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Liver immunology and its role in inflammation and
homeostasis
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The human liver is usually perceived as a non-immunological organ engaged primarily in metabolic, nutrient storage
and detoxification activities. However, we now know that the healthy liver is also a site of complex immunological
activity mediated by a diverse immune cell repertoire as well as non-hematopoietic cell populations. In the non-
diseased liver, metabolic and tissue remodeling functions require elements of inflammation. This inflammation, in
combination with regular exposure to dietary and microbial products, creates the potential for excessive immune
activation. In this complex microenvironment, the hepatic immune system tolerates harmless molecules while at the
same time remaining alert to possible infectious agents, malignant cells or tissue damage. Upon appropriate
immune activation to challenge by pathogens or tissue damage, mechanisms to resolve inflammation are essential
to maintain liver homeostasis. Failure to clear ‘dangerous’ stimuli or regulate appropriately activated immune
mechanisms leads to pathological inflammation and disrupted tissue homeostasis characterized by the progressive
development of fibrosis, cirrhosis and eventual liver failure. Hepatic inflammatory mechanisms therefore have a
spectrum of roles in the healthy adult liver; they are essential to maintain tissue and organ homeostasis and, when
dysregulated, are key drivers of the liver pathology associated with chronic infection, autoimmunity and malignancy.
In this review, we explore the changing perception of inflammation and inflammatory mediators in normal liver
homeostasis and propose targeting of liver-specific immune regulation pathways as a therapeutic approach to
treat liver disease.
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INFLAMMATORY PROCESSES AND LIVER

HOMEOSTASIS

The human liver is classically perceived as a non-immunological

organ, required for metabolic activities, nutrient storage and

detoxification. We now know that the liver is also an

immunologically complex organ, responsible for the production

of acute phase proteins, complement components, cytokines

and chemokines, and contains large, diverse populations of

resident immune cells.1–3 In healthy individuals, the liver is

constantly bombarded by a stream of dietary and commensal

bacterial products with inflammatory potential. These gut-

derived molecules must be tolerated by the hepatic immune

system, which, at the same time, is poised to respond to danger.

In the healthy liver, constantly changing metabolic and tissue

remodeling activity, combined with regular exposure to micro-

bial products, results in persistent, regulated inflammation.

These inflammatory processes act in a tightly controlled fashion

and are stimulated to additional activity only when the liver is

required to rid itself of hepatotropic pathogens, malignant cells

or toxic products of metabolic activity. Failure to clear such

dangerous stimuli and resolve inflammation, leads to chronic

infection, autoimmunity or tumor growth. This is inevitably

associated with chronic pathological inflammation and dis-

rupted tissue homeostasis, which can progress to fibrosis,

cirrhosis and liver failure.

Inflammation is essential to combat infection; however,

inflammatory mechanisms also underpin normal physiological

events in the healthy body, including embryonic implantation,4

fetal development,5 involution post-partum and tissue repair.6

In the liver, homeostatic inflammatory processes control

hemodynamic changes, capillary permeability, leukocyte migra-

tion into tissues and secretion of inflammatory mediators. This

1School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D2, Ireland and 2School of Medicine, Trinity

Biomedical Sciences Institute, Trinity College Dublin, Dublin D2, Ireland

Correspondence: Dr C O’Farrelly, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D2, Ireland.

E-mail: cliona.ofarrelly@tcd.ie

Received: 19 November 2015; Revised: 8 January 2016; Accepted: 9 January 2016

Cellular & Molecular Immunology (2016) 13, 267–276
& 2016 CSI and USTC All rights reserved 1672-7681/16 $32.00

www.nature.com/cmi

http://dx.doi.org/10.1038/cmi.2016.3
mailto:cliona.ofarrelly@tcd.ie
http://www.nature.com/cmi


homeostatic inflammation is tightly regulated and the activa-

tion of inflammatory processes is intimately linked to mechan-

isms that resolve inflammation and promote tissue

regeneration (Figure 1). This controlled inflammation is

essential to maintain tissue and organ homeostasis and yet,

when dysregulated, drives pathology and organ damage

(Figure 1). In this review, we demonstrate an emerging role

for inflammation and inflammatory mediators in normal liver

homeostasis, in regulating the liver immune system and in liver

regeneration following various forms of liver damage. We

propose that homeostatic inflammation should be viewed as a

normal part of the healthy liver and that therapeutic strategies

targeting liver disease be designed to restore these homeostatic

inflammatory processes.

