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Abstract

Nonalcoholic fatty liver disease (NAFLD) is strongly associ-
ated with the metabolic syndrome and type 2 diabetes and 
independently contributes to long-term complications. Being 
often asymptomatic but reversible, it would require popula-
tion-wide screening, but direct diagnostics are either too in-
vasive (liver biopsy), costly (MRI) or depending on the exam-
iner’s expertise (ultrasonography). Hepatosteatosis is usually 
accommodated by features of the metabolic syndrome (e.g. 
obesity, disturbances in triglyceride and glucose metabo-
lism), and signs of hepatocellular damage, all of which are 
reflected by biomarkers, which poorly predict NAFLD as sin-
gle item, but provide a cheap diagnostic alternative when 
integrated into composite liver fat indices. Fatty liver index, 
NAFLD LFS, and hepatic steatosis index are common and 
accurate indices for NAFLD prediction, but show limited ac-
curacy for liver fat quantification. Other indices are rarely 
used. Hepatic fibrosis scores are commonly used in clinical 
practice, but their mandatory reflection of fibrotic reorgani-
zation, hepatic injury or systemic sequelae reduces sensitiv-
ity for the diagnosis of simple steatosis. Diet-induced liver fat 
changes are poorly reflected by liver fat indices, depending 
on the intervention and its specific impact of weight loss on 
NAFLD. This limited validity in longitudinal settings stimu-

lates research for new equations. Adipokines, hepatokines, 
markers of cellular integrity, genetic variants but also simple 
and inexpensive routine parameters might be potential com-
ponents. Currently, liver fat indices lack precision for NAFLD 
prediction or monitoring in individual patients, but in large 
cohorts they may substitute nonexistent imaging data and 
serve as a compound biomarker of metabolic syndrome and 
its cardiometabolic sequelae.
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Nonalcoholic fatty liver disease (NAFLD)
NAFLD is defined when hepatic steatosis is present in at least 
5% of hepatocytes in liver histology, provided that there are 
no secondary causes of fatty liver (FL), such as excessive 
alcohol abuse, steatogenic medications, or specific chronic 
liver disease (e.g., chronic viral hepatitis C). NAFLD can be 
histologically classified into nonalcoholic fatty liver (NAFL) 
without evidence of hepatocellular injury and nonalcoholic 
steatohepatitis (NASH) with inflammation and ballooning of 
hepatocytes, which can finally lead to liver fibrosis, cirrhosis, 
or hepatocellular carcinoma. Environmental factors, such as 
unhealthy diet or lack of exercise, contribute to the progres-
sion of NAFLD, providing linkage to obesity, type 2 diabe-
tes mellitus (DM), dyslipidemia, hypertension, or the entire 
metabolic syndrome (MetS).1,2 In general, lipids that cannot 
be stored in adipocytes are deposited in ectopic tissue, such 
as liver, muscle, or pancreas.2 Fatty liver itself results in he-
patic insulin resistance (HIR), disinhibition of hepatic glucose 
production and dysglycemia. Prevalence in the general popu-
lation has increased to about 25%3 and there is also a high 
prevalence in obese children (about 7–8% population-wide 
and above 30% in obesity-enriched studies).4 The global 
presence of NAFLD in patients with DM is 55.5% and attains 
68% in Europe.5 The presence of NAFLD and increasing liver 
enzyme levels are predictors for DM development6,7 while 
the reduction of liver fat reduces the DM risk irrespective 
of weight loss.7 Although obesity is the most commonly re-
ported cause of NAFLD, there is a high number of nonobese 
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or lean persons with NAFLD8,9 with comparable long-term 
risks as obese NAFLD patients.10 The prevalence of NAFLD in 
lean persons is estimated by around 10%, the global preva-
lence of lean NAFLD reaches 4% and within all NAFLD cases, 
around 20% are neither overweight nor obese.8,9

The pathogenesis of NAFLD is influenced by several fac-
tors. Genome-wide association studies (GWAS) have found 
several single nucleotide polymorphisms (SNPs) associated 
with an increased risk of liver diseases. Loss of function mu-
tations in the genes for the patatin-like phospholipase do-
main-containing protein 3 (PNPLA3),11–14 transmembrane 
6 superfamily member 2 (TM6SF2),11–15 and glucokinase 
regulator (GCKR) increase liver fat.11 Other SNPs in the 
membrane bound O-acyltransferase domain-containing 7 
(MBOAT7) gene11,16,17,18 and the 17β-hydroxysteroid dehy-
drogenase type 13 gene (HSD17B13) have an impact on the 
risk of NAFLD onset and severity.19–22

In the general setting of the metabolic syndrome (MetS), 
overconsumption or unbalanced distribution of carbohy-
drates and fats leads to accumulation of lipids in the liver. In 
interaction with nutrient-specific transcription factors (such 
as ChREBP and SREPB1), lipogenesis is promoted over lipoly-
sis and ß-oxidation.23,24 Biochemical alteration of those lipids 
(e.g. peroxidation) augments the burden to liver function be-
yond simple storage, inducing oxidative and metabolic stress 
which progresses from simple NAFLD to NASH, fibrosis, cir-
rhosis and hepatic cancer. The progression from low-grade 
steatosis to severe hepatic damage is promoted by several 
independent factors including diet, gut microbiome, genetic 
background, metabolic comorbidities, and their endocrine 
sequelae.25

The strong correlation between NAFLD and the develop-
ment of DM underlines the importance of early diagnosis of 
NAFLD regarding the prevention and dietary intervention in 
patients with prediabetes or DM. Improvement in hepatic 
(e.g., HCC) and extrahepatic outcomes can also be achieved 
by early detection of mild steatosis. In recent studies, the in-
cidence of HCC in patients with NASH cirrhosis was 0.5–2.6% 
and 0.1–1.3/1,000 patient-years in NAFLD patients without 
cirrhosis. Early diagnosis of the highly common NAFLD is cru-
cial,26–28 especially as it is fully treatable at that point. Ge-
netic variations, alterations of lipid and glucose metabolism, 
clinical features of MetS and the biochemical fingerprint of 
hepatic damage can be detected in the blood, allowing pre-
diction and monitoring of NAFLD with minimal invasiveness.

