 108.2

¬ 2 328.2 101.1 321.1 172.1 96.8 84.2

srg5 ¬ L 0.1 11.3 0.1 1.0 0.1 1.0

¬ L, nv 1.2 20.1 0.1 1.0 0.1 13.0

Table B.2: “L2S, tight, ic(none), NuSMV” (no model specific order) versus “BMC, tight,

NuSMV” — CPU time [seconds], memory usage [megabytes]

121

tight maxunroll= 2 maxunroll= 1 not tight

model property time mem len time mem len time mem len time mem len

1394-3-2 0 1.1 840 − na na na na na na 1.1 840 −
¬ 0 7.6 1185 11 na na na na na na 6.8 1223 11

1394-4-2 0 125.5 24875 − na na na na na na 123.3 24872 −
¬ 0 409.6 34577 16 na na na na na na 396.7 32988 16

abp4 L 7.3 480 16 na na na 7.3 478 16 14.3 841 19

¬ L 0.1 120 − na na na 0.1 113 − 0.2 149 −
bc57-sensors ¬ 0 195.9 3876 103 na na na 185.5 4172 103 205.7 3694 103

0 to to to na na na to to to to to to

brp ¬ L 0.3 193 1 na na na 0.3 171 1 0.4 149 1

¬ L, nv 102.2 1477 24 na na na 103.4 1466 24 98.8 1575 24

L to to to na na na to to to to to to

dme5 L 348.7 1513 103 na na na 392.1 1618 103 352.8 1432 103

¬ L 1.2 189 1 na na na 1.0 174 1 0.9 143 1
¬ L, nv 360.4 1496 99 na na na 348.0 1482 99 315.3 1245 99

dme6 L 983.8 3002 123 na na na 957.9 2237 123 956.1 2969 123

¬ L 1.5 371 1 na na na 1.6 348 1 1.4 330 1

¬ L, nv 866.2 2622 119 na na na 864.9 2660 119 842.6 2564 119

pci L mo mo mo mo mo mo mo mo mo mo mo mo

¬ L 0.8 409 1 0.7 338 1 0.5 271 1 0.4 224 1

F L mo mo mo mo mo mo mo mo mo mo mo mo

prod-cons 0 7.1 247 21 na na na na na na 6.2 218 21
¬ 0 18.3 701 26 na na na na na na 16.3 488 26

1 1605.8 15302 − 1615.6 15732 − 1377.7 15332 − 1004.1 11862 −
¬ 1, nv 2.0 138 21 1.6 561 21 1.5 424 21 1.3 281 21

production-cell 0 23.4 430 − 15.3 325 − 14.4 327 − 8.0 313 −
¬ 0 10.0 215 81 6.1 235 81 5.7 189 81 4.9 163 83

¬ 1 to to to 9.8 284 81 7.3 263 81 10.7 314 126

1 to to to 33.5 612 − 24.9 529 − 13.8 381 −
2 859.9 3405 − 25.7 525 − 21.6 470 − 13.9 373 −
¬ 2 285.2 1730 81 8.2 256 81 6.7 260 81 10.4 311 125

srg5 L 0.2 139 − 0.3 126 − 0.2 89 − 0.1 47 −
¬ L 0.1 72 1 0.1 55 1 0.1 41 1 0.1 30 1

¬ L, nv 1.2 191 6 0.8 464 6 0.4 267 6 0.2 145 6

Table B.3: “Tight” versus “maxunroll2” versus “maxunroll1” versus “not tight” (“L2S,

ic(none), NuSMV”) — CPU time [seconds], memory usage [1000 BDD nodes],

counterexample length [states]

122 APPENDIX B. RAW DATA

tight maxunroll= 2 maxunroll= 1 not tight

model property time mem len time mem len time mem len time mem len

1394-3-2 0 0.3 84 − na na na na na na 0.3 84 −
¬ 0 7.1 938 11 na na na na na na 7.0 917 11

1394-4-2 0 0.7 177 − na na na na na na 0.6 174 −
¬ 0 223.6 19628 16 na na na na na na 212.0 17568 16

abp4 L 11.2 1260 16 na na na 11.1 1254 16 21.1 2507 19

¬ L 0.2 76 − na na na 0.2 73 − 0.2 69 −
bc57-sensors 0 mo mo mo na na na mo mo mo mo mo mo

¬ 0 162.1 9733 103 na na na 149.3 11125 103 127.9 8567 103

brp L mo mo mo na na na mo mo mo mo mo mo

¬ L 0.3 86 1 na na na 0.3 99 1 0.6 74 1

¬ L, nv 264.7 23140 24 na na na 233.2 20259 24 185.9 18421 24

dme5 L 306.8 7346 103 na na na 306.7 7344 103 312.6 6834 103

¬ L 0.6 131 1 na na na 0.5 124 1 0.5 117 1
¬ L, nv 293.0 5962 99 na na na 292.4 5958 99 313.9 7324 99

dme6 L 1115.2 14748 123 na na na 1115.4 14745 123 1096.7 15143 123

¬ L 0.5 107 1 na na na 0.5 122 1 0.5 103 1

¬ L, nv 993.3 13870 119 na na na 992.4 14051 119 939.5 14534 119

pci L mo mo mo mo mo mo mo mo mo mo mo mo

¬ L 0.5 119 1 0.7 116 1 0.4 123 1 0.3 126 1

F L mo mo mo mo mo mo mo mo mo mo mo mo

prod-cons 0 10.9 1097 21 na na na na na na 4.4 660 21
¬ 0 28.2 3118 26 na na na na na na 11.5 1406 26

1 994.2 58351 − 992.8 58341 − 1013.5 58795 − 744.2 44461 −
¬ 1, nv 2.1 409 21 1.8 370 21 1.7 371 21 1.5 280 21

production-cell 0 22.2 1022 − 11.3 801 − 11.3 748 − 5.5 512 −
¬ 0 11.9 644 81 5.8 500 81 5.9 499 81 3.4 390 83

1 mo mo mo 21.2 1551 − 14.6 1272 − 7.8 823 −
¬ 1 mo mo mo 7.5 811 81 4.8 598 81 6.4 655 126

¬ 2 1619.0 7056 81 6.5 579 81 4.7 499 81 6.0 665 125
2 to to to 17.1 1164 − 13.4 1054 − 8.0 827 −

srg5 L 0.3 89 − 0.2 47 − 0.2 52 − 0.1 25 −
¬ L 0.2 54 1 0.2 47 1 0.2 40 1 0.1 24 1

¬ L, nv 2.5 412 6 1.0 251 6 0.7 242 6 0.4 120 6

Table B.4: “Tight” versus “maxunroll2” versus “maxunroll1” versus “not tight” (“L2S,

ic(none), Cadence SMV”) — CPU time [seconds], memory usage [1000 BDD

nodes], counterexample length [states]

123

absref coi ic none

model property tight time mem time mem time mem time mem

1394-3-2 0 not tight 0.2 164 1.0 773 1.1 840 1.5 1048
0 tight 0.2 166 1.1 773 1.1 840 1.5 1046
¬ 0 not tight 15.2 1131 6.6 1131 6.8 1223 8.6 1557
¬ 0 tight 14.9 1103 6.7 1103 7.6 1185 8.9 1514
1 not tight 11.5 1493 10.3 1493 10.6 1536 12.4 1927

¬ 1 not tight 4.6 718 6.5 1382 6.7 1454 8.1 1773
1394-4-2 0 not tight 5.0 3271 116.5 23128 123.3 24872 151.7 29944

0 tight 5.0 3270 116.3 23129 125.5 24875 150.2 29943
¬ 0 not tight 839.4 31266 380.6 30499 396.7 32988 506.1 41353
¬ 0 tight 847.1 32093 365.5 31024 409.6 34577 526.7 41506
1 not tight 734.8 42553 662.1 42553 680.1 44539 937.9 53221
¬ 1 not tight 598.7 37220 386.3 37220 405.6 38455 499.7 50555

abp4 0 not tight 5.9 478 4.9 271 97.1 3471 307.8 7803

L not tight 4.5 537 3.0 186 14.3 841 46.4 1820
L tight 3.0 548 1.9 150 7.3 480 21.1 1137
¬ L not tight 0.1 39 0.1 66 0.2 149 0.4 286
¬ L tight 0.1 44 0.1 64 0.1 120 0.2 172

bc57-sensors 0 not tight 251.2 1254 to to na na to to
0 tight 338.8 1438 to to na na to to
¬ 0 not tight 154.9 2854 186.2 3595 na na 205.7 3694
¬ 0 tight 158.1 3109 181.8 4098 na na 195.9 3876

brp L not tight 2.9 287 to to to to to to

L tight 7.7 254 to to to to to to
¬ L not tight 0.1 67 0.2 119 0.4 149 0.3 162
¬ L tight 0.3 95 0.3 157 0.3 193 0.5 206
¬ L, nv not tight 77.2 672 23.5 672 98.8 1575 210.4 3104
¬ L, nv tight 97.2 700 34.7 700 102.2 1477 294.4 4313

dme5 L not tight 666.6 1012 na na 352.8 1432 1510.5 4997
L tight 698.7 797 na na 348.7 1513 1586.0 5025
¬ L not tight 6.0 418 na na 0.9 143 1.1 176
¬ L tight 8.2 400 na na 1.2 189 1.1 210

¬ L, nv not tight 625.2 723 na na 315.3 1245 1392.5 4054
¬ L, nv tight 648.7 871 na na 360.4 1496 1466.8 3859

dme6 L not tight 1260.1 1053 na na 956.1 2969 to to
L tight 1398.2 1256 na na 983.8 3002 to to
¬ L not tight 8.4 337 na na 1.4 330 1.4 337
¬ L tight 8.2 340 na na 1.5 371 1.6 380
¬ L, nv not tight 1165.0 1177 na na 842.6 2564 to to
¬ L, nv tight 1313.3 1301 na na 866.2 2622 to to

pci L not tight mo mo na na mo mo mo mo
L tight mo mo na na mo mo mo mo
¬ L not tight 1.7 224 na na 0.4 224 0.5 236
¬ L tight 3.5 409 na na 0.8 409 0.9 420
F L not tight mo mo na na mo mo mo mo
F L tight mo mo na na mo mo mo mo

prod-cons 0 not tight 6.6 218 na na 6.2 218 7.4 341
0 tight 7.5 247 na na 7.1 247 11.4 379
¬ 0 not tight 11.6 430 na na 16.3 488 23.0 859

