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Abstract

Fingerprint authentication has gained increasing popularity
on mobile devices in recent years. However, it is vulnera-
ble to presentation attacks, which include that an attacker
spoofs with an artificial replica. Many liveness detection solu-
tions have been proposed to defeat such presentation attacks;
however, they all fail to defend against a particular type of pre-
sentation attack, namely puppet attack, in which an attacker
places an unwilling victim’s finger on the fingerprint sensor.
In this paper, we propose FINAUTH, an effective and efficient
software-only solution, to complement fingerprint authenti-
cation by defeating both synthetic spoofs and puppet attacks
using fingertip-touch characteristics. FINAUTH characterizes
intrinsic fingertip-touch behaviors including the acceleration
and the rotation angle of mobile devices when a legitimate
user authenticates. FINAUTH only utilizes common sensors
equipped on mobile devices and does not introduce extra
usability burdens on users. To evaluate the effectiveness of
FINAUTH, we carried out experiments on datasets collected
from 90 subjects after the IRB approval. The results show
that FINAUTH can achieve the average balanced accuracy
of 96.04% with 5 training data points and 99.28% with 100
training data points. Security experiments also demonstrate
that FINAUTH is resilient against possible attacks. In addition,
we report the usability analysis results of FINAUTH, including
user authentication delay and overhead.

1 Introduction

In recent years, fingerprint sensors have been widely inte-
grated into smartphones and tablets. Combined with Fast
IDentity Online (FIDO) [11] and other protocols, a fingerprint
sensor enables applications [71], such as mobile banking, to
locally authenticate end users instead of asking them to type
passwords on a small touchscreen [1, 7]. It is estimated that
920 million global shipments of smartphones (about 64%)

∗The corresponding authors are Kun He and Jing Chen.

were equipped with a fingerprint sensor in 2017, and the num-
ber will increase to 1.25 billion (about 75%) by 2020 [8].

However, fingerprint authentication is vulnerable to presen-
tation attacks [70], where attackers bypass the authentication
using artificial crafts, e.g. gummy fingers that have fingerprint
impressions, or human-based instruments [39]. To defend
against presentation attacks, hardware-based solutions rely
on additional hardware to acquire biological traits, such as
blood pressure [42], odor [15], oxygen saturation [59], heart-
beat [10], and electrocardiograph [40]. And, software-based
solutions utilize image processing to extract more discrimi-
native physical characteristics, such as the size of fingerprint
ridges [55], density [26], continuity [58], texture [27], and
train the detection model via machine learning methods to
enhance the security against fingerprint spoofs [30, 56].

Unfortunately, existing methods to enhance the security of
fingerprint authentication only focus on liveness detection,
which determines whether the input fingerprint comes from
a live human being. These systems are powerless against
puppet attacks, in which an attacker places an unwilling but
legitimate victim’s finger on the fingerprint sensor, e.g., the
victim is sleeping or passed out. Puppet attack was highlighted
in ISO/IEC 30107 [39], and of increasing concern because
it is easy to perform [2]. Because the fingerprint and other
biological traits are collected from the real and legitimate
user in puppet attacks, existing liveness detection methods all
fail [4].

Even though combining fingerprint with behavioral biomet-
rics is a promising approach in defeating puppet attacks, exist-
ing behavioral biometrics, including keystroke dynamic [34],
gesture pattern [65], and gait pattern [49], are not suitable
to enhance the security of fingerprint authentication due to
the following reasons: i) these methods place extra usability
burdens on users by requiring additional gestures; ii) these
methods rely on behavioral biometric information collected
in a relatively long time, e.g. more than 1 second [65], while
fingerprint authentication happens in 0.29 seconds on average
based on our experiments (Section 7.4). The key challenge
in designing a practical puppet-attack-resistant fingerprint
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authentication is to detect impostors promptly without under-
mining the usability of fingerprint authentication.

To overcome this challenge, we utilize the intrinsic
fingertip-touch characteristics to model users’ movements
in legitimate authentications to defend against all presentation
attacks, including the puppet attack. The term of fingertip-
touch in this paper refers to the behavior completed in an
instant when a user gets the mobile device in hand and applies
his/her finger to fingerprint sensors. We model these move-
ments with acceleration and rotation angle, which can be
retrieved from built-in sensors, such as accelerometer, magne-
tometer, and gyroscope. This is inspired by the fact that users
place their fingers on a fingerprint sensor to perform authen-
tication repeatedly (average 50 times a day [72]) and these
habitual behaviors form stationary and unique muscle mem-
ory [9, 63]. We identify latent time- and frequency-domain
features, and use the convolutional neural network (CNN) to
extract discriminative features from characterized behavior,
i.e., accelerations and rotation angles. We develop an effective
and efficient authentication system named FINAUTH, which
can be easily deployed on mobile devices as auxiliary authen-
tication for fingerprint authentications without introducing
additional hardware or gestures.

Attack Models. We consider the following three types of
attacks: i) Artificial replica attack: the attacker can forge fake
fingerprints to spoof the fingerprint system [17]; ii) Puppet

attack: the attacker can put an unwilling victim’s finger on the
fingerprint sensor [39]; iii) Mimicry attack: the attacker knows
how our approach works and attempts to defeat our approach
by mimicking the victim’s movements in authentication [34].
FINAUTH can defeat the first two types of attackers. Also, it
is difficult for the third type of attackers to bypass FINAUTH.

The contributions of this paper are summarized as follows:

• We propose FINAUTH to complement fingerprint au-
thentication for defending presentation attacks, includ-
ing the puppet attack. FINAUTH models a user’s intrinsic
fingertip-touch behavior during fingerprint authentica-
tion. FINAUTH uses built-in sensors and does not require
additional hardware.

• To evaluate the performance of FINAUTH, we collected
a dataset of fingertip-touch behavior data from 90 sub-
jects. Our experimental results show that FINAUTH can
achieve a balanced accuracy of 96.04% with only 5 train-
ing data points, while the balanced accuracy can be im-
proved to 99.28% with 100 training data points.

• We demonstrate the security of FINAUTH in defeating
three types of attacks, including artificial replica attacks,
puppet attacks, and mimicry attacks. Experiment results
show that attack success rates are all below 0.3% under
the authentication model trained using 100 data points.

The rest of this paper is organized as follows. Section 2
presents the overview of FINAUTH. In Section 3, we intro-

Figure 1: The workflow of FINAUTH.

duce the data preprocessing and the method to characterize
fingertip-touch behaviors. Sections 4 and 5 illustrate feature
processing and classification approaches. We describe details
of experiment design and data collection in Section 6. Sec-
tion 7 reports experimental results of reliability, security, and
usability. We review related work in Section 8, and discuss
our study in Section 9. Section 10 concludes this paper.

2 Overview of FINAUTH

Similar to most authentication schemes, FINAUTH consists
of two phases: enrollment and authentication. In enrollment,
FINAUTH builds a user profile from the first successful finger-
print authentications. After a user profile is built, FINAUTH

enters the authentication phase, in which FINAUTH assists
the fingerprint sensor to authenticate a user.

FINAUTH only employs built-in sensors on smart devices,
including accelerometer, gyroscope, and magnetometer, to
sense phone movements incurred by fingertip-touch behav-
iors. The accelerometer and gyroscope are motion sensors,
which can monitor device movement. The magnetometer is
a position sensor to determine a device’s physical position
in the real frame of reference, which is leveraged for data
calibration to acquire more precise motion information.