Diagnosis of NAFLD
Liver biopsy is the gold standard for the detection of intrahe-
patic lipids (IHL) and liver fibrosis. It is also the only direct 
measure of tissue inflammation. The NAFLD activity score 
evaluates steatosis, inflammation, and hepatocyte balloon-
ing, while the fibrosis activity score (FAS) provides a semi-
quantitative estimation of the grade of fibrosis.29 Neverthe-
less, biopsies have limited application in clinical routine due 
to high costs, sampling errors, and risk to patients. NAFLD 
can occur as nonhomogeneous patchy steatosis, therefore 
biopsies can miss highly affected areas. Biopsies have risks 
of internal bleeding or biliary leakage, especially in patients 
with liver fibrosis. These patients are at higher risk for pro-
gressing liver disease and require a bioptic diagnosis in order 
to quantify liver damage and to rule out specific (e.g. mono-
genetic) causes of liver disease. Biopsies should therefore 
preferably be used on patients with assumed liver fibrosis 
or steatohepatitis, as the highly prevalent, simple, often 
asymptomatic NAFLD should not be routinely diagnosed by 
invasive liver biopsies.30

Another option for diagnosing NAFLD that can be used 
quickly and cost-effectively in the clinical setting is the use of 
ultrasound-based techniques. This method allows a noninva-
sive examination of the liver. By observing parameters, such 
as liver size and shape, parenchyma echogenicity, and imag-
ing of hepatic vessels, steatosis can be staged using vari-
ous scores and indices. There are also quantitative methods 
including the controlled attenuation parameter (CAP) based 
on the Fibro Scan system and the speed of sound estimation 
that can be used for the evaluation of hepatic fat content. 
The disadvantages of the conventional ultrasound technique 
are the low sensitivity of detecting mild steatosis, the de-
pendence of the examination on the observer, and the dif-
ficulty using in obese patients, which is often associated with 
NAFLD.31 CAP has 87% sensitivity and 91% specificity for 
mild steatosis, 85% sensitivity and 74% specificity for mod-
erate steatosis, and 76% sensitivity and 58% specificity for 
severe steatosis.32 In order to use the Fibro Scan system in 
obese patients, an XL probe has been developed, detecting 
the degree of steatosis and fibrosis with higher accuracy than 
the initial M-probe.33 As in 20–50% of all HCC cases, not 
pre-existing cirrhosis is found, monitoring of NAFLD before 
severe fibrosis is necessary. Also, a rather common scenario 
of NAFLD monitoring affects patients with pronounced obe-
sity, in which ultrasound examinations are quite complicated. 
For the sake of HCC prevention, steatosis measurements in-
dependent of high-grade fibrosis and obesity are warranted.

Magnetic resonance imaging (MRI) techniques, such as 
proton magnetic resonance spectroscopy (1H-MRS) or MRI-
estimated proton density fat fraction (MRI-PDFF) are other 
noninvasive methods to determine liver fat content.34 MRI-
PDFF has also been shown to provide information about the 
histological progress accompanying steatosis, which ultra-
sound-based techniques and computed tomography can-
not provide.35,36 Although MRI-based techniques are highly 
sensitive and involve no radiation exposure, they have some 
limitations in clinical practice such as high costs or clinical 
contraindications (severe obesity, claustrophobia, or metal 
implants). For those reasons, methods are needed to de-
tect NAFLD rapidly, cost-effectively, noninvasively, and with-
out clinical contraindications. Some biomarkers have already 
been developed for that purpose, even for the estimation of 
the amount of hepatic steatosis.

Liver fat scores
Owing to the increasing prevalence of NAFLD,3 NASH-re-
lated liver transplantation,37 and the risk of liver, meta-
bolic, and cardiovascular malignancies,1,2 early diagnosis of 
NAFLD is important. Reduction of liver fat through lifestyle 
interventions (e.g. exercise or dietary intervention)38 can 
lead to improvement of cardiovascular risk and metabolic 
status7 and might also prevent progression to NASH and 
fibrosis. Liver fibrosis scores including FIB-4, the NAFLD fi-
brosis score (NFS), BMI-ALT/AST-Ratio-DM (BARD) score, 
and the enhanced liver fibrosis score (ELF) are capable of 
differentiating liver fibrosis from nonfibrotic NAFLD. How-
ever, they are limited in their prediction of simple steatosis 
and early stage NAFLD,39–41 as they require markers reflect-
ing fibrotic reorganization (Hyaluronic acid, tissue inhibitor 
of matrix metalloproteinase (TIMP)-1, procollagen III ami-
no-terminal propeptide (PIIINP); ELF score), hepatic injury 
(AST/ALT ratio; FIB-4 and APRI) or extrahepatic sequelae 
(thrombocyte count; FIB-4, APRI), which are not elevated 
in nonfibrotic NAFLD. Scores specifically designed to detect 
simple steatosis are reviewed below. The most relevant 
simple tools using parameters of routine blood samples to 
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detect hepatic steatosis are the fatty liver index (FLI),42 the 
NAFLD liver fat score (NAFLD-LFS)43 and the hepatic stea-
tosis index (HSI).44 The parameters relevant for NAFLD are 
summarized in Table 1.42–44

FLI
Bedogni et al.42 developed the FLI, which is based on data 
from the Dionysos Nutrition and Liver Study. The study popu-
lation included 497 (males, n=305) Italian subjects, 18 to 
75 years of age, with suspected liver disease (SLD, n=224) 
compared with a population without SLD (n=287). Alanine 
aminotransferase (ALT) levels >30 U/L or gamma-glutamyl 
transferase (GGT) >35 U/L were necessary to define SLD, 
and subjects with viral hepatitis (HBV, HCV) were excluded 
from the study. NAFLD was diagnosed by ultrasonography. 
After identifying independent predictors of FL, the FLI was 
calculated by the level of TG, GGT, body mass index (BMI), 
and waist circumference (WC). Hepatic steatosis was ruled 
out with an FLI of <30 (sensitivity 87%) and ruled in with an 
FLI≥60 (specificity 86%). The main limitation of this study 
was the selection of ultrasonography as the diagnostic gold 
standard method for the detection of NAFLD, which has a 
poor significance and cannot precisely detect hepatic stea-
tosis.42