¬ 0 tight 17.9 583 na na 18.3 701 32.1 1093
1 not tight 0.3 215 477.4 6125 1004.1 11862 2278.6 23389
1 tight 0.8 398 682.5 8153 1605.8 15302 2315.6 23408
¬ 1, nv not tight 1.1 378 0.5 378 1.3 281 1.7 173
¬ 1, nv tight 2.0 558 0.8 558 2.0 138 1.9 146
2 not tight 4.2 558 na na 3.4 220 4.7 332
3 not tight 2.4 158 na na 2.8 215 3.5 311
4 not tight 3.9 196 482.0 8215 1168.2 16054 2286.1 29144

production-cell 0 not tight 7.3 249 na na na na 8.0 313

0 tight 21.9 350 na na na na 23.4 430
¬ 0 not tight 4.9 249 na na na na 4.9 163
¬ 0 tight 11.1 523 na na na na 10.0 215
1 not tight 12.8 321 na na na na 13.8 381
1 tight to to na na na na to to
¬ 1 not tight 11.8 264 na na na na 10.7 314
¬ 1 tight mo mo na na na na to to
2 not tight 12.1 360 na na na na 13.9 373

2 tight 763.1 3374 na na na na 859.9 3405
¬ 2 not tight 11.4 304 na na na na 10.4 311
¬ 2 tight to to na na na na 285.2 1730

srg5 L not tight 0.2 47 na na 0.1 47 0.1 50
L tight 0.3 139 na na 0.2 139 0.2 129
¬ L not tight 0.2 30 na na 0.1 30 0.1 31
¬ L tight 0.2 72 na na 0.1 72 0.1 75
¬ L, nv not tight 0.6 145 na na 0.2 145 0.2 160
¬ L, nv tight 7.1 673 na na 1.2 191 1.4 482

Table B.5: Degrees of variable optimization (“L2S, NuSMV”) — CPU time [seconds], memory

usage [1000 BDD nodes]

124 APPENDIX B. RAW DATA

absref coi ic none

model property tight time mem time mem time mem time mem

1394-3-2 0 not tight 0.3 79 0.3 89 0.3 84 0.4 81
0 tight 0.3 79 0.3 89 0.3 84 0.7 110
¬ 0 not tight 8.1 868 6.5 879 7.0 917 9.4 1201
¬ 0 tight 8.3 887 6.7 899 7.1 938 9.8 1090
1 not tight 9.3 949 8.2 949 9.6 1032 11.8 1345

¬ 1 not tight 4.8 538 5.4 805 5.7 801 7.2 952
1394-4-2 0 not tight 0.5 153 0.6 173 0.6 174 0.8 157

0 tight 0.5 143 0.8 132 0.7 177 0.7 167
¬ 0 not tight 205.2 18168 202.7 18374 212.0 17568 294.3 25739
¬ 0 tight 232.8 18473 216.6 18703 223.6 19628 305.8 25897
1 not tight 299.9 20012 296.7 20012 306.5 20905 445.4 28847
¬ 1 not tight 134.2 9285 178.1 14799 182.6 15159 269.4 22222

abp4 0 not tight 9.5 791 7.6 791 107.6 10076 313.3 27628

L not tight 7.2 600 4.7 600 21.1 2507 57.1 5477
L tight 4.8 337 2.9 337 11.2 1260 34.0 3337
¬ L not tight 0.1 31 0.1 42 0.2 69 0.5 178
¬ L tight 0.1 46 0.1 38 0.2 76 0.4 150

bc57-sensors 0 not tight 91.1 2779 mo mo na na mo mo
0 tight 122.3 3529 mo mo na na mo mo
¬ 0 not tight 94.4 5959 126.7 8486 na na 127.9 8567
¬ 0 tight 127.8 7950 151.5 11001 na na 162.1 9733

brp L not tight 21.7 991 mo mo mo mo mo mo

L tight 28.0 1225 mo mo mo mo mo mo
¬ L not tight 0.1 49 0.2 58 0.6 74 0.3 71
¬ L tight 0.2 50 0.3 82 0.3 86 0.3 90
¬ L, nv not tight 185.3 6534 59.9 6534 185.9 18421 452.9 39010
¬ L, nv tight 296.1 9611 94.1 9611 264.7 23140 592.6 51752

dme5 L not tight 127.1 837 na na 312.6 6834 1295.8 23036
L tight 135.8 1059 na na 306.8 7346 1312.5 22279
¬ L not tight 0.2 59 na na 0.5 117 0.8 132
¬ L tight 0.2 64 na na 0.6 131 0.5 136

¬ L, nv not tight 197.5 962 na na 313.9 7324 1053.7 23338
¬ L, nv tight 206.6 1062 na na 293.0 5962 958.9 23542

dme6 L not tight 345.3 1407 na na 1096.7 15143 to to
L tight 344.6 1681 na na 1115.2 14748 to to
¬ L not tight 0.2 96 na na 0.5 103 0.5 125
¬ L tight 0.3 113 na na 0.5 107 0.6 137
¬ L, nv not tight 512.0 1428 na na 939.5 14534 to to
¬ L, nv tight 519.0 1640 na na 993.3 13870 to to

pci L not tight mo mo na na mo mo mo mo
L tight mo mo na na mo mo mo mo
¬ L not tight 0.2 69 na na 0.3 126 0.4 96
¬ L tight 0.3 129 na na 0.5 119 0.6 147
F L not tight mo mo na na mo mo mo mo
F L tight mo mo na na mo mo mo mo

prod-cons 0 not tight 5.0 660 na na 4.4 660 7.2 1077
0 tight 11.6 1097 na na 10.9 1097 16.5 2226
¬ 0 not tight 22.2 1406 na na 11.5 1406 20.7 2899

¬ 0 tight 53.1 3118 na na 28.2 3118 45.2 4275
1 not tight 0.5 85 383.4 22425 744.2 44461 mo mo
1 tight 1.4 175 590.7 30647 994.2 58351 mo mo
¬ 1, nv not tight 1.7 139 0.7 139 1.5 280 2.4 409
¬ 1, nv tight 2.5 210 1.0 210 2.1 409 2.5 473
2 not tight 10.9 684 na na 4.5 560 7.2 924
3 not tight 7.4 614 na na 3.8 614 6.1 819
4 not tight 5.6 502 466.9 30424 958.6 62493 mo mo

production-cell 0 not tight 5.4 444 na na na na 5.5 512

0 tight 19.2 1196 na na na na 22.2 1022
¬ 0 not tight 4.2 401 na na na na 3.4 390
¬ 0 tight 12.3 753 na na na na 11.9 644
1 not tight 7.5 760 na na na na 7.8 823
1 tight mo mo na na na na mo mo
¬ 1 not tight 7.7 661 na na na na 6.4 655
¬ 1 tight mo mo na na na na mo mo
2 not tight 7.1 723 na na na na 8.0 827

2 tight to to na na na na to to
¬ 2 not tight 7.6 671 na na na na 6.0 665
¬ 2 tight to to na na na na 1619.0 7056

srg5 L not tight 0.2 25 na na 0.1 25 0.1 24
L tight 0.5 89 na na 0.3 89 0.4 68
¬ L not tight 0.2 24 na na 0.1 24 0.1 23
¬ L tight 0.4 54 na na 0.2 54 0.2 55
¬ L, nv not tight 1.3 120 na na 0.4 120 0.4 119
¬ L, nv tight 10.0 1787 na na 2.5 412 2.5 490

Table B.6: Degrees of variable optimization (“L2S, Cadence SMV”) — CPU time [seconds],

memory usage [1000 BDD nodes]

125

NuSMV Cadence SMV

tight not tight tight not tight
model property time mem len time mem len time mem len time mem len

1394-3-2 0 0.1 92 − 0.1 86 − er er er er er er
¬ 0 105.5 199 17 70.9 180 16 er er er er er er

1394-4-2 0 1.6 1176 − 1.6 1174 − er er er er er er

¬ 0 to to to to to to er er er er er er

abp4 L 2.0 45 43 0.9 216 37 2.4 261 36 0.9 147 34

¬ L 0.1 26 − 0.1 11 − 0.2 30 − 0.1 16 −
bc57-sensors 0 139.8 154 − 43.7 159 − 169.3 1874 − 91.2 1421 −

¬ 0 419.7 469 112 108.8 154 104 319.2 2030 106 154.4 1367 109

brp L 4.4 130 − 0.9 467 − 4.3 287 − 3.4 214 −
¬ L 19.2 269 10 4.6 204 6 5.1 274 4 4.0 289 2

¬ L, nv 51.7 94 70 13.5 347 56 9.3 504 50 7.0 484 39

dme5 L 1586.9 390 273 1229.2 447 343 224.6 2462 125 71.7 2020 295

¬ L 446.6 240 174 10.8 218 1 150.1 1982 151 12.8 832 1

¬ L, nv 2161.9 580 100 1129.0 256 344 268.3 2047 121 50.2 1339 151

dme6 ¬ L 1458.5 363 194 23.4 310 1 503.1 3683 171 33.8 1465 1

¬ L, nv to to to to to to 875.4 3947 141 155.4 2403 171

L to to to to to to 682.9 4708 145 201.9 3650 335
pci ¬ L to to to to to to mo mo mo 1811.6 2534 1

L to to to 379.4 323 23 to to to 76.2 1014 25

F L to to to 443.7 142 22 mo mo mo 44.8 974 27

prod-cons 0 443.7 161 38 359.0 406 36 896.2 2545 43 526.8 1667 53

¬ 0 16.6 163 58 2.8 46 40 33.5 648 63 2.6 202 48

1 1.3 89 − 0.1 81 − 3.0 134 − 0.2 39 −
¬ 1, nv 6.3 261 34 1.6 18 33 7.9 197 70 0.9 124 65

production-cell ¬ 0 to to to 0.9 298 85 1817.7 5921 84 0.8 87 84
0 to to to 1.4 221 − 1544.9 3819 − 3.3 90 −
¬ 1 to to to 1.6 211 146 mo mo mo 1.1 87 145