THE IMMUNOLOGICAL STRUCTURE OF THE LIVER

The liver functions as an important buffer between gut

contents and systemic circulation – 80% of the hepatic blood

supply is delivered from the gut via the portal vein. This low

pressure blood supply is rich with harmless dietary and

environmental antigens as well as molecules from the micro-

flora of the gut. The liver must tolerate this immunogenic load

while still providing immunosurveillance for pathogenic infec-

tions and malignant cells. Upon entering the liver venous blood

from the gut mixes with oxygen-rich blood from the hepatic

artery and drains through the hepatic sinusoids to the central

veins through plates of hepatocytes. The sinusoids are lined by

specialized liver sinusoidal endothelial cells (LSEC) that contain

numerous fenestrations, allowing blood to pass through the

LSEC layer to the underlying hepatocytes.

This organization allows for the rapid exchange of molecules

from blood into hepatocytes and facilitates the removal and

degradation of immunogenic molecules (for example, bacterial

endotoxin) in the liver (Figure 2). Pattern recognition receptors

(PRR) expressed by hepatocytes and liver-resident macrophages

(known as Kupffer cells (KC)), bind to microbial associated

molecular patterns (MAMP)7,8 and damage-associated molecular

patterns (DAMP),9 which are present in high quantities in the

blood arriving from the portal vein. Upon binding, these MAMPs

and DAMPs are phagocytosed and subsequently degraded by

hepatocytes and KCs, without the production of inflammatory

mediators that usually accompany PRR signaling. This detox-

ification of blood from the gut protects the rest of the body from

excessive immune activation and influences the unique immu-

nological environment within the liver.

The low pressure blood flow, fenestrated endothelium and

lack of a basement membrane10 also facilitates intimate

interactions between resident immune cells and non-

hematopoietic hepatic cells. These resident immune cell

populate the liver sinusoids and the sub-endothelial compart-

ment, the space of Disse, where lymph collects and flows into

lymphatic vessels running along the portal tract. These resident

immune cells include professional antigen presenting cell

(APC) populations, myeloid cells, as well as innate and adaptive

lymphoid cell populations.11–13 While several liver-resident

immune cell populations are well recognized (for example,

KCs), the full spectrum of immune cells resident within the

liver is still unclear. This is particularly true in humans, and

further studies are required to define phenotypically distinct

liver-resident immune cell populations. In the context of the

healthy adult liver, these liver-resident populations play vital

roles in regulating inflammation and maintaining organ home-

ostasis and the immunological roles of individual liver-resident

immune cell populations are described in further detail in this

issue of Cellular and Molecular Immunology.

Figure 1 The role of inflammatory processes in liver homeostasis
and pathology. Inflammatory processes in the liver are involved in
both homeostasis (organ and systemic) and pathology. Homeostatic
inflammation is tightly regulated by mechanisms that act to resolve
inflammation in order to avoid the pathological consequences of
excessive inflammation.

Figure 2 Immunological and metabolic roles of hepatocytes.
Hepatocytes perform a number of important immunological roles,
in addition to their essential metabolic roles. These include: the
production of plasma proteins such as clotting factors, complement
and antimicrobial proteins; the production of acute phase proteins
upon local or systemic infection; and antigen presentation to T cells
within the liver.
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Liver Myeloid Immune Cell Populations

Macrophages are key detectors of microbial molecules and

producers of inflammatory mediators in the body. KCs account

for up to 90% of the total population of fixed macrophages in the

body and constitute almost a third of the non-parenchymal cells

in the liver.14 KCs are equipped with a massive array of PPRs,15

complement receptors16 and Fc receptors,17 through which they

respond with increased phagocytic activity and production of

inflammatory cytokines. They have essential roles in immune

regulation, tissue repair and liver regeneration18 and are capable

of responding to cytokine, Toll-like receptor (TLR),19 RIG-like

receptor and NOD-like receptor signaling.20

Dendritic cell (DC) populations, including both myeloid

DCs and plasmacytoid DCs, are found in the healthy liver.