NAFLD-LFS
Kotronen et al.43 was the first study to introduce the NAFLD 
liver fat score (NAFLD-LFS). It included 470 (males, n=221) 
Finnish individuals, 18–75 years of age with (n=111) or with-
out DM (n=359) who were divided into an estimation group 
and a validation group. Except for obesity or DM, no known 
acute or chronic disease and alcohol consumption less than 
20 g per day were criteria to be included in the study. Sub-
jects using antihypertensives influencing glucose metabolism 
(ß-blockers and thiazides), thiazolidinediones or those being 
currently pregnant were excluded. Liver fat was measured 
by 1H-MRS. The presence of the MetS and DM, fasting se-
rum insulin, aspartate aminotransferase (AST) and the AST/
alanine aminotransferase (ALT) ratio were the strongest pre-
dictors of FL and were used for the calculation. Firstly, the 
liver fat risk score was developed predicting NAFLD starting 
from values greater than −0.640 (sensitivity 86%, specificity 
71%). Secondly, an algorithm was generated that calculated 
the estimated percentage liver fat content, cross-validated 
by 1H-MRS measurement of the liver fat content. The cal-
culated liver fat percentage was strongly correlated with the 
liver fat measured in the MRS (r=0.70) both in the validation 
group (R2=0.45) and in all subjects (R2=0.49). Additional 
genotyping was performed for SNPs in the PNPLA3 gene 
(rs738409, adiponutrin gene; see above). Although this was 
a strong predictor of NAFLD, integrating the SNP as cofactor 
of the prediction equation provided no significant improve-
ment over other indices.43

HSI
Lee et al.44 based their calculation of the HSI on data from 
Korean subjects who underwent routine health checkups. Of 
21,130 participants, 3,591 were excluded because of chronic 
liver diseases (hepatitis B, C, excessive alcohol consumption, 
certain medications). After adjusting for sex (70% male) and 
age (mean=52.2 years), 10,724 subjects (5,362 with NAFLD) 
were randomly assigned to derivation and validation cohorts. 
The HSI algorithm considers the presence of DM, female sex, 
BMI, and the AST/ALT ratio as predictors of NAFLD. NAFLD is Ta
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ruled out at an HSI value of <30.0 (sensitivity 92.5%) and 
ruled in at a value of >36.0 (specificity 92.4%). As with the 
FLI, the validation study for HSI is limited by the diagnostic 
ambiguity of ultrasound analysis, which was used as gold 
standard. Moreover, the development in an Asian population 
questions the significance of HSI in Caucasians44 as there 
is evidence for ethnic differences in the accuracy of liver fat 
scores45 and in the appearance of NAFLD.46

Other indices
A variety of other indices were established in the past dec-
ades, but were rarely used in other studies. This is due to 
their complex algorithm structure, specific and rather expen-
sive score elements and/or their nonsuperiority over the pre-
viously mentioned indices (Table 2).47–65 Based on the FLI, 
Kantartzis et al.47 developed an extended FLI which could 
predict NAFLD more accurately by adding stimulated TG and 
glucose levels from an oral glucose tolerance test and includ-
ing rs738409 (PNPLA3) in the equation.47 The extended FLI 
was capable of predicting changes in liver fat with higher ac-
curacy than the original FLI (n=213; standardized beta coef-
ficient: 0.23–0.29). External validation of the extended FLI 
was not found in the literature. Because of ethnic differences 
in the accuracy of liver fat scores, other indices have been 
designed for various ethnic groups.

Wang et al.48 developed the Zhejiang University (ZJU) in-
dex for Chinese subjects, which was validated against ultra-
sound and biopsy diagnoses. The ZJU index also might be a 
tool to classify NAFLD into different stages, including NASH. It 
was externally validated in some Asian populations, predict-
ing NAFLD with moderate-to-high AUROCs (0.69–0.96),66–71 
and equal or better predictive power than scores developed 
in Western populations.72,73

Bhatt et al.49 developed two Indian fatty liver indices 
(IFLIs) calculated by either clinical variables (IFLI-C) or by 
both clinical and biochemical variables (IFLI-CB), and vali-
dated by ultrasonography49 IFLI-C and IFLI-CB performed 
better than the FLI and liver fat (%), but similar to NAFLD-
LFS. To our knowledge, the IFLI indices have not been repli-
cated or used in later studies.

Brandi et al.50 proposed an index derived from a classifi-
cation tree, which was validated by ultrasonography-based 
NAFLD diagnosis. Following the method, NAFLD can be ruled 
in or ruled out. The particular algorithm has never been rep-
licated or even used in clinical trials.

Jamali et al.51 developed the NAFLD/NASH discriminating 
score based on histological data from liver biopsies. Given 
the rather specific and expensive parameters, the usability in 
clinical routine is very limited.

The indices by Yip et al.52 were tested against 1H-MRS 
measurements as gold standard. The simplest NAFLD ridge 
score was proposed as the best choice, but has not been 
frequently used in other studies.

The lipid accumulation product (LAP) was introduced as 
new parameter to reflect obesity-related (e.g., cardiovas-
cular) risks by integrating both WC and triglycerides (TG), 
including consideration of sex differences,53 and testing the 
index against ultrasound sonography. Lacking clear cut-offs54 
and being outperformed by NAFLD-LFS and HSI in high-risk 
settings and by FLI in population-based settings,74 the LAP 
has limited usability for NAFLD prediction.

The original SteatoTest includes costly parameters that 
limit routine use.55 The simpler version (SteatoTest-2) ne-
glects BMI and bilirubin as typical sources of real-world con-
founding and performs comparably well.56

The Framingham Steatosis Index (FSI) by Long et al.,57 

the Korean K-NAFLD score,58 and the NAFL screening score 
(NSS)59 use parameters similar to the FLI, NAFLD-LFS, and 
HSI.