1 to to to 3.9 249 − mo mo mo 9.3 94 −
¬ 2 to to to 1.3 340 126 mo mo mo 1.0 94 126

2 to to to 2.9 270 − mo mo mo 7.0 100 −
srg5 L 0.6 186 − 0.1 8 − 4.5 88 − 0.1 6 −

¬ L 12.9 65 27 0.4 78 11 63.6 394 5 0.6 20 1
¬ L, nv 9.7 62 22 0.1 22 11 38.0 676 19 0.2 11 15

Table B.7: “Tight” versus “not tight” (“Live”) — CPU time [seconds], memory usage [1000

BDD nodes], counterexample length [states]

List of Figures

2.1 The semantics of PLTLB . 16

2.2 A general scheme for abstraction refinement 25

2.3 No tightness with forced fairness in bit-set degeneralization 25

3.1 A generic lasso-shaped counterexample . 27

3.2 A 2-bit counter with self-loops . 29

3.3 Translating simple liveness: NuSMV code of 2-bit counter with self-loops . . . 29

3.4 A run of the state-recording translation for the generic counterexample 31

3.5 Translating fairness: NuSMV code of 2-bit counter with self-loops 33

3.6 Translating hierarchy: NuSMV code of mutex with Büchi specification 37

3.7 Büchi automaton for ¬G((s = try) → (F(s = crit))) 38

4.1 Example: token passing [BJNT00] . 50

4.2 The reduction preserves boundedness of local depth. 51

4.3 No shortest counterexamples for pushdown systems 58

5.1 Scenarios with shortest and non-optimal counterexample 68

5.2 Model M and Büchi automaton B
p∧XGq
GPVW resulting in non-optimal counterexample 71

5.3 Counterexamples with excess length linear in operator depth of formula 73

6.1 Abstraction refinement for loop detection . 91

6.2 State-recording translation can succeed with no variables in loop detection . . . 92

6.3 Removing output variables from loop detection can shorten counterexamples . 94

7.1 Forward jumping counter . 97

7.2 Charts: forward jumping counter . 98

7.3 Charts: L2S versus Live . 103

7.4 Charts: L2S versus BMC . 104

7.5 Charts: comparing degrees of tightness . 106

7.6 Charts: comparing degrees of variable optimization (CPU time) 107

7.7 Charts: comparing degrees of variable optimization (memory usage) 107

127

128 LIST OF FIGURES

7.8 Charts: tight versus not tight (Live) . 109

List of Tables

2.1 Definition of subformulae . 16

2.2 Property-dependent part of a Büchi automaton constructed with KPR [KPR98] 19

3.1 Deriving a bound on the number of transitions in the transitive closure 39

3.2 BDD sizes for Eqn. (3.2) (∗ = memory limit of 512 MB reached). 40

4.1 Time complexity for alg. 3 in [EHRS00a] when applied to pushdown system . . 57

5.1 Property-dependent part of a tight Büchi automaton 77

7.1 Real-world examples: models . 99

7.2 Real-world examples: templates of the properties 99

B.1 Raw data: L2S versus Live . 119

B.2 Raw data: L2S versus BMC . 120

B.3 Raw data: tight vs maxunroll2/1 vs not tight (L2S, NuSMV) 121

B.4 Raw data: tight vs maxunroll2/1 vs not tight (L2S, Cadence SMV) 122

B.5 Raw data: degrees of variable optimization (L2S, NuSMV) 123

B.6 Raw data: degrees of variable optimization (L2S, Cadence SMV) 124

B.7 Raw data: tight versus not tight (Live) . 125

129

Bibliography

[ABBL03] L. Aceto, P. Bouyer, A. Burgueño, and K. Larsen. The power of reachability

testing for timed automata. Theor. Comput. Sci., 300(1-3):411–475, 2003. 65

[Acc] Accellera. Property specification language reference manual, version 1.1.

http://www.eda.org/vfv/docs/PSL-v1.1.pdf. 115

[AD94] R. Alur and D. Dill. A theory of timed automata. Theor. Comput. Sci., 126:183–

235, 1994. 4, 47, 60, 61, 65, 66, 112

[ADS86] B. Alpern, A. Demers, and F. Schneider. Safety without stuttering. Inf. Process.

Lett., 23(4):177–180, 1986. 20

[AJN+04] P. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and M. Saksena. Regular model

checking for LTL(MSO). In Alur and Peled [AP04], pages 348–360. 66

[AJNd03] P. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Algorithmic improvements in

regular model checking. In Hunt Jr. and Somenzi [HS03], pages 236–248. 47

[AK86] K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent

systems. Inf. Process. Lett., 22(6):307–309, 1986. 51, 114

[Alu99] R. Alur. Timed automata. In Halbwachs and Peled [HP99], pages 8–22. 114

[AP04] R. Alur and D. Peled, editors. Computer Aided Verification, 16th International

Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings, vol-

ume 3114 of LNCS. Springer, 2004. 131, 134

[AS85] B. Alpern and F. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–

185, 1985. 19, 20

[AS87] B. Alpern and F. Schneider. Recognizing safety and liveness. Distributed Com-

puting, 2(3):117–126, 1987. 2, 20

[AS04] M. Awedh and F. Somenzi. Proving more properties with bounded model check-

ing. In Alur and Peled [AP04], pages 96–108. 3, 9, 24, 83, 93

[AS06] M. Awedh and F. Somenzi. Termination criteria for bounded model checking:

Extensions and comparison. In A. Biere and O. Strichman, editors, Proceedings

of the Third International Workshop on Bounded Model Checking (BMC 2005),

Edinburgh, UK, 11 July 2005, ENTCS, 144(1), pages 51–66. Elsevier, 2006. 93,

115

131

http://www.eda.org/vfv/docs/PSL-v1.1.pdf

132 BIBLIOGRAPHY

[AVARB+01] Y. Abarbanel-Vinov, N. Aizenbud-Reshef, I. Beer, C. Eisner, D. Geist, T. Hey-

man, I. Reuveni, E. Rippel, I. Shitsevalov, Y. Wolfsthal, and T. Yatzkar-Haham.

On the effective deployment of functional formal verification. Formal Methods

in System Design, 19(1):35–44, 2001. 3, 8

[BAS02] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. In

R. Cleaveland and H. Garavel, editors, Formal Methods for Industrial Critical

Systems, Proceedings of the 7th International ERCIM Workshop, FMICS’02,

Málaga, Spain, July 12–13, 2002, ENTCS, 66(2). Elsevier, 2002. 5, 40

[BBČ02] J. Barnat, L. Brim, and I. Černá. Property driven distribution of nested DFS. In

M. Leuschel and U. Ultes-Nitsche, editors, Proceeding of the 3rd International

Workshop on Verification and Computational Logic (VCL’2002), DSSE Techni-

cal Report, DSSE-TR-2002-5, pages 1–10. Dept. of Electronics and Computer

Science, University of Southampton, UK, 2002. 113

[BBDL98] I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL

formulas. In Hu and Vardi [HV98], pages 184–194. 44

[BBF+01] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and P. Sch-

noebelen. Systems and Software Verification: Model-Checking Techniques and

Tools. Springer, 2001. 1, 2, 9

[BC03] M. Benedetti and A. Cimatti. Bounded model checking for past LTL. In Tools

and Algorithms for the Construction and Analysis of Systems, 9th International

Conference, TACAS 2003, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11,

2003, Proceedings, volume 2619 of LNCS, pages 18–33. Springer, 2003. 8, 17,

24, 45, 74, 75, 82, 84, 112

[BCC+99] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking

using SAT procedures instead of BDDs. In Design Automation, Proceedings

of the 36th ACM/IEEE Conference, DAC’99, New Orleans, Louisiana, United

States, June 21–25, 1999, pages 317–320. ACM Press, 1999. 9, 23

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without

BDDs. In R. Cleaveland, editor, Tools and Algorithms for Construction and

Analysis of Systems, Proceedings of the 5th International Conference, TACAS

’99, Amsterdam, The Netherlands, March 22–28, 1999, volume 1579 of LNCS,

pages 193–207. Springer, 1999. 2, 3, 4, 9, 23, 24, 28, 44, 45, 74, 87, 92, 93

[BCF01] G. Berry, H. Comon, and A. Finkel, editors. Computer Aided Verification, 13th

International Conference, CAV 2001, Paris, France, July 18-22, 2001, Proceed-

ings, volume 2102 of LNCS. Springer, 2001. 135, 138, 139

[BCLR04] T. Ball, B. Cook, V. Levin, and S. Rajamani. SLAM and Static Driver Ver-

ifier: Technology transfer of formal methods inside Microsoft. In E. Boiten,

J. Derrick, and G. Smith, editors, Integrated Formal Methods, 4th International

Conference, IFM 2004, Canterbury, UK, April 4-7, 2004, Proceedings, volume

2999 of LNCS, pages 1–20. Springer, 2004. 3, 8

BIBLIOGRAPHY 133

[BCM+92] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model

checking: 1020 states and beyond. Information and Computation, 98:142–170,

1992. 9, 45, 83, 97, 98, 100, 102, 108

[BCRZ99] A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifiying safety properties of a

Power PC microprocessor using symbolic model checking without BDDs. In

Halbwachs and Peled [HP99], pages 60–71. 9, 23, 93, 95

[BCZ99] A. Biere, E. Clarke, and Y. Zhu. Multiple state and single state tableaux for

combining local and global model checking. In E.-R. Olderog and B. Steffen,

editors, Correct System Design, Recent Insight and Advances, volume 1710 of

LNCS, pages 163–179. Springer, 1999. 2, 4, 23

[BDEGW03] S. Ben-David, C. Eisner, D. Geist, and Y. Wolfsthal. Model checking at IBM.

Formal Methods in System Design, 22(2):101–108, 2003. 2, 8

[BDGP98] B. Bérard, V. Diekert, P. Gastin, and A. Petit. Characterization of the expressive

power of silent transitions in timed automata. Fundamenta Informaticae, 36(2–

3):145–182, 1998. 60, 62, 64, 65

[BDL04] G. Behrmann, A. David, and K. Larsen. A tutorial on UPPAAL. In M. Bernardo

and F. Corradini, editors, Formal Methods for the Design of Real-Time Systems,

International School on Formal Methods for the Design of Computer, Communi-

cation and Software Systems, SFM-RT 2004, Bertinoro, Italy, September 13-18,

2004, Revised Lectures, volume 3185 of LNCS, pages 200–236. Springer, 2004.