Hepatic DC populations are described as phenotypically

immature although they can stimulate strong T-cell responses

in certain situations.21 Recently a sub-population of human

hepatic CD141+ DCs have been shown to be potent cytokine

producers and activators of T cells.11

Myeloid-derived suppressor cells (MDSC) are also present in

the healthy liver22 and are expanded during chronic liver

disease.23 MDSCs are defined by their ability to suppress T-cell

activation through the production of the immunosuppressive

molecules IL-10, transforming growth factor (TGF)β and

arginase.24 Granulocytic cells, such as neutrophils, are thought

to be largely absent in the healthy liver, only accumulating in

response to infection and inflammation.25 However, neutro-

phils and their progenitors share several phenotypic markers

with MDSCs and comprehensive data characterizing these

populations in the human liver are lacking.

Liver Lymphoid Immune Cell Populations

The diverse range of innate lymphocytes in the adult liver includes

natural killer (NK) cells, NK T cells (NKT) (including populations

of CD1d-restricted invariant NKT cells), mucosal associated

invariant T cells and γδ T cells.12,26–28 Hepatic innate lymphocyte

populations are potent cytokine producers and influence both

innate and adaptive immune responses in the liver. The repertoire

of liver innate lymphocytes is strikingly different between mice

and humans. In mice, NKT cells and NK cells make up to 40%

and 10% of total liver lymphocytes respectively, while in humans,

these percentages are reversed, with NK cells predominating.29 In

humans, CD56bright NK cells are particularly enriched in the liver

where they constitute over 50% of the total hepatic NK

population, compared with 10–15% in peripheral blood.30,31 In

mice, invariant NKT cells preferentially home to the liver where

they adhere via LFA/ICAM binding, and form a highly tissue-

resident immune cell population.32

Populations of adaptive lymphocytes, including classic major

histocompatibility complex (MHC)-restricted CD4+ and CD8+

T cells as well as B cells, are found in healthy liver. The liver is

particularly enriched in CD8+ T cells, activated T cells and

memory T cells.13,33 Accumulation of these T-cell subsets in

the liver is associated with T-cell apoptosis and deletion leading

to the liver having been described as a ‘graveyard’ for T

cells.34,35 Populations of B cells are also present in the human

liver, where they account for up to 8% of the total lymphocyte

population.13 Specific hepatic B cell subpopulations, such as the

innate-like CD5+ B cell population, are further expanded in

the liver during hepatotropic viral infection.36,37

Hematopoietic Progenitor Cell Populations in the Liver

While hematopoietic cell development is classically assumed to

be limited to the bone marrow in healthy adults, it has

been hypothesized that some hepatic immune populations

differentiate locally.38,39 The ability of the liver to act as a site of

hematopoiesis when under stress is well described and

hematopoietic stem cells are thought to contribute to mixed

chimerism following liver transplant in murine models.40

Moreover, purified liver hematopoietic progenitor cells have

been shown to reconstitute immune cell populations following

lethal irradiation in mice.41 The adult human liver also

contains populations of progenitor cells, which express surface

markers characteristic of immature hematopoietic cells and

form multi-lineage hematopoietic colonies upon in vitro

culture.38,39 These hepatic myeloid and lymphoid progenitor

populations may contribute to the development of phenotypi-

cally distinct liver-resident immune cell populations through

local hepatic immune cell differentiation.

Immune-Regulating Liver Non-Hematopoietic Cell

Populations

In addition to hepatic immune cell populations, non-

hematopoietic cells in the liver play key roles in local

and systemic innate immunity and inflammation. LSECs,

hepatocytes and hepatic stellate cells (HSC) all express a range

of PRRs.19,42,43 Expression of TLRs, carbohydrate receptors and

scavenger receptors by non-immune cells in the liver comple-

ments KC detection and clearance of MAMPs from the portal

blood supply and regulates the production of inflammatory

mediators from non-immune cells within the liver.