Uric acid is a component found in the NAFL risk score,60 
and the score by Pan et al.,61 which integrate data on an-
thropometric characteristics, metabolism, and diet. History 
of gout and ferritin levels are novel parameters used in a 
score based on the Study of Health in Pomerania (SHIP). 
It also integrates more common items (age, AST, ALT, WC, 
BMI, TG) and performed well in comparison to HSI and 
FLI.62

Ethnicity can be an important confounder of score reli-
ability. Several studies reported a poorer performance of the 
HSI in non-Asian cohorts. In order to address this issue for 
multiethnic populations the score by Ruhl et al.,63 the Dal-
las Steatosis Index (DSI),64 the NAFLD-MESA index and the 
NAFLD clinical index were developed and outperformed the 
original FLI.65

External validation of common liver fat scores for 
prediction of NAFLD and liver fat content
A number of recent studies have evaluated available liver fat 
scores for clinical practice. A summary of predictive values 
for the indices from original and external validation studies is 
shown in Table 3.36,42–44,75–81 Koot et al.75 found that these 
scores are poor predictors of NAFLD in obese children.30 The 
cohort (119 severely obese children (14.3±2.1 years of age, 
BMI z-score 3.35±0.35; 47% NAFLD cases) was investigated 
with MR spectroscopy as gold standard; FLI, NAFLD-LFS, and 
HSI were assessed. As these scores were developed for adult 
populations, their poor performance in pediatric patients is 
not entirely unexpected. However, the pediatric prediction 
score did not outperform the others either.

Another study76 aimed at validating the FLI in 168 healthy 
adults and another 168 adults with components of the MetS 
by measuring IHL by 1H-MRS. This study showed that FLI can 
detect presence of NAFLD in the individual but doubted its 
accuracy in predicting the degree of hepatic steatosis/actual 
liver fat content. Thus, in accord with its original designation, 
the FLI can primarily be used to identify patients with pos-
sible steatosis in order to perform further diagnostics or to 
roughly classify groups of patients.

Kabisch et al.77,78 showed that the FLI and NAFLD-LFS had 
a highly significant correlation with IHL at the baseline visit of 
their intervention studies, replicating their capability to pre-
dict NAFLD and to mirror actual liver fat content with good 
precision (AUROCs around 0.73; r-values around 0.5).77,78 
Both cohorts included participants with prediabetes or overt 
DM and a considerable proportion of NAFLD patients, allow-
ing for plausible correlations.

A similar approach was adopted by Kahl et al.,79 who re-
ported only moderate accuracy of the scores that did not al-
low quantification of liver fat content. However, in that study, 
predominantly nonobese persons with low liver fat content 
were included, limiting the replication of the index perfor-
mances.

Unlike other studies, Motamed et al.80 reported a very 
high predictive  power of FLI, with NAFLD diagnosed by ultra-
sound rather than 1H-MRS. The study did not find significant 
differences between the FLI and WC as a single factor for the 
diagnosis of NAFLD. In the development of the FLI,42 WC was 
already identified as the strongest predictor of NAFLD, along 
with BMI. The excellent replication of the FLI performance in 
this study can be attributed to the large cohort of more than 
5,000 middle-aged patients with high prevalence of NAFLD.

A retrospective analysis of 324 liver biopsies from middle-
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aged, overweight-to-obese patients (64% males) that cat-
egorized NAFLD as mild (≥5−33%), moderate (>33–66%), 
and severe (>66%) steatosis, showed that all indices were 
capable of accurately ruling NAFLD in or out and correlated 
strongly with insulin resistance. However, they were limited 
in the quantification of steatosis, which makes the markers 
questionable for describing changes in liver fat. On the other 
hand, liver biopsies can fail to reflect the average steatosis in 
the entire organ.81

Liver fat scores in prediction models for non-NAFLD 
outcomes
Elevated liver fat content and NAFLD are strongly associ-
ated with hepatic insulin resistance, hypertriglyceridemia, 
and chronic cardiometabolic complications such as T2DM 
and CVD.7,82–84 In the TULIP study, NAFLD predicted failure 
in even compliant dietary intervention in patients with pre-
diabetes.85 Other diabetes prevention studies indicated that 
prediabetes patients with NAFLD had better responses to 
treatment that improving insulin resistance.77,86–89 NAFLD 
predicts CVD and mortality independently of glycemic me-
tabolism.90 Therefore, it is of interest if liver fat scores have 
the same predictive potential for metabolic sequelae. In a 
study by Kahl et al.,79 FLI and NAFLD-LFS were also inversely 
correlated with parameters of insulin sensitivity such as the 

quantitative insulin sensitivity check index (QUICKI), de-
scribing fasting insulin sensitivity as well as the oral glucose 
insulin sensitivity index (OGIS), and Matsuda’s index (ISI-
comp) for dynamic insulin sensitivity. Fasting ß-cell function 
and parameters describing post-load insulin secretion such 
as the disposition index (DI), adaptation index (AI), and in-
sulinogenic indices (IGI_Ins) positively correlated with fatty 
liver indices (Table 4).79 However, this positive correlation 
may be a spurious relationship as the study included par-
ticipants without T2DM. In such a healthy cohort, low in-
sulin secretion is mainly triggered secondarily by fatty liver 
and hepatic insulin resistance. The study population did not 
include patients with advanced insulin-deficient diabetes. 
The correlation of fatty liver scores, especially FLI, with DM 
and insulin resistance (Table 4) has already been shown in 
a number of studies, and emphasizes the strong association 
between DM and NAFLD.90–93

Other studies have found an association of FLI with he-
patic and cardiovascular diseases and cancer.82,91,94 A recent 
study in an US population reported that none of the scores 
correlated with increased cardiovascular mortality.83 NAFLD-
LFS and FLI were associated only with increased liver disease 
mortality and NAFLD-LFS was also associated with increased 
diabetes mortality. Correlations of liver fat scores with he-
patic, cardiometabolic, cardiovascular, and cancer outcomes 
are shown in Table 5.82,83,91,94

Table 4.  Correlation of liver fat scores and type 2 diabetes-related outcomes in external validation studies