As shown in Figure 1, FINAUTH consists of three mod-
ules, including data preprocessor, feature extractor, and au-

thenticator. The data preprocessor runs in the background
to monitor fingerprint authentication events. Upon detecting
fingerprint-inputting, data preprocessor starts to collect ac-
celerometer, gyroscope, and magnetometer data. Then, data
preprocessor uses wavelet denoising method to reduce noise.
FINAUTH characterizes fingertip-touch behaviors using ac-
celerations and rotation angles. For the feature extractor,
FINAUTH generates power spectral density for characterized
fingertip-touch behavior information using short-time Fourier
transform (STFT), and then uses CNN-based feature extractor
to extract features. To profile legitimate users with only suc-
cessful login data points, FINAUTH trains a machine learning
model based on a one-class classifier, which is later used for
authentication.
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Figure 2: Roll, pitch, and yaw.

3 Data Preprocessing

In this section, we present the data collection and preprocess-
ing approaches adopted by FINAUTH. We also illustrate how
FINAUTH characterizes fingertip-touch behaviors.

3.1 Data Collection and Denoising

Data collection. Once a user places her finger on the finger-
print sensor, FINAUTH starts to collect accelerometer, gyro-
scope, and magnetometer data for a short period t with the
sampling rate fs. For each authentication attempt, FINAUTH

collects n (n = t × fs) samples of sensor data. Each sample is
9-dimensional denoted as (ar

x, ar
y, ar

z, gr
x, gr

y, gr
z, mr

x, mr
y, mr

z),
where r stands for raw data, a, g, m represent accelerome-
ter, gyroscope, and magnetometer data respectively, and x,
y, and z represent the three axes. We use a row vector, e.g.
aaar = (ar

x,a
r
y,a

r
z), to denote a data sample from a sensor and

use a column vector, e.g. aaar
x = (ar

x,1, ...,a
r
x,n)

T , to represent all
n samples at one axis (e.g. x-axis).

Denoising. Because slight vibrations, even sounds, can in-
troduce measurable noise to the built-in sensors [43], it is
important to reduce the noise from the sensed data. We apply
wavelet denoising [79], which is widely used in signal pro-
cessing, on the column vectors of the sensed data (e.g. aaar

x). A
denoised sample is represented as (ax, ay, az, gx, gy, gz, mx,
my, mz).

3.2 Characterizing Fingertip-touch Behaviors

From the denoised data, we use accelerations and rotation
angles to characterize fingertip-touch behaviors.

Accelerations. Accelerations of a device can represent the
dynamic force acting upon a device from a user. We use the
accelerations along the three axes at the device coordinate sys-

tem (ax,ay,az) and the net acceleration (a′ =
√

a2
x +a2

y +a2
z )

to model fingertip-touch characteristics. The coordinate sys-
tem of a smartphone is shown as Figure 2.

Rotation angles. A fingertip-touch behavior also causes
a device to rotate slightly. As shown in Figure 2, we use
the classical Euler angle parameterization to represent the
rotations, which are denoted as roll (φ), pitch (θ), and yaw

(ψ). We compute the rotation angles using the sensed data
through the following steps [16, 73]:

1) the coarse angles (φc,θc,ψc) are computed us-
ing accelerometer and magnetometer data as shown in
Eq. 1, 2, and 3 [75].

φc = arctan(
−ay

√

−a2
x +a2

z

) (1)

θc = arctan(
−ax

az

) (2)

ψc = arctan
sin(φc)sin(θc)mx + cos(φc)my + sin(φc)cos(φc)mz

cos(θc)mx + sin(θc)mz

.

(3)

2) to get more accurate angles, we then use the gyroscope
data to get the partial derivatives of φ, θ, ψ with respect to time
( ∂(φ)

∂(t) , ∂(θ)
∂(t) , ∂(ψ)

∂(t) ). The gyroscope measures the angular velocity,
and the dynamic angle can be obtained by integrating the
angular velocity, which is given in Eq. 4 [57].
⎡

⎢

⎢

⎣

∂(φ)
∂(t)
∂(θ)
∂(t)
∂(ψ)
∂(t)

⎤

⎥

⎥

⎦

=

⎡

⎣

1 sin(φc)tan(θc) sin(φc)tan(θc)
0 cos(φc) −sin(φc)
0 sin(φc)/cos(θc) cos(φc)/cos(θc)

⎤

⎦

⎡

⎣

gx

gy

gz

⎤

⎦

(4)

3) we then use extended Kalman filter (EKF) to perform
sensor data fusion, which is widely used for state estimation
and tracking due to its robustness in nonlinear dynamic en-
vironments [52]. The EKF method takes time-varying drift
into account via defining an error metric and updating covari-
ance metric iteratively to minimize this error. Specifically, the
system state vector xxx of EKF in our work is given as Eq 5.

xxx = [qqqT ,wwwT ]T = [q0,q1,q2,q3,
∂(φ)

∂(t)
,

∂(θ)

∂(t)
,

∂(ψ)

∂(t)
]T (5)

where T denotes the transpose operator, wwwT =

[ ∂(θ)
∂(t) ,

∂(ψ)
∂(t) ,

∂(ψ)
∂(t) ], which are estimated values with Eq. 4.

qqq is the quaternion (four-element vector), which can be
acquired based on the relationship between Euler Angles and
quaternion as shown in Eq. 6.

qqq =

⎡

⎢

⎢

⎣

q0

q1

q2

q3

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

cos
φc

2 cos θc

2 cos
ψc

2 + sin
φc

2 sin θc

2 sin
ψc

2
sin

φc

2 cos θc

2 cos
ψc

2 − cos
φc

2 sin θc

2 sin
ψc

2
cos

φc

2 sin θc

2 cos
ψc

2 + sin
φc

2 cos θc

2 sin
ψc

2
cos

φc

2 cos θc

2 sin
ψc

2 − sin
φc

2 sin θc

2 cos
ψc

2

⎤

⎥

⎥

⎥

⎦

(6)

where φc, θc, and ψc are estimated with the fusion of both
accelerometer and magnetometer based on Eq. 1, 2, and 3.
q1, q2, q3, q4 are elements of the unit quaternion.
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Table 1: Time- and frequency-domain features and their normalized fisher’s scores.

Domain Feature Description Normalized Fisher Score of
(aaax,aaay,aaaz,aaa

′,φφφ,θθθ,ψψψ)
T

im
e

Mean The mean of the time series. (0.45,0.01,0.22,0.68,0.86,0.84,0.84)
Standard deviation The standard deviation of the time series. (0.24,0.56,0.31,0.41,0.58,0.32,0.74)
Relative standard deviation The extent of variability in relation to its mean. (0.34,0.15,0.12,0.56,0.71,0.64,0.82)
Sum of absolute differences The sum over the absolute value of consecutive changes in

the time series.
(0.32,0.27,0.72,0.52,0.53,0.72,0.78)

Absolute energy The absolute energy of the time series. (0.63,0.98,0.85,0.57,0.72,0.57,0.37)
Autocorrelation The autocorrelation of the time series. (0.00,0.14,0.15,0.21,0.94,0.62,0.64)

F
re

qu
en

cy

Spectral centroid The center of mass of the spectrum is located. (0.34,0.21,0.38,0.12,0.78, 0.98,0.78)
Spectral spread The average spread of the spectrum in relation to its cen-

troid.
(0.66,0.36,0.32,0.78,0.46,0.82,0.96)

Spectral skewness The measurement of the asymmetry of the probability dis-
tribution of a real-valued random variable about its mean.