2

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-

tomata: Application to model-checking. In A. Mazurkiewicz and J. Winkowski,

editors, CONCUR ’97: Concurrency Theory, 8th International Conference, War-

saw, Poland, July 1-4, 1997, Proceedings, volume 1243 of LNCS, pages 135–

150. Springer, 1997. 4, 47, 52, 55, 66, 112

[Ben01] B. Bentley. Validating the Intel Pentium 4 microprocessor. In Proceedings of

the 38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June

18-22, 2001 [DAC01], pages 244–248. 2, 8

[BF90] S. Bose and A. Fisher. Automatic verification of synchronous circuits using sym-

bolic logic simulation and temporal logic. In L. Claesen, editor, Proceedings of

the IFIP WG 10.2/WG 10.5 International Workshop on Applied Formal Methods

for Correct VLSI Design, Leuven, Belgium, November 1989, pages 151–158.

North-Holland, 1990. 9

[BFH+01] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, and J. Romijn. Effi-

cient guiding towards cost-optimality in UPPAAL. In Margaria and Yi [MY01],

pages 174–188. 65

[BGG02] S. Barner, D. Geist, and A. Gringauze. Symbolic localization reduction with re-

construction layering and backtracking. In Brinksma and Larsen [BL02], pages

65–77. 86, 90, 94, 95, 108, 113

134 BIBLIOGRAPHY

[BHJ+06] A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan. Linear encodings

of bounded LTL model checking. 2006. Submitted. 8, 113

[BHV04] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In

Alur and Peled [AP04], pages 372–386. 65, 114

[Bie97] A. Biere. µcke — efficient µ-calculus model checking. In Grumberg [Gru97],

pages 468–471. 8

[BJNT00] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In

Emerson and Sistla [ES00], pages 403–418. 2, 4, 47, 49, 50, 51, 66, 112, 127

[BKA02] J. Baumgartner, A. Kühlmann, and J. Abraham. Property checking via structural

analysis. In Brinksma and Larsen [BL02], pages 151–165. 88, 93, 94, 113

[BL02] E. Brinksma and K. Larsen, editors. Computer Aided Verification, Proceedings

of the 14th International Conference, CAV 2002, Copenhagen, Denmark, July

27–31, 2002, volume 2404 of LNCS. Springer, 2002. 133, 134, 135

[BL03] B. Batson and L. Lamport. High-level specifications: Lessons from industry. In

F. de Boer, M. Bonsangue, S. Graf, and W. de Roever, editors, Formal Methods

for Components and Objects, First International Symposium, FMCO 2002, Lei-

den, The Netherlands, November 5-8, 2002, Revised Lectures, volume 2852 of

LNCS, pages 242–261. Springer, 2003. 1

[BLW04a] B. Boigelot, A. Legay, and P. Wolper. Omega-regular model checking. In Jensen

and Podelski [JP04], pages 561–575. 4, 47, 51

[BLW04b] A. Bouajjani, A. Legay, and P. Wolper. Handling liveness properties in

(ω−)regular model checking. In INFINITY’04, 2004. 66

[BR02] T. Ball and S. Rajamani. The SLAM project: debugging system software via

static analysis. In POPL’02 [POP02], pages 1–3. 2, 8, 10, 94

[Bry86] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Trans. Computers, 35(8):677–691, 1986. 9, 22, 23, 39

[Bry91] R. Bryant. On the complexity of VLSI implementations and graph represen-

tations of boolean functions with application to integer multiplication. IEEE

Trans. Computers, 40(2):205–213, 1991. 23

[BSV93] F. Balarin and A. Sangiovanni-Vincentelli. An iterative approach to language

containment. In Courcoubetis [Cou93], pages 29–40. 10, 24, 94, 95

[Büc62] J. Büchi. On a decision method in restricted second order arithmetic. In E. Nagel,

P. Suppes, and A. Tarski, editors, Logic, Methodology and Philosophy in Sci-

ence: Proceedings of the 1960 International Congress, pages 1–11. Stanford

University Press, 1962. 17

[Bur89] J. Burch. Modeling timing assumptions with trace theory. In Proceedings of the

1989 IEEE International Conference on Computer Design: VLSI in Computers

and Processors, ICCD’89, Cambridge, MA, USA, October 2–4, 1989, pages

208–211. IEEE Computer Society Press, 1989. 43

BIBLIOGRAPHY 135

[Bur91] J. Burch. Verifying liveness properties by verifying safety properties. In Clarke

and Kurshan [CK91], pages 224–232. 43

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In

Proceedings of the 4th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL’77), Los Angeles, CA, USA, January 17-19,

1977, pages 238–252. ACM Press, 1977. 9

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,

R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic

model checking. In Brinksma and Larsen [BL02], pages 359–364. 4, 8, 10, 28,

94, 100

[CCG+04] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of

software components in C. IEEE Trans. Software Eng., 30(6):388–402, 2004.

10, 94

[CCGR00] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A new symbolic

model checker. STTT, 2(4):410–425, 2000. 100

[CCO+] R. Cavada, A. Cimatti, E. Olivetti, G. Keighren, M. Pistore, and M. Roveri.

NuSMV 2.2 user manual.

http://nusmv.irst.itc.it/NuSMV/userman/v22/nusmv.pdf. 92, 101

[CDK93] E. Clarke, I. Draghicescu, and R. Kurshan. A unified approch for showing lan-

guage inclusion and equivalence between various types of omega-automata. Inf.

Process. Lett., 46(6):301–308, 1993. 18

[CE82] E. Clarke and A. Emerson. Design and synthesis of synchronization skeletons

using branching-time temporal logic. In D. Kozen, editor, Logic of Programs,

Workshop, Yorktown Heights, New York, May 1981, volume 131 of LNCS, pages

52–71. Springer, 1982. 8, 38

[CES86] E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state con-

current systems using temporal logic specifications. ACM Trans. Program. Lang.

Syst., 8(2):244–263, 1986. 8, 9

[CFF+01] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Vardi.

Benefits of bounded model checking at an industrial setting. In Berry et al.

[BCF01], pages 436–453. 3

[CGH97] E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model check-

ing. Formal Methods in System Design, 10(1):47–71, 1997. 8, 18, 83, 102

[CGJ+03] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794,

2003. 3, 10, 90, 94, 95

[CGL94] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM

Trans. Program. Lang. Syst., 16(5):1512–1542, 1994. 9, 24, 86, 92, 94, 95

http://nusmv.irst.itc.it/NuSMV/userman/v22/nusmv.pdf

136 BIBLIOGRAPHY

[CGMZ95] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation of

counterexamples and witnesses in symbolic model checking. In Design Automa-

tion, 32nd ACM/IEEE Conference, DAC’95, San Francisco, California, USA,

June 12-16, 1995, Proceedings, pages 427–432. ACM Press, 1995. 22, 45, 108,

112

[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999. 2,

9, 10, 12, 59, 60, 88, 91

[Cho74] Y. Choueka. Theories of automata on ω-tapes: A simplified approach. J. Comput.

Syst. Sci., 8(2):117–141, 1974. 14

[Cim05] A. Cimatti, 2005. Personal communication. 108

[CK91] E. Clarke and R. Kurshan, editors. Computer Aided Verification, Proceedings of

the 2nd International Workshop, CAV’90, New Brunswick, NJ, USA, June 18–21,

1990, volume 531 of LNCS. Springer, 1991. 135, 136, 145

[CKL04] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In

Jensen and Podelski [JP04], pages 168–176. 10

[CKOS05] E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Computational chal-

lenges in bounded model checking. STTT, 7(2):174–183, 2005. 24, 31, 93

[Cla06] K. Claessen, 2006. Personal communication. 113

[CMB91] O. Coudert, J. Madre, and C. Berthet. Verifying temporal properties of sequential

machines without building their state diagrams. In Clarke and Kurshan [CK91],

pages 23–32. 9

[Cou93] C. Courcoubetis, editor. Computer Aided Verification, 5th International Confer-

ence, CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings, volume

697 of LNCS. Springer, 1993. 134, 139

[Cou99] J. Couvreur. On-the-fly verification of linear temporal logic. In J. Wing, J. Wood-

cock, and J. Davies, editors, FM’99 - Formal Methods, World Congress on

Formal Methods in the Development of Computing Systems, Toulouse, France,

September 20-24, 1999, Proceedings, Volume I, volume 1708 of LNCS, pages

253–271. Springer, 1999. 83

[CPR05] B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement for termi-

nation. In C. Hankin and I. Siveroni, editors, Static Analysis, 12th International

Symposium, SAS 2005, London, UK, September 7-9, 2005, Proceedings, volume

3672 of LNCS, pages 87–101. Springer, 2005. 65, 66

[CRS04] A. Cimatti, M. Roveri, and D. Sheridan. Bounded verification of past LTL. In

Hu and Martin [HM04], pages 245–259. 8, 10, 24, 45, 74, 108

[CS01] E. Clarke and B. Schlingloff. Model checking. In J Robinson and A. Voronkov,

editors, Handbook of Automated Reasoning (in 2 volumes), pages 1635–1790.