LSECs, and hepatocytes express variable levels of Class II MHC

molecules and are capable of presenting antigens to classical T

cells.1,21 Under inflammatory conditions LSEC-primed T cells

can develop into functional T effector cell populations, in the

absence of CD4+ T-cell activation, and contribute to pathogen

immunity.44 Murine hepatocytes also express the MHC-like

molecule CD1d, enabling lipid presentation to invariant NKT.45

In contrast, it has been difficult to demonstrate CD1d expression

by healthy human hepatocytes, although it is increased in the

context of hepatitis C virus infection.46

THE LIVER MICROENVIRONMENT AND IMMUNE

REGULATION

The anatomical structure, resident immune cell repertoire and

state of constant stimulation in the liver combine to create a

unique cytokine/growth factor milieu. This microenvironment

determines the balance between tolerance and inflammation in

the healthy liver. The hepatic blood supply is a significant

contributor to the unique liver microenvironment. Cells within

the liver are subject to persistent signaling from dietary and

commensal molecules, which induces a state of tolerance as
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discussed in more detail below. The healthy adult liver has an

active and complex cytokine milieu, which includes basal

expression of pro-inflammatory (IL-2, IL-7, IL-12, IL-15 and

interferon (IFN)γ) and anti-inflammatory (IL-10, IL-13 and

TGFβ) cytokines.47,48 This cytokine milieu exists in the absence

of infection or pathological inflammation, and presumably

arises through normal physiological processes within the

healthy liver. These processes likely include PRR signaling

induced by gut-derived molecules in both non-hematopoietic

and myeloid cell populations, as well as cytokine production by

activated hepatic lymphoid immune cell populations.49

The hepatic microenvironment is further influenced by the

high levels of dietary fats and carbohydrates in the hepatic

blood supply. Carbohydrates are taken up by hepatocytes and

stored as glycogen, while dietary fats, transported from the gut

as chylomicrons, are processed into a range of lipoproteins

that in turn distribute cholesterol and triglycerides throughout

the body (Figure 2). Importantly these metabolic processes are

intimately linked to liver inflammation through the inflamma-

tory effects of metabolites such as succinate50 as well as

triglyceride and cholesterol levels, which promote TLR signal-

ing and inflammasome activation.51 The metabolic regulation

of inflammation is important in non-alcoholic fatty liver

disease where elevated pro-inflammatory cytokines, which

contribute to liver fibrosis, are observed.52 In mouse models,

this pro-inflammatory profile can be replicated by a high-fat

diet, driven in part by the sensitization of hepatocytes to TLR

agonists by saturated fatty acids.53 Metabolic regulation of liver

hepatocytes is also evident in hepatitis B virus and hepatitis C

virus infections, where metabolic changes in infected hepato-

cytes promote viral replication.54,55 It is likely that these

metabolic changes also influence the inflammatory immune

response to viral infection.

Indeed, these metabolic links with inflammation extend

beyond hepatocytes and also influence macrophage and DC

functions. Both macrophages and DCs undergo metabolic

reprogramming upon activation, switching from oxidative

phosphorylation to aerobic glycolysis, termed the Warburg

effect.56 This switch is essential for the production of pro-

inflammatory mediators in macrophages however the influence

of metabolism on liver KC function is presently unknown. At

normoxia, the switch to aerobic glycolysis in macrophages

results in increased succinate levels that in turn activate HIF1α

and IL1β production.50 HIF1α is also activated by hypoxia yet

despite the liver being in a constant state of low oxygen tension

(due to blood from the portal vein), a hypoxia response is not

induced in healthy hepatic cells.57 This suggests that cells

within the liver may have a unique response to metabolic

signals that are known to drive inflammation and these

unique metabolic signals likely contribute to the regulation of

liver-immigrating immune cell populations. A deeper under-

standing of the role of the dynamic liver microenvironment in

organ homeostasis is required to provide a context to the

changes that occur during human liver pathology.

INFLAMMATORY PROCESSES IN THE HEALTHY LIVER

Inflammation and inflammatory mediators, generated by liver-

resident immune cell populations and non-hematopoietic cells,

play essential roles in maintaining local liver and systemic

homeostasis. These homeostatic roles must be recognized when

considering the role of inflammation and liver-resident immune

cell populations in liver disease and pathology. Liver inflamma-

tion should be considered as a highly dynamic and complex

network of responses, which collectively aim to maintain organ

and also systemic homeostasis in healthy individuals.