(0.85,0.45,0.58,0.84,0.56,0.85,1.00)

Spectral kurtosis The shape of a probability distribution. (0.34,0.17,0.70,0.86,0.62,0.51,0.42)
Power spectral density Average of distribution of power into frequency compo-

nents.
(0.90,0.71,0.86,0.26,0.85,0.68,0.82)

Spectral entropy The complexity of the signal in the frequency domain. (0.94,0.32,0.82,0.21,0.96,0.82,0.89)

We compute accurate quaternions, where the detailed steps
are presented in Appendix B due to the page limit. Finally,
rotation angles can be computed based on Eq. 7.

⎧

⎪

⎨

⎪

⎩

γ = arctan( 2q2q3+2q0q1
2q2

0+2q2
3−1

)

θ = −arcsin(2q1q3 −2q0q2)

ψ = arctan( 2q1q2+2q0q3
2q2

0+2q2
1−1

)

(7)

The outcome of characterizing fingertip-touch behaviors is
represented as (aaax,aaay,aaaz,aaa

′,φφφ,θθθ,ψψψ), where each of element
is an n-dimensional vector.

4 Feature Extraction

We present two methods to extract discriminative features
from fingertip-touch behaviors.

4.1 Time- and Frequency-domain Features

We extract features in the time- and frequency-domain from
(aaax,aaay,aaaz,aaa

′,φφφ,θθθ,ψψψ). As shown in Table 1, we extract six sta-
tistical features in the time domain, including mean, standard
deviation, relative standard deviation, sum of absolute differ-
ences, absolute energy, and autocorrelation. In addition, we
apply fast Fourier transform and extract another six features
in the frequency domain. These features include spectral cen-
troid, spread, skewness, kurtosis, power density, and entropy.
These time- and frequency-domain features are widely used
for time series analysis [24, 44, 46].

Selected Features. We computed the Fisher’s scores [35] for
all aforementioned 84 features with 45,000 data points col-
lected from 90 users to select the most discriminative features.
As the results show in Table 1, the features from rotation an-
gle have higher Fisher’s score than features from acceleration.
Features with a normalized Fisher’s score higher than 0.6 are

selected. The output of features extraction and selection in
time and time-domain is a 43-dimensional feature vector.

4.2 CNN-based Feature Learning

Besides the extracted time- and frequency-domain features,
we also resort to CNN-based feature learning. To this end, we
first apply STFT and convert the time series data (e,g., aaax) to
a two-dimensional power spectral density matrix. Then, we
concatenate these matrices and rely on CNN models to extract
features from them. Figure 3 shows three users’ spectrograms
from aaax, aaay, aaaz, aaa′, θθθ, φφφ, ψψψ, which are visual representations
of power spectral density matrices.

The basic idea of feature learning with CNN is to lever-
age the output of the model’s intermediate layer as features
thanks to the powerful feature representation of deep learning
method [13, 67]. In particular, we train the CNN model to
distinguish different users with collected FINAUTH data, and
employ the first k layers of the trained model as the feature
extractor. Even though the model is trained from a limited
dataset, it can be used to extract generalized features because
of the feature learning ability of CNN, which is also known
as transfer learning [77].

Table 2 shows the structure of our used CNN model. We
use leaky rectified linear units (Leaky ReLu) as the activation
functions for two-dimensional convolution (Conv2d) layers
and fully connected (FC) layers, since it can tackle the van-
ishing gradient problem during the model training phase [50].
For the pooling layers, we use the max-pooling method to
down-sample the input, which controls over-fitting and saves
computational costs by reducing the number of parameters
for training. To avoid over-fitting, we add dropout layers af-
ter each pooling layer. Furthermore, we also consider batch
normalization (BN) layers to normalize the output of the pre-
vious layer, which accelerates model training and increases
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(a) User A.

(b) User B.

(c) User C.

Figure 3: Characterized fingertip-touch behaviors of three users under STFT. From left to right, spectrograms of aaax, aaay, aaaz, aaa′, θθθ,
φφφ, ψψψ.

the stability of the model. The softmax layer is added as the
last layer for prediction, which outputs the categorical proba-
bility distribution of each class. Specifically, the kernel size
of Conv2d and pooling layers is set as 3×3 and 2×2 respec-
tively, because of their better non-linear feature representation
gaining popularity in start-of-art models [36, 38, 67]. The de-
tailed output shape and the number of parameters of each layer
are given as Table 2. The total model contains 202,974 pa-
rameters, including 202,438 trainable and 536 non-trainable
parameters.

5 Authentication With One-class Classifiers

In real-world fingerprint authentication settings, the training
dataset only contains the legitimate user’s data points. There-
fore, it is a one-class classification problem. We use four
methods to profile the legitimate user: i) Pearson correlation
coefficient-based similarity comparison (PCC), ii) one-class
support vector machine (OC-SVM), iii) local outlier factor
(LOF), and iv) isolation forest (IF).

PCC is a similarity metric to measure the linear correla-
tion between two variables. The coefficient is between +1
and -1, where +1/-1 denotes a total positive or negative linear

Table 2: The structure of base CNN model.

# Layer Layer Type Output Shape # Para

1 Conv2d + LeakyReLu 62×126×24 1,536
2 Conv2d + LeakyReLu 60×124×24 5,208
3 Pooling + Dropout +BN 30×62×24 96
4 Conv2d + LeakyReLu 28×60×48 10,416
5 Conv2d + LeakyReLu 26×58×48 20,784
6 Pooling + Dropout +BN 13×29×48 192
7 Conv2d + LeakyReLu 11×27×16 6,928
8 Conv2d + LeakyReLu 9×25×16 2,320
9 Pooling + Dropout +BN 4×12×16 64
10 Flatten 768 0
11 FC+LeakyReLu 180 139,140
12 FC+ Softmax 90 16,290

correlation, and 0 represents none linear correlation. Specif-
ically, after feature extraction, we compute the mean PCC
between the extracted feature vector and fingertip-touch tem-
plates (i.e., saved feature vector during the register phase).
The computed mean PCC is then used to decide whether the
user is authorized.

OC-SVM, an extended algorithm of SVM, maps data points
into high-dimensional feature space with the kernel func-
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Table 3: Summary of the compiled datasets

Dataset Week of Collection # of Subjects / Attackers Postures Device # of Data Points
1 1 †, 8 and 9 ‡ 90 Sitting, standing, lying,

walking, running
OnePlus3 63,000

2A 2, 3, 5, 7 † 24, 24, 22, 21
Sitting OnePlus3

18,200
2B 10, 11, 12, 13 ‡ 62, 61, 59, 53 47,000
3 Added Aug. 2019 64 Sitting Xperia XZ1, Oneplus5,

Vivo X21
3,200

4A
2 †, 10 and 11 ‡ 15 Sitting OnePlus3

3,600
4B 3,600
4C 3,600

†: Data collected at the university; ‡: data collected at the company.

tion and finds the surface of a minimal hyper-sphere which
contains the objective data points as many as possible. The
distance between data points and the hyper-sphere is the clas-
sification score, which is leveraged to conduct prediction.
OC-SVM has been successfully applied to many anomaly de-
tection problems, such as utterance verification [37], malware
detection [31], and online fault detection [78].