Study Outcome FLI NAFLD-LFS HSI

Kahl et al.79 ISIcomp_In r=−0.62*** r=−0.71*** r=−0.53***

OGIS r=−0.62*** r=−0.51*** r=−0.50***

QUICKI r=−0.55*** r=−0.68*** r=−0.42***

DI_In r=0.47*** r=0.57*** r=0.48***

B-cell func_In r=0.57*** r=0.57*** r=0.47***

AI r=0.34*** r=0.35*** r=0.33**

IGI_CP_In r=−0.02 r=0.05 r=0.02

IGI_Ins_In r=0.16 r=0.26* r=0.19

Hep_Extr_In r=−0.39*** r=−0.55*** r=−0.42***

Gastaldelli et al.91 Glucose concentration R=0.34****

Ln (Insulin 
concentration)

R=0.62****

Ln (Clamp FFA 
concentration)

R=0.41****

Ln (Peripheral IS) R=−0.43****

Bozkurt et al.92 PGDM – IS vs. NGT p=0.104

PGDM – IR vs. NGT p<0.001

PGDM–IS vs. PGDM−IR p=0.006

Balkau et al.93 Incident diabetes (men) ≤ 57.67: OR=1; 
>57.67: OR=4.46

≤−1.15: OR=1; 
>−1.15: OR=4.88

Incident diabetes 
(women)

≤ 21.64: OR=1; 
>21.64: OR=11.58

≤−1.82: OR=1; 
>−1.82: OR=12.48

Unalp-Arida et al.83 Diabetes L: HR=0.5; I: 
HR=2.1; H: HR=7.4

L: HR=0.6; I: HR=5.2; 
H: HR=16.8

L: HR=0.6; I: 
HR=2.0; H: HR=6.9

*p<0.05; **p<0.01; ***p<0.001; ****p<0.0005. r, correlation coefficient; R, correlation coefficients of univariate analysis. AI, adaptation index; B-cell func_In, 
fasting ß-cell function; DI, disposition index; Hep_Extr_In, hepatic insulin extraction; IGI_CP, insulinogenic C-peptide index; IGI_Ins, insulinogenic indices; IR, insulin 
resistance; IS, insulin sensitivity; ISIcomp, Matsuda’s index; NGT, control group (p-values from Fisher protected least significant difference test); OGIS, oral glucose 
insulin sensitivity index; OR, odds ratio; PGDM, previous gestational diabetes; QUICKI, quantitative insulin sensitivity check index.



Journal of Clinical and Translational Hepatology 2023 9

Reinshagen M. et al: Liver fat scores to predict and monitor NAFLD

Usability of liver fat scores as monitoring tools for 
interventional changes in liver fat

The predictive power of the indices is also of interest for lon-
gitudinal studies in which IHL is reduced, e.g., by lifestyle in-
terventions (Table 6).47,77,78,95–97 Keating et al.95 performed 
a lifestyle intervention trial with either an 8-week exercise or 
a 12-week nutraceutical intervention. They evaluated wheth-
er some surrogate markers, including FLI, HSI, NAFLD-LFS 
and WC, indicated changes in liver fat measured by 1H-MRS. 
At baseline, the scores correlated weakly or moderately with 
measured liver fat content. During intervention, only chang-
es of FLI, HSI, and in particular the single parameter WC 
correlated with changes in IHL.95

Another trial found that FLI values were significantly lower 
after 9 months of a low-fat, high-fiber lifestyle intervention. 
In contrast, HSI did not detect changes in liver fat.47 Other 
predictors of change in liver fat were 2-h TG and TG fold-
change measured at 2 h during OGTT (TGOGTT) as the strong-
est predictor. Kabisch et al.77 evaluated the power of FLI and 
NAFLD-LFS comparing two randomized lifestyle interventions 

(low-carb and low-fat diets) in patients with prediabetes. IHL 
were measured by 1H-MRS. The scores strongly correlated 
with IHL at baseline, however both scores only correlated 
moderately with liver fat with a low-fat but not with a low-
carb diet. Liver fat content decreased significantly in both 
diet groups without a significant difference between the 
groups. However, in contrast to the low-fat group, changes 
of IHL in the low-carb group only correlated with changes of 
two parameters (fasting insulin, ALT) used to calculate the 
indices. In the low-fat group, changes in body weight cor-
related with changes of liver fat. As reduction of liver fat 
under low-carb conditions is mainly independent of body 
weight reduction and correlates with different parameters 
than in the low-fat group, the mechanisms of IHL reduction 
might vary with different diets or other treatments. Similar 
results were reported in DM patients on a high-protein diet, 
in which the reduction in liver fat was also found to be in-
dependent of weight reduction. Only FLI correlated weakly 
with changes in liver fat, but at baseline all indices were sig-
nificantly correlated with IHL. Apart from WC, none of the 
index parameters (body weight, WC, fasting insulin, TG, 

Table 5.  Correlation between liver fat scores and risk parameters for cardiovascular and hepatic diseases and cancer from external validation studies

Study Outcome FLI NAFLD-LFS HSI

Gastaldelli et al.91 Systolic blood pressure R=0.39****

Diastolic blood pressure R=0.35****

CCA IMT R=0.30****

Framingham score R=0.34****

Ln (LDL cholesterol) R=0.33****

Ln (HDL cholesterol) R=−0.50****

Calori et al.94 15-year hepatic-
related mortality

HR=1.036****

15-year CVD mortality HR=1.007**

15-year cancer mortality HR=1.006*

15-year all-cause mortality HR=1.006**

Lerchbaum et al.82 All-cause mortality Q1: HR=1.0; Q2: HR=1.14; 
Q3: HR=1.11; Q4: HR=1.26