Elsevier and MIT Press, 2001. 9, 10

BIBLIOGRAPHY 137

[CV03] E. Clarke and H. Veith. Counterexamples revisited: Principles, algorithms, ap-

plications. In N. Dershowitz, editor, Verification: Theory and Practice, Essays

Dedicated to Zohar Manna on the Occasion of His 64th Birthday, volume 2772

of LNCS, pages 208–224. Springer, 2003. 3, 45

[CVWY92] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory efficient

algorithms for the verification of temporal properties. Formal Methods in System

Design, 1:275–288, 1992. 3, 18, 28, 44, 45, 113

[DAC01] Proceedings of the 38th Design Automation Conference, DAC 2001, Las Vegas,

NV, USA, June 18-22, 2001. ACM, 2001. 133, 149

[DGV99] M. Daniele, F. Giunchiglia, and M. Vardi. Improved automata generation for

linear temporal logic. In Halbwachs and Peled [HP99], pages 249–260. 83, 84

[Dil88] D. Dill. Trace theory for automatic hierarchical verification of speed-

independent circuits. In J. Allen and F. Leighton, editors, Prodeedings of the

Fifth MIT Conference on Advanced Research in VLSI, Cambridge, MA, USA,

March, 1988, pages 50–65. MIT Press, 1988. 43

[EH86] E. Emerson and J. Halpern. “Sometimes” and “not never” revisited: On branch-

ing versus linear time temporal logic. J. ACM, 33(1):151–178, 1986. 8

[EH00] K. Etessami and G. Holzmann. Optimizing Büchi automata. In C. Palamidessi,

editor, CONCUR 2000 - Concurrency Theory, 11th International Conference,

University Park, PA, USA, August 22-25, 2000, Proceedings, volume 1877 of

LNCS, pages 153–167. Springer, 2000. 83

[EHRS00a] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms

for model checking pushdown systems. In Emerson and Sistla [ES00], pages

232–247. 4, 47, 52, 55, 56, 57, 58, 112, 129

[EHRS00b] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for

model checking pushdown systems. Technical Report TUM-I0002, Institut für

Informatik, Technische Universität München, 2000. 56

[EJ06] S. Edelkamp and S. Jabbar. Large-scale directed model checking LTL. In A. Val-

mari, editor, Model Checking Software, 13th International SPIN Workshop, Vi-

enna, Austria, March 30 - April 1, 2006, Proceedings, volume 3925 of LNCS,

pages 1–18. Springer, 2006. 113

[EL87] E. Emerson and C. Lei. Modalities for model checking: Branching time logic

strikes back. Sci. Comput. Program., 8(3):275–306, 1987. 2

[Eme83] E. Emerson. Alternative semantics for temporal logics. Theor. Comput. Sci.,

26:121–130, 1983. 20

[Eme90] A. Emerson. Temporal and modal logic. In van Leeuwen [vL90], pages 995–

1072. 7, 8, 15, 18

[ES] N. Eén and N. Sörensson. MiniSat.

http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/Main.html. 100

http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/Main.html

138 BIBLIOGRAPHY

[ES00] A. Emerson and P. Sistla, editors. Computer Aided Verification, Proceedings of

the 12th International Conference, CAV 2000, Chicago, IL, USA, July 15–19,

2000, volume 1855 of LNCS. Springer, 2000. 134, 137, 146

[ES01] J. Esparza and S. Schwoon. A BDD-based model checker for recursive pro-

grams. In Berry et al. [BCF01], pages 324–336. 47, 55

[ES03] N. Eén and N. Sörensson. Temporal induction by incremental SAT solving. In

O. Strichman and A. Biere, editors, Bounded Model Checking, First Interna-

tional Workshop, BMC 2003, Boulder, CO, July 13, 2003, Proceedings, ENTCS,

89(4), pages 543–560. Elsevier, 2003. 24, 87, 93, 94, 113

[ES04] N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and

A. Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th Inter-

national Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003

Selected Revised Papers, volume 2919 of LNCS, pages 502–518. Springer, 2004.

100

[Flo67] R. Floyd. Assigning meanings to programs. In J. Schwartz, editor, Mathematical

Aspects of Computer Science, volume 19 of Proceedings of Symposia in Applied

Mathematics, pages 19–32. American Mathematical Society, 1967. 7

[FMPT01] A. Fuxman, J. Mylopoulos, M. Pistore, and P. Traverso. Model checking early re-

quirements specifications in tropos. In 5th IEEE International Symposium on Re-

quirements Engineering (RE 2001), 27-31 August 2001, Toronto, Canada, pages

174–181. IEEE Computer Society, 2001. 8

[FWW97] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model

checking pushdown systems (extended abstract). In F. Moller, editor, INFIN-

ITY’97, volume 9 of ENTCS. Elsevier, 1997. 4, 47, 55, 112

[Gab89] D. Gabbay. The declarative past and imperative future. In Temporal Logic in

Specification, Altrinchamm UK, April 8-10, 1987, Proceedings, volume 398 of

LNCS, pages 409–448. Springer, 1989. 74

[GD98] S. Govindaraju and D. Dill. Verification by approximate forward and backward

reachability. In H. Yasuura, editor, Proceedings of the 1998 IEEE/ACM Interna-

tional Conference on Computer-Aided Design (ICCAD’98), San Jose, CA, USA,

November 8–12, 1998, pages 366–370. ACM, 1998. 94, 95

[Gei01] M. Geilen. On the construction of monitors for temporal logic properties. In

Havelund and Roşu [HR01b]. 84

[GGA05] M. Ganai, A. Gupta, and P. Ashar. Beyond safety: customized SAT-based model

checking. In W Joyner, G. Martin, and A. Kahng, editors, Proceedings of the

42nd Design Automation Conference, DAC 2005, San Diego, CA, USA, June

13-17, 2005, pages 738–743. ACM, 2005. 2

[GH01] D. Giannakopoulou and K. Havelund. Automata-based verification of temporal

properties on running programs. In Automated Software Engineering, Proceed-

ings of the 16th IEEE International Conference, ASE 2001, 26–29 November

BIBLIOGRAPHY 139

2001, Coronado Island, San Diego, CA, USA, pages 412–416. IEEE Computer

Society, 2001. 84

[GK05] A. Groce and D. Kröning. Making the most of BMC counterexamples. In

A. Biere and O. Strichman, editors, Proceedings of the 2nd International Work-

shop on Bounded Model Checking (BMC 2004), MA, July 18, 2004, ENTCS,

119(2), pages 71–84. Elsevier, 2005. 45, 115

[GMZ04] P. Gastin, P. Moro, and M. Zeitoun. Minimization of counterexamples in SPIN.

In S. Graf and L. Mounier, editors, Model Checking Software, 11th International

SPIN Workshop, Barcelona, Spain, April 1-3, 2004, Proceedings, volume 2989

of LNCS, pages 92–108. Springer, 2004. 45, 83

[GO01] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Berry et al.

[BCF01], pages 53–65. 84, 114

[GO03] P. Gastin and D. Oddoux. LTL with past and two-way very-weak alternating au-

tomata. In B. Rovan and P. Vojtás, editors, Mathematical Foundations of Com-

puter Science 2003, 28th International Symposium, MFCS 2003, Bratislava, Slo-

vakia, August 25-29, 2003, Proceedings, volume 2747 of LNCS, pages 439–448.

Springer, 2003. 8, 84

[GP93] P. Godefroid and D. Pirottin. Refining dependencies improves partial-order ver-

ification methods (extended abstract). In Courcoubetis [Cou93], pages 438–449.

10

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal basis of fairness.

In POPL’80 [POP80], pages 163–173. 8

[GPVW96] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic ver-

ification of linear temporal logic. In P. Dembinski and M. Sredniawa, editors,

Protocol Specification, Testing and Verification XV, Proceedings of the Fifteenth

IFIP WG6.1 International Symposium on Protocol Specification, Testing and

Verification, Warsaw, Poland, June 1995, volume 38 of IFIP Conference Pro-

ceedings, pages 3–18. Chapman & Hall, 1996. 4, 38, 71, 72, 73, 82, 83, 84,

112, 114, 115

[Gro05] A. Groce. Error Explanation and Fault Localization with Distance Metrics. PhD

thesis, Carnegie Mellon University, 2005. 45

[Gru97] O. Grumberg, editor. Computer Aided Verification, Proceedings of the 9th Inter-

national Conference, CAV’97, Haifa, Israel, June 22–25, 1997, volume 1254 of

LNCS. Springer, 1997. 134, 139

[GS97] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. In Grum-

berg [Gru97], pages 72–83. 10, 94

[Hel06] K. Heljanko, 2006. Personal communication. 113

[HJ00] W. Hunt Jr. and S. Johnson, editors. Formal Methods in Computer-Aided Design,

Proceedings of the Third International Conference, FMCAD 2000, Austin, Texas,

USA, November 1–3, 2000, volume 1954 of LNCS. Springer, 2000. 146, 148

140 BIBLIOGRAPHY

[HJL] K. Heljanko, T. Junttila, and T. Latvala. CAV submission source code.

http://www.tcs.hut.fi/~tjunttil/experiments/CAV05/. 100

[HJL05] K. Heljanko, T. Junttila, and T. Latvala. Incremental and complete bounded

model checking for full PLTL. In K. Etessami and S. Rajamani, editors, Com-

puter Aided Verification, 17th International Conference, CAV 2005, Edinburgh,

Scotland, UK, July 6-10, 2005, Proceedings, volume 3576 of LNCS, pages 98–

111. Springer, 2005. 9, 10, 24, 79, 82, 93, 100, 108, 112, 115

[HJMS02] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In

POPL’02 [POP02], pages 58–70. 10, 94

[HK05] H. Hansen and A. Kervinen. Minimal counterexamples in linear memory and

polynomial time. Manuscript, 2005. 45

[HKQ98] T. Henzinger, O. Kupferman, and S. Qadeer. From pre-historic to post-modern

symbolic model checking. In Hu and Vardi [HV98], pages 195–206. 2, 4, 23

[HLR94] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the ver-

ification of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, ed-

itors, Algebraic Methodology and Software Technology (AMAST ’93), Proceed-

ings of the Third International Conference on Methodology and Software Tech-

nology, University of Twente, Enschede, The Netherlands, 21–25 June, 1993,

Workshops in Computing, pages 83–96. Springer, 1994. 84

[HM04] A. Hu and A. Martin, editors. Formal Methods in Computer-Aided Design, 5th

International Conference, FMCAD 2004, Austin, TX, USA, November 14–17,

2004, Proceedings, volume 3312 of LNCS. Springer, 2004. 136, 143

[Hoa69] C. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, 1969. 7

[Hol88] G. Holzmann. An improved protocol reachability analysis technique. Softw.,

Pract. Exper., 18(2):137–161, 1988. 96

[Hol98] G. Holzmann. An analysis of bitstate hashing. Formal Methods in System De-

sign, 13(3):289–307, 1998. 96

[Hol03] G. Holzmann. The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley, 2003. 8, 9, 10, 14, 20, 96

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In K. Apt,

editor, Logics and Models of Concurrent Systems, volume F-13 of NATO ASI

Series, pages 477–498. Springer, 1985. 7

[HP99] N. Halbwachs and D. Peled, editors. Computer Aided Verification, Proceedings

of the 11th International Conference, CAV’99, Trento, Italy, July 6–10, 1999,

volume 1633 of LNCS. Springer, 1999. 131, 133, 137, 143

[HR01a] K. Havelund and G. Roşu. Monitoring Java programs with Java PathExplorer.