The Tolerogenic Liver

The healthy liver is often described as being immunologically

tolerogenic58,59 nevertheless it is evident that rapid and robust

liver immune responses are successfully generated in many

circumstances. The concept that the liver is an immunologi-

cally tolerant organ arose in the transplantation field when it

was first observed in pigs that allogeneic liver transplantation

was significantly better tolerated than other allogeneic organ

transplantation, which induced rapid rejection.60 This concept

is supported by the low levels of immunosuppression generally

required by liver transplant recipients. Indeed, in certain

individuals, immunosuppression can be completely stopped

following liver transplantation without subsequent graft

rejection.61 Furthermore, the ability of hepatic tolerance to

induce systemic tolerance to co-transplanted organs highlights

the powerful tolerogenic properties of the liver.62

Resident myeloid cells contribute to the maintenance of

hepatic tolerance. KCs respond to bacterial endotoxin

by producing anti-inflammatory cytokines such as IL-10 and

prostaglandins.63,64 These downregulate expression of

co-stimulatory molecules on APCs, preventing activation of

CD4+ T cells and limiting the adaptive immune response.65,66

Presentation of particulate antigens by KCs preferentially

expands IL-10 producing T regulatory cell populations indu-

cing antigen-specific tolerance.67 Similarly, hepatic myeloid

DCs are less potent activators of T cells and produce

significantly more IL-10 compared with spleen derived myeloid

DCs.68–70 Hepatic plasmacytoid DCs also appear phenotypi-

cally immature and are not effective T-cell activators ex vivo;

however, activation via growth factors or TLR agonists induces

maturation and effective antigen presentation.71 Hepatic plas-

macytoid DCs have also been shown to be capable of IL-10

production and activation of regulatory T cells.72 In addition to

these professional APC populations in the liver, LSECs and

hepatocytes possess the ability to directly present antigen to T

cells.1,21 Under certain conditions HSCs may also directly

present antigen to T cells as well as influence antigen

presentation as a bystander cell.73 The presentation of antigens

in the liver biases T cells towards tolerance due to a lack of

co-stimulatory molecules and CD4+ T-cell help, required for

efficient T-cell differentiation.74,75

The tolerogenic liver environment is further maintained by

regulatory myeloid populations such as MDSCs. MDSCs

mediate their suppressive activity through the production of

the immunosuppressive cytokines IL-10 and TGFβ, and the
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production of arginase and IDO, which limit essential amino

acids required for immune cell activation and proliferation.24

Transmigration of monocytes through LSECs leads to MDSC

differentiation76 and MDSCs are activated during the liver

acute phase response77 contributing to the immunoregulatory

potential of the liver.

Systemic Homeostasis and the Acute Phase Response

A key systemic function of the liver is serum protein production.

The liver normally synthesizes the majority of serum proteins,

including complement proteins, albumin, fibrinogen, clotting

factors, transport proteins, protease inhibitors and lipoproteins

(Figure 3). These proteins are involved in the systemic transport

of nutrients, in the regulation of blood osmotic pressure and act

as inactive precursors of several innate immune mediators. The

liver also has a central role in detecting and responding to

inflammatory signals from other sites in the body (Figure 3).

During the early stages of extra-hepatic inflammation, cytokines

produced by immune cells enter the blood stream and are

detected by liver hepatocytes, which initiate the systemic acute

phase response (APR).78 Hepatocytes increase acute phase

protein production by orders of magnitude and also synthesize

IL-6, which acts to amplify the APR.

The acute phase proteins produced by hepatocytes have direct

effector function (Table 1) and are responsible for the systemic

effects of inflammation, which promote pathogen clearance.78–80

The acute phase proteins drive a range of mechanisms through-

out the body including leukocytosis in the bone marrow,

changes in the brain that mediate pyrexia and alter behavior,

and massive immune cell infiltration to the site of initial

inflammation. At the same time the APR includes a range of

processes to limit excessive inflammation. These processes

include the inhibition of neutrophil function by protease

inhibitors, such as α2-macroglobulin, the inhibition of TNF

production from KC by C-reactive protein,81 and the recruit-

ment of suppressive MDSC populations by serum amyloid A.77

These processes act to limit bystander tissue damage caused by

the inflammatory process and enhance the repair process.

Liver Immunity and Resolving Fibrosis

While maintaining an overall tolerogenic environment, the

hepatic immune system must be capable of rapid, controlled

responses to tumor cells and pathogenic microorganisms.