Cardiovascular mortality Q1: HR=1.0; Q2: HR=1.28; 
Q3: HR=1.35; Q4: HR=1.32

Cancer mortality Q1: HR=1.0; Q2: HR=1.10; 
Q3: HR=0.75; Q4: HR=1.01

Non-cardiovascular 
mortality

Q1: HR=1.0; Q2: HR=0.98; 
Q3: HR=0.88; Q4: HR=1.27

Unalp-Arida et al.83 All-cause mortality L: HR=19.0; I: HR=32.1; 
H: HR=42.2

L: HR=23.8; 
I: HR=41.3; 
H: HR=48.9

L: HR=28.5; 
I: HR=29.2; 
H: HR=35.1

Cardiovascular disease L: HR=6.0; I: HR=13.1; 
H: HR=19.0

L: HR=9.2; I: 
HR=18.2; H: 
HR=27.2

L: HR=11.3; 
I: HR=12.5; 
H: HR=16.0

Neoplasms L: HR=5.2; I: HR=11.9; 
H: HR=13.5

L: HR=7.5; I: 
HR=13.4; H: 
HR=12.4

L: HR=8.7; 
I: HR=9.5; 
H: HR=10.3

Liver disease L: HR=0.4; I: HR=0.6; 
H: HR=2.5

L: HR=0.5; I: 
HR=1.6; H: HR=5.5

L: HR=0.8; 
I: HR=0.8; 
H: HR=1.7

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0005. Fat probability (low, L; intermediate, I; High, H); Framingham score, prediction score for coronary heart disease 
(CHD); r, correlation coefficient; Quartiles for FLI levels: Q1 (< 31.0); Q2 (31.0–53.7); Q3 (53.8–75.6); Q4 (>75.6); R, regression coefficients of univariate analysis. 
CCA, common carotid artery; CVD, cardiovascular disease; HR, Cox proportional hazard ratio (without adjustment); IMT, carotid intima media thickness.
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AST, ALT, AST/ALT ratio, GGT) were correlated with changes 
in liver fat. Correlation of WC with IHL can be explained by 
the simultaneous reduction of visceral and hepatic fat.78 As 
anthropometric parameters of obesity such as BMI or body 
weight are important index components, the lack of correla-
tion of weight reduction with liver fat reduction is probably 
the crucial reason for the poor performance of the indices. As 
the intervention was performed in subjects with T2DM and 
reduced insulin secretion, insulin levels do not necessarily 
reflect improvement in fatty liver. Although TG and GGT were 
among the most representative parameters for changes in 
liver fat, there was also no significant correlation with liver 
fat reduction. The high-protein diet improved lipid and ami-
notransferase levels, which is why their changes may have 
appeared beyond steatosis and therefore lacked correlation 
with liver fat reduction.78 High aminotransferase levels may 
also have been influenced by pre-existing hepatic inflamma-
tion, NASH, or fibrosis.

In a study comparing a comprehensive continuous care 
intervention (CCI) with a nutritional ketosis diet and stand-
ard diabetes care treatment (UC), NAFLD-LFS was signifi-
cantly improved in patients undergoing CCI in comparison to 
the UC patients.96 Similar to the results of Kabisch et al.,77 
NAFLD-LFS changed progressively with higher weight reduc-
tion in the diet (≥10%). The study was limited by the lack of 
IHL data from imaging or biopsy.96 During a short-term hy-
pocaloric high-fiber and high-protein diet, liver fat measured 
by CAP and FLI significantly decreased in the study cohort, 
with the reduction being stronger in patients with weight loss 
≥5%.97 The correlation between CAP and FLI was not deter-
mined. However, CAP at baseline correlated with some pa-
rameters of the FLI (BMI, WC), but not TG or GGT.

The limited accuracy of liver fat indices in general can also 
be explained by treatment effects. Even in cross-sectional 
designs, antidiabetic treatment, lipid-lowering drugs, antihy-
pertensive medication, inflammatory disorders, specific liver 
conditions without linkage to NAFLD (Morbus Meulengracht), 
and of course unreported excess alcohol intake may con-
found parameters of NAFLD scores.98

Potential biomarkers of novel liver fat indices
The accuracy of indices in cross-sectional studies is some-
times considerably lower than the reported accuracy in the 
original studies. Even at moderate or high precision, their 
usefulness for indicating liver fat content has been ques-
tioned. Therefore, they should be used only for predicting 
the possible presence of NAFLD, assessment of the risk of 
liver malignancy or cardiovascular disease and selection of 
patients for detailed examination.

In longitudinal studies, the indices correlated with the 
measured liver fat before the intervention, while changes in 
IHL not clearly indicated by the indices during and after the 
interventions. Even moderate correlations appeared only in 
the case of strong changes in body weight, as all common in-
dices are mainly based on BMI and/or WC. As liver fat reduc-
tion can be achieved independent of body weight reduction 
especially in low-carb or high-protein diets or due to medica-
tion, the indices are presumably useless as monitoring tools 
when used with these treatments.

The most important parameters included in the equations 
were BMI, TG, WC, GGT, FPG, fasting insulin, AST, ALT, AST/
ALT and SBP. Although fasting insulin and parameters of in-
sulin sensitivity (QUICKI, OGIS, ISIcomp), ß-cell function 
and post-load insulin resistance (DI, AI, IGI) were associated 
with liver fat scores and IHL in recent studies,77,79,81,91–93,99 
fasting insulin is only included in the NAFLD-LFS.43 High vari-Ta
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ability among insulin test kits complicates the utility of insulin 
as a parameter for liver fat scores. Moreover, the pulsatile 
insulin release requires multiple, i.e. costly blood draws in 
short intervals.100 FPG is used as a parameter in some more 
recently introduced scores50,55,56,58,59,63,64 for being rarely re-
ported as a possible predictor for NAFLD in the literature. A 
few studies found a significant positive association between 
the triglyceride and glucose index (TyG), calculated as Ln 
[TG (mg/dL)×FPG (mg/dL)], and NAFLD.101–103 Moreover, 
according to the literature, TyG-related parameters, such 
as TyG-BMI (=TyG×BMI), TyG-WC (=TyG×WC), have been 
more reliable predictors than the classical TyG and former 
parameters.103,104 Abnormal glucose tolerance, defined 
as either impaired glucose tolerance (2 h glucose between 
7.8 and 11.0 mmol/L) or DM (2h glucose≥11.1 mmol/L or 
FPG≥7.0 mmol/L) was reported as a significant predictor for 
steatohepatitis and fibrosis in NAFLD patients.105 Another 
study showed significantly increased fasting glucose and 
HbA1c levels in subjects with steatosis compared to subjects 
without steatosis.106