LOF measures the local deviation of the data point to its
neighbors [18]. It decides whether a data point is an outlier us-
ing the anomaly score depending on the local density. Specif-
ically, locality density is estimated by k-nearest neighbors
based on a given distance metric. A data point with a substan-
tially lower density than their neighbors will be regarded as
an outlier.

IF is a rapid one-class classification method for high-
dimensional data based on ensemble learning, which assumes
that abnormal data points are easier to isolate from given
one-class instances [47]. IF detects abnormal data points by
subsampling the dataset to construct iTrees, and further in-
tegrate multiple iTrees into a forest to detect abnormal data.
A data point is seen as abnormal when these random trees
collectively produce shorter path lengths for it.

6 Experiment Design and Data Collection

To collect the experiment data, we develop a prototype sys-
tem on Android 7.1 (API level 25). Specifically, our im-
plementation hooks the authenticate() method from the
FingerprintManager class. We set the data collection time
(t) as 0.5 seconds and the sampling rate ( fs) as 200 Hz.

After receiving the IRB approval from our university in
June 2018, we started recruiting subjects for the data collec-
tion, which lasted for 5 months. To qualify for the experiment,
a subject must self-identify as a frequent smartphone user
who had been using fingerprint authentication for more than
a year. 90 subjects were involved in finger-tip behavior data
collection, who were aged from 22 to 45. 39 subjects were
female, and 51 were male. 24 of them were students in our
university, and the rest were employees in a company. Another
15 subjects (4 from our university, 11 from the company), in-

cluding 4 females and 11 males, were recruited to play the
role of an attacker to carry out artificial replica attack, puppet
attack and mimicry attack on the 90 subjects.

We explained to each subject the purpose of this research
project, the data we collect, and the steps we take to protect
their personal identifiable information. During the data col-
lection, we asked each subject to hold a smartphone in hand
as they normally unlock their own devices. To help collect
more distinct data points, we also suggested that they hold the
device in different angles and directions. Table 3 summarizes
the compiled 4 datasets:

1) Dataset-1. For this dataset, we used one smartphone
(OnePlus 3 with 6G RAM) to eliminate factors that could be
introduced by different phones. This device has a capacitive
fingerprint sensor that is integrated with the home button.
In week 1, the 24 subjects from our university were first
asked to enroll their fingerprints on the phone. Then, a subject
needed to perform successful fingerprint logins for 500 times
while sitting (stationary), and for 50 times while standing
(stationary), lying (stationary), walking (moving), and running
(moving), respectively. Note that we only collect the finger-tip
behavior data when a login is successful. In week 8 and 9, the
66 subjects from the company went through the same data
collection procedure. Each subject spent 13 - 17 minutes to
finish this task. As a result, we collected 90×700 = 63,000
data points for the dataset-1.

2) Dataset-2. To evaluate the consistency of the fingertip-
touch behavior features over the long term, we compiled the
dataset-2 with the same subjects after some time intervals: i)
dataset-2A. The 24 subjects from our university came in week
2, 3, 5, 7 to perform 50 successful fingerprint authentications
while sitting; ii) dataset-2B. The subjects in the company did
the same thing in week 10, 11, 12 and 13. Some subjects did
not show up for all the collections. As a result, we collected
65,200 data points in total for the dataset-2.

3) Dataset-3. To evaluate the generalization of FINAUTH

on different devices, we collected the dataset-3 on 3 smart-
phones: Xperia XZ1 (side fingerprint sensor), Oneplus 5 (back
fingerprint sensor), and Vivo X21 (in-screen fingerprint sen-
sor). The 22 subjects from our university were assigned to
Xperia XZ1, while the 42 subjects from the company were
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Figure 4: Artificial fingerprint replica. The left is the mold
used to capture fingerprint; the right is a fake fingerprint
crafted using silicone rubber.

assigned to the other two devices randomly. Each subject was
asked to conduct 50 authentications while sitting. As a result,
we collected 3,200 data points for the dataset-3.

4) Dataset-4. We used artificial replica attack, puppet attack
and mimicry attack to evaluate the effectiveness of FINAUTH.
It is infeasible to ask each attacker to attack all 90 subjects in
all three experiments. To increase the chance of successful at-
tacks, we collected the fingertip-touch data of the 15 attackers
and used Pearson correlation distance matrix to compute the
distance between each attacker and each subject. Then, we
assign each attacker 6 subjects as his/her targets on the basis
of fingertip-touch behavioral similarity:

i) Dataset-4A: artificial replica attack. We crafted a finger-
print spoof using the silicone rubber, as shown in Figure 4,
for each of the 85 subjects (5 dropped out). The spoofs were
tested to make sure they can spoof the original fingerprint au-
thentication. After the experiments, the molds and synthetic
spoofs were destroyed. Each attacker was asked to spoof the
fingerprint sensor while sitting for 50 attempts per subject.
We collected 50×85 = 4,250 data points for the dataset-4A;

ii) Dataset-4B: puppet attack. Each attacker was asked to
hold the device in her/his hand and place a subject’s finger on
the fingerprint sensor 50 times while both of them in sitting.
We collected 4,250 data points for the dataset-4B. Note that
the unwillingness for this study is a subset of all possible
puppet attacks since we do not have data on other kinds of
unwillingness, e.g. the victim is sleeping or passed out;

iii) Dataset-4C: mimicry attack. Each attacker was asked
to carefully observe a subject’s hand and device movement in
a close distance (no more than 2 feet). After the attacker was
confident about what they observed, she/he would mimick the
subject’s fingertip-touch behavior with the crafted fingerprint
spoofs for 50 times. We collected 4,250 data points for the
dataset-4C.

7 Evaluation

In this section, we report the evaluation results of the pro-
posed system. Section 7.1 presents the metrics we used in

measuring the performance. Section 7.2 shows evaluation on
how distinguishable users’ fingertip-touch behaviors are un-
der different conditions using dataset-1, 2, and 3. Section 7.3
evaluates FINAUTH’s effectiveness against presentation at-
tacks using dataset-4. Section 7.4 presents system perfor-
mance of FINAUTH. Section C reports user acceptance of
FINAUTH. Section 7.5 illustrates other design considerations
behind FINAUTH.

Specifically, the base CNN was trained using cross-entropy
as the loss function based on half (22,500) data points of
dataset-1 (collected while sitting) containing fingertip-touch
behavior data from 90 classes (subjects). We pre-trained base
model on a PC with Intel i5-8300 CPU, 16GB RAM, GTX
1060 GPU, and the training process took 42 minutes. Keras
with TensorFlow backend was used for training. The size of
the total model is 1.54 MB, which is lightweight on mobile
devices.

7.1 Evaluation Metrics

We use the following metrics to evaluate the effectiveness
of FINAUTH. True acceptance (TA) means fingertip-touch
behaviors from legitimate users are correctly identified. True
rejection (TR) means fingertip-touch behaviors not from le-
gitimate users are correctly declined. False acceptance (FA)
means fingertip-touch behaviors not from legitimate users are
incorrectly identified as legitimate. False rejection (FR) means
fingertip-touch behaviors from legitimate users are incorrectly
rejected. False acceptance rate (FAR) is defined as FA

FA+T R
,

which measures the proportion of illegal users who gain ac-
cess. False rejection rate (FRR) is defined as FR

FR+TA
, which

measures the proportion of legitimate users who are denied
access. Balanced accuracy (BAC) is a metric used for evaluat-
ing models trained from unbalanced data [19]. It is defined as
the average between true rejection rate (T RR = T R

T R+FA
) and

true acceptance rate (TAR = TA
TA+FR

). We also use receiver op-
eration characteristic (ROC) curves to show dynamic changes
of TAR against FAR at a varying decision threshold for per-
formance comparison. The area under the ROC curve (AUC)
is used to estimate the probability that prediction scores of
authorized users are higher than unauthorized users. While in
presentation attacks resistance evaluation, we leverage FAR,
i.e., attack success rate, as the evaluation criteria, which is the
ratio between the number of incorrectly identified data points
and the number of all attack data points. It implies the proba-
bility of attackers bypassing the authentication system. Note
that, FAR is more important in fingerprint authentication, e.g.,
achieving FAR as low as 10−6 while still maintaining an FRR
of 1% [5].