Many pathogens, including several species of viruses, bacteria

and parasites, specifically target the liver.58 Effective local

immunity is essential for detecting and clearing these hepato-

tropic pathogens. During acute liver insult activated KCs can

become potent producers of pro-inflammatory cytokines such

as IL-1, IL-6 and TNF-α as well chemokines such as MIP-1α

and RANTES.82,83 This KC pro-inflammatory response is

induced following signaling via MyD88-independent TLRs

(for example, TLR3), but not MyD88-dependent pathways,

which instead induce IL-10 production.84 Potent pro-

inflammatory CD141+ myeloid DCs have also been demon-

strated in healthy adult liver, capable of inducing IFN-γ

and IL-17 production from T cells.11 In this inflammatory

microenvironment, liver-primed T cells can develop into

functional T effector cell populations and mediate pathogen

clearance, even in the absence of classical CD4+ T cell help.44

Acute liver inflammation leads to the recruitment and

activation of leukocyte populations, and the induction of

fibrotic responses at the site of inflammation,85 as summarized

in Figure 4. The resolving fibrosis observed during acute injury

acts to protect surviving hepatocytes by reducing pro-apoptotic

signaling and increasing resistance to a range of toxins.86 This

fibrotic process is regulated by inflammatory cytokines and

growth factors, released by leukocytes that traffic to the

damaged tissue. These cytokines include TNFα, IL-6, platelet-

derived growth factor and TGFβ. These cytokines lead to

activation and proliferation of HSCs, which are potent produ-

cers of extra-cellular matrix components, including

α-smooth muscle actin and type I collagen.87 Liver fibrosis is

Figure 3 Regulation of systemic homeostasis by the liver. In a healthy individual, the liver produces a range of serum proteins including
albumin, clotting factors and complement. During acute infection hepatocytes are induced to produce a range of antimicrobial proteins,
inflammatory mediators, coagulation factors and opsonins, collectively known as the acute phase response. Inflammatory cytokines
produced in the liver (for example, IL-6) enhance the acute phase response, alter thermoregulation and induce leukocytosis.
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often considered a feature of pathology but resolving fibrosis is

also essential for liver wound repair and restoration of tissue

homeostasis (Figure 4). Fibrosis only becomes clinically rele-

vant when it alters tissue structure and function due to

dysregulated or excessive inflammation.

In the resolution phase of acute liver fibrosis, macrophages

produce a range of pro-resolution mediators, which increase

expression of matrix metalloproteinases and suppress matrix

metalloproteinase inhibitors.88 At the same time, NK

cell-mediated cytotoxicity against HSCs contributes to the

regulation of intrahepatic fibrosis. Trans-differentiation of acti-

vated HSCs into myofibroblasts alters the balance

of activating and inhibitory cell receptor ligands such

that they are targeted for deletion by NK cells via TRAIL-, FasL-

and NKG2D-dependent mechanisms.89,90 These multifaceted

interactions between immune cell subsets that regulate the repair

process lead many to consider wound healing as a critical

component of the innate immune response to tissue damage.

Table 1 Serum protein synthesis by the liver during the acute phase response

Proteins induced in APR Examples Immune function

Complement proteins C3, C4 and C9 Enhance phagocytosis, act as chemoattractants, induce

cell degranulation, enhance vascular permeability and

induce bacterial cell lysis

Iron-binding proteins Haptoglobin, hemopexin, ferritin and hepcidin Act to reduce free iron in the serum and antimicrobial

functions

Antimicrobial proteins Liver expressed antimicrobial peptide 2, hepcidin Antimicrobial activity

Clotting factors Fibrinogen, prothrombin, factor VIII, factor IX and Von

Willebrand factor

Enhance coagulation

Inflammatory proteins IL-6, lipopolysaccahride-binding protein and secreted

phospholipase A2

Enhance pro-inflammatory signals and potentiate the

APR

Lectins, pentraxins, ficolins

and collectins

C-reactive protein, mannose-binding lectin, collectin liver 1,

ficolin-2 and serum amyloid P

Active complement and enhance phagocytosis

Protease inhibitors α2-Macroglobulin, α1-antichymotrypsin and α1-antitrypsin Anti-inflammatory functions via the inhibition of coagu-

lation, neutrophils and mast cells

Abbreviation: ARP, acute phase response.