In Runtime Verification, Proceedings of the First International Workshop, RV’01,

Paris, France, 23 July, 2001 [HR01b]. 84

http://www.tcs.hut.fi/~tjunttil/experiments/CAV05/

BIBLIOGRAPHY 141

[HR01b] K. Havelund and G. Roşu, editors. Runtime Verification, Proceedings of the First

International Workshop, RV’01, Paris, France, 23 July, 2001, ENTCS, 55(2).

Elsevier, 2001. 138, 140

[HR02] K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In Ka-

toen and Stevens [KS02], pages 342–356. 2, 84

[HS03] W. Hunt Jr. and F. Somenzi, editors. Computer Aided Verification, 15th Interna-

tional Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings,

volume 2725 of LNCS. Springer, 2003. 131, 144

[HV98] A. Hu and M. Vardi, editors. Computer Aided Verification, Proceedings of the

10th International Conference, CAV’98, Vancouver, BC, Canada, June 28 – July

2, 1998, volume 1427 of LNCS. Springer, 1998. 132, 140, 149

[INH96] H. Iwashita, T. Nakata, and F. Hirose. CTL model checking based on forward

state traversal. In Rutenbar and Otten [RO96], pages 82–87. 2, 4, 23, 98

[JJ90] C. Jard and T. Jéron. On-line model checking for finite linear temporal logic

specifications. In J. Sifakis, editor, Automatic Verification Methods for Finite

State Systems, International Workshop, Grenoble, France, June 12-14, 1989,

Proceedings, volume 407 of LNCS, pages 189–196. Springer, 1990. 44

[JN00] B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying

infinite-state systems. In S. Graf and M. Schwartzbach, editors, Tools and Algo-

rithms for Construction and Analysis of Systems, 6th International Conference,

TACAS 2000, Held as Part of the European Joint Conferences on the Theory and

Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April 2, 2000,

Proceedings, volume 1785 of LNCS, pages 220–234. Springer, 2000. 51, 82

[Jon04] N. Jones. Liveness manifesto. In Podelski et al. [PSZ]. 1

[JP04] K. Jensen and A. Podelski, editors. Tools and Algorithms for the Construction

and Analysis of Systems, 10th International Conference, TACAS 2004, Held as

Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume

2988 of LNCS. Springer, 2004. 134, 136, 146

[JPO95] L. Jagadeesan, C. Puchol, and J. Von Olnhausen. Safety property verification

of ESTEREL programs and applications to telecommunications software. In

P. Wolper, editor, Computer Aided Verification, Proceedings of the 7th Interna-

tional Conference, Liège, Belgium, July, 3–5, 1995, volume 939 of LNCS, pages

127–140. Springer, 1995. 84

[JR00] D. Jackson and M. Rinard. Software analysis: a roadmap. In ICSE — Future of

SE Track, pages 133–145, 2000. 8

[JRS02] H. Jin, K. Ravi, and F. Somenzi. Fate and free will in error traces. In Katoen and

Stevens [KS02], pages 445–459. 45, 115

142 BIBLIOGRAPHY

[Kam68] J. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University

of California at Los Angeles, 1968. 8

[Kin94] E. Kindler. Safety and liveness properties: A survey. Bulletin of the EATCS,

53:268–272, 1994. 20

[KMM+01] Y. Kesten, O. Maler, M. Marcus, A Pnueli, and E. Shahar. Symbolic model

checking with rich assertional languages. Theor. Comput. Sci., 256(1-2):93–112,

2001. 2, 4, 47, 112

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27:333–

354, 1983. 8, 43

[KPR98] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal

logic specifications. In K. Larsen, S. Skyum, and G. Winskel, editors, Automata,

Languages and Programming, 25th International Colloquium, ICALP’98, Aal-

borg, Denmark, July 13-17, 1998, Proceedings, volume 1443 of LNCS, pages

1–16. Springer, 1998. 4, 12, 16, 18, 19, 24, 73, 74, 75, 79, 83, 84, 100, 101,

108, 112, 114, 115, 129

[KR88] B. Kernighan and D. Ritchie. The C Programming Language, Second Edition,

ANSI C. Prentice-Hall, 1988. 36

[Kro99] T. Kropf. Introduction to Formal Hardware Verification. Springer, 1999. 9

[KS02] J.-P. Katoen and P. Stevens, editors. Tools and Algorithms for the Construc-

tion and Analysis of Systems, Proceedings of the 8th International Conference,

TACAS 2002, Grenoble, France, April 8–12, 2002, volume 2280 of LNCS.

Springer, 2002. 141

[KS03] D. Kröning and O. Strichman. Efficient computation of recurrence diameters. In

L. Zuck, P. Attie, A. Cortesi, and S. Mukhopadhyay, editors, Verification, Model

Checking, and Abstract Interpretation, Proceedings of the 4th International Con-

ference, VMCAI 2003, New York, NY, USA, January 9-11, 2002, volume 2575 of

LNCS, pages 298–309. Springer, 2003. 87, 93, 94, 95

[Kur94] R. Kurshan. Computer-Aided Verification of Coordinating Processes: The

Automata-Theoretic Approach. Princeton University Press, 1994. 9, 10, 24,

94, 95

[KV01] O. Kupferman and M. Vardi. Model checking of safety properties. Formal

Methods in System Design, 19(3):291–314, 2001. 2, 4, 20, 21, 22, 44, 68, 79,

84, 92, 102, 112

[KVW00] O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic approach to

branching-time model checking. J. ACM, 47(2):312–360, 2000. 9

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.

Software Eng., 3(2):125–143, 1977. 1, 2

[Lam80] L. Lamport. “Sometime” is sometimes “not never” — on the temporal logic of

programs. In POPL’80 [POP80], pages 174–185. 7, 8

BIBLIOGRAPHY 143

[Lam83] L. Lamport. What good is temporal logic? In R. Mason, editor, Information

Processing 83, Proceedings of the IFIP 9th World Computer Congress, Paris,

France, September 19-23, 1983, pages 657–668. North-Holland/IFIP, 1983. 2,

20

[Lam85] L. Lamport. Logical foundation. In M. Paul and H. Siegert, editors, Distributed

Systems: Methods and Tools for Specification, An Advanced Course, April 3-

12, 1984 and April 16-25, 1985, Munich, volume 190 of LNCS, pages 19–30.

Springer, 1985. 20

[Lam04] L. Lamport. Liveness manifesto. In Podelski et al. [PSZ]. 1, 2

[Lar04] K. Larsen. Liveness manifesto. In Podelski et al. [PSZ]. 1

[Lat03] T. Latvala. Efficient model checking of safety properties. In T. Ball and S. Ra-

jamani, editors, Model Checking Software, 10th International SPIN Workshop.

Portland, OR, USA, May 9-10, 2003, Proceedings, volume 2648 of LNCS, pages

74–88. Springer, 2003. 84

[LBHJ04] T. Latvala, A. Biere, K. Heljanko, and T. Junttila. Simple bounded LTL model

checking. In Hu and Martin [HM04], pages 186–200. 24

[LBHJ05] T. Latvala, A. Biere, K. Heljanko, and T. Junttila. Simple is better: Efficient

bounded model checking for past LTL. In R. Cousot, editor, Verification, Model

Checking, and Abstract Interpretation, 6th International Conference, VMCAI

2005, Paris, France, January 17–19, 2005, Proceedings, volume 3385 of LNCS,

pages 380–395. Springer, 2005. 5, 8, 24, 45, 74, 82, 84, 98, 99, 100, 102, 112,

115

[LH00] T. Latvala and K. Heljanko. Coping with strong fairness. Fundam. Inform.,

43(1-4):175–193, 2000. 45

[LMS02] F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forgettable

past. In 17th IEEE Symposium on Logic in Computer Science (LICS 2002),

22-25 July 2002, Copenhagen, Denmark, Proceedings, pages 383–392. IEEE

Computer Society, 2002. 8, 12, 17, 74

[LNA99] J. Lind-Nielsen and H. Andersen. Stepwise CTL model checking of state/event

systems. In Halbwachs and Peled [HP99], pages 316–327. 94, 95

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs

satisfy their linear specification. In Proceedings of the 12th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages (POPL’85),

New Orleans, LA, USA, January 14-16, 1985, pages 97–107. ACM Press, 1985.

8, 9, 83

[LPJ+96] W. Lee, A. Pardo, J.-Y. Jang, G. Hachtel, and F. Somenzi. Tearing based au-

tomatic abstraction for CTL model checking. In Rutenbar and Otten [RO96],

pages 76–81. 94, 95

144 BIBLIOGRAPHY

[LPY97] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. STTT, 1(1–2):134–

152, 1997. 2, 47, 65

[LPZ85] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In R. Parikh,

editor, Logic of Programs, Conference, Brooklyn College, June 17-19, 1985,

Proceedings, volume 193 of LNCS, pages 196–218. Springer, 1985. 8, 18, 20

[LS06] B. Li and F. Somenzi. Efficient abstraction refinement in interpolation-based

unbounded model checking. In H. Hermanns and J. Palsberg, editors, Tools

and Algorithms for the Construction and Analysis of Systems, 12th International

Conference, TACAS 2006, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 25 –

April 2, 2006, Proceedings, volume 3920 of LNCS, pages 227–241. Springer,

2006. 108

[Mai04] P. Maier. Intuitionistic LTL and a new characterization of safety and liveness. In

J. Marcinkowski and A. Tarlecki, editors, Computer Science Logic, 18th Inter-

national Workshop, CSL 2004, 13th Annual Conference of the EACSL, Karpacz,

Poland, September 20-24, 2004, Proceedings, volume 3210 of LNCS, pages

295–309. Springer, 2004. 20

[McM] K. McMillan. Cadence SMV.