7.2 Reliability Analysis

To find out how distinguishable each user’s fingertip-touch
behaviors are, we randomly split each user’s data points, train
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Table 4: BAC (%) under different k for CNN-based feature
learning.

# Layer k PCC OC-SVM LOF IF

3 86.72 78.69 84.96 86.15
6 91.27 82.67 87.28 88.91
9 93.53 84.32 94.34 90.09
11 94.65 90.69 97.99 93.63

a model for each of them, and use her/his remaining data
points and other users’ data points to evaluate the model.
We report the performance of using different feature sets,
classifiers, training dataset size, and datasets in the rest of this
section.

7.2.1 Different Feature Sets and Classifiers

CNN-based Feature Learning. We trained the base CNN with
22,500 sitting data points in the dataset-1, and then leveraged
the output of the base model’s intermediate layer (kth layer)
as extracted features. To find the optimal k, we evaluated each
classifier’s performance with 30 training data points from
the first pooling layer (3rd layer) to the first fully-connect
layer (11th layer). Table 4 shows the averaged BAC when
using features extracted with different layers under different
classifiers. As the results show, with the features from the
11th layer, classifiers achieve higher BAC.

Results. After determining the best k for the CNN-based
feature learning, we obtained three feature sets: i) time- and
frequency-domain features (TFF) extracted via feature ex-
traction and selection (Section 4.1); ii) CNN-based features
(CNF) extracted with the pre-trained model (Section 4.2); and
iii) the union of feature sets of the aforementioned two (UnF).

We used the grid search to find the best parameter com-
binations for each classifier. For OC-SVM, we found radial
basis function works best with γ = 0.25 and ν = 0.1. For IF,
the optimal parameter of n_estimators was 20. For LOF,
we used Minkowski distance as the distance metric with the
optimal parameter of n_neighbors as 5.

Figure 5 shows ROC curves of using the three feature sets
under different one-class classifiers. The results indicate that
CNN-based features are more discriminative than time- and
frequency-domain features. Specifically, for PCC and LOF,
the BAC of models using CNN-features is significantly higher
than using time- and frequency-domain features. However,
the performance of OC-SVM and IF of CNN-based features
is poorer. Another observation is that the union of two fea-
ture sets brings slight improvement over only one feature
set. Table 5 shows the BAC, FAR, FRR, and AUC under dif-
ferent feature set and classifier combinations. Even though
UnF + LOF has the best BAC, CNF + LOF is the most reliable
model with low FAR. For the rest of the evaluations, we use
the CNF + LOF approach.

Table 5: BAC (%), FAR (%), FRR (%), and AUC under three
different feature sets and four different one-class classifiers.

Feature Set + Classifier BAC FAR FRR AUC

TFF + PCC 84.41 11.85 19.34 0.9169
TFF + OC-SVM 91.49 5.56 11.45 0.9656
TFF + LOF 93.28 4.32 9.13 0.9767
TFF + IF 96.07 2.51 5.35 0.9915
CNF + PCC 94.65 3.30 7.40 0.9871
CNF + OC-SVM 90.69 6.41 12.21 0.9532
CNF + LOF 97.99 0.86 3.16 0.9974
CNF + IF 93.63 3.72 9.02 0.9789
UnF + PCC 94.76 2.86 7.62 0.9888
UnF + OC-SVM 93.78 4.06 8.37 0.9806
UnF + LOF 98.02 1.52 2.43 0.9975
UnF + IF 96.88 2.03 4.21 0.9938

Table 6: Mean BAC (%), FAR (%), FRR (%), and AUC with
non-overlapping subjects in training base CNN and testing.

Feature Set + Classifier BAC FAR FRR AUC

CNF + LOF 95.34 4.20 5.10 0.9805
UnF + LOF 95.59 3.35 5.47 0.9867

7.2.2 Performance with Non-overlapping Subjects

We also evaluated the performance of FINAUTH when us-
ing non-overlapping subjects in training the base CNN and
evaluating the authentication models. We split these 90 sub-
jects into two groups randomly and evenly. One was used to
train the base CNN as the feature extractor, and the other was
used to evaluate the performance of authentication models.
5-fold cross-validation was used in the testing phase. We used
CNF + LOF and UnF + LOF on the sitting data points in
dataset-1.

Table 6 shows the BAC, FAR, FRR, and AUC with non-
overlapping subjects in training base CNN and testing. The
mean BACs under CNF + LOF and UnF + LOF are 95.34%
(compared with 97.99% in Table 5) and 95.59% (compared
to 98.02%).

7.2.3 Impact of Different Postures

To find out how postures and moving affect the performance
of FINAUTH, we used all of the 63,000 data points of dataset-

1. For each user and each posture, we train a classifier using
30 data points in the training dataset. Specifically, for each
participant, the authentication model was trained with regard
to five different postures respectively. Next, the model was
leveraged to evaluate the performance of different postures.

Figure 7 shows the BAC when using data points collected
in different postures to train authentication models (x-axis)
and evaluate performance (y-axis). The results indicate that
FINAUTH achieves better performance in stationary postures
(e.g., sitting, standing, and lying) than moving (e.g., walking
and running). Authentication models trained in stationary pos-
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(a) Time- and frequency-domain features (b) CNN-based features (c) The union of two feature sets

Figure 5: ROC curves of different feature sets under different one-class classifiers.

(a) Time- and frequency-domain features (b) CNN-based features (c) The union of two feature sets

Figure 6: BAC under different classifiers and different feature sets at varying training set sizes.

tures can be transferred to other stationary postures without
downgrading obviously. If we ignore ‘running’, which is rare
in real-life, FINAUTH achieves over 94% BAC when profiling
a user with 30 data points collected while sitting.

7.2.4 Impact of Training Dataset Sizes

To investigate the impact of training set sizes, we changed the
training set size from 5 to 100 in a step of 5 or 10 to profile
the legitimate users. Figure 6 shows the BAC for different
classifiers with different training set sizes. As expected, the
results show that training with more data achieves a higher
BAC. Using CNN-based features or the union of two feature
sets, LOF outperforms the other three classifiers. With only 5
training data points and CNN-based features, LOF achieves
the BAC of 96.04%, where its FAR is 1.12% and FRR is
6.80%. With 100 training data points, LOF achieves the BAC
of 99.28%, where its FAR and FRR are 0.045% and 1.39%
respectively.

7.2.5 Consistency Over Time

To find out how consistent users’ fingerprint behaviors are
over a long period, we used dataset-2 and the 45,000 sitting
data points of dataset-1. The training data points were se-
lected from dataset-1 (the first week of data collection), and
test data points were from dataset-2.

Figure 7: BAC of FINAUTH under different postures.