Figure 4 Maintenance of local homeostasis in the liver in response to liver damage. Inflammatory processes are vital to maintain liver
homeostasis following cell death or infection. Upon acute injury, cell death or infection, apoptotic hepatocytes release a variety of DAMPs
and/or MAMPs (1) that are recognized by and activate neighboring hepatocytes, HSCs, and liver-resident immune cell populations.
Activated cells secrete inflammatory mediators leading to leukocyte recruitment and HSC trans-differentiation into myofibroblasts, which
initiate fibrosis through the synthesis of extra-cellular matrix components (2). The initiation of inflammation leads to the expression of pro-
resolving factors from recruited leukocytes and myofibroblast apoptosis (3), enabling tissue regeneration and a return to homeostasis (4).
If this resolution phase does not occur persistent inflammation results in the progressive development of liver fibrosis and eventual
cirrhosis. Abbreviations: DAMPs, damage-associated molecular patterns; ECM, extra-cellular matrix components; HSCs, hepatic stellate
cells; MAMPs, microbial associated molecular patterns.
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Inflammation and Liver Regeneration

The capacity of the liver to fully regenerate after injury is

essential for the maintenance of the liver’s important functions

in the control of metabolism and xenobiotic detoxification.

This regenerative capacity is driven by the proliferation of

existing mature hepatocytes in response to environmental

cues.91 The regeneration potential of the liver is driven by

inflammatory mediators (for example, IL-1α, TNFα and IL-6),

growth factors (for example, hepatocyte growth factor and

epidermal growth factor) and liver-resident immune cell

populations.92 The importance of IL-6 is emphasized by the

impaired liver regeneration observed in mice with targeted

disruption of IL-6, which have reduced hepatocyte proliferation

that can be restored with a single pre-operative dose of IL-6.93

Impaired liver regeneration is also observed in mice treated

with antibodies targeting TNFα.94 The pro-regeneration effect

of TNFα requires expression of inducible nitric oxide synthase,

which blocks the potential pro-apoptotic effect of TNFα

signaling, and highlights a small part of the complexity of

inflammatory signals required to regulate liver regeneration.95

KCs play a central role in this liver regeneration via release of

IL-6 and TNFα, which promotes hepatocyte proliferation, and

KC depletion impedes subsequent liver regeneration.96 This KC

activation is driven by neutrophil recruitment to the liver, in

response to inflammatory signals, in an ICAM-1-dependent

manner.96 The complement proteins C3 and C5 also play

important roles in priming KCs and promoting hepatocyte

proliferation following partial hepatectomy.97 In addition to

these pro-regeneration properties, liver-resident immune cell

populations can also inhibit liver regeneration.98 Depletion of

NK cells enhances liver regeneration due to reduced IFNγ

production, which acts to induce hepatocyte cell cycle arrest

and inhibits hepatocyte proliferation.99,100 Depletion of

NKT cells in hepatitis B virus transgenic mice also enhances

liver regeneration due to reduced production of IFNg and

TNFa.101 These liver-resident immune cell populations act as a

negative feedback mechanism, regulating liver regeneration and

returning the liver to homeostasis.

TARGETING IMMUNE DYSREGULATION AS A

THERAPEUTIC STRATEGY IN LIVER DISEASE

Dysregulation of liver inflammation is a hallmark of chronic

infection, autoimmunity and malignancy, which is mediated

by multiple overlapping pathways in different liver diseases.

While homeostatic inflammation and liver fibrosis are aspects

of the healthy adult liver, a lack of resolution or chronic liver

injury lead to progressive liver fibrosis and permanent

liver damage. In these situations, pathological inflammation

promotes the progression of liver fibrosis to cirrhosis and

establishes a dysregulated balance between inflammation and

immunosuppression within the liver. Approaching liver disease

as a range of overlapping pathways leading to the dysregulation

of homeostatic inflammatory processes provides novel avenues

for the development of future therapies targeting inflammation

and resolution within the liver.