In addition to the above parameters, other predictors 
associated with NAFLD have been discussed. The role of 
adipokines (especially adiponectin) in the pathogenesis of 
NAFLD has been investigated in many studies. In rat mod-
els107,108 as well as in human subjects with NAFLD,51,109,110 
the concentration of adiponectin was significantly decreased 
and adiponectin gene polymorphisms associated with NAFLD 
were found.111,112 One publication investigated the associa-
tion between serum retinol-binding protein 4 (RBP4) and 
NAFLD.113 In this study, they found lower RBP4 levels in 
patients with NASH than in patients with simple steatosis. 
Nevertheless, the differences found were not significant and 
there was no correlation of RBP4 with BMI, HOMA, FPG, or 
fasting insulin. A similar lack of correlation was reported in 
subjects with DM,114 probably owing to medication effects.98

In a meta-analysis, fetuin-A and fetuin-B concentrations 
were significantly higher in subjects with NAFLD and fetuin-A 
played a role in the process of simple steatosis to NASH.115 
Another approach found a significant association between el-
evated fetuin-A concentrations and increased FLI, ALT and 
AST116 and a prospective cross-sectional study found an in-
dependent correlation of increased fetuin-A concentrations 
with NAFLD.117 One study discussed progranulin as a po-
tential predictor for NAFLD, as progranulin was significantly 
higher in patients with NAFLD and positively correlated with 
total cholesterol and LDL cholesterol.41 Although these mark-
ers could be used to predict NAFLD, their measurement is too 
expensive for routine clinical use. Less expensive parameters 
are needed.

FIB-4, NFS, BARD, or ELF calculate fibrosis risk in patients 
with NAFLD using specific markers of extracellular matrix 
production.118 Typically, they cannot be used as early predic-
tors for simple nonprogressed steatosis. However, serum cy-
tokeratin-18, as one of those matrix markers, is also strongly 
related to simple NAFLD and ALT levels in adults119,120 and 
children,121 providing sensitivity and specificity of over 97% 
for detection of moderate-to-high steatosis.119 A parameter 
correlated with histological classifications of hepatic steato-
sis, is plasma cathepsin D (CatD), which was found to be sig-
nificantly decreased after gastric bypass surgery in subjects 
with NASH.122 Another study reported a positive association 
of insulin resistance (HOMA-IR and plasma insulin levels) 
with CatD in subjects with NAFLD.123 In contrast, CatD had 
only weak effectiveness in indicating changes in NAFLD and 
NASH in an Asian population, again underscoring ethnic dif-
ferences in the parameters of NAFLD.124 Again, quantification 
of cathepsin D is expensive and possibly not cost-effective for 

NAFLD screening.
Recent studies have reported a relationship between iron 

metabolism and body composition and NAFLD.125–135 A pro-
spective study reported an association between a high se-
rum iron-to-ferritin ratio with healthy body composition and 
reduced risk of fatty liver progression in young adult women 
<45 years of age, but not in middle-aged women ≥45 years 
of age.126 A study of obese male pediatric patients found that 
serum ferritin was more strongly linked to liver fat content 
and inflammation than body iron status was.127 Furthermore, 
increased serum ferritin levels predicted the risk of NASH 
and fibrosis development in adult patients with NAFLD.128 A 
similar association of serum ferritin with parameters of liver 
health (liver fat content, ALT, hepatic iron) and with glucose 
and lipid metabolism also found this parameter might be a 
predictor of NAFLD.130 The best area under the curve (AUC) 
for the prediction of hepatic steatosis was found by combin-
ing blood ferritin, FPG, and ALT. The SHIP NAFLD score is the 
only index using ferritin.62

Another possible predictor of NAFLD is alkaline phos-
phatase (ALP), which has been reported as an independent 
predictor of DM.6 An experimental study investigated the 
role of tissue nonspecific alkaline phosphatase (TNAP) in 
mice with TNAP+/− haplodeficiency (absence of an allele of 
TNAP) and found that the mice developed hepatic steatosis 
similar to that induced by a diet deficient in methionine and 
choline (MCD).136 Acetylcholine (ACh) might also participate 
in hepatic steatosis and fibrosis progression as it induced fi-
brogenesis in hepatic stellate cells in vitro as well as in hu-
man whole-liver samples of NASH fibrosis via muscarinic ACh 
receptors.137 Furthermore, serum cholinesterase activity was 
significant higher in patients with NAFLD138,139 and DM140 in 
previous studies. In contrast, a study of DM patients with 
or without NAFLD found decreased cholinesterase activity in 
those with hepatic steatosis.141 Cholinesterase activity may 
have been elevated at earlier stages of the disease and only 
had decreased activity in cases with advanced liver cell dam-
age, which may explain the controversial results. This fact 
indicates that cholinesterase activity may also serve as an 
indicator of the severity of steatosis. To investigate the pre-
dictive power of ALP and cholinesterase for NAFLD, further 
studies are needed.

Uric acid has been considered as a possible predictor of 
NAFLD,142 and was reported to be positively correlated with 
NAFLD risk143,144 and to induce hepatic fat accumulation and 
insulin resistance.145 NSS and NAFL risk scores are the first 
indices implementing that parameter as a continuous param-
eter.59,60 The German SHIP NAFLD score integrates history of 
gout,62 and another score developed in China uses a binary 
expression for hyperuricemia.61 As none of those scores are 
widely used, uric acid is still a parameter of interest for novel 
indices and may help to develop scores that outperform oth-
ers with respect to longitudinal reflection of liver fat changes.