Figure 8 shows the mean BAC, FAR, and FRR over dif-
ferent weeks with regard to dataset-2A and dataset-2B. As
the results show, behavior variability has an impact on the
usability of FINAUTH, but little impact on security. In particu-
lar, as shown in Figure 8(a), the BAC decreases from 96.34%
to 90.13% under dataset-2A, where its FRR increases from
6.20% to 15.46% in 7 weeks. While in Figure 8(b), the BAC
decreases from 96.19% to 93.96% under dataset-2B, where
its FRR increases from 6.50% to 9.69% in 5 weeks. The
FAR is almost stable in dataset-2A&B. This demonstrates
that FINAUTH is resilient against behavioral variability in a
short period. In particular, we assume that, in real applica-
tions, the problem of behavioral variability can be tackled by

USENIX Association 29th USENIX Security Symposium    2227



(a) Dataset-2A

(b) Dataset-2B

Figure 8: BAC of FINAUTH evaluated in different weeks
using two datasets with different intervals.

Table 7: Mean/standard deviation of BAC (%), FAR (%),
and FRR (%), tested on four smartphones (RAM/Snapdragon
CPU) with the training set size as 30.

Device Mean/Std BAC FAR FRR

Oneplus3 (6G/ 820) 97.99/0.37 0.87/0.07 3.16/0.74
Oneplus5 (6G/ 835) 98.41/0.56 0.27/0.04 2.91/1.13
XperiaXZ1 (4G/ 835) 96.83/0.52 1.69/0.11 4.65/0.99
VivoX21 (6G/ 660AIE) 98.64/0.18 0.58/0.05 2.13/0.36

retraining the authentication model with newly collected data,
namely model updating mechanism, which was adapted in
Face ID [3].

7.2.6 Impact of Different Devices

To find out how the fingertip-touch data on different devices
would affect the robustness of FINAUTH, we evaluated with
the 45,000 sitting data points of dataset-1 and dataset-3. As
shown in Table 7, the BAC on Oneplus3, Oneplus5, Xpe-
ria XZ1, and Vivo X21 are 97.99%, 98.41%, 96.83%, and
98.64%, respectively. There exist variances among different
devices in terms of BAC. It achieves the best performance
with a BAC of 98.64%, where its FAR and FRR are 0.58%
and 2.13% respectively. The worst result on Xperia XZ1
achieves the BAC of 96.86%, where its FAR and FRR is
1.69% and 4.65% respectively.

Table 8: Mean/standard deviation of FAR (%) and prediction
score under three types of attacks when tested using models
trained with 100 legitimate data points to profile users.

Type Artificial Replica Attack Puppet Attack Mimicry Attack

FAR 0.08/0.06 0.12/0.08 0.25/0.14
Score −0.29/0.15 −0.62/0.13 −0.37/0.10

‘

7.3 Evaluation of Presentation Attacks

To investigate the defense against presentation attacks, we
utilize dataset-4. We report the FAR under CNF + LOF at
varying training dataset sizes.

Figure 9(a) shows FAR under artificial replica attack using
dataset-4A with varying training dataset size. The overall
BAC is less than 3%. Specifically, the FAR is 2.01% when
the model is trained with 10 data points, and it improves to
0.08% using 100 data points.

Figure 9(b) shows the FAR under puppet attack using
dataset-4B with varying training dataset size. The results in-
dicate that FINAUTH resists against puppet attack with mean
FAR below 2%. Specifically, the mean FAR is 1.93% under
the model trained with only 5 data points, and it is enhanced
to 0.12% under the model trained using 100 data points.

Figure 9(c) shows the FAR under mimicry attack using
dataset-4C. The results show that it is very difficult for attack-
ers to mimic the fingertip-touch behavior of users. The attack
success rate is 3.10% under models trained with 5 data points,
and it improves to 0.25% with 100 data points.

As the results show, FINAUTH is effective in defeating all
three kinds of presentation attacks. Using more legitimate data
points to train the authentication model can strengthen the
defense against various attacks. FAR, and prediction scores
under authentication models trained using 100 data points
are shown in Table 8. In particular, for prediction scores of
all attack data points, the distribution and its kernel density
evaluated under Gaussian kernel are shown in Figure 10.

7.4 System Performance

We analyzed the system performance of FINAUTH on One-
plus 3, Redmi Note 4X, Xperia XZ1, and Vivo X21. On each
device, we performed authentication with the prototype for
50 times to evaluate the authentication delay, memory usage,
and power consumption.

Authentication Delay. The delay is defined as the interval
between the time when the authentication system detects the
fingerprint authentication event to the time when the system
generates the result. It consists of the time for data collection,
data processing, and classification. Table 9 shows the delay
of four smartphones. The average delay is 713.34 ms, 722.93
ms, 630.72 ms, and 692.15 ms of our method under the four
smartphones respectively. Figure 11 shows cumulative dis-
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(a) Artificial replica attack (b) Puppet attack (c) Mimicry attack

Figure 9: The FAR, i.e., attack success rate, under the authentication trained with different training set sizes.

(a) Artificial replica attack (b) Puppet attack (c) Mimicry attack

Figure 10: The kernel density of attack data points’ prediction score under authentication models trained with 100 data points.

tribution function (CDF) of delay on different smartphones
with and without FINAUTH. For 90% attempts, the delay of
FINAUTH is less than 742.39 ms, 749.83 ms, 643.26 ms, and
714.54 ms for Oneplus 3, Redmi Note 4X, Xperia XZ1, and
Vivo X21, respectively. Overall, FINAUTH only requires an
average delay of 689.79 ms. In addition, the delay of our
method is lower than existing methods on smartphones, such
as PINs, pattern lock, and facial authentication. This implies
that FINAUTH can authenticate users timely.

Memory Usage. We used Trepn Profiler 1 and Android
Studio Profiler 2 to monitor the memory usage of FINAUTH.
Table 9 shows the memory usage of FINAUTH without con-
sideration of graphics on four smartphones. Specifically, the
memory usages on four different smartphones are 62.99 MB,
57.82 MB, 48.77 MB, 81.19 MB. The average memory usage
is 62.69 MB, which incurs additional 14.92 MB compared
with the original fingerprint authentication.

Power Consumption. Trepn Profiler was employed to pro-
vide mW -level power consumption estimation. Power con-
sumption is measured by subtracting screen power consump-
tion while the screen is on. The average power consumption
overhead is 23.13 mW , which incurs additional 6.90 mW com-

1https://developer.samsung.com/game/trepn
2https://developer.android.com/studio/profile/cpu-

profiler

pared with original fingerprint authentication (Table 9).
To sum up, FINAUTH achieves a low authentication de-

lay of 689.79 ms on commercial smartphones. It requires a
memory usage of 62.69 MB and power consumption of 23.13
mW . Compared with the original fingerprint authentication, it
introduces very little overhead and short delay.

7.5 Other Design Considerations

To verify if our feature extraction is effective, we also at-
tempted to construct another CNN-based feature extractor to
extract features from denoised sensor data directly without
characterizing fingertip-touch behavior. We employed a simi-
lar model structure as shown in Table 2 and pre-trained the
model with power spectral matrices of denoised sensor data
as input to distinguish different users. Then, we implemented
end-to-end feature learning by inputting power spectral matri-
ces of denoised sensor data to the model to extract features.