Excessive or persistent inflammation characterizes a range of

liver diseases. Persistent activation of innate immune detection

pathways, due to chronic infection, tissue damage, excess

consumption of alcohol or fat, or tumor growth, leads to the

classic features of pathological liver inflammation. Persistent

inflammatory signals, produced by a range of immune cell and

non-hematopoietic cell populations, maintain HSC-derived

hepatic myofibroblasts in an activated state.102 This limits

myofibroblast senescence and reduces the ability of NK cells to

induce myofibroblast apoptosis.98 Within the diseased liver,

excessive inflammation results in the loss of liver tolerogenic

mechanisms, promoting further inflammation. Inflammatory

monocyte-derived macrophages are recruited to the liver where

they promote fibrosis,103 and reduce the ability of KCs

to promote T regulatory cell development.67 This disruption

of hepatic tolerance has important clinical consequences as

liver disease develops. As an example the spread of bacterial

products in advanced cirrhosis/decompensation can lead to a

pro-inflammatory cytokine storm and eventual systemic organ

failure.104 Where treatment options are available clinically, such

as in autoimmune disorders, these rely on the use of general

immunosuppressive drugs.105 In this context, therapeutic

strategies aimed at enhancing the normal tolerogenic liver

mechanisms that lead to the resolution of inflammation,

fibrosis regression and hepatocyte regeneration, may augment

the existing immunosuppressive treatments. The potential of

such strategies can be seen in results from a recent clinical trial,

using a combination of granulocyte colony-stimulating factor

and erythropoietin to enhance liver regeneration, which

improved 12-month survival for patients with advanced

cirrhosis and significantly reduced liver severity scores.106

Normal liver tolerogenic mechanisms can also act to

promote the persistence of liver pathogens, such as hepatitis

C virus, and the growth of primary and metastatic tumors,

which in time establishes a state of dysregulated inflammation.

A number of pathogens specifically target the liver58 and the

liver is also a common site of primary malignancy and

metastasis. The presentation of pathological antigens in the

liver can actively suppress immune responses, thus inducing a

state of immune tolerance to the pathogen or tumour.58,74,75,107

At the same time, innate immune activation, in response to

MAMPs or DAMPs released during infection or tumor growth,

results in persistent inflammation and the upregulation of a

number of immune regulatory pathways aimed at minimizing

excessive tissue damage. This includes expansion of tumor-

promoting immunoregulatory cell populations such as

MDSCs,24,108 epigenetic and metabolic changes resulting in

immune cell tolerance,109 induction of negative regulators of

pro-inflammatory signaling pathways,110 and development of

T-cell exhaustion.107,111 Targeting these immune regulatory

pathways in liver disease could reduce liver pathology (via

promotion of regulatory mechanisms) or induce pathogen/

tumor clearance (via inhibition of regulatory mechanisms).

One such strategy, using immune checkpoint inhibitors to

reverse T-cell exhaustion, is showing promise in the field of

cancer therapy as well as in the context of liver disease. A phase
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II clinical trial of Tremelimumab (which targets cytotoxic

T-lymphocyte-associated protein 4), in patients with hepatitis

C virus infection and hepatocellular carcinoma, resulted in

favorable antitumor activity and antiviral activity, including

transient complete viral response in three patients.112 These

results highlight the potential for therapeutically targeting

immune tolerance in the liver.

EPILOGUE: THE HEALTHY IMMUNOLOGICAL LIVER

Inflammatory mechanisms are crucial to maintaining liver

homeostasis as well as protecting the body from pathogens,

tumors and tissue damage. Hepatic inflammatory mechanisms

initiate, mediate and resolve systemic and local immune

responses and at the same time contribute to liver pathology.

The diverse repertoire of immune cell populations in the liver,

together with the inflammatory potential of non-hematopoietic

hepatic cells, plays a central role in both homeostatic and

pathological inflammation within the liver. The complex inflam-

matory and immunoregulatory interplay within the liver is

required to maintain organ and systemic homeostasis, as well

as mobilize complementary inflammatory mechanisms to protect

against infection, metastasis and tissue damage. We are at last

beginning to dissect out the molecular mechanisms involved in

these apparently contradictory inflammatory processes and to

understand how inflammation is responsible for both normal

liver homeostasis and function and also for liver pathology.

KEY CONCEPTS

1. The healthy adult liver contains large populations of resident

myeloid and lymphoid immune cells.

2. Inflammatory mechanisms in the healthy liver maintain

local organ and systemic homeostasis.

3. Despite a bias toward immune tolerance, hepatic immune

cells can induce robust pro-inflammatory responses upon

tissue damage or infection.

4. The liver plays a central role in the sensing of and the

response to systemic inflammation.

5. Excessive or dysregulated inflammatory activity leads to the

pathology associated with autoimmune, infectious or malig-

nant hepatic disease.
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