As mentioned above, SNPs influence the risk of chronic liv-
er and heart diseases, the factors PNPLA3, TM6SF2, MBOAT7, 
GCKR, and HSD17B13 have key involvement.11–15,17–22 In 
addition to those genetic variants, GWAS found several fur-
ther genetic factors that were significantly associated with 
NAFLD.146 PYGO1 is a protein contributing to the Wnt signal-
ing pathway. Absence in a homologue PYGO2 in mice resulted 
in increased adiposity and impaired glucose tolerance.147 The 
rs429358-C variant defines the main three alleles of apoli-
poprotein E (ApoE) in combination with rs7412. Although 
all three alleles appeared to be protective against NAFLD, 
one simultaneously increased cardiovascular and metabol-
ic risk via enhanced hepatic VLDL secretion. Furthermore, 
increased ApoE serum levels correlated with higher FLI.148 
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Mitochondrial amidoxime reducing component 1 (MARC1) 
and sorting and assembly machinery component (SAMM50) 
encode for proteins located in the outer mitochondrial mem-
brane.149,150 Missense variants in the MARC 1 protein pro-
tected against all-cause cirrhosis and were associated with 
lower levels of hepatic fat, NAFLD risk and aminotransferase 
levels.149,151 SAMM50 SNPs were associated with NAFLD and 
might be involved in the progression of NAFLD.150 The neu-
rocan core protein (NCAN), a proteoglycan involved in re-
modeling central nervous system, is also expressed in the 
liver. NCAN function is linked to hepatic steatosis, lobular 
inflammation, and fibrosis. protein phosphatase 1 regula-
tory subunit 3B (PPP1R3B) has a variant associated with CT-
diagnosed but not histologically diagnosed hepatic steatosis 
(rs4240624) and one predicting severe NAFLD on ultrasound 
(rs61756425). Tribbles pseudokinase 1 (TRIB1) was associ-
ated with increased ALT and NAFLD diagnosed histologically 
or by ultrasound.148

Other genetic factors were not identified by GWAS, but in 
other studies or meta-analyses increased risk of NAFLD was 
linked to a loss of function in the phosphatidylethanolamine 
N-methyltransferase (PEMT), nine ERLIN1-CHUK-CWF19L1 
variants, a mitochondrial transport protein (MTTP) poly-
morphism, and a superoxide dismutase 2 (SOD2) variant. A 
polymorphism in the uncoupling protein 2 (UCP) was associ-
ated with reduced risk of NASH and higher hepatic protein 
levels.152

To improve the prognostic accuracy of genetic risk factors, 
they are often combined to polygenetic risk scores (PRS). Di 
Costanzo et al.153 developed a 4-SNP-PRS (TM6SF2, GCKR, 
PNPLA3, MBOAT7) with a high predictive value of NAFLD and 
found that PPP1R3B and MBOAT7 could have an impact on 
the severity of NAFLD. The same SNPs were combined with 
clinical fibrosis scores (NFS, Fib-4, aspartate aminotrans-
ferase-to-platelet ratio, BARD, and the Forns score) and 
improved the prediction of severe liver disease in subjects 
with metabolic risk factors.154 An 11-SNP risk score (PNPLA3, 
HSD17B13, TM6SF2, GATAD2A, GCKR, SUGP1, SAMM50, 
ERLIN1-CHUK-CWF191, MBOAT7, TRIB1) was developed us-
ing data from multiple ethnic groups. The resulting GRS was 
significantly associated with NAFLD in several ethnic groups 
(Latinos, Japanese Americans, Native Hawaiians, Whites, Af-
rican Americans) and had higher accuracy in patients with 
NAFLD cirrhosis. The impact of PPP1R3B and MBOAT7 on the 
severity of NAFLD was also found in that study.155 Gao et 
al.156 combined PNPLA3 and HSD17B13 with sex, MetS, HO-
MA-IR, and serum AST levels to predict NASH. The developed 
nomogram could be used in both groups with or without pre-
diabetes or MetS. The identified SNPs and the PRS show that 
NAFLD is a polygenic condition whose risk is best assessed 
by combining different genetic variants, especially PNPLA3, 
TM6SF2, MBOAT7, GCKR, and HSD17B13, with metabolic 
and clinical factors. SNPs should be further considered as 
accurate markers of NAFLD and could be used in new liver 
fat scores.

Conclusions
Existing liver fat scores can be used as biomarkers to capture 
the probable presence or absence of NAFLD at baseline. Giv-
en the limited reliability and precision, a confirmed diagnosis 
for individuals in clinical practice or clinical research as the 
basis for therapeutic decisions or study inclusion is not pos-
sible. Liver fat indices are not capable of replacing imaging 
as a more accurate method, and they cannot clearly quantify 
the grade of NAFLD. However, they may serve as useful tools 
for larger cohorts, such as in epidemiological studies where 

imaging data is not available owing to high cost or the his-
toric nature of certain cohorts. In those settings, FLI, NAFLD-
LFS, and HSI are most common scores and are a practical, 
cheap and post-hoc available approach for risk stratification 
of metabolic, cardiovascular diseases, or liver malignancy. 
Their performance for the prediction of NAFLD is consistently 
replicated. Noninvasive indices for NASH may be even more 
warranted, as noninflammatory NAFLD has a rather low risk 
for long-term complications, while identifying the smaller 
portion of NASH patients among all NAFLD cases would im-
prove their disease management.

The power of the indices as monitoring tools for interven-
tions has rarely been validated. However, the existing longi-
tudinal studies show that even the well-established indices 
have poor power in representing changes in liver fat in the 
context of lifestyle interventions, especially when interven-
tional benefits are mainly independent of weight loss. That 
awaits development of new indices predicting liver fat chang-
es irrespective of the performed diet. Ideally, these should 
be able to predict liver fat in both cross-sectional and longi-
tudinal settings.

Moreover, it would be useful to have an index that would 
allow quantification of liver fat and thus help to categorize 
NAFLD into mild, moderate, and severe types. In addition 
to the parameters that have been used in the indices, other 
parameters may be considered as candidates for the diagno-
sis of NAFLD. While parameters such as adipokines, RBP-4, 
fetuin-A/B, progranulin are too expensive, and liver fibrosis 
variables are not considered for early diagnosis of NAFLD, 
parameters such as FPG, ferritin, ALP, cholinesterase, or uric 
acid could be other favorable predictors for the diagnosis of 
NAFLD and should be further investigated. Genetic variants 
and polygenic risk scores are potential tools to stratify the 
NAFLD risk and should also be considered for new liver fat 
scores.
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