Figure 12(a) shows ROC curves when implementing end-
to-end feature learning with CNN. Its best BAC is 61.10%
with the training set size as 500. While under our designed
fingertip-touch behavior characterizing method (Section 3.2),
the BAC reaches 93.11% with only 50 training data points
to profiling the legitimate user. As the results show, the step
of fingertip-touch behavior characterizing significantly elimi-
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Table 9: Mean authentication delay (ms), memory usage (MB), and battery power consumption (mW ) of FINAUTH on four
different devices (CPU clock rate, GHz).

Device
With FINAUTH Without FINAUTH

Delay Memory Power Delay Memory Power
Oneplus 3 (2.15) 713.34 62.99 19.35 257.36 47.82 12.67
Redmi Note 4X (2.0) 722.93 81.19 28.41 342.83 43.56 19.25
Xperia XZ1 (2.45) 630.72 48.77 18.44 293.14 36.75 9.83
Vivo X21 (2.2) 692.15 57.82 26.32 271.16 62.94 23.18

Note that, the authentication delays for PIN, pattern lock, facial authentication are 1.25 [81], 3.14 [81], and 1.48 seconds [6].

(a) Original fingerprint authentication

(b) FINAUTH

Figure 11: Authentication delay on different devices

nates relying on deeper models and a larger number of training
data points.

We also evaluated an approach that utilizes a deep learning
classification model [23]. We utilized the ALOCC model [60],
which was proposed to combine a generative adversary net-
work and an autoencoder to achieve one-class classification.
This model combines these two networks to learn the self-
distribution of the input in the training phase. It determines
whether a data point is an outlier by comparing the distance
between its input and output with a threshold. In our experi-
ments, the input of this model is power spectral matrices of
accelerations and rotation angles.

Figure 12(b) shows ROC curves under different training set
size. The best BAC to recognize different subjects is 76.14%,
which is significantly poorer than our previous methods. We
suspect the reason is that ALOCC relies on a large number
of training data points to learn self-distribution from input
one-class data to enable the network robust.

(a)

(b)

Figure 12: (a): ROC curves when using CNN to learn fea-
tures from denoised sensor data, (b): ROC curves when using
ALOCC model as one-class classifier.

8 Related Work

Fingerprint Presentation Attack Detection. Fingerprint au-
thentication is vulnerable to presentation attacks, which can
be carried out easily at a low expense [39]. To enhance
its security, various methods have been proposed, including
the hardware-based and the software-based. Hardware-based
methods acquire life signs to determine the liveness of the in-
put fingerprint, such as blood pressure [42], odor [15], oxygen
saturation [59], heartbeat [10], and electrocardiograph [40].
These methods rely on dedicated hardware integrated with
fingerprint authentication systems. Software-based methods
leverage image processing methods to extract discriminative
features from fingerprint images and utilize machine learning
techniques to enhance the defense against fingerprint spoofs.
Some methods concentrate on the fine-grained characteris-
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tics of captured fingerprint images, such as skin perspiration
through the pores [54], skin deformation [12], and image
quality [33]. Other methods resort to powerful deep learning-
based approaches to learn features to distinguish between true
and synthetic fingerprints [30, 56]. Existing hardware-based
and software-based methods only focus on fingerprint live-
ness detection. They ignore the intended puppet attack, where
the adversary may approach the victim and apply the victim’s
finger to the fingerprint sensor when the victim is unwill-
ing, e.g., sleeping and fainting. The significantly overlooked
problem motivates us to enhance the widely used fingerprint
authentication method.

Behavioral Biometrics Authentication. Behavioral biomet-
rics authentication authenticates users based on inherent and
unique user’s behavior patterns, such as keystroke dynam-
ics [25,34,45,65], signature [64], gesture [28,65,68], and gait
patterns [49], where behaviors are captured through sensors
on mobile devices. However, they are vulnerable to behavior
variability in real applications. To handle this issue, behav-
ioral biometric was also designed to fuse with physiological
features to provide robust multi-touch authentication [69].
Besides, behavioral characteristics also served as comple-
mented authentication factor to enable traditional knowledge-
based authentication schemes (i.e. password/PINs, and pat-
tern locks) resilient against security threats in a highly usable
way [21,41,48]. Existing behavioral biometrics was designed
to authenticate users when performing specific behaviors,
such as typing or touching on a screen, writing a signature, or
taking a walk. However, it is extremely unnatural to perform
such behaviors during fingerprint authentication to enhance
its security. Moreover, these methods are necessary to collect
behavior data for a relatively long time (e.g., more than 1
second) [65], which will severely undermine the usability if
combining these methods with fingerprint authentication. Our
proposed system overcomes such challenges. We compare the
differences in research question, authentication delay, feature
extraction and classification methodologies of these systems
in Appendix A.

9 Discussion

9.1 Alternatives to CNN

We chose to use CNN in FINAUTH, because Bai et al. showed
that a simple convolutional architecture outperforms canon-
ical recurrent networks across a diverse range of sequence
modeling tasks and datasets [14]. Nevertheless, it is worth-
while to evaluate the performance of recurrent neural network
(RNN) and long short-term memory (LSTM) networks in
future work.

9.2 Limitations

Although we took great efforts to maintain our studies’ valid-
ity, there are some limitations in our studies and experiments.
For example, behavior variability and different postures may
incur additional false rejection, and undermine the usability
and robustness of our method. Also, FINAUTH requires the
user to hand-hold the device. If the device is placed on a
desktop stationarily, FINAUTH will fail to work. To solve this
issue, FINAUTH can be improved by reminding users to pick
the device during authentication if the device is detected not
being handheld. It is feasible to detect whether the device
is on-hand or on-table using the built-in accelerometer [29].
Also, FINAUTH may falsely reject a legitimate user if she/he
uses one hand to register while the other hand to perform
authentication. FINAUTH can also be enhanced by reminding
users to get the device in the right hand if the device is not.

The datasets we collected were from limited subjects,
in which demographic characteristics, e.g., genders, regions,
ages, were not perfectly balanced. Fingertip-touch behaviors
may differ between males and females, which we did not con-
sider. Older users, who have worked with their hands a lot and
even have fingerprints worn away, may also have different
fingertip behaviors from the general public. In data collec-
tion, even though each subject was told to hold the device in
different angles and directions to help collect more distinct
data points, they were not required to place the phone down
between attempts for their convenience. To enable FINAUTH

to work in real applications, it should further be tested to find
out other underlying influential factors, which might under-
mine the performance. As for these older users with their
fingerprints worn away, the behavior-based methods might be
effective for them. Another concern is user privacy security.
Since the sensor data in FINAUTH is related to user behav-
ior, preventing the sensor data from illegal access is of great
significance.

9.3 Advanced Attacks

Besides the aforementioned three types of presentation at-
tacks, there also exist the following advanced attacks:

1) Sensor data injecting attack. In FINAUTH, raw sensor
data are acquired by calling operating system APIs, then pro-
cessed and input into an authentication model. Due to the
imperfection of machine learning models, the adversary can
generate adversarial examples to fool and bypass the authen-
tication model by querying models repeatedly [22]. Next, the
attacker can inject adversarial data to the sensor dataflow by
hijacking OS APIs. In this paper, we did not consider this
type of attack.

2) Adversarial input. The following adversarial machine
learning attacks are possible: i) model reverse attack [32]: the
attacker aims to infer the training data points used to build
the authentication model by querying the model interactively;
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ii) membership inference attack [66]: the attacker aims to
infer whether the constructed data points belong to train set;
iii) model stealing attack [74]: the attacker aims to use as
few queries as possible to compute an approximation model
that closely matches the target authentication model; iv) gen-

erating adversarial examples [22, 53]: the attacker aims to
generate adversarial examples to fool and bypass the authen-
tication model by querying the target model interactively.