http://www-cad.eecs.berkeley.edu/~kenmcmil/smv. 4, 10, 100

[McM93] K. McMillan. Symbolic Model Checking: An Approach to the State Explosion

Problem. Kluwer Academic Publishers, 1993. 9, 10, 23, 28, 39, 83, 92, 94

[McM03] K. McMillan. Interpolation and SAT-based model checking. In Hunt Jr. and

Somenzi [HS03], pages 1–13. 9, 113

[MOSS99] M. Müller-Olm, D. Schmidt, and B. Steffen. Model-checking: A tutorial in-

troduction. In A. Cortesi and G. Filé, editors, Static Analysis, 6th International

Symposium, SAS ’99, Venice, Italy, September 22-24, 1999, Proceedings, volume

1694 of LNCS, pages 330–354. Springer, 1999. 12

[MP83] Z. Manna and A. Pnueli. How to cook a temporal proof system for your pet

language. In Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages (POPL’83), Austin, TX, USA, January

24-26, 1983, pages 141–154. ACM Press, 1983. 7

[MP90] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Principles

of Distributed Computing, Proceedings of the Ninth Annual ACM Symposium,

PODC 1990, Quebec City, Quebec, Canada, August 22-24, 1990, pages 377–

410, 1990. 2, 20, 83

[MT03] P. Manolios and R. Trefler. A lattice-theoretic characterization of safety and

liveness. In Principles of Distributed Computing, Proceedings of the Twenty-

Second Annual ACM Symposium, PODC 2003, Boston, MA, USA, July 13-16,

2003, pages 325–333, 2003. 20

http://www-cad.eecs.berkeley.edu/~kenmcmil/smv

BIBLIOGRAPHY 145

[MY01] T. Margaria and W. Yi, editors. Tools and Algorithms for the Construction

and Analysis of Systems, 7th International Conference, TACAS 2001 Held as

Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings, volume 2031 of LNCS.

Springer, 2001. 133, 149

[NuS] The NuSMV Team. NuSMV.

http://nusmv.irst.itc.it/. 100

[NW97] U. Nitsche and P. Wolper. Relative liveness and behavior abstraction (extended

abstract). In Principles of Distributed Computing, Proceedings of the Sixteenth

Annual ACM Symposium, PODC 1997, Santa Barbara, CA, USA, August 21-24,

1997, pages 45–52, 1997. 44

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs.

Acta Inf., 6:319–340, 1976. 8

[OL82] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.

ACM Trans. Program. Lang. Syst., 4(3):455–495, 1982. 2

[PBG05] M. Prasad, A. Biere, and A. Gupta. A survey of recent advances in SAT-based

formal verification. STTT, 7(2):156–173, 2005. 9

[Pel96] D. Peled. Combining partial order reductions with on-the-fly model-checking.

Formal Methods in System Design, 8(1):39–64, 1996. 10

[Pel01] D. Peled. Software Reliability Methods. Springer, 2001. 8, 9, 17, 20, 44

[Pix91] C. Pixley. Introduction to a computational theory and implementation of se-

quential hardware equivalence. In Clarke and Kurshan [CK91], pages 54–64.

9

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual

Symposium on Foundations of Computer Science (FOCS’77), Providence, RI,

USA, October 31 – November 2, 1977, pages 46–57. IEEE Computer Society,

1977. 7, 8

[Pod04] A. Podelski. Liveness manifesto. In Podelski et al. [PSZ]. 111

[POP80] Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL’80), Las Vegas, NV, USA, January 28-30, 1980.

ACM Press, 1980. 139, 142

[POP02] Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL’02), Portland, OR, USA, January 16-18, 2002.

ACM Press, 2002. 134, 140

[PR04] A. Podelski and A. Rybalchenko. Transition invariants. In 19th IEEE Symposium

on Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland,

Proceedings, pages 32–41. IEEE Computer Society, 2004. 65, 66

http://nusmv.irst.itc.it/

146 BIBLIOGRAPHY

[PR05] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. In J. Palsberg and M. Abadi, editors, Proceedings of the 32nd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2005, Long Beach, California, USA, January 12-14, 2005, pages 132–

144. ACM, 2005. 65, 66

[PS00] A. Pnueli and E. Shahar. Liveness and acceleration in parameterized verification.

In Emerson and Sistla [ES00], pages 328–343. 2, 66

[PSZ] A. Podelski, B. Steffen, and L. Zuck, editors. Liveness Manifestos. Beyond

Safety, International Workshop, Schloß Ringberg, Germany, April 25–28, 2004.

http://www.cs.nyu.edu/acsys/beyond-safety/liveness.htm. 2, 111, 141, 143, 145,

149

[QS82] J. Queille and J. Sifakis. Specification and verification of concurrent systems

in CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors, International

Symposium on Programming, 5th Colloquium, Torino, Italy, April 6-8, 1982,

Proceedings, volume 137 of LNCS, pages 337–351. Springer, 1982. 8

[RBS00] K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic algorithms

for the computation of fair cycles. In Hunt Jr. and Johnson [HJ00], pages 143–

160. 45

[RDH03] Robby, M. Dwyer, and J. Hatcliff. Bogor: an extensible and highly-modular

software model checking framework. In Proceedings of the 9th European soft-

ware engineering conference held jointly with 11th ACM SIGSOFT international

symposium on Foundations of software engineering, Helsinki, Finland, Septem-

ber 1-5, 2003, pages 267–276. ACM, 2003. 10

[RO96] R. Rutenbar and R. Otten, editors. Proceedings of the 1996 IEEE/ACM Interna-

tional Conference on Computer-Aided Design (ICCAD’96), San Jose, CA, USA,

November 10–14, 1996. IEEE Computer Society, 1996. 141, 143

[RS04] K. Ravi and F. Somenzi. Minimal assignments for bounded model checking. In

Jensen and Podelski [JP04], pages 31–45. 45, 115

[Sav70] W. Savitch. Relationships between nondeterministic and deterministic tape com-

plexities. J. Comput. Syst. Sci., 4(2):177–192, 1970. 45

[SB95] C. Seger and R. Bryant. Formal verification by symbolic evaluation of partially-

ordered trajectories. Formal Methods in System Design, 6(2):147–189, 1995.

2

[SB00] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In

Emerson and Sistla [ES00], pages 248–263. 71, 83, 115

[SB03] V. Schuppan and A. Biere. Verifying the IEEE 1394 FireWire Tree Identify

Protocol with SMV. Formal Asp. Comput., 14(3):267–280, 2003. 5, 98, 99

[SB04] V. Schuppan and A. Biere. Efficient reduction of finite state model checking to

reachability analysis. STTT, 5(2-3):185–204, 2004. 5, 40, 42, 98

http://www.cs.nyu.edu/acsys/beyond-safety/liveness.htm

BIBLIOGRAPHY 147

[SB05] V. Schuppan and A. Biere. Shortest counterexamples for symbolic model check-

ing of LTL with past. In N. Halbwachs and L. Zuck, editors, Tools and Algo-

rithms for the Construction and Analysis of Systems, 11th International Confer-

ence, TACAS 2005, Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Pro-

ceedings, volume 3440 of LNCS, pages 493–509. Springer, 2005. 5

[SB06] V. Schuppan and A. Biere. Liveness checking as safety checking for infinite

state spaces. In S. Smolka and J. Srba, editors, Proceedings of the 7th Inter-

national Workshop on Verification of Infinite-State Systems, INFINITY ’05, San

Francisco, CA, USA, August 27, 2005, ENTCS, 149(1), pages 79–96. Elsevier,

2006. 5

[SC85] A. Sistla and E. Clarke. The complexity of propositional linear temporal logics.

J. ACM, 32(3):733–749, 1985. 8, 22, 44

[Sch01] K. Schneider. Improving automata generation for linear temporal logic by con-

sidering the automaton hierarchy. In R. Nieuwenhuis and A. Voronkov, editors,

Logic for Programming, Artificial Intelligence, and Reasoning, 8th International

Conference, LPAR 2001, Havana, Cuba, December 3-7, 2001, Proceedings, vol-

ume 2250 of LNCS, pages 39–54. Springer, 2001. 18, 83

[Sch02] S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische Uni-

versität München, 2002. 58

[Sch03] T. Schubert. High level formal verification of next-generation microprocessors.

In Proceedings of the 40th Design Automation Conference, DAC 2003, Anaheim,

CA, USA, June 2-6, 2003, pages 1–6. ACM, 2003. 3, 8

[Sht01] O. Shtrichman. Pruning techniques for the SAT-based bounded model check-

ing problem. In T. Margaria and T. Melham, editors, Correct Hardware De-

sign and Verification Methods, 11th IFIP WG 10.5 Advanced Research Working

Conference, CHARME 2001, Livingston, Scotland, UK, September 4-7, 2001,

Proceedings, volume 2144 of LNCS, pages 58–70. Springer, 2001. 24, 87

[Sis94] A. Sistla. Safety, liveness and fairness in temporal logic. Formal Asp. Comput.,

6(5):495–512, 1994. 2, 20

[SL88] F. Schneider and L. Lamport. On E. W. Dijsktra’s position paper on "fairness:".

ACM SIGSOFT Software Engineering Notes, 13(3):18–19, 1988. 1

[Som] F. Somenzi. Wring 1.1.0.

ftp://vlsi.colorado.edu/pub/Wring-1.1.0.tar.gz. 36

[SS04] T. Schuele and K. Schneider. Bounded model checking of infinite state sys-

tems: Exploiting the automata hierarchy. In Formal Methods and Models for

Co-Design, 2004. MEMOCODE ’04. Proceedings. Second ACM and IEEE In-

ternational Conference on. San Diego, CA, USA, June 23 – 25, 2004, pages

17–26. IEEE, 2004. 83

ftp://vlsi.colorado.edu/pub/Wring-1.1.0.tar.gz

148 BIBLIOGRAPHY

[SSS00] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using in-

duction and a SAT-solver. In Hunt Jr. and Johnson [HJ00], pages 108–125. 9,

93

[ST03] R. Sebastiani and S. Tonetta. "More deterministic"vs. "smaller"Büchi automata

for efficient LTL model checking. In D. Geist and E. Tronci, editors, Correct

Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Re-

search Working Conference, CHARME 2003, L’Aquila, Italy, October 21-24,

2003, Proceedings, volume 2860 of LNCS, pages 126–140. Springer, 2003. 84

[Sti96] C. Stirling. Games and modal mu-calculus. In T. Margaria and B. Steffen,

editors, Tools and Algorithms for Construction and Analysis of Systems, Sec-

ond International Workshop, TACAS ’96, Passau, Germany, March 27-29, 1996,

Proceedings, volume 1055 of LNCS, pages 298–312. Springer, 1996. 43

[SVW87] A. Sistla, M. Vardi, and P. Wolper. The complementation problem for Büchi

automata with applications to temporal logic. Theor. Comput. Sci., 49(2–3):217–

237, 1987. 18, 115

[SY01] N. Shilov and K. Yi. On expressive and model checking power of propositional

program logics. In D. Bjørner, M. Broy, and A. Zamulin, editors, Perspectives

of System Informatics, 4th International Andrei Ershov Memorial Conference,

PSI 2001, Akademgorodok, Novosibirsk, Russia, July 2-6, 2001, Revised Papers,

volume 2244 of LNCS, pages 39–46. Springer, 2001. 43

[SYE+05] N. Shilov, K. Yi, H. Eo, S. O, and K.-M. Choe. Proofs about folklore: why

model checking = reachability? Submitted, 2005. 43, 65, 113

[Tar72] R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,

1(2):146–160, 1972. 18

[TH02] H. Tauriainen and K. Heljanko. Testing LTL formula translation into Büchi

automata. STTT, 4(1):57–70, 2002. 84

[Tho90] W. Thomas. Automata on infinite objects. In van Leeuwen [vL90], pages 133–

192. 17, 18

[Tho97] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,

editors, Handbook of Formal Languages, Volume 3: Beyond Words, pages 389–

455. Springer, 1997. 36

[UN02] U. Ultes-Nitsche. Do we need liveness? — Approximation of liveness properties

by safety properties. In W. Grosky and F. Plasil, editors, SOFSEM 2002: The-

ory and Practice of Informatics, 29th Conference on Current Trends in Theory

and Practice of Informatics, Milovy, Czech Republic, November 22-29, 2002,

Proceedings, volume 2540 of LNCS, pages 279–288. Springer, 2002. 44

[Val92] A. Valmari. A stubborn attack on state explosion. Formal Methods in System

Design, 1(4):297–322, 1992. 10

BIBLIOGRAPHY 149

[Var01] M. Vardi. Branching vs. linear time: Final showdown. In Margaria and Yi

[MY01], pages 1–22. 8

[Var04] M. Vardi. Liveness manifesto. In Podelski et al. [PSZ]. 2

[VHB+03] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking pro-

grams. Autom. Softw. Eng., 10(2):203–232, 2003. 10

[VIS96] The VIS Group. VIS: A system for verification and synthesis. In R. Alur and

T. Henzinger, editors, Computer Aided Verification, Proceedings of the 8th In-

ternational Conference, CAV’96, New Brunswick, NJ, USA, July 31 – August 3,

1996, volume 1102 of LNCS, pages 428–432. Springer, 1996. 10, 71, 98

[vL90] J. van Leeuwen, editor. Handbook of Theoretical Computer Science, Volume B:

Formal Models and Sematics. Elsevier and MIT Press, 1990. 137, 148

[VW86] M. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In Symposium on Logic in Computer Science (LICS ’86), Cam-

bridge, MA, June 16-18, 1986, pages 332–344. IEEE Computer Society, 1986.

2, 3, 9, 21, 22, 83

[VW94] M. Vardi and P. Wolper. Reasoning about infinite computations. Information

and Computation, 115:1–37, 1994. 4, 18, 83, 115

[WB98] P. Wolper and B. Boigelot. Verifying systems with infinite but regular state

spaces. In Hu and Vardi [HV98], pages 88–97. 4, 47, 112

[WKS01] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental satisfia-

bility engine. In Proceedings of the 38th Design Automation Conference, DAC

2001, Las Vegas, NV, USA, June 18-22, 2001 [DAC01], pages 542–545. 24, 87

[Wol83] P. Wolper. Temporal logic can be more expressive. Information and Control,

56(1–2):72–99, 1983. 18, 115

[WVS83] P. Wolper, M. Vardi, and A. Sistla. Reasoning about infinite computation paths.

In Proceedings of the 24th Annual Symposium on Foundations of Computer Sci-

ence (FOCS’83), Tuscan, AZ, USA, November 7-9, 1983, pages 185–194. IEEE

Computer Society, 1983. 18, 83

[Yan] B. Yang. SMV models.

http://www.cs.cmu.edu/~bwolen/software/smv-models/. 98, 99

[YS01] J. Yang and C. Seger. Introduction to generalized symbolic trajectory evalua-

tion. In 19th International Conference on Computer Design (ICCD 2001), VLSI

in Computers and Processors, 23-26 September 2001, Austin, TX, USA, Pro-

ceedings, pages 360–367. IEEE Computer Society, 2001. 2

[zCh] The SAT Group at Princeton University. zChaff.

http://www.princeton.edu/~chaff/zchaff.html. 100

http://www.cs.cmu.edu/~bwolen/software/smv-models/
http://www.princeton.edu/~chaff/zchaff.html

150 BIBLIOGRAPHY

[ZMMM01] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven

learning in boolean satisfiability solver. In R. Ernst, editor, Proceedings of

the 2001 IEEE/ACM International Conference on Computer-Aided Design (IC-

CAD’01), San Jose, CA, USA, November 4–8, 2001, pages 279–285. IEEE Com-

puter Society, 2001. 100

Curriculum Vitae

Viktor Schuppan

September 5, 1973 Born in München, Germany

1980 – 1984 Primary school, Putzbrunn

1984 – 1993 Gymnasium Neubiberg

1993 Abitur

1993 – 1999 Studies in Computer Science, TU München

1995 – 1996 Erasmus year at Queen’s University Belfast, UK

1996 Internship at Siemens, München

1997 Internship at HYPO-Bank, München

1999 Diploma in Computer Science, TU München

1999 – 2000 Alternative national service, Klinikum Großhadern

since 2001 Research and Teaching Assistant

Computer Systems Institute, ETH Zurich

151

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Safety and Liveness
	1.2 Counterexamples in Verification
	1.3 Thesis Statement and Contributions
	1.3.1 Reduction
	1.3.2 Büchi Automata for Shortest Counterexamples

	1.4 Outline
	1.5 Previously Published Results

	2 Common Concepts and Notation
	2.1 Background
	2.1.1 Temporal Logic
	2.1.2 Model Checking

	2.2 Preliminaries
	2.3 Kripke Structures as Models
	2.4 Linear Temporal Logic
	2.5 Büchi Automata
	2.6 Translating PLTLB Formulae into Büchi Automata
	2.7 Defining Safety and Liveness
	2.8 Model Checking Linear Time Properties
	2.8.1 Basics
	2.8.2 Lasso-shaped counterexamples
	2.8.3 Model checking using BDDs
	2.8.4 Bounded model checking using SAT solvers
	2.8.5 Abstraction

	3 Symbolic Loop Detection for Finite State Systems
	3.1 Translating Simple Liveness into Safety
	3.1.1 Intuition
	3.1.2 Counter-Based Translation
	3.1.3 State-Recording Translation
	3.1.4 Comparison

	3.2 Translating Fair Repeated Reachability
	3.2.1 First Attempt
	3.2.2 Optimization
	3.2.3 Formalization and Correctness
	3.2.4 Extensions

	3.3 Complexity
	3.3.1 Explicit State Model Checking
	3.3.2 BDD-based Symbolic Model Checking
	3.3.3 Summary

	3.4 Shortest Counterexamples
	3.5 Related Work
	3.5.1 Reduction to and Power of Reachability Checking
	3.5.2 Shortest Counterexamples

	3.6 Summary

	4 Extending to Infinite State Systems
	4.1 Regular Model Checking
	4.1.1 Preliminaries
	4.1.2 Reduction
	4.1.3 Example
	4.1.4 Discussion

	4.2 Pushdown Systems
	4.2.1 Preliminaries
	4.2.2 Reduction
	4.2.3 Complexity
	4.2.4 Shortest Lasso-Shaped Counterexamples

	4.3 Timed Automata
	4.3.1 Preliminaries
	4.3.2 Reduction
	4.3.3 Complexity
	4.3.4 Shortest Lasso-Shaped Counterexamples

	4.4 Related Work
	4.5 Summary

	5 Büchi Automata for Shortest Counterexamples
	5.1 Tight Büchi Automata
	5.2 (Non-) Optimality of Specific Approaches
	5.2.1 Gerth et al. (GPVW)
	5.2.2 Kesten et al. (KPR)

	5.3 A Tight Look at LTL Model Checking
	5.3.1 Virtual Unrolling for Bounded Model Checking of PLTLB
	5.3.2 A Tight Büchi Automaton for PLTLB
	5.3.3 Partial Unrolling

	5.4 Generalization
	5.5 Related Work
	5.5.1 Virtual unrolling
	5.5.2 Tight automata
	5.5.3 Translating PLTLB into automata

	5.6 Summary

	6 Variable Optimization
	6.1 The General Case
	6.2 Removing Constants
	6.3 Removing Input Variables
	6.4 Cone of Influence Reduction for Loop Detection
	6.5 Abstraction Refinement for Loop Detection
	6.6 Utility of ...
	6.7 Related Work
	6.7.1 Completeness in bounded model checking
	6.7.2 Identifying input variables and variable dependencies
	6.7.3 Abstraction and refinement

	6.8 Summary

	7 Experiments
	7.1 A Forward Jumping Counter
	7.2 Real-World Examples
	7.2.1 State-Recording Translation versus Standard Approach
	7.2.2 BDD- versus SAT-based Model Checking of the Tight Encoding
	7.2.3 The Cost of Tightness
	7.2.4 Comparing Variants of Variable Optimization
	7.2.5 A Tight Büchi Automaton in the Standard Approach

	7.3 Summary

	8 Conclusion
	8.1 Contributions
	8.2 Future Work
	8.2.1 State-Recording Translation
	8.2.2 Infinite State Systems
	8.2.3 Tight Büchi Automata

	A Proofs and Auxiliary Lemmas
	B Raw Data
	List of Figures
	List of Tables
	Bibliography