3) Robotic attack. Robotic attack is also a threat of behav-
ioral biometrics [51]. For instance, the attacker can program
the robotic arms, such as a Lego robot, to imitate legitimate
user’s fingertip-touch characteristics [61, 62]. In this attack
scenario, even though the attacker has none knowledge of
authorized user’s fingertip-touch characteristics, he/she could
conduct lots of trials. Eventually, it is possible for attackers
to find out the correct behavior patterns and drive the robotic
arms to perform this specific behavior. Defending against this
type of attack is also beyond the scope of our work.

9.4 Future Work

To make FINAUTH more reliable and secure, there are sev-
eral improvements to pursue in the future: i) enhancing the

CNN-based feature extractor. In our experiments, the CNN-
based feature extractor is pre-trained with limited data points.
Collecting data from more users will significantly generalize
the feature extractor; ii) mitigating the impact of postures.

Building the posture detection model using accelerometer
data seems a promising method to tackle this problem [80];
iii) eliminating the impact of behavioral variability. This prob-
lem can be tackled by retraining user authentication models
using newly collected data to update users’ profiles with time
elapsing. Similar approaches have been used in FaceID [3];
iv) investigating reliability using more data points. To make
FINAUTH more reliable in real-world scenarios, we can con-
tinue the evaluation with a more diverse population in the
long-term and improve its performance.

10 Conclusion

In this paper, we presented FINAUTH, which complements
fingerprint sensors to defend against presentation attacks, es-
pecially the puppet attack. FINAUTH models the fingertip-
touch characteristics when users apply their fingers to fin-
gerprint sensors. It relies upon common built-in sensors to
capture instant behavioral characteristics to authenticate dif-
ferent users. We designed effective methods to characterize
the fingertip-touch behaviors and demonstrated that fingertip-
touch behavior is distinguishable from person to person dur-
ing fingerprint authentication. To evaluate the performance
of FINAUTH, we compiled datasets from 90 subjects. The
evaluation results demonstrate that FINAUTH is robust and
can verify legitimate user with high BAC under minimum
computation efforts while successfully denying the access

requests from unauthorized users with a low false acceptance
rate.
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A Detailed Comparison with Other Methods

Besides the brief related work in Section 8, we also provide a
detailed comparison between FINAUTH and typical methods
published on top venues. The comparison consists of the
following aspects, including design goal, attack models, used
features, and classification, which is shown in Table 10.

B Sensor Fusion based on EKF

We present the method for sensor data fusion based on EKF:
1. Initialize quaternion as Eq. 6.
2. Define the system state vector xxx as Eq. 5.
3. Apply normalization to three sensor data.

zzza =
[ax,ay,az]

T

||aaa||
(8)

zzzm =
[mx,my,mz]

T

||mmm||
(9)

zzzg =
[gx,gy,gz]

T

||ggg||
(10)

4. Calculate the projection of the altitude vector along three
axes.

zzze =

⎡

⎣

2(q1q3 −q0q2)
2(q2q3 +q0q1)
1−2(q2

1 +q2
2)

⎤

⎦ (11)

5. Then calculate the estimate error.

eeea = zzza − zzze (12)

eeem = zzzm − zzze (13)

eeeg = zzzg − zzze (14)

6. Define the angle matrix HHH.

HHH =

⎡

⎣

−2q2 2q3 −2q0 −2q1 0 0 0
2q1 2q0 2q3 2q2 0 0 0
0 −4q1 −4q2 0 0 0 0

⎤

⎦ (15)
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Table 10: Comparison with other biometric authentication systems on mobile devices.

Paper Design goal Features Classification

[28] Using movements of devices when answering a phone call to au-
thenticate users

Time-domain features from accelerometer and orien-
tation sensor

DTW-D1

DTW-S2

[45] Using user’s finger sliding gesture patterns to authenticate users Sliding gesture behavioral features, such as moving
distance, duration, etc. from multi-touch screen, ac-
celerometer, orientation, and compass

Binary SVM

[68] Using hand movement, orientation, and grasp to authenticate users Time-domain features from accelerometer, orientation
sensor and magnetometer

SM3, SE4, OC-
SVM

[25] Using the sequence of rhythmic taps/slides to authenticate users Time-domain features from multi-touch screen Binary SVM
[69] Fusing hand geometry and hand gesture behavioral information on

screen to authenticate users
Hand-gesture related behavioral features including
velocity, pressure, angle, etc. from multi-touch screen

KNN,
OCSVM

[48] Using the physical vibration signal incurred by the finger-input to
authenticate users

Spectral point-based features, MFCC-based features
from vibration motor and receiver

DTW5, EMD6

[76] Using fitness data from wearable devices to authenticate users Time- and frequency-domain features from step
counts, heart rate, calorie burn, and metabolic equiva-
lent of task

Binary SVM

FINAUTH Defending against puppet attack in fingerprint authentication Time- and frequency-domain features, CNN-based
features from accelerations and rotation angles

OC-SVM,
PCC, LOF, IF

1 Dynamic Time Warping Distance. 2 Dynamic Time Warping Similarity. 3 Scaled Manhattan. 4 Scaled Euclidian. 5 Dynamic Time
Warping. 6 Earth Moving Distance.

7. Update the covariance matrix of the estimate error PPPe.

PPPek
= PPPek−1 +HHHPPPHHHT (16)

where PPP is the covariance matrix of the system, k is the
timestamp. Both PPPe and PPP are initialized with small val-
ues. We initialize PPPe and PPP as diag(10−4,10−4,10−4) and
diag(10−4,10−4,10−4,10−4,10−4,10−4,10−4) respectively,
where diag denotes diagonal matrix.

8. Update the gain of EKF with the covariance matrix PPPek
.

KKK = PPPHHHT PPP−1
ek

(17)

9. Update the state vector with the updated Kalman filter’s
gain.

qqqk = qqqk−1 +KKK(eeea + eeem) (18)

wwwk = wwwk−1 +KKKeeeg (19)

where k is the timestamp.
10. Update the covariance matrix of the whole system.

PPP = PPP−KKKHHHPPP (20)

11. According to the state vector, acquire the accurate an-
gles as Eq. 7.

C User Acceptance Study

To find out how users perceive FINAUTH, we recruited an-
other 43 subjects, including 12 females and 31 males. These
subjects did not participate in the data collections as shown
in 3. The subjects were asked to use FINAUTH to perform
authentication on their smartphones for one week, and then
rate our system. Instead of using system usability scale [20] to
measure usability, we focused on convenience, authentication
delay, and FRR by asking the following three questions to all
subjects:

Q1 Was it easy and convenient to use our system compared
to original fingerprint authentication? (-2: Not at all, -1: Little,
0: Neutral, 1: Somewhat, 2: Very.)

Q2 Did you feel obvious delay during authentication com-
pared to the original fingerprint authentication? (-2: Very, -1:
Somewhat, 0: Neutral, 1: Little, 2: Not at all.)

Q3 How often were you rejected by the FINAUTH? (-2:
Usually, -1: Often, 0: Seldom, 1: Rarely, 2: Never.)

For these questions, we employ 5 levels, from -2 to +2, to
represent different levels of user preferences, where +2 corre-
sponds to fully positive and -2 corresponds to fully negative
about the system experience. The average ratings of the three
questions are all positive at 1.93, 1.44, 1.81, respectively.